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ABSTRACT
Well-trained remote sensing (RS) deep learning models often encounter a considerable decline in performance when applied to 
images that differ from the training data. This decline can be attributed to variations in imaging sensors, geographic location, 
imaging time, and radiation levels during image acquisition. Consequently, the widespread application of these models has 
been greatly impeded. An envisioned resolution to confront this challenge encompasses formulating a cross-domain RS image 
semantic segmentation network integrated with self-training consistency. This approach involves the generation of high-quality 
pseudo-labels for images in the target domain, which are then used to guide the training of the network. To enhance the mod-
el's ability to learn the data distributions of both the source and target domains, highly perturbed mixed samples are created 
by blending images from these domains. Additionally, adversarial training is incorporated to reduce the entropy of the model's 
predicted results, thereby mitigating the influence of noise present in the pseudo-labels. As a result, this approach effectively 
extracts domain-invariant features and minimizes the disparities between the distributions of the different domains. By employ-
ing the ISPRS and LoveDA datasets in a series of experiments conducted across varied scenarios, our empirical investigations 
evince the capacity of the proposed methodology to generalize the model to target domain data, which is achieved through the 
mitigation of disparities between domain distributions. It effectively alleviates the domain shift issues caused by differences in 
imaging locations and band combinations in RS image data and achieves state-of-the-art results and validates its effectiveness.

1   |   Introduction

The primary objective of traditional machine learning is to 
construct a model that minimizes the potential risks associ-
ated with test data, utilizing a provided training sample. The 
prevalent and effective approach to train such a model is su-
pervised learning. The effectiveness of this approach heavily 
relies on the availability of abundant labeled training data. 

Furthermore, it assumes that both the training and test data-
sets are derived from the same distribution and possess sim-
ilar joint probability distributions. Nevertheless, in practical 
scenarios, it is frequently challenging to meet this condition, 
resulting in the test data originating from distinct feature 
spaces or distributions. When the training data fail to accu-
rately represent the distribution of the test data (Csurka, Volpi, 
and Chidlovskii 2021; Liu, Yoo, et al. 2022), specifically when 
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encountering out-of-distribution data, the performance of the 
trained model significantly deteriorates when applied to the 
test data.

In the realm of remote sensing (RS), the performance of trained 
models often suffers when applied to images that differ from 
the training data (Tuia, Persello, and Bruzzone  2016; Peng 
et al. 2022). This is primarily due to variations in imaging sen-
sors, image resolution, geographic location, imaging time, angle, 
and radiation. As a result, satisfactory results are not achieved, 
hindering the widespread use of deep learning models in RS 
(Peng et al. 2023). To overcome this obstacle, it is imperative to 
take these factors into account during model development and 
ensure their robustness in handling such variations.

Researchers have introduced a novel research area in machine 
learning known as domain adaptation (DA) to address the do-
main shift problem between the source domain (SD) and the 
target domain (TD) (Liu, Yoo, et al. 2022). Notably, within the 
unsupervised domain adaptation (UDA) paradigm, data in the 
TD often lack labels. The primary objective of DA is to train a 
model by leveraging both SD and TD data, with the intention 
of reducing the disparity between the feature distributions of 
these domains and aims to facilitate effective generalization of 
the model to the TD.

Domain adaptation tasks aim to learn representations that re-
main invariant across domains, thus facilitating cross-domain 
generalization, that is, learning domain-invariant features. 
To enhance the precision of the TD, numerous DA method-
ologies incorporate a style transfer network. This network is 
utilized to transform the image style of the TD to resemble 
that of the SD. This transformation enables the generation of 
corresponding labels (Hoffman et  al.  n.d.; Murez et  al.  n.d.; 
Wu et al. n.d.; Chen et al. n.d.; Li, Yuan, and Vasconcelos n.d.; 
Cheng et  al.  n.d.). While these methods effectively address 
the domain shift issue caused by radiometric disparities and 
variations in band combinations, they often introduce addi-
tional networks that lack elegance and stability during the 
training phase. Moreover, they struggle to handle discrep-
ancies in geographic locations. In order to better tackle the 
domain shift problem, feature-level DA methods focus on 
aligning features in the hidden space rather than at the input 
level. Through adversarial training, these methods mitigate 
differences in features, allowing the network to concentrate 
on extracting domain-invariant features (Tsai et  al.  n.d.; 
Vu et  al.  n.d.; Pan et  al.  n.d.). Additionally, some other DA 
methodologies capitalize on unlabeled data sourced from the 
TD to augment its accuracy through self-training as an ad-
junctive approach (Zou et al. n.d.; Mei et al. n.d.; Araslanov 
and Roth  n.d.; Melas-Kyriazi and Manrai  n.d.; Tranheden 
et  al.  n.d.; Wang et  al.  n.d.-a; Zheng and Yang  2021; Hoyer, 
Dai, and Van Gool  n.d.). Self-training, initially employed 
within the domain of semi-supervised learning, entails the 
generation of pseudo-labels for the TD data, subsequently 
utilized in training the network. However, these methods 
are not sufficiently robust due to the influence of noise in the  
pseudo-labels.

In this research, drawing inspiration from the aforemen-
tioned methodologies, we present a novel approach for 

cross-domain RS image semantic segmentation, which we 
refer to as SeConDA. The overall network architecture em-
ploys a teacher–student network. To leverage the knowledge 
from the TD, we propose a pseudo-label supervision strategy 
based on self-training consistency. This strategy supervises 
the network training by calculating losses on high-quality 
pseudo-labels generated from the TD images. Simultaneously, 
we address the domain shift issue between the SD and TD 
by introducing a consistency regularization method based 
on mixed samples. This method learns the SD and TD data 
concurrently by utilizing highly perturbed mixed samples. 
Furthermore, we propose an entropy-based adversarial train-
ing technique to position the decision boundary of the model 
in a low-density region. This helps reduce the entropy of 
predictions from both the SD and TD and facilitates the ex-
traction of domain-invariant features. We conducted experi-
ments on the ISPRS dataset (Rottensteiner et al. 2013) under 
four different migration scenarios and on the LoveDA dataset 
(Wang et  al.  2021) under two different migration scenarios. 
The experimental results validate the effectiveness of our 
proposed method in generalizing to the TD data by minimiz-
ing the discrepancy between domain distributions. These re-
sults demonstrate that our approach achieves state-of-the-art 
performance.

The main contributions of this thesis are as follows:

1.	 To alleviate the problem of the existence of domain shift be-
tween the SD and TD, a consistent regularization method 
based on mixed samples is proposed to implicitly learn the 
SD and TD data simultaneously by obtaining the highly 
perturbed mixed samples.

2.	 The proposed entropy-based adversarial training aims to 
extract domain-invariant features, enhancing the trans-
ferability of the network model. This approach effectively 
addresses the domain shift problem arising from varia-
tions in imaging positions and band combination methods 
within RS image data.

To maintain a coherent structure, the rest of this paper is 
arranged as follows. Section  2 provides a literature review 
on semantic segmentation and DA. Section  3 describes the 
methodology proposed in this paper. Section  4 analyzes the 
methodology experimentally. Section  5 serves as the discus-
sion section, delving into the methodology. Lastly, Section  6 
concludes the paper.

2   |   Related Work

2.1   |   Supervised Semantic Segmentation

For a considerable duration, semantic segmentation has pre-
sented itself as a complex undertaking, prompting the explo-
ration of various approaches employing supervised learning 
to tackle this challenge (Garcia-Garcia et  al.  2017). By har-
nessing the power of convolutional operations, the FCN fam-
ily of networks amalgamates dilated convolution and context 
modules to continuously refine accuracy (Long, Shelhamer, 
and Darrell  n.d.; Ronneberger, Fischer, and Brox  n.d.; Chen 
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et al. 2014; Zhao et al. n.d.). Furthermore, attention-based mech-
anisms further enhance the network's capacity to comprehend 
contextual information (Fu et al. n.d.). More recently, the inte-
gration of transformer-based networks in semantic segmenta-
tion, inspired by natural language processing, has facilitated 
the establishment of longer term dependencies between pixels 
(Dosovitskiy et al. 2020; Zheng et al. n.d.).

2.2   |   DA For Semantic Segmentation in 
Computer Vision

Despite achieving commendable results on their test sets, cer-
tain models trained on accurately annotated datasets exhibit 
subpar performance when confronted with out-of-distribution 
images. UDA endeavors to alleviate the distribution misalign-
ment between the SD and TD. Research in the realm of deep 
learning-based DA methods is commonly categorized into three 
main groups: image-style transformation-based methods, adver-
sarial training-based methods, and self-training-based methods.

Methods that rely on image style transformation typically uti-
lize generative adversarial networks (GANs) to transfer the SD 
image to the TD image. Subsequently, the segmentation net-
work can be trained on the target-style SD data along with its 
corresponding labels (Hoffman et al. n.d.; Murez et al. n.d.; Wu 
et al. n.d.; Chen et al. n.d.; Li, Yuan, and Vasconcelos n.d.; Cheng 
et al. n.d.). In order to enhance the transfer performance of the 
segmentation model, many approaches integrate image style 
transformation with additional regularizations. Among these 
regularizations, cyclic consistency loss and semantic consistency 
loss, as proposed by (Hoffman et  al.  n.d.), are the most com-
monly employed. The proposed method in their study involves 
an image-to-image transformation and utilizes CycleGAN to 
calculate the consistency loss.

Adversarial training-based methods typically aim to minimize 
the disparity in network features or outputs between SD and TD 
images using GANs (Tsai et al. n.d.; Vu et al. n.d.; Pan et al. n.d.). 
Given the complex structure of the image segmentation task, 
aligning the potential features of both domains solely proves 
to be a difficult endeavor. Consequently, domain alignment is 
commonly conducted at various network layers to reduce the 
discrepancy in feature distribution. To enhance the adaptability 
of the model, Tsai et al. (n.d.) developed a multilevel adversarial 
network that minimizes the divergence in output distribution 
across different layers of the network.

Unlike approaches based on adversarial training which aim to 
reduce domain variance, self-training-based approaches achieve 
DA by utilizing unlabeled data from the TD (Zou et  al.  n.d.; 
Mei et  al.  n.d.; Araslanov and Roth  n.d.; Melas-Kyriazi and 
Manrai  n.d.; Tranheden et  al.  n.d.; Wang et  al.  n.d.-a; Zheng 
and Yang  2021; Hoyer, Dai, and Van Gool  n.d.). Self-training-
based methods employ a multi-round training scheme initially 
devised for semi-supervised learning, but they have recently 
found application in UDA as well. The procedure of self-training 
deep network-based UDA comprises two main stages: initially, 
the generation of pseudo-labels for the TD data, followed by 
training the network using both the TD data and the pseudo-
labels derived from it. However, a significant challenge with 

self-training-based approaches lies in the fact that the pseudo-
labels in the TD might be noisy, making a significant portion 
of them unreliable. To address this issue, it is crucial to select 
predictions with high confidence to refine the pseudo-labeling 
process. Zheng and Yang (2021) introduced a technique aimed 
at explicitly estimating prediction uncertainty throughout the 
training process, which involves modeling prediction variance 
and integrating it into the optimization objective. Additionally, 
to mitigate the impact of low-quality pseudo-labeling caused by 
domain bias, Tranheden et al. (n.d.) trained a model by ensuring 
prediction consistency across domain-mixed images. This was 
achieved by mixing images from both domains along with their 
corresponding labels and pseudo-labels.

2.3   |   DA For Semantic Segmentation in RS

In the RS, data bias poses a significant concern, arising from 
variations in imaging sensors, geographic locations, and atmo-
spheric conditions. This bias adds complexity to the problem of 
DA in the RS, affecting various RS tasks. Previous research on 
DA in the RS has primarily concentrated on scene classification. 
However, there has been a recent trend toward exploring DA in 
the context of semantic segmentation for RS images.

Yan et al. (2019) introduced a ternary adversarial DA technique 
that takes into account two domains to train domain invari-
ant feature classifiers using a domain similarity discrimina-
tor. Their approach leverages information from both domains 
to minimize the distribution gap between them and generates 
confident predictive labels for the target data through the dis-
criminator, which are then used as pseudo-labels for re-training. 
Tasar et al. (2020) proposed an alternative method leveraging a 
color mapping GAN. This method generates synthetic training 
images that retain a semantic resemblance to the original train-
ing data while aligning their spectral distributions with those 
of the test images. These synthetic images are then employed 
to refine the performance of the trained classifiers. Liu, Su, 
et al. (2022) introduced a novel approach involving a two-branch 
structured network capable of extracting features from both 
image and wavelet domains simultaneously. Furthermore, they 
presented a dual-space adversarial learning strategy employing 
two discriminators operating in distinct spaces. One discrimi-
nator aligns the feature distributions between the SD and TD, 
while the other contributes to generating a coherent spatial lay-
out for the classification output. Zheng et  al.  (2021) proposed 
an entropy-guided adversarial learning method that utilizes 
adaptive weights learned from the target prediction probability 
maps. These weights facilitate local feature alignment between 
domains, enabling the measurement of interdomain differences. 
Chen, Zhu, et  al.  (2022) introduced a UDA framework utiliz-
ing adversarial learning to align high-level features, aiming to 
reduce the semantic gap between the SD and TD. They incor-
porated an attention module to direct the classifier's attention 
toward features aligned at the category level. Chen, Pan, and 
Chong (2022) also presented domain discriminators adapted to 
regions and categories, aiming to emphasize variations between 
different regions and categories during the alignment process. 
Cai et al. (2022) suggested an iterative intra-DA framework with 
a generator selection strategy to enhance image-to-image con-
version performance using GANs. Additionally, they enhance 
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the quality of pseudo-labels by filtering out high-entropy and 
low-confidence pixels from the prediction map. Chen, Zhang, 
et  al.  (2022) developed a DA network based on mutual infor-
mation, which incorporates multi-task learning within an 
adversarial network to focus on domain invariant informa-
tion by simultaneously learning segmentation and height. Li 
et al. (2021) proposed an objective function incorporating multi-
ple constraints for semantic segmentation DA.

3   |   Method

3.1   |   Overall Framework

In this research, we present SeConDA (self-training consis-
tency guided DA network), a cross-domain RS image semantic 
segmentation network, illustrated in Figure  1. The network 
architecture follows a teacher–student framework, where 
both the student network S (SN) and the teacher network 
T (TN) share the same structure. The parameters of the SN 
are denoted as �S, while those of the TN are denoted as �T. 
During the training phase, our method focuses on enhancing 
domain-invariant features by incorporating three key strat-
egies: pseudo-label supervision, mixed sample supervision 
based on self-training consistency, and uncertainty-based 
adversarial training. As a result, the entire framework con-
sists of four components: a SD image supervision branch, a TD 
pseudo-label supervision branch, a cross-domain image mix-
ing branch, and an adversarial training branch. In the testing 
phase, only the SN is utilized, while the TN and discriminator 
network are not involved in the inference process.

3.2   |   SD Image Supervision Branch

Within the source-domain image supervision branch, the SN 
receives the source-domain data xS for processing, as shown in 
Figure 1. As is common with semantic segmentation methodolo-
gies, the SN undergoes supervised training, utilizing a pixel-level 
cross-entropy (CE) function denoted as CE for loss calculation:

where the SD image is xS ∈
H×W×3, the corresponding label is 

yS ∈
H×W×C. H, W , C, and c are the length, width, number of cate-

gories, and the corresponding label category, respectively. �[yS=c] is 
the one-hot label vector, and Pc

s,i stands the Softmax probability of 
the SN to predict the SD image, where index i ∈ {1, 2, ⋯ ,H ×W}.

3.3   |   Target Domain Pseudo-Label 
Supervision Branch

To mine the knowledge of the TD, the image xT from the TD is input 
into the TN, yielding pseudo-label ŷT during the training process:

In the absence of labeled data in the TD, the SN relies on pseudo-
labels generated by the TN to facilitate the training process. 
Consequently, the loss function PLCE, which measures the CE 
of the pseudo-labels, can be mathematically represented as:

(1)CE

(

xS, yS; �S
)

= −
1

HW

∑

i

∑

c

�[yS=c]logP
c
s,i

(2)ŷT = argmax
c

T
(

xT
)c

i

FIGURE 1    |    Schematic diagram of our semantic segmentation method for cross-domain RS images.
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where the TD image xT ∈
H×W×3, �[ŷT=c] represents the one-hot 

vector of the pseudo-label ŷT, and Pc
T,i denotes the Softmax prob-

ability of SN to predict the TD image.

Due to the difference in data distribution between the SD and 
TD, noise inevitably creeps into the pseudo-labels. Hence, a 
pseudo-label supervision style centered on self-training is em-
braced. In this context, pixels with predicted confidence levels 
surpassing a designated threshold are utilized for loss computa-
tion. Consequently, the loss function PLCE is adjusted to:

where t  denotes the threshold parameter. We follow the settings 
of DACS and DAFormer and set the threshold parameter t to 
0.968, and only pixel regions larger than this threshold are used 
as pseudo-labels to participate in the loss calculation.

By employing an exponential moving average (EMA) approach, 
the parameters of the TN are iteratively adjusted according to 
those of the SN.

where αEMA represents a hyperparameter representing the 
smoothing coefficient, set to 0.999.

3.4   |   Cross-Domain Image Mixing Branch

The technique of mixed sample-based data augmentation com-
bines pixels from two training images to create a new sample 
that is highly perturbed. This technique has demonstrated 

efficacy in endeavors like image classification and seman-
tic segmentation. Zhang et al.  (2023) conducted a study that 
showcases the effectiveness of mixed sample-based data aug-
mentation in semi-supervised semantic segmentation. In the 
context of UDA, there are two types of data: SD images with 
corresponding labels, and TD images with pseudo-labels pre-
dicted by a TN. Nonetheless, owing to the discrepancy be-
tween the SD and TD, it may not be optimal for the network 
to exclusively depend on acquiring these two varieties of data 
autonomously. Therefore, this method employs the ClassMix 
algorithm (Yun et  al.  n.d.) to introduce fresh data through 
cross-domain mixing. Initially, ClassMix selects half of the 
classes from a given prediction output to create a mask M, 
and then transfers the corresponding pixels to a second image 
to create a significantly perturbed sample, as illustrated in 
Figure  2. Once the mixed image xM and the corresponding 
label yM are obtained, the mixed image is inputted into the SN, 
and the mixed label is utilized to calculate the CE loss MCE on 
the network's output:

where �[yM=c] is the one-hot vector of mix label yM, and Pc
M,i is the 

Softmax probability of the SN predicting the mix image.

As with the TD pseudo-label supervision branch, the cross-
domain image mixing branch implements a self-training strat-
egy based on pseudo-labels. By calculating the proportion w of 
pixels predicted by the target-domain image with a trust level 
above a specific threshold, we generate a weight mask map wM 
for the loss, that is,

(3)PLCE

(

xT; �s
)

= −
1

HW

∑

i

∑

c

�[ŷT=c]logP
c
T,i

(4)PLCE

(

xT; 𝜃s
)

= −
1

HW

∑

i

∑

c

�[
max
c
PcT,i>t

] ∙ �[�yT=c]logP
c
T,i

(5)�
�

T
= αEMA�T +

(

1 − αEMA
)

�S

(6)MCE

(

xM; �s
)

= −
1

HW

∑

i

∑

c

�[yM=c]logP
c
M,i

(7)w =
1

HW

∑

i

�[
max
c
PcT,i>T

]

(8)wM =M
⨀

� + (1 −M)
⨀

(� ∙ w)

FIGURE 2    |    Schematic of cross-domain image mix.
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Therefore, the loss function MCE becomes

Through the online generation of pseudo labels from mixed 
samples, this method enables the network to learn features from 
both the SD and TD as training progresses. Despite the poten-
tial for artifacts from pseudo-labels, the network can effectively 
minimize the negative impact of domain shift by acquiring do-
main invariant features through pseudo-label filtering.

3.5   |   Adversarial Training Branch

The SN tends to make overly confident predictions when trained 
solely on data from the SD, resulting in prediction outcomes 
with low entropy. Conversely, predictions made on data from 
the TD are more likely to yield chaotic results, leading to pre-
diction outcomes with high entropy. Analyzing the entropy map 
of the prediction outcomes simplifies the process of discerning 
whether the input image pertains to the SD or the TD.

Our approach also incorporates entropy-driven adversarial 
training to guarantee that the decision boundary of the model 
is situated in a region of low density. As a consequence, there 
is a decrease in entropy for predictions within both the SD 
and TD, concurrently extracting features invariant across 
domains. Within the adversarial training component, a com-
pletely convolutional discriminator is introduced. Throughout 
the training process, the SN is presented with input images 
originating from either the SD or TD, while the fully convolu-
tional discriminator produces feature maps from the SN and 
calculates their entropy. Subsequently, it attempts to catego-
rize the input feature map as pertaining to either the SD or TD. 
The SN, on the other hand, aims to deceive the discriminator 
by ensuring that the feature distributions from both domains 
exhibit similarity.

Specifically, Shannon entropy serves as a metric for uncertainty 
in network predictions. When analyzing an image x, its entropy 
is computed and then normalized to a range of [0,1].

where P(h,w,c)
x

 is the Softmax probability of the network predic-
tion result.

The entropy map is subsequently employed as input for a fully 
convolutional discriminator D. Consisting of five convolu-
tional layers, each with a kernel size of 4 and a stride of 2, this 
network has channel counts of 64, 128, 256, 512, and 1 for the 
respective layers. Following each convolutional layer except 
the final one, a Leaky ReLU serves as the activation function. 
The primary objective of the discriminator network is to as-
certain if the input pertains to the SD or TD. In other words, 
labels belonging to the SD are designated a value of 1, whereas 
those from the TD are assigned a value of 0. Consequently, the 
training loss D of the discriminator network is calculated as 
follows:

where discriminator parameters are denoted as �D. The entropy 
maps ExS and ExT correspond to predictions made by the SN for 
images from the SD and TD, respectively.

The adversarial training loss D−S for the SN is as follows:

To summarize, the overall loss incurred by the SN is as follows:

where �PLCE and �adv are hyperparameters used to balance the 
weight of the TD pseudo-label supervision branch and the ad-
versarial training branch in the total loss.

4   |   Experimental Results

4.1   |   Experimental Dataset

Extensive experiments were carried out on the Vaihingen data-
set and Potsdam dataset of ISPRS (Rottensteiner et al. 2013) to 
validate the proposed semantic segmentation DA method. The 
Vaihingen dataset images are situated in villages with sparse 
building layout and a resolution of 9 cm, while the Potsdam 
dataset images are in cities with dense buildings and a resolu-
tion of 5 cm. The Vaihingen dataset has three bands (NIR, R, 
G), whereas the Potsdam dataset has four bands (NIR, R, G, B), 
leading to two band selection methods for the Potsdam dataset: 
false color images (NIR, R, G) and true-color images (R, G, B). 
Considering four different DA scenarios in Table 1.

1.	 Both the false color image serves as the SD and TD. Despite 
differences in resolutions and imaging positions, the band 
combination remains consistent across the images.

2.	 The SD and TD are swapped from Case 1. Unlike Case 
1, the Vaihingen dataset in Case 2 has a smaller sample 
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)

=
1
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∑

xT

CE

(

D
(

ExT
)

, 0
)

(13)S

(

xS, xT; �D
)

= CE + �PLCEPLCE + MCE + �advD−S

TABLE 1    |    Four different domain adaptation scenarios for ISPRS 
dataset.

Domain case Source domain Target domain

1 Potsdam, NIR, R, G Vaihingen, 
NIR, R, G

2 Vaihingen, NIR, R, G Potsdam, 
NIR, R, G

3 Potsdam, R, G, B Vaihingen, 
NIR, R, G

4 Vaihingen, NIR, R, G Potsdam, R, G, B
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size in the SD data, making Case 2 more challenging to 
migrate.

3.	 The SD in Case 3 is the true color image of the Potsdam da-
taset, while the TD is the false color image of the Vaihingen 
dataset. With varying resolutions, imaging positions, and 
image band combinations, transferring data in Case 3 be-
come more complex.

4.	 Case 4 involves exchanging the SD and TD from Case 3. 
The Vaihingen dataset, used as the SD in Case 4, has a lim-
ited sample size, making this case more challenging than 
Case 3.

When utilizing the Vaihingen dataset as the TD data, the train-
ing set consists of 16 unlabeled images from the Vaihingen data-
set and all images from the Potsdam dataset, while the test set 
comprises the remaining 17 images from the Vaihingen data-
set. In the case of using the Potsdam dataset as the TD data, 
the training set includes 24 unlabeled images from the Potsdam 
dataset and all images from the Vaihingen dataset, with the test 
set composed of the remaining 14 images from the Potsdam 
dataset.

The LoveDA dataset (Wang et  al.  2021) was subjected to ex-
periments to delve deeper into its potential applications. This 
dataset comprises 5987 Google Earth images collected from 
Nanjing, Changzhou, and Wuhan. Due to the distinct planning 
strategies employed in each city, the arrangement of buildings 
varies significantly. The LoveDA dataset encompasses a total 
of 18 distinct areas, with nine urban areas located in densely 
populated districts and the remaining nine areas classified as 
rural. The dataset consists of 2713 images for urban areas and 
3274 images for rural areas. The data have a spatial resolution 
of 0.3 m, with the images having been geometrically aligned and 
preprocessed. Additionally, the images for each area have been 
cropped into 1024 × 1024 image blocks. The labels assigned to 
the LoveDA dataset are categorized into seven classes: building, 
road, water, barren, forest, agriculture, and background. To en-
sure comprehensive evaluation, the dataset is partitioned into 
training, validation, and test sets, all of which are spatially in-
dependent from one another. The LoveDA dataset encompasses 
two DA tasks:

1.	 Rural→Urban. The SD data contain 1366 images, the TD 
data contain 1156 images, and the validation set data con-
tain 677 images. The test set data contain 820 images.

2.	 Urban→ Rural. The SD data contain 1156 images, the TD 
data contain 1366 images, and the verification set data con-
tain 992 images. The test set data contain 976 images.

4.2   |   Implementation Details

In this experiment, DeepLab V2 (Chen et al. 2017) was employed 
as both the SN and TN, with ResNet-50 serving as the backbone 
network. The training was done using the AdamW optimizer. 
The learning rates were 6 × 10−5 for the backbone network, 
6 × 10−4 for other parts, and weight decay set at 0.01. The batch 
size is 4. The learning rate adjustment strategy was poly, with a 
total of 40,000 iterations, and the learning rate for the first 1500 
iterations increased slowly from 1 × 10−6. Data augmentation in-
cluded random flipping, and training set images were cropped 
to 512 × 512 pixels. Loss hyperparameters �PLCE and �adv were 
0.01 each, threshold t was set to 0.968, and EMA hyperparame-
ter αEMA was 0.999. Each experiment was repeated three times 
for accurate evaluation using mIoU as the metric.

4.3   |   Ablation Study

To validate the efficacy of the proposed method, the NIRRG 
data from the Potsdam dataset were employed as the SD, while 
the Vaihingen dataset was utilized as the TD. A series of ablation 
experiments were conducted on the method's hyperparameters, 
including λPLCE and �adv, as well as the combination method of dif-
ferent branches and the EMA hyperparameter. Additionally, the 
lower bound (referred to as Source only) and upper bound (referred 
to as Oracle) of accuracy were evaluated for comparison. When 
solely utilizing images from the SD for training, the lower bound 
achieved a mIoU of 48.63. Conversely, utilizing images from the 
TD for training resulted in an upper bound mIoU of 79.31.

4.3.1   |   The Impact of Loss Hyperparameters

The loss analysis involves the selection of weight hyperparame-
ters, �PLCE and �adv. Due to the impracticality of testing all pos-
sible values, this experiment utilized seven different values for 
�PLCE (0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0) and nine different 
values for �adv (0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0, 5.0, 10.0). 
The experimental results for each value were evaluated and the 
experimental setup and implementation details are as described 

FIGURE 3    |    The impact of different weight hyperparameters �PLCE and �adv, and different EMA hyperparameters αEMA on accuracy.
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earlier. The experimental results are shown in Figure 3a,b. By 
incorporating both the TD pseudo-label supervision branch 
and the adversarial training branch, the method demonstrates 
significant improvement in comparison to training solely with 
SD images. For the weight hyperparameter λPLCE of the target-
domain pseudo-labeling supervised branch, the performance 
of the method tends to increase and then decrease with the in-
crease of �PLCE. Notably, the method achieves the highest accu-
racy of 67.22 mIoU when �PLCE = 0.01. Similarly, for the weight 
hyperparameter �adv of the adversarial training branch, the high-
est accuracy of 62.93 mIoU can be achieved when �adv = 0.01. 
Therefore, for the subsequent experiments, �PLCE and �adv were 
both set to 0.01.

4.3.2   |   The Impact of Different Branches

The integration of the TD pseudo-label supervision branch, the 
cross-domain image mixing branch, and the adversarial train-
ing branch yields more efficient domain-invariant features 
compared to using a single branch. To validate the approach, 

different ways of combining the above three branches were 
tried for evaluation. The results are reported in Table 2. When 
employing a single branch, namely the TD pseudo-label super-
vision branch, the cross-domain image mixing branch, and 
the adversarial training branch, the achieved mIoU values 
are 67.22, 70.22, and 62.93, respectively. These values repre-
sent improvements of 18.59, 22.19, and 14.30 compared to the 
lower bound of accuracy, respectively. By combining two of the 
transformations, the TD pseudo-label supervision branch and 
the cross-domain image mixing branch yield a mIoU of 71.64. 
Similarly, the combination of the target-domain image pseudo-
label supervised branch and the adversarial training branch 
results in a mIoU of 69.25, while the combination of the cross-
domain image mixing branch and the adversarial training 
branch achieves a mIoU of 72.09. Furthermore, when all three 
branches are combined simultaneously, the accuracy is further 
enhanced to 72.64 mIoU. This indicates that the concurrent 
utilization of these three branches enables the extraction of 
more effective domain-invariant features. Consequently, the 
default choice for subsequent experiments is to employ the 
combination of these three branches.

TABLE 2    |    The impact of different branch combinations on accuracy.

Pseudo-label 
supervised ranch

Cross-domain image 
mixing branch

Adversarial 
training branch mIoU

Source only 48.63

Oracle 79.31

√ 67.22 (+18.59)

√ 70.82 (+22.19)

√ 62.93 (+14.30)

√ √ 71.64 (+23.01)

√ √ 69.25 (+20.62)

√ √ 72.09 (+23.46)

√ √ √ 72.64 (+24.01)

Note:The best value for each metric evaluated is shown in bold.

TABLE 3    |    Quantitative transfer results from Potsdam NIRRG to Vaihingen NIRRG.

Method Imp. Surf. Building Low Veg. Tree Car mIoU

Source only 47.66 66.31 33.06 58.14 37.97 48.63

AdaptSeg (Tsai et al. n.d.) 67.60 74.66 45.90 63.55 3.98 51.14

AdvEnt (Vu et al. n.d.) 73.11 83.39 51.09 65.49 12.30 57.08

Seg-Uncert (Zheng and Yang 2021) 79.72 85.99 41.07 62.32 41.98 62.22

DACS (Tranheden et al. n.d.) 78.55 80.90 57.97 64.02 60.59 68.41

DaFormer (Hoyer, Dai, and Van Gool n.d.) 77.12 81.66 56.31 66.75 59.49 68.27

UemDA 69.97 80.43 53.90 65.63 35.87 61.16

Oracle 84.33 90.45 69.08 79.77 72.93 79.31

SeConDA 81.26 88.57 59.82 67.42 66.15 72.64

Note:The best value for each metric evaluated is shown in bold.
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4.3.3   |   The Impact of EMA Hyperparameters

EMA hyperparameter αEMA was subjected to ablation experi-
ments to assess its impact. The results, illustrated in Figure 3 
(c) clearly demonstrate the gradual improvement in the mod-
el's performance as αEMA increases. When αEMA is set to 0, the 
proposed method achieves a mIoU of 67.99. At this point, the 
TN and the SN have identical parameters, resulting in no guid-
ance from the TN. Consequently, the enhancement in model 
performance primarily stems from the cross-domain image 
mixing branch and the adversarial training branch. As αEMA 
increases, the teacher model averages the student model's pa-
rameters throughout the training phase, leading to a more ac-
curate model. When αEMA reaches 0.999, the accuracy reaches 
72.64 mIoU. Therefore, subsequent experiments utilized a 
�EMA value of 0.999.

4.4   |   Comparison With State-of-the-Art Methods 
in ISPRS Data

4.4.1   |   Transfer Results From Potsdam-NIRRG to 
Vaihingen-NIRRG

The effectiveness of the proposed method is validated by utiliz-
ing the NIR-R-G dataset of Potsdam as the SD and the NIR-R-G 
dataset of Vaihingen as the TD. In Table 3 the quantitative eval-
uation of the proposed method, along with other methods and 
the upper and lower bounds of DA, is presented. Additionally, 
Figure 4 showcases the qualitative results.

In contrast to the upper bound, the accuracy of the lower bound 
significantly decreases, resulting in a substantial drop in mIoU 
from 79.31 to 48.63. This decrease highlights the significant 

FIGURE 4    |    Visualization results of transfer from Potsdam NIRRG data to Vaihingen NIRRG data.
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TABLE 4    |    Quantitative transfer results from Vaihingen NIRRG to Potsdam NIRRG.

Method
Imp. 
Surf. Building Low Veg. Tree Car mIoU

Source only 54.44 56.53 50.18 18.81 58.02 47.59

AdaptSeg (Tsai et al. n.d.) 63.11 61.96 51.49 33.84 55.23 53.13

AdvEnt (Vu et al. n.d.) 68.50 77.00 56.08 29.68 63.81 59.01

Seg-Uncert (Zheng and 
Yang 2021)

66.39 65.88 52.74 24.80 74.64 56.89

DACS (Tranheden et al. n.d.) 55.80 56.34 46.70 46.37 62.01 53.44

DaFormer (Hoyer, Dai, and 
Van Gool n.d.)

57.97 53.66 32.09 39.76 61.70 49.04

UemDA 57.52 67.71 55.16 46.30 66.61 58.66

Oracle 84.76 91.68 75.00 78.64 90.09 84.04

SeConDA 69.31 73.76 45.80 47.53 66.39 60.56
Note:The best value for each metric evaluated is shown in bold.

FIGURE 5    |    Visualization results of transfer from Vaihingen NIRRG data to Potsdam NIRRG data.
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domain bias problem caused solely by the difference in geo-
graphic location. Furthermore, the visualization results demon-
strate that the predictions from the lower bound approach are 

considerably noisier compared to the upper bound results, lead-
ing to numerous false predictions. On the other hand, various 
DA methods exhibit improved accuracy on the TD compared to 

TABLE 5    |    Quantitative transfer results from Potsdam RGB to Vaihingen NIRRG.

Method Imp. Surf. Building Low Veg. Tree Car mIoU

Source only 43.77 52.39 6.63 52.82 25.72 36.26

AdaptSeg (Tsai et al. n.d.) 56.48 58.16 12.12 58.16 16.33 40.25

AdvEnt (Vu et al. n.d.) 64.30 73.19 24.45 57.11 14.20 52.79

Seg-Uncert (Zheng and Yang 2021) 61.46 71.37 11.08 57.73 20.57 44.44

DACS (Tranheden et al. n.d.) 77.24 79.76 44.84 29.03 58.88 57.95

DaFormer (Hoyer, Dai, and Van Gool n.d.) 68.51 74.97 38.40 48.33 52.97 56.64

UemDA 60.39 75.06 19.62 58.67 37.84 50.32

Oracle 84.33 90.45 69.08 79.77 72.93 79.31

SeConDA 77.64 83.46 47.44 49.09 61.06 63.73

Note:The best value for each metric evaluated is shown in bold.

FIGURE 6    |    Visualization results of transfer from Potsdam RGB data to Vaihingen NIRRG data.
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the lower bound results. Specifically, AdaptSeg, AdvEnt, Seg-
Uncert, DACS, DaFormer, and UemDA achieve mIoU scores of 
51.14, 57.08, 62.22, 68.41, 68.27, and 61.16, respectively. The pro-
posed approach stands out with a mIoU of 72.64, a significant 

49.37% improvement over the lower bound results. Moreover, 
when compared to other methods, the proposed approach 
consistently outperforms them, surpassing the previous best-
performing method by 4.23 mIoU. These findings indicate that 

TABLE 6    |    Quantitative transfer results from Vaihingen NIRRG to Potsdam RGB.

Method Imp. Surf. Building Low Veg. Tree Car mIoU

Source only 42.57 39.21 27.04 12.52 53.6 34.99

AdaptSeg (Tsai et al. n.d.) 55.44 47.12 31.91 18.76 50.21 40.69

AdvEnt (Vu et al. n.d.) 56.02 50.81 26.09 29.32 47.11 41.87

Seg-Uncert (Zheng and Yang 2021) 66.90 71.63 45.68 2.09 71.32 51.52

DACS (Tranheden et al. n.d.) 50.72 64.98 25.89 34.62 63.69 47.98

DaFormer (Hoyer, Dai, and Van Gool n.d.) 53.38 59.55 21.84 27.36 56.32 43.69

Oracle 85.11 91.86 74.88 78.44 90.09 84.07

SeConDA 57.15 67.97 33.26 38.19 73.20 53.95

Note:The best value for each metric evaluated is shown in bold.

FIGURE 7    |    Visualization results of transfer from Vaihingen NIRRG data to Potsdam RGB data.
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the SeConDA method is superior at addressing the challenges 
posed by domain shift. Additionally, the visualization results 
consistently show that our proposed method outperforms alter-
native approaches.

4.4.2   |   Transfer Results From Vaihingen-NIRRG to 
Potsdam-NIRRG

Subsequently, the effectiveness of the SeConDA method is val-
idated by utilizing Vaihingen's NIR-R-G dataset as the SD and 
Potsdam's NIR-R-G dataset as the TD. The quantitative evalua-
tion results of the SeConDA method, along with other methods 
and the upper and lower bounds of DA, can be found in Table 4. 
Additionally, the qualitative results are illustrated in Figure 5.

The accuracy of the results significantly decreased when train-
ing solely on SD data and testing on the TD, similar to the find-
ings in Experimental Case 1. The mIoU dropped from 84.04 
to 47.59 when compared to training directly on TD data. The 
visualization results also reveal noisy lower bound predictions 
with numerous misclassifications. However, DA methods like 
AdaptSeg, AdvEnt, Seg-Uncert, DACS, DaFormer, and UemDA 
show improved accuracy on the TD, achieving mIoU values of 
53.13, 59.01, 56.89, 53.44, 49.04, and 58.66, respectively. The 
proposed method outperforms these methods with a mIoU of 
60.56, representing a 27.54% improvement over the lower bound 
results. Additionally, the proposed method surpasses previous 
best-performing methods by 1.55 mIoU. Due to the limited 
training samples in the SD, there is less improvement in the ac-
curacy of the transfer results compared to the experimental case 

1. From the visualization results, the proposed method produces 
better segmentation results.

4.4.3   |   Transfer Results From Potsdam-RGB to 
Vaihingen-NIRRG

The effectiveness of the proposed approach is subsequently 
confirmed by employing the Potsdam R-G-B dataset as the SD 
and the Vaihingen NIR-R-G dataset as the TD. The quantitative 
evaluation of the proposed method, along with other methods, 
and the upper and lower bounds of DA, are presented in Table 5. 
Additionally, the qualitative results can be observed in Figure 6.

In contrast to the previous two scenarios, this case involves dif-
ferent geographic locations and band combinations. Compared 
to the results of the upper bound, the accuracy of the lower 
bound significantly decreases, with mIoU dropping from 79.31 to 
36.26. The visualization of prediction outcomes also reflects this 
trend, with lower bound results showing more misclassifications 
compared to upper bound results. Various DA methods, such as 
AdaptSeg, AdvEnt, Seg-Uncert, DACS, DaFormer, and UemDA, 
demonstrate improved performance on the TD, achieving mIoU 
scores of 40.25, 52.79, 44.44, 57.95, 56.64, and 50.32, respectively. 
The proposed method stands out with a mIoU of 63.73, marking a 
75.76% enhancement over the lower bound results. Furthermore, 
compared to other methods, the proposed approach achieves 
superior performance, surpassing the previous best-performing 
method by 5.78 mIoU. The visualization results confirm that the 
proposed method delivers more accurate segmentation outcomes 
compared to other methods.

TABLE 7    |    Quantitative transfer results from rural to urban.

Method

IoU

Background Building Road Water Barren Forest Agriculture mIoU

Oracle 48.18 52.14 56.81 85.72 12.34 36.70 35.66 46.79

Source only 43.30 25.63 12.70 76.22 12.52 23.34 25.14 31.27

DDC 43.60 15.37 11.98 79.07 14.13 33.08 23.47 31.53

AdaptSeg 42.35 23.73 15.61 81.95 13.62 28.70 22.05 32.68

FADA 43.89 12.62 12.76 80.37 12.70 32.76 24.79 31.41

CLAN 43.41 25.42 13.75 79.25 13.71 30.44 25.80 33.11

TransNorm 38.37 5.04 3.75 80.83 14.19 33.99 17.91 27.73

PyCDA 38.04 35.86 45.51 74.87 7.71 40.39 11.39 36.25

CBST 48.37 46.10 35.79 80.05 19.18 29.69 30.05 41.32

IAST 48.57 31.51 28.73 86.01 20.29 31.77 36.50 40.48

LCGDM 47.09 49.91 48.16 84.23 18.05 32.06 35.49 44.99

PCEL 54.19 51.54 47.83 77.99 37.99 23.80 38.35 47.38

MTA 45.72 50.29 51.98 81.66 13.54 44.15 41.77 47.01

UemDA 46.91 48.28 49.40 83.89 15.58 41.26 34.29 45.66

SeConDA 44.70 52.14 55.79 84.91 17.33 45.20 37.88 48.28

Note:The best value for each metric evaluated is shown in bold.
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4.4.4   |   Transfer Results From Vaihingen-NIRRG to 
Potsdam-RGB

Finally, The Vaihingen NIR-R-G dataset serves as the SD, while 
the Potsdam R-G-B dataset is utilized as the TD to assess the 
efficacy of the proposed method. The quantitative evaluation 
results, along with those of other methods and the upper and 
lower bounds of DA, can be found in Table 6. Additionally, the 
qualitative results are illustrated in Figure 7.

As compared to the result of the upper bound, the accuracy of 
the lower bound decreases very much, with the mIoU decreasing 
from 84.07 to 34.99. The visualization shows that the lower bound 
predictions are often misclassified compared to the upper bound. 

Other DA methods achieve higher accuracy on the TD. The pro-
posed methods achieve 53.95 mIoU, a 54.19% improvement over 
the lower bound. Compared to other methods, the SeConDA ap-
proach achieves a 2.43 mIoU improvement over the previous best-
performing method. The visualization results demonstrate that 
the SeConDA method delivers superior segmentation results.

4.5   |   Comparison With State-of-the-Art Methods 
in LoveDA Data

To assess the efficiency of our approach, we compare it with 
various established methods on the LoveDA dataset. These 
methods include DDC (Tzeng et  al.  2014), AdaptSeg (Tsai 

FIGURE 8    |    Visualization results of transfer from LoveDA rural data to urban data.
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et al. n.d.), FADA (Wang et al. n.d.-b), CLAN (Luo et al. n.d.), 
TransNorm (Wang et al. 2019), PyCDA (Lian et al. n.d.), CBST 
(Zou et al. n.d.), IAST (Mei et al. n.d.), LCGDM (Ma et al. 2023), 
PCEL (Gao et al. 2023), MTA (Zeng et al. 2024), and UemDA (Liu 
et al. 2024). Furthermore, we also present the results of the lower 
bound and upper bound for domain-adapted segmentation.

4.5.1   |   Transfer Results From Rural to Urban

The experimental results of this method and other methods trans-
ferred from rural to urban on the LoveDA dataset are shown in 
Table  7. The dataset exhibits significant differences in feature 
distribution due to the vast geographical variations between 
rural and urban images. Consequently, the model's performance 
trained on rural images suffers a notable decline when tested on 
urban images, resulting in a drop in accuracy from 46.79 to 31.27 
mIoU. Notably, man-made structures (e.g., buildings and roads) 
experience a more substantial accuracy decrease compared to 
natural features (e.g., water bodies, forests, farmlands), creating a 
scenario where the deep learning model fails to meet performance 
standards in practical applications. Existing DA methods gener-
ally enhance accuracy beyond the lower bound results, with the 
CBST method achieving 41.32 mIoU and the TransNorm method 
yielding lower accuracy. The four methods LCGDM, PCEL, MTA 
and UemDA in RS obtained 44.99, 47.38, 47.01, and 45.66 mIoU, 
respectively. The proposed method surpasses the previous best 
method PCEL, achieving 48.28 mIoU and significantly improv-
ing accuracy across various categories, including buildings, roads, 
water bodies, forests, and farmlands. We also show the compari-
son of our method with the results of Source only, LCGDM, and 
UemDA in Figure 8, where it can be seen that the present method 
is superior in terms of correctness and completeness of predicted 
categories. This demonstrates the ability of our method to extract 

domain-invariant features effectively for generalizing TD data 
amidst challenges posed by substantial geographic differences.

4.5.2   |   Transfer Results From Urban to Rural

The results of the experimental method proposed in this study, 
when applied to the LoveDA dataset for transferring from urban 
to rural settings, are presented in Table 8. Similar to previous find-
ings, the model trained on urban images experiences a significant 
decrease in performance when tested on rural images due to the 
substantial geographical differences. The accuracy drops from 
45.67 to 31.74 mIoU. While many existing DA methods do not 
show significant performance improvements, the top-performing 
method MTA achieves 42.22 mIoU. Negative transfer is observed 
in the road category across almost all methods, with some meth-
ods like FADA, CLAN, and TransNorm even showing an overall 
decrease in accuracy. The proposed method, however, achieves a 
mIoU of 44.33, approaching the upper limit of DA segmentation. 
It demonstrates notable accuracy improvements in building, road, 
water body, and forest categories by 20.23, 13.03, 18.73, and 11.71, 
respectively, further confirming its effectiveness. Similarly, the 
results of our method and other methods are shown in Figure 9, 
where our method has better cross-domain transfer capability.

5   |   Discussion

To further verify the efficacy of the proposed method, this sec-
tion employs the Potsdam NIR-R-G dataset as the SD and the 
Vaihingen NIR-R-G dataset as the TD. It conducts experiments 
with different semantic segmentation networks and encoder 
networks, calculates the information entropy of the prediction 
results, and provides visualizations for analysis.

TABLE 8    |    Quantitative transfer results from urban to rural.

Method

IoU

Background Building Road Water Barren Forest Agriculture mIoU

Oracle 37.18 52.74 43.74 65.89 11.47 45.78 62.91 45.67

Source only 24.16 37.02 32.56 49.42 14.00 29.34 35.65 31.74

DDC 25.61 44.27 31.28 44.78 13.74 33.83 25.98 31.36

AdaptSeg 26.89 40.53 30.65 50.09 16.97 32.51 28.25 32.27

FADA 24.39 32.97 25.61 47.59 15.34 34.35 20.29 28.65

CLAN 22.93 44.78 25.99 46.81 10.54 37.21 24.45 30.39

TransNorm 19.39 36.30 22.04 36.68 14.00 40.62 3.30 24.62

PyCDA 12.36 38.11 20.45 57.16 18.32 36.71 41.90 32.14

CBST 25.06 44.02 23.79 50.48 8.33 39.16 49.65 34.36

IAST 29.97 49.48 28.29 64.49 2.13 33.36 61.37 38.44

LCGDM 24.88 52.50 26.15 66.79 24.16 33.04 58.49 40.86

MTA 29.40 55.72 37.86 61.28 18.65 37.69 54.97 42.22

UemDA 30.54 52.42 33.07 61.09 24.75 33.67 56.87 41.77

SeConDA 34.36 57.25 45.59 68.15 7.65 41.05 56.23 44.33

Note:The best value for each metric evaluated is shown in bold.
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5.1   |   The Impact of Different Semantic 
Segmentation Networks on Accuracy

DeepLab V2 in the proposed method has been replaced with 
DeepLab V3 based on ResNet 50 and SegFormer based on a 
transformer (Xie et  al.  2021). The experimental parameters 
remain unchanged, and the results of the proposed method, 
upper and lower limits, are displayed in Table 9. Both methods 
show relatively good accuracy when utilizing DeepLab V3 and 
SegFormer semantic segmentation networks. DeepLab V3 out-
performs DeepLab V2 in terms of both lower and upper bounds, 
although its DA accuracy is not as high due to a tendency to over-
fit the SD data. The SegFormer semantic segmentation network 
demonstrates significantly higher results for both lower and 

upper bounds compared to DeepLab V2 and DeepLab V3, with 
the lower bound achieving 57.82 mIoU and the upper bound 
reaching 82.05 mIoU. The DA accuracy also reaches a high level 
of 76.20 mIoU, which is close to the upper bound result.

FIGURE 9    |    Visualization results of transfer from LoveDA urban data to rural data.

TABLE 9    |    The impact of different semantic segmentation networks 
on accuracy.

Model Source only SeConDA Oracle

DeepLab V2 48.63 72.64 79.31

DeepLab V3 46.16 72.03 81.06

SegFormer 57.82 76.20 82.05
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5.2   |   The Impact of Different Encoder Networks 
on Accuracy

The encoder ResNet 50 from DeepLab V2 was substituted with 
VGG-16 and ResNet 101. The experimental results of different 
encoders are presented in Table 10. When VGG-16 and ResNet 
101 are utilized as the encoder, all proposed methods demon-
strate relatively high accuracy. When VGG-16 is employed as 
the encoder, the experimental results show lower and upper 

bounds compared to using ResNet 50, with a DA accuracy of 
68.85 mIoU. On the other hand, when ResNet 101 is used as the 
encoder, the experimental results indicate improved lower and 
upper bounds, with a DA accuracy of 68.85 mIoU.

5.3   |   Visualization of Uncertainty

The effectiveness of the proposed method is demonstrated 
through the visualization of information entropy, as depicted in 
Figure 10. The entropy maps of the lower bound exhibit a high 
level of noise, resulting in low accuracy in recognizing building 
categories, poor edges and completeness, and frequent confusion 
between tree and vegetation categories. Additionally, the predic-
tion results often display “checkerboard-like” grid blocks, lead-
ing to a significant number of incorrect predictions. The entropy 
map of the lower bound also reveals that incorrectly predicted 
pixels have a very high entropy value, indicating a high level of 

TABLE 10    |    The impact of different encoder networks on accuracy.

Model Encoder
Source 

only SeConDA Oracle

DeepLab V2 VGG-16 46.15 68.85 78.87

ResNet 50 48.63 72.64 79.31

ResNet 101 50.50 73.52 79.96

FIGURE 10    |    The visualization results of entropy map.
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uncertainty in the network's predictions for these pixels. On the 
other hand, the proposed method yields improved category edges 
and completeness in the prediction results, mitigating intercate-
gory confusion to some extent. Moreover, the prediction results do 
not exhibit the presence of “checkerboard” grid blocks. In compar-
ison to the lower bound results, the entropy maps of the proposed 
method tend to have lower values, with higher entropy values pri-
marily concentrated at the category edges. This suggests that the 
proposed method enables the network to make predictions with 
greater certainty, further validating its effectiveness.

Furthermore, we employ t-SNE (Van der Maaten and 
Hinton  2008) to conduct a dimension reduction and visual-
ization experiment on feature maps. In Figure  11a, when the 
entropy-based adversarial training branch is not used, it can be 
seen that the direct overlap of the classes is obvious, with the 
low vegetation mixed with the trees, and the car class completely 
mixed with the impervious surface. In Figure  11b, when the 
entropy-based adversarial training branch is added, the overlap 
between the different classes is greatly reduced although they 
remain close, the sample points within the classes exhibit a rela-
tively concentrated pattern, and the low vegetation can be better 
separated from the trees, and the car class is completely with the 
surface as well. This can explain the reason why entropy-based 
adversarial training achieves better performance in segmenta-
tion performance, verifying that the proposed method can bet-
ter extract domain-invariant features and accurately accomplish 
the cross-domain segmentation task.

6   |   Conclusion

In this study, a cross-domain semantic segmentation method 
for RS images based on self-training consistency is proposed. To 
mine the knowledge of the TD, the whole network framework 
proposes a self-training consistency-based pseudo-label supervi-
sion strategy, which supervises the network training by calculat-
ing the loss of high-quality pseudo-labels generated from the TD 
images. Meanwhile, to alleviate the problem of domain bias be-
tween the SD and TD, a consistency regularization method based 
on mixed samples is proposed, in which highly perturbed mixed 
samples are obtained to implicitly learn the SD and TD data at 
the same time. In addition, entropy-based adversarial training 
is further proposed to make the decision boundary of the model 
located in low-density regions, so that the entropy of the SD and 
TD predictions becomes smaller, and further domain-invariant 

features are extracted. The state-of-the-art results are obtained 
through comprehensive experiments on two datasets, verifying 
that the SeConDA method can alleviate the domain offset prob-
lem caused by the differences in imaging locations and the dif-
ferences in the way the bands are combined by minimizing the 
differences between the domain distributions.
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