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PSDA: Pyramid Spatial Deformable Aggregation
for Building Segmentation in Multiview

Remote Sensing Images
Xuejun Huang , Yi Wan , Member, IEEE, Yongjun Zhang , Member, IEEE, Xinyi Liu , Bin Zhang ,

Yameng Wang , Haoyu Guo, Yingying Pei, and Zhonghua Hu

Abstract—As increasingly more deep learning models are de-
signed and implemented, the performance of single-view image
semantic segmentation is approaching its upper limit. With the
increasing availability of multiview satellite images, using multi-
view information is gaining attention as it can address occlusion
problems in single-view images and achieve cross-validation to
reduce inappropriate segmentation. However, current multiview
semantic segmentation methods often rely on multiview voting or
require complex preprocessing steps, which may not fully leverage
the advantages of multiview images. We analyzed the complemen-
tarity and constraints of multiview information and introduced the
pyramid spatial deformable aggregation (PSDA) module, a plug-
and-play module designed to enhance multiview feature fusion.
PSDA is the core component of our early multiview segmentation
framework, which facilitates early-stage information fusion by
directly extracting features from multiview images, avoiding the
complex and time-consuming production of true orthoimages. In
this article, we first show how we created the multiview segmen-
tation dataset (MVSeg dataset) using orthoimages generated from
different-view images. Then, the results are shown to prove that our
method outperformed the corresponding single-view segmentation
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method, namely by increasing the intersection over union (IoU)
metric by approximately 1.23% –3.68% on both datasets. Due to
the fusion of multiview images at an early stage, the computational
complexity is 0.29–0.74 times that of the state-of-the-art method,
and the IoU metric improved by approximately 2.20% –7.52% on
both datasets.

Index Terms—Deformable convolutional network (DCN),
multiview image fusion, orthoimage, semantic segmentation.

I. INTRODUCTION

BUILDING segmentation plays a pivotal role in remote
sensing image analysis and is critical to applications such

as urban planning [1] and geographic data updating [2]. How-
ever, current methods primarily focus on single-view orthoim-
ages, which can limit the accuracy of segmentation due to the
challenges posed by the complex urban landscape [3], [4], [5],
[6]. Multiview imaging, a fundamental capability of satellites
[7], may provide complementary information that could poten-
tially enhance segmentation accuracy.

Despite their potential, previous studies have primarily fo-
cused on applying multiview imagery to 3-D reconstruction
[8], [9], while the integration of multiview information for
building segmentation remains an underexplored area. Existing
multiview semantic segmentation methods often rely on multi-
view voting at the decision-making stage, which is simple and
straightforward, but fails to fully explore the explicit integration
and utilization of multiview semantics [10], [11], [12]. To date,
only a few deep learning-based methods have fused multiview
information [13], [14]. Although these methods outperform
multiview voting approaches, they often depend on complex
preprocessing steps, such as digital surface model (DSM) gen-
eration and true ortho rectification, which significantly hinder
their scalability.

Building upon the motivation to effectively fuse multiview
image features for improved building segmentation, this study
now addresses two critical challenges: 1) How can multiview
satellite images be efficiently fused to capture complementary
information? 2) What fusion strategy is most effective for accu-
rate building segmentation in this context?

To address these challenges, we propose the pyramid spa-
tial deformable aggregation (PSDA) module, which fully ex-
ploits the complementarity and constraints of multiview images.
PSDA is a core component of our early multiview segmentation
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Fig. 1. Example of how multiview fusion can help differentiate between the
parking lot and the building, where the reference image is surrounded by a red
frame and other images are its neighboring images. It is difficult for humans as
well to distinguish the building only by a reference image.

(EMVSeg) framework, which enables direct multiview feature
fusion in an end-to-end manner without the complex DSM
generation and true orthorectification process. For instance, as
shown in Fig. 1, when vehicles are parked on a building’s roof—a
challenging case for human interpretation using a single-view
image—our method accurately identifies the building by effec-
tively fusing multiview image information. This demonstrates
the critical role of multiview data in improving building seg-
mentation in complex scenarios.

Compared to previous research in this area, our method makes
the following contributions.

1) Our primary and novel PSDA module, which offers strong
portability, fully harnesses the complementarity and con-
straints of multiview images. By incorporating joint offset
prediction and enhanced spatial deformable convolution
(ESDC), our method with PSDA improves the IoU metric
by 1.23% –3.68% compared to corresponding single-view
approaches.

2) A new framework, EMVSeg, has been developed for
building segmentation that integrates multiview informa-
tion. To the best of our knowledge, this is the first end-to-
end framework for building segmentation that eliminates
the need for complex and time-consuming preprocessing,
greatly simplifying the multiview segmentation process.

3) Two new datasets: i) SpaceNet4-MVSeg and ii) DFC19-
MVSeg, which collectively we named the multiview seg-
mentation dataset (MVSeg dataset). The MVSeg dataset is
the first dedicated benchmark dataset specifically curated
for the quantitative evaluation of building segmentation
using multiview orthoimages.

The rest of this article is structured as follows. Section II
contains a brief review of the related literature; Section III

provides a detailed description of our proposed framework
EMVSeg and the PSDA module; Section IV describes the new
MVSeg dataset; Section V presents our experimental results;
Section VI provides a discussion of the generalizability of our
approach; and Section VII concludes this article.

II. RELATED WORK

In this section, we briefly review related previous works,
including the multiview remote sensing image fusion, and de-
formable convolutional network (DCN).

A. Multiview Remote Sensing Image Fusion

Data fusion strategies are commonly classified into three main
approaches: early fusion, middle fusion, and late fusion [15].
Early-fusion strategies combine features at the input stage and
process the fused features with a single network. In contrast,
middle-fusion strategies integrate features encoded by indepen-
dent encoders in the decoder part, thereby facilitating feature
fusion by using a shared decoder. Late-fusion strategies, also
known as decision-level fusion, combine segmentation results
from multiple networks at the decision-making stage with the
main goal of tackling the problem of inconsistent segmentation
outcomes for the same region obtained from various inputs.

In remote sensing, multiview information fusion has been
successful in tasks such as classification, crop nutrition estima-
tion, and façade parsing [16], [17], [18]. However, most image
segmentation methods often do not fuse multiview information.
They only take multiview images as inputs, rely on dense
matching methods to generate DSM, and combine them with
orthophotos to enhance segmentation accuracy [19], [20], [21].
These methods do not deeply explore the fusion mechanism of
multiview information.

Currently, most multiview segmentation methods are based
on multiview voting, where semantic segmentation is performed
independently for each viewpoint, and the results are merged
using time-consuming voting techniques [10], [11], [12]. While
this approach is simple and straightforward, it overlooks the
complementary feature-level information across perspectives,
thereby limiting the full potential of multiview data.

In recent years, advancements in deep learning have led to the
emergence of multiview segmentation methods based on multi-
view fusion. Comandur and Kak [13] proposed a deep learning-
based multiview segmentation strategy, achieving pixel-level
alignment through DSM generation and the derivation of true
orthophotos. Subsequently, Chen et al. [14] leveraged stereo
labels to enable efficient feature fusion in dual space. However,
they rely on complex preprocessing steps, such as dense match-
ing and true ortho rectification, which significantly increase
computational costs.

In summary, the recent studies most relevant to our work can
be categorized into two main types: multiview voting methods
and multiview fusion methods, as summarized in Table II. Un-
like previous methods, our approach eliminates the need for
complex pre-processing and employs an early fusion strategy
that achieves high computational efficiency.
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B. Deformable Convolutional Network

The DCN was introduced in [22], using a learnable offset to
modify the shape of the convolutional kernel. This adaptable
convolutional structure can adjust more effectively to changes
in the target shape and enhance the model’s perception ability.
DCNs have been widely used in various tasks, such as video
compression [23], semantic segmentation [24], and video super-
resolution [25].

In the field of semantic segmentation, DHCNet was proposed
in [26], a new method for hyperspectral images (HSIs) classifica-
tion that uses a DCN. DHCNet utilizes deformable convolution’s
ability to adjust sampling positions dynamically based on the
spatial context of the HSI, which significantly enhanced the
accuracy of HSI classification. In addition, Liu et al. [27] made a
notable contribution in this field by integrating deformable con-
volutional blocks into the encoder, allowing for more compre-
hensive contextual feature extraction. The model’s adaptability
to cloud-induced variations was significantly improved by this
approach, surpassing multiple state-of-the-art (SOTA) methods.
Furthermore, Deng et al. [28] introduced restricted deforma-
tion convolution for semantic segmentation, which effectively
models geometric transformations. Their method successfully
addressed significant distortions in fisheye images, thereby en-
hancing semantic segmentation accuracy.

Based on these advancements, we carefully designed our
PSDA module to address the issue of incorrect fusion of multi-
view feature information resulting from conventional convolu-
tion fusion methods by using sampling position offsets.

III. THEORY AND METHODOLOGY

In this section, we first discuss the guiding principles of our
approach. Then, we present our framework EMVSeg and the
PSDA module, and the loss function used to train the framework
in detail.

A. Multiview Information Complementarity and Constraints

Our study explored multiview image information aggrega-
tion methods that aim to make use of multiview information
complementarity and constraints. The evaluation criteria for
semantic segmentation are mainly influenced by two factors: the
correctness of pixel classification and the accuracy of boundary
segmentation [29].

In terms of multiview information complementarity, segmen-
tation based on single-view orthoimages is often disrupted by
occlusion and shadows, particularly in semantically ambiguous
areas where incorrect segmentation results are common. Be-
cause multiview images can provide richer feature information
[14], the correct information fusion method can achieve com-
plementary multiview information and ensure the correctness of
pixel classification.

In multiview images, whether they are aerial images based on
center projection or satellite images based on oblique parallel
projection, the roof offset follows the principle of epipolar line
translation based on multiview imaging geometry theory. The
segmentation boundaries of multiview images are constrained

Fig. 2. Schematic diagram of constraints between building contours in multi-
view images based on strict imaging models.

Fig. 3. Fixed receptive field of traditional convolution (second row) and
adaptive receptive field of spatial deformable convolution (third row).

through this principle. Fig. 2 illustrates how powerful geometric
constraints ensure that each perspective’s image has precise
architectural boundaries. However, the classification of ground
information is usually performed on orthoimages, which can
lead to the loss of strict geometric imaging relationships. To this
end, we designed the EMVSeg framework, which pioneered the
use of multiview orthoimages for information fusion without
time-consuming preprocessing.

Furthermore, we carefully designed the PSDA module to
take full advantage of the complementarity and constraints
contained in multiview orthoimages and its core is ESDC. We
used intelligent learning to obtain the convolution kernel offset,
which enables the fusion of multiview image features at the
correct location, ensuring the complementarity of multiview
image information aggregation (as shown in Fig. 3). In addi-
tion, our PSDA is capable of assigning learnable confidence
scores to the boundaries of each image, thereby integrating
the boundary information of buildings in the reference image
and its neighboring images. In other words, our module can
suppress erroneous boundary fusion information from neigh-
boring images, similar to the operation of back-end weighted
voting fusion based on strict geometric imaging models, which
achieved constraints on multiperspective information. Thus, our



8998 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 18, 2025

Fig. 4. Architecture of the EMVSeg.

method improves both the correctness of pixel classification
and the accuracy of boundary segmentation, leading to better
segmentation results.

B. Overall Architecture

As mentioned above, previous methods either required time-
consuming voting operations or true orthorectification of the
image to achieve pixel-level alignment. The existing multiview
segmentation framework is very complex. We designed a novel
framework based on multiview orthoimages to simplify the
segmentation process, named EMVSeg, which is shown in Fig. 4
(some convolutional structures are omitted in the figure).

First, we use a multiview stereo problem setup in which one
image in the multiview orthoimages is used as the reference
image and the rest of the images are referred to as neighboring
images. Then, the PSDA module is used to aggregate multi-
view information and select effective features from neighboring
images to enhance the feature representation of the reference
image. Finally, the enhanced features are fed into various seman-
tic segmentation models, such as FastFCN [30] and DeepLab
[31]. EMVSeg works directly from the orthoimages, eliminating
the need for true orthorectification or other complex projection
operations.

The PSDA module is the core of EMVSeg and is designed to
achieve correct feature fusion. The module is comprised of two

key stages: joint offset prediction and fusion with ESDC. In the
first stage, PSDA uses the reference image and its neighboring
images as input to predict the offset field and confidence. This
process enables deformable convolution to dynamically select
the best feature extraction positions in multiview images. Unlike
traditional fixed convolutional kernels, PSDA can flexibly cope
with feature shifts caused by differences in viewpoints, thus
capturing more representative features. In the second stage, the
jointly predicted offset field is fed into the deformable convolu-
tional layer to complete multiview information aggregation. In
addition, to promote the flow of information, we added a skip
connection outside the structure. The PSDA then produces an
enhanced feature map using multiview information aggregation,
which is fed into the subsequent network for semantic segmen-
tation.

As previously discussed, the only step required is to insert
the PSDA module at the front end of the segmentation model,
specifically before the backbone to achieve an early fusion
of features. This approach significantly simplifies the feature
aggregation process.

C. Joint Offset Prediction

As shown in Fig. 5, the PSDA module process begins by
calculating the offset for the ESDC network. To incorporate
more contextual information into the network and improve its
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Fig. 5. Structure diagram of offset joint prediction module (U-shaped net-
work), taking the top layer of the pyramid as an example.

precision in predicting offsets, we implemented a joint estima-
tion technique instead of the traditional estimation methods that
process a pair of images at a time [25], [32].

Moreover, we used a U-shaped network to predict offsets
and confidences, which involves three rounds of convolutional
down-sampling and three rounds of up-sampling. Skip connec-
tions are used in the middle two layers to improve the infor-
mation flow. Ultimately, this process yields offset predictions
with a channel number of (2R+ 1) · 2K2 · 3 (2R+ 1), which
represents the number of images in the multiview image set (e.g.,
when R = 2, there are five images in the multiview image set).

The offset prediction module enabled joint prediction for off-
set and confidence, which integrates richer feature information,
resulting in more accurate predictions of offsets and confidences
for multiview images.

We define Iv as the reference image, where H and W are the
height and width of the reference image respectively. The front
and rear R view images are regarded as neighboring images
and sent to the PSDA module together with the target slice Iv .
The formula for predicting offset Δpand confidence Δmis as
follows:

Δp,Δm = Foffset ([Iv−R, . . . , Iv, . . . , Iv+R]) . (1)

Among them, [Iv−R, . . . , Iv, . . . , Iv+R] represents the input
set of multiview images and Foffset is the U-shaped network used
to estimate the offset and confidence.

D. Fusion With ESDC

We developed a novel ESDC, which uses deformable convo-
lution to aggregate feature information from multiview images.
In contrast to previous methods, we utilized coarse-to-fine fusion
to adapt to the low spatial resolution of remote sensing images,
resulting in more precise fusion. Our method utilizes a pyramid
structure to generate offset-inputs and fused features. The offset-
inputs and fused features are then propagated to higher scales to
achieve more accurate offset estimation and feature fusion.

Here, the up-sampling method and down-sample convolution
are used to transfer information between the low-scale and
high-scale layers. In addition, each layer in ESDC uses a fusion
module called spatial deformable convolution (SDC), as shown
in Fig. 6, which can accommodate changes in the spatial location
of buildings in multiview orthoimages.

Fig. 6. Structure diagram of SDC with offsets prediction.

Formally, the fusion process using SDC can be described as

F (p) =

3·(v+R)∑
c=3·(v−R)

K2∑
k=1

wc,k · Iv (p+ pk +Δpc,k) ·Δmc,k

(2)

whereF represents the fused feature map,wc ∈ RK2
represents

the convolution kernel of the cth channel, p represents any spatial
position, and pk represents the regular convolution offset. For
example, when K = 3, pk ∈ {(−1,−1), (−1, 0), . . . , (1, 1)}.
Δpc,k is our additional learnable offset. Note that the deformable
offsetΔpc,k is simultaneously affected by its spatial location and
channel position. Therefore, the spatial deformation and changes
in observation angles of multiview images can be represented
simultaneously. Since the learnable offset can be of fractional
order, we follow [22] and apply differentiable bilinear interpo-
lation to sample subpixels Iv(p+ pk). In addition, since we are
using the early-fusion strategy, the number of channels in the
fused feature map is 3. For simplicity, we only consider the
learnable offsets and ignore the modulation confidences in the
description and figures.

In addition, we employ a pyramid processing approach to fuse
multiview features progressively from coarse to fine. Specifi-
cally, after generating the features W l of the l layer, we use
double up-sampling at l + 1 layer to obtain the offset and fusion
features F l

vof the llayer. Note that no upsampling inputs are
required to obtain the offset and fusion feature of the third layer.
The formula for this process is as follows:

W l = Conv ([Iv−R, . . . , Iv, . . . , Iv+R]) (3)

ΔP l
v_in =

{
g1

(
g2

(
W l

)
,
(
ΔP l+1

v_in

)↑2)
, l < 3

g1
(
g2

(
W 3

))
, l = 3

(4)

F l
v =

{
g3

(
SDC

(
W l, g4

(
ΔP l

v_in

))
,
(
F l+1
v

)↑2)
, l < 3

ReLU
(
SDC

(
W 3, g4

(
ΔP 3

v_in

)))
, l = 3

.

(5)
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TABLE I
COMPARISON OF OUR METHOD WITH PREVIOUS MULTIVIEW SEGMENTATION METHODS

TABLE II
DETAILS OF SPACENET4-MVSEG AND DFC19-MVSEG DATASETS

In the above-mentioned formula, ΔPv_in is the input of the
offset joint prediction module, ReLU(·) represents the rectified
linear unit activation function, (·)↑2 represents the double up-
sampling, SDC is the spatial deformable convolution described
in (2), and g1, g2, g3, g4 all represent functions composed of
multiple convolutional layers. Furthermore, we use a three-level
pyramid in this module, i.e., l ∈ (1, 2, 3).

Our coarse-to-fine multiview fusion method guarantees the
accuracy and semantic richness of the fused feature map, thereby
enhancing the segmentation accuracy.

E. Loss Function

To train the proposed model, we utilized a standard cross-
entropy loss function to evaluate its predictions. The loss func-
tion is defined as follows:

L = − 1

M

1

N

M∑
c

N∑
i

yc,i log (Pc,i) (6)

whereM is the total number of categories,N is the total number
of pixels in the output label map, c is the category index, and i is
the pixel index. yc,i andPc,i are the true label and the probability
predicted by the model that the ith pixel belongs to the cth class
respectively.

IV. MULTIVIEW SEGMENTATION DATASET

Although multiview remote sensing images covering the same
geographical areas are becoming increasingly available, there
is a lack of carefully curated multiview orthoimage datasets
specifically designed for segmentation tasks. To address this
gap, we present two datasets: SpaceNet4-MVSeg and DFC19-
MVSeg, which were carefully curated and processed to meet the
requirements of semantic segmentation tasks. We first provide
the details of these two datasets in Table I, followed by a
comprehensive description in Section IV-A and IV-B.

Fig. 7. Several samples in the SpaceNet4-MVSeg dataset, which form a
standardized set of five-view orthoimages dataset from top to bottom.

A. SpaceNet4-MVSeg Dataset

The SpaceNet4 dataset is a specialized collection of multiview
remote sensing orthoimages [33]. It was created to investi-
gate enhanced algorithmic capabilities in handling off-nadir
imagery. The dataset is comprised of 27 WorldView-2 satellite
images with 0.5 m ground sampling distance (GSD) captured
at off-nadir angles (denoting the angular distance between the
satellite’s nadir directly below it and the scene’s center) ranging
from 7.8◦ to 54◦. All of these images were acquired within
a 5-min timeframe, covering an expansive area of 665 km2

in downtown Atlanta. The dataset encompasses approximately
126 747 building footprints [34]. Notably, the original dataset
includes roof labels for the image with the smallest off-nadir
angle (7.8◦), where only visible building portions are labeled in
cases of partial occlusion.

To adapt this dataset for multiview segmentation, we
selected four additional orthoimages with off-nadir angles
(10◦, 14◦, 19◦, 23◦) and combined them with the (7.8◦) image to
create a standardized five-view dataset. The dataset is illustrated
in Fig. 7. Each image in the five-view orthoimages dataset was
cropped to a size of 256×256 pixels, resulting in a total of 13 048
sets in the training dataset, 1422 sets in the validation dataset,
and 1772 sets in the test dataset. We named this dataset the
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Fig. 8. Several samples in the DFC19-MVSeg dataset, which form a standard-
ized set of three-view orthoimages datasets from top to bottom.

SpaceNet4-MVSeg dataset. It is essential to highlight that within
each group of images, only the image with an off-nadir angle of
7.8◦ possesses an authentic building mask.

B. DFC19-MVSeg Dataset

The DFC19 dataset is comprised of multiview satellite images
of two large US cities, Jacksonville, Florida (JAX) and Omaha,
Nebraska (OMA), along with ground truth geometric and se-
mantic labels [35]. It includes WorldView-3’s visible imagery
with approximately 0.3 m GSD. The dataset contains 26 images
collected in JAX, from 2014 to 2016 and 43 images collected in
OMA from 2014 to 2015. Notably, the DFC19 dataset provides
semantic labels for buildings from various viewpoints [36],
[37], [38].

We selected original images with different off-nadir angles
from the JAX and OMA city images. The corresponding index
values are 1, 14, 20 for JAX and 4, 6, 39 for OMA. Then, we
used DEM with 10 m GSD for orthorectification and combined
the orthoimages from three different views to create a set of
standardized three-view orthoimages datasets. We named this
composite dataset the DFC19-MVSeg dataset, which is illus-
trated in Fig. 8. Each image in the DFC19-MVSeg dataset is
cropped to a size of 256×256 pixels. The training dataset is
comprised of 8364 sets of images, the validation dataset has
1046, and the test dataset has 1044. Unlike SpaceNet4-MVSeg,
DFC19-MVSeg includes semantic labels for all perspectives.

V. EXPERIMENTS

In this section, we first elaborate on the experimental set-
ting and evaluation metrics we utilized. Next, the EMVSeg is
compared with SOTA methods on both datasets. The results
are further visualized for detailed analysis. We then discuss
the ablation studies conducted to verify the rationality of the
proposed PSDA module, including an evaluation of the early
fusion strategy, as well as portability experiments to demonstrate
its generality.

A. Experimental Setting and Evaluation Metrics

Experimental Setting. To evaluate the efficiency of our ap-
proach, we implemented a consistent experimental setup for
training both single-view and multiview methods. All of the
experiments were conducted on a Linux PC equipped with an
NVIDIA GeForce RTX 2080 Ti 11G GPU. The implementation

of our architecture and the code we reproduced were both
developed using the PyTorch deep learning framework.

During training, we maintained uniform configurations across
all the dataset experiments. The batch size was set to 2, the
maximum number of epochs was limited to 20, and we utilized
the stochastic gradient descent optimizer with a learning rate
of 0.0001, weight decay of 0.0001, and momentum of 0.9. The
training process for the SpaceNet4-MVSeg dataset exclusively
utilized the image with the smallest off-nadir angle (7.8◦) as the
reference image. The images from the other four perspectives
were used as neighboring images to enhance the semantic in-
formation. In the DFC19-MVSeg dataset, each image served as
both a reference and a neighboring image.

Evaluation Metrics. To evaluate the segmentation results, we
used the overall accuracy (OA), intersection over union (IoU)
and F1 Score, which are the commonly used indicators for
evaluating semantic segmentation models [39]. OA is defined
as the ratio of the number of correctly classified pixels to the
total number of pixels

OA =
Pcorrect

Pall
. (7)

Given that there is only one category in this task, we denote
TP as true positives, FP as false positives, TN as true negatives,
and FN as false negatives of the building class in the confusion
matrix. IoU is defined as follows:

IoU =
TP

TP + FP + FN
. (8)

The F1 Score is the harmonic mean of Precision and Recall.
The F1 Score for building category is calculated as follows:

F1 Score = 2× Precision× Recall

Precision + Recall
(9)

where Precision and Recall are defined as follows:

Precision =
TP

TP + FP
Recall =

TP
TP + FN

. (10)

B. Comparison With SOTA Methods

1) Performance Assessment of the Proposed Framework: As
shown in Table III, we compared our proposed EMVSeg method
(the semantic segmentation method with the PSDA module)
to the baseline single-view methods (DeepLab and FastFCN),
the multiview semantic segmentation benchmark methods (mul-
tiview voting [10], [11], [12] and CFA [18]), and the SOTA
multiview semantic segmentation networks (MV-train [13] and
MVMapper [14]). All the methods shared the same experimental
hyperparameters.

For each method in Table III, not all the approaches utilizing
multiview images as input outperformed the single-view base-
line methods. This discrepancy might be attributed to the reliance
of the multiview comparative algorithms on pixel-level aligned
multiview images. In contrast, the EMVSeg outperformed the
current SOTA multiview segmentation methods in the remote
sensing domain across all metrics.

In the SpaceNet4-MVSeg dataset, particularly noteworthy
is the improvement in IoU for the building category, which
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TABLE III
QUANTITATIVE COMPARISON OF THE PROPOSED EMVSEG WITH OTHER METHODS

TABLE IV
COMPARISON OF PARAMS AND FLOPS OF THE PROPOSED EMVSEG WITH OTHER METHODS

increased by 2.20% –3.56% compared to the SOTA methods,
1.04% –4.38% compared to the benchmark methods, and 1.71%
–3.68% compared to the single-view baseline methods. These
results demonstrate the superior performance of our method
in semantic segmentation tasks leveraging multiview remote
sensing images.

In the DFC19-MVSeg dataset, the IoU of the building cat-
egory also improved, which increased by 3.62% –7.52% com-
pared to the SOTA methods, 3.08% –6.64% compared to the
benchmark methods, and 1.23% –1.65% compared to the single-
view baseline methods.

In addition, Table IV shows that the number of model param-
eters (Params) and the floating point operations of the model
(FLOPs) were also important indicators for evaluating the qual-
ity of our model. The former reflects the memory size occupied
by the model and reflects the spatial complexity of the model, and
the latter reflects the computational complexity of the model. As
shown in Table IV, while our model has a slightly higher number
of parameters compared to the SOTA methods, the increase is
relatively small (only 0.8–1M). This slight increase is mainly
attributed to the additional modules introduced for enhancing

multiview feature interaction and semantic segmentation per-
formance. Nevertheless, thanks to our early-fusion strategy, the
computational complexity is 0.29–0.74 times that of the SOTA
methods, which shows that our model performed well. Since
the SOTA methods do not use an early fusion strategy, they
require 5 times/3 times feature extraction of the base model,
which increases computational complexity.

2) Visual Analysis: We further show the visualization re-
sults of the experiments and provide an in-depth analysis of
the EMVSeg. Figs. 9 and 10 present a visual comparison of
the qualitative results on the SpaceNet4-MVSeg and DFC19-
MVSeg datasets, respectively, and demonstrate the effectiveness
of the EMVSeg in improving semantic segmentation accuracy
for multiview remote sensing images.

As can be seen from Figs. 9 and 10, the multiview semantic
segmentation network integrated with the PSDA module ef-
fectively improved the segmentation effect. This improvement
overcame semantic confusion and ambiguity to a certain extent,
particularly for buildings that are highly reflective, buildings
with ambiguous semantics, and buildings with similar spectral
characteristics to the surrounding ground.
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Fig. 9. Qualitative comparison of the EMVSeg with baseline competitors on
the SpaceNet4-MVSeg dataset.

Fig. 10. Qualitative comparison of the EMVSeg with baseline competitors on
the DFC19-MVSeg dataset.

Fig. 11. Visualization of the feature sampling locations, where the reference
image is surrounded by a red box.

In addition, to explore how the PSDA module achieves the
fusion of multiview image features at the correct location,
we visualize the convolutional kernel sampling location of the
PSDA module. The experimental results are shown in Fig. 11.
In challenging scenarios, such as when the top of the building
is a parking lot, the PSDA module intelligently selects the
appropriate feature sampling locations, successfully capturing
the building façade information from neighboring images and
achieving accurate segmentation (the segmentation results are
shown in Fig. 1). We also visualize the boundary constraint

Fig. 12. Visualization of the confidence, where the reference image is sur-
rounded by a red box.

process in Fig. 12. From the figure, it is evident that the PSDA
module successfully implements multiview information con-
straints by intelligently assigning weights to building contours.

C. Ablation Study

In this section, we present our ablation experiments on the
proposed PSDA module and early fusion strategy, and explore
the impact of the number of multiview images on the model as
well as the transportability of the PSDA module. The above-
mentioned experiments were performed on both datasets.

1) Effect of PSDA Module: To assess the performance of
our fusion module, we conducted experiments with various
configurations, the results of which are summarized in Table V.
The PSDA method in Table V integrates our PSDA module into
the base single-view semantic segmentation model. The PRA
module adopts the pyramid design of the PSDA module but
replaces SDC with regular convolution. The SDA module retains
the SDC of PSDA while omitting the pyramid structure. The RA
module uses a standard convolution only.

From Table V, we offer three main conclusions. First,
our PSDA method effectively fused multi-view features
(comparing the last line with the first line in each BaseNet).
Compared to traditional regular sampling convolution, the
flexible convolution kernel enhanced our PSDA’s multiview
feature extraction capabilities, which we demonstrated using the
SpaceNet4-MVSeg dataset results as an example for analysis. In
the DeepLab-based model, its performance improved by 0.97%
on IoU, 0.26% on OA, and 0.64% on the F1 score compared
to method RA. In the FastFCN-based model, its performance
compared to method RA improved by 1.31% on IoU, 0.13% on
OA, and 0.87% on the F1 score. Second, our ablation experi-
ments demonstrated the effectiveness of the designed pyramid
structure (comparing the fourth line with the second line in each
BaseNet). Using the PSDA module with a pyramid structure,
more accurate offsets were obtained to make the multiview
fusion of SDC more accurate. Finally, the SDC we applied was
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TABLE V
ABLATION STUDY OF PSDA MODULE (INCLUDING THE USE OF PYRAMID STRUCTURES AND SDC) ON THE SPACENET4-MVSEG AND DFC19-MVSEG DATASETS

TABLE VI
ABLATION STUDY OF THE EFFECT OF EARLY FUSION STRATEGY ON THE SPACENET4-MVSEG AND DFC19-MVSEG DATASETS

shown to be reasonable. Comparing the experimental results
of the last and third lines of the DeepLab-based model on the
SpaceNet4-MVSeg dataset, its performance improved by 1.19%
on IoU, 0.28% on OA, and 0.79% on the F1 score compared to
method PRA.

2) Effect of Early Fusion Strategy: In this section, we
conduct a series of experiments to explore the impact of
the early fusion strategy on the multiview segmentation
task, with the experimental results presented in Table VI.
Specifically, we perform an exhaustive study of five vari-
ants of the multiview segmentation network, including the
following.

1) L-PSDA (late fusion utilizing the PSDA module).
2) L-MVtrain (late fusion utilizing the MV-train).
3) E-L-PSDA (both early and late fusion utilizing the PSDA

module).
4) E-PSDA-L-MVtrain (early fusion with the PSDA module

and late fusion with the MV-train).
5) E-PSDA (early fusion utilizing the PSDA module).

To ensure the fairness of the experiment, the position of the
PSDA module used for late fusion was kept consistent with
the MV-train. In addition, we provide the results of single-view
segmentation (SV) for comparison. This comprehensive setup
enables a clear assessment of each variant’s contribution to
overall segmentation accuracy and provides valuable insights
into the advantages of early fusion in the multiview context.

From the experimental results, we can draw four main con-
clusions.

1) The segmentation effect of early fusion using the PSDA
module is better than that of late fusion using the PSDA
module (compare the last and second rows of Table VI in
each BaseNet). This may be because the offset learning
of the PSDA module requires strong feature information
as input, and it is difficult to extract strong feature infor-
mation from the classification scores, thus leading to the
failure of the PSDA module.

2) The segmentation effect of applying the PSDA module to
both early fusion and late fusion is not as good as that of
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TABLE VII
ABLATION STUDY OF THE NUMBER OF VIEWS ON THE SPACENET4-MVSEG AND DFC19-MVSEG DATASETS

using it only for early fusion (compare the fourth and last
rows of Table VI in each BaseNet). From the conclusion
of 1), it is clear that PSDA applied to late fusion has a
negative effect, so this result is not unexpected.

3) The segmentation effect of late fusion using MV-train
is even less effective than the SV effect (compare the
third and first rows of Table VI in each BaseNet). This
is because the MV-train method is designed for multiview
true orthoimages and utilizes regular convolution for late
fusion. It is unable to accommodate feature offsets in
multiview orthophotos, causing the algorithm to fail.

4) The joint PSDA module for early fusion and MV-train for
late fusion strategy is not as effective as PSDA alone for
early fusion (compare the penultimate and last rows of
Table VI in each BaseNet).

Since 3) shows that the MV-train method does not apply
to multiview orthoimages, late fusion with MV-train brings
negative effects. The experiments also show that integrating late
and early fusion within a single network for end-to-end training
can hinder task performance.

3) Effect of the Number of Views: Our method aims to make
full use of the multiview information’s complementarity and
constraints to obtain accurate semantic segmentation results. We
used different quantities of images as the input to explore the
impact of the number of multiview images on the model. Our
experimental results are shown in Table VII.

Table VII confirms that the accuracy of our semantic segmen-
tation generally increased as we increased the number of views
for multiview images in most cases. For example, in the PSDA-
DeepLab model on the DFC19-MVSeg dataset, the model with
three multiview image inputs outperformed the single-view
input model by 1.65% on IoU, 0.24% on OA, and 1.18% on
the F1 Score. Similarly, the model with three multiview image
inputs outperformed the model with two multiview image inputs
by 1.84% on IoU, 0.30% on OA, and 1.31% on the F1 Score.
However, the PSDA-FastFCN model in the SpaceNet4-MVSeg
dataset produced better segmentation results with three multi-
view image inputs than with five. This incongruity could be
attributed to the fact that when the shooting angle difference
was too large, the deformable convolution failed to accurately

identify the offset eigenvalue position, resulting in incorrect
feature fusion.

4) Transportability of PSDA Module: Our PSDA module
integrated smoothly with existing single-view semantic seg-
mentation methods, creating a multiview enhanced end-to-end
framework. We conducted experiments by integrating our PSDA
module with popular frameworks such as DeepLab and FastFCN
on both datasets. Table VIII shows that the PSDA module im-
proved the semantic segmentation of buildings, demonstrating
its portability and effectiveness.

VI. DISCUSSION

We conduct an experimental analysis of the generalization of
the PSDA module using the SpaceNet4-MVSeg and DFC19-
MVSeg datasets to investigate the potential limitations and
applicability of PSDA across varying environmental conditions.
We selected three challenging scenarios for segmentation:

1) poorly lit imaging conditions,
2) buildings with textures similar to their surroundings, and
3) imaging environments obscured by clouds.
The segmentation results for these scenarios are visualized in

Fig. 13.
As shown in Fig. 13, the first and second rows correspond to

the case of insufficient lighting. The reference image is heavily
affected by black pixels, which poses a significant challenge for
the PSDA module. The visualization results indicate that the
PSDA module experiences segmentation errors and incomplete
segmentation in this difficult environment. Nonetheless, it still
achieves better performance compared to SV, thanks to its ability
to aggregate clearer features from other viewpoint images. The
third row of Fig. 13 illustrates the challenge posed by buildings
having similar texture features to their surroundings.

Here, the PSDA-based multiview segmentation network ex-
hibits some segmentation errors, particularly in differentiating
the building roof from the ground. However, the presence of
vehicles in the other two viewpoint images helps improve the
results compared to SV by aggregating multiview information.
Finally, the final row of Fig. 13 depicts a scenario where the
reference image is occluded by clouds. Although there are some
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TABLE VIII
QUANTITATIVE COMPARISON OF BASELINE METHODS AND THEIR MULTIVIEW ENHANCED VERSIONS ON THE SPACENET4-MVSEG AND DFC19-MVSEG DATASETS

Fig. 13. Performance of PSDA under different environmental conditions,
where areas with poor segmentation are marked with red boxes. The areas with
improved results over SV are marked with green boxes.

misdetections and omissions, the PSDA module still outper-
forms SV in this case.

All in all, while some challenging environments present dif-
ficulties in building segmentation, the PSDA-based multiview
segmentation network outperforms the SV network.

VII. CONCLUSION

The study we presented in this article fully analyzed the
complementarity and constraints of multiview information for
enhancing the feature representation of a reference image. Based
on our analysis, we introduce the novel EMVSeg framework,
which simplifies multiview segmentation by avoiding the com-
plex and time-consuming production of true orthoimages. Its
central component is the PSDA module, which we demonstrated
is capable of using aggregate feature information from multiview
images. Due to its use of an early-fusion strategy, we showed
that our approach achieved superior performance compared to
current SOTA methods, particularly in semantically ambiguous
building areas. It is important to note that the PSDA module is
highly portable and can be easily integrated with existing SV
networks. In addition, we constructed the first MVSeg dataset.

The primary limitation of our PSDA module is that multiview
images require semantic annotation for network learning, and
most current multiview image datasets lack semantic labels. In

future work, we plan to address this limitation by introducing
unsupervised or self-supervised strategies. In addition, we plan
to integrate techniques such as 3-D Gaussian Splatting to achieve
joint estimation of semantics and building heights.
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