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Abstract—Geometric distortions and significant nonlinear 
radiometric differences in multi-modal remote sensing images 
(MRSIs) introduce substantial noise in feature extraction. Single-
branch convolutional neural networks fail to capture global 
image features and integrate local and global information 
effectively, yielding deep descriptors with low discriminability 
and limited robustness. Moreover, the lack of comprehensive 
training data further limits the network's performance, which 
pose a formidable challenge to existing matching methods in 
securing adequate and evenly distributed corresponding points. 
This paper proposes a novel method called Phase-Integrated 
Aggregated Deep Feature Matching (PI-ADFM), designed to 
address these challenges. Initially, a phase structure feature 
detector is introduced, which amalgamates the structural 
attributes and phase information of images to distill keypoints 
that are highly repeatable and exhibit minimal redundancy. 
Subsequently, an attention-based multi-level feature interaction 
and aggregation module (MFIAM) is crafted to encapsulate a 
comprehensive representation of both local and global features of 
keypoints. This is followed by the integration of a dense feature 
fusion module (DFFM) designed to sift through and amalgamate 
key features, thereby capturing highly discriminative deep 
semantic features that serve as descriptors for similarity 
measures. Finally, a multi-level outlier removal strategy is 
proposed to effectively reduce mismatches. Experimental results 
substantiate that, in juxtaposition with state-of-the-art methods, 
the PI-ADFM method has significantly augmented the count of 
matches for optical-infrared and optical SAR images by a factor 
of at least 1.7 and 3.7, respectively, while concurrently enhancing 
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the accuracy by a minimum of 10% and 6%, respectively. These 
enhancements markedly bolster the robustness and reliability of 
MRSI matching endeavors. The source code of this study is freely 
available at https://github.com/hyhqing/PI-ADFM. 

Index Terms—Multi-modal images, feature matching, feature 
interaction and aggregation, deep learning, phase structure. 

I. INTRODUCTION 

ULTI-modal remote sensing images (MRSIs) 
synthesize data from a diverse array of sensors, 
including those capturing visible light, near-

infrared spectra, and employing synthetic aperture radar 
(SAR) technology. Each sensor modality contributes distinct 
information, enriching the dataset. The heterogeneity of 
images procured by disparate platform sensors endows them 
with a complementary nature, thereby presenting an expansive 
repository for the sophisticated extraction and analysis of 
remote sensing intelligence and big data. The amalgamation of 
remote sensing images is extensively leveraged across a 
spectrum of applications, such as change detection [1], image 
registration [2], image fusion [3], image stitching [4], and 3D 
reconstruction [5]. Within these applications, image matching 
emerges as an indispensable preliminary step. However, the 
variance in imaging modalities, viewpoints, resolutions, and 
temporal acquisition intervals among MRSIs introduces 
considerable geometric and nonlinear radiometric 
discrepancies. These factors render the task of MRSI matching 
exceptionally intricate. 

As depicted in Fig. 1, MRSIs exhibit background 
alterations, intricate geometric distortions, and pronounced 
nonlinear radiometric variations. Achieving robust MRSI 
matching hinges on the accurate extraction of salient features 
and their corresponding descriptors. To tackle these 
challenges, a multitude of image matching methods has been 
introduced, which can be broadly categorized into two 
paradigms: handcrafted feature-based methods [6], [7] and 
deep learning-based methods [8], [9]. Handcrafted feature-
based methods predominantly depend on manually formulated 
feature detectors and descriptors to facilitate matching. These 
can be further bifurcated into region-based and feature-based 
matching strategies, contingent upon the necessity for a 
descriptor. Region-based matching techniques employ the 
grayscale values of predefined templates for gauging 
similarity. Such approaches are susceptible to variations in 
template dimensions, textural attributes, and geometric 
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distortions. Conversely, feature-based matching methods craft 
descriptors predicated on the point, line, and surface 
characteristics of the imagery. Nonetheless, these features are 
confined to the lower echelons of image representation, and in 
scenarios characterized by complex geometric distortions and 
substantial nonlinear radiometric disparities in MRSIs, they 
are impeded from yielding semantic features with high 
repeatability. 

Deep learning-based methods harness learning algorithms 
to extract high-level features. In recent years, these learning-
based matching methods have garnered considerable attention, 
with many leveraging high-level features in lieu of manually 
designed counterparts. High-level features are characterized 
by superior distinctiveness and robustness compared to 
handcrafted features, and deep learning-based methods have 
demonstrated enhanced performance in image matching tasks 
[10]. Convolutional neural networks (CNNs) have been 
integrated into the domain of image matching as extractors of 
high-level semantic features. They surpass traditional 
handcrafted features by learning robust features and 
descriptors through a series of nonlinear transformations, 
capturing nuanced local semantic details from images [11]. 
Nonetheless, recent research indicates that CNNs may have 
limited capacity to discern the spatial relationships between 
feature positions. When confronting MRSIs, CNN-based 
methods encounter challenges due to the weak global 
modeling capabilities of single-branch networks, which hinder 
the capture of comprehensive global semantic features and 
impede the integration of feature information [12]. To bolster 
global feature representation and emphasize the spatial 
relationships of features, researchers have incorporated the 
Transformer attention mechanism into image matching [13]. 
This mechanism is underpinned by self-attention, which 
amplifies the focus on more salient features during the 
learning process. By merging CNNs with the Transformer 
attention mechanism within a cohesive framework, it becomes 
feasible to capture a spectrum of local and global semantic 
features, enabling multi-level feature interaction and 
aggregation (MFIAM), and to construct robust feature 
descriptors. This synergistic integration is anticipated to 
enhance performance in MRSI matching. 

Despite delivering commendable results within specific 
domains, prevailing MRSI matching methods grapple with 
enduring challenges. Traditional keypoint detection using 
image intensity or gradient information is highly susceptible to 
noise and nonlinear radiometric distortions. Deep learning-
based keypoint detection may suffer from spatial localization 
degradation due to insufficient retention of low-level structural 
features in deeper, more semantically enriched layers. In 
contrast, phase-structural information demonstrates greater 
resilience to such nonlinear radiometric variations, making it a 
robust alternative for keypoint detection. Hence, a phase-
structural feature detection algorithm is proposed. Existing 
matching methods exhibit poor adaptability to complex 
geometric distortions and significant nonlinear radiometric 
differences. Research has shown that global features possess 

strong invariance, while single-branch CNNs struggle to 
capture global features and facilitate the interaction and fusion 
of local and global features, hindering the extraction of 
discriminative and robust features from MRSI. To address this 
issue, we integrate the advantages of both local and global 
features by constructing a deep feature aggregation network 
for deep descriptor extraction. A Transformer branch is 
incorporated into the network to capture global image features, 
and an attention-based multi-level feature interaction and 
aggregation module is designed to enhance the fusion of local 
and global features. To further integrate the features extracted 
by the backbone network into deep descriptors, a dense feature 
fusion module is introduced, ensuring the captured key 
features are embedded into deep descriptors for feature 
matching. The lack of publicly available MRSI training 
datasets limits the feature representation and overall 
performance of models. Acquiring diverse training data is 
essential for developing models with strong generalization 
capabilities. Furthermore, ambiguities and multiple solutions 
in corresponding points introduce challenges during image 
matching. To mitigate these issues, a multi-level outlier 
removal strategy is designed. Accordingly, this paper proposes 
an MRSI matching method called phase-integrated aggregated 
deep feature matching (PI-ADFM). We have thoroughly 
evaluated it across diverse MRSI scenarios to confirm its 
applicability and effectiveness. 

 
Fig. 1. Examples of multi-modal remote sensing images  
depicting various combinations of imaging modalities: (a) 
Optical-Optical; (b) Optical-Infrared; and (c) Optical-SAR. 

The principal contributions of this paper are delineated as 
follows: 

(1) To extract structural features that are highly repeatable 
and possess minimal redundancy, we have introduced 
pointwise shape-adaptive texture filtering (PSTF) [36] for the 
purpose of texture filtering in images. Furthermore, by 
integrating phase consistency information, we propose the 
phase structure feature detector (PSFD) algorithm, which 
yields high-quality features suitable for multi-modal remote 
sensing image matching. 

(2) In response to the nonlinear variations in the 
background of multi-modal remote sensing imagery to obtain 
highly discriminative feature descriptors, we introduce an 
interactively aggregated deep feature extraction module that 
integrates CNN and Transformer attention mechanisms, 
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enabling the capture of both local and global features. This 
module encompasses a multi-level feature interaction 
component tasked with the aggregation and interaction of deep 
features across dual branches at various stages. Additionally, a 
feature fusion component consolidates key features into robust 
deep descriptors, thereby amplifying their distinctiveness. 

(3) In pursuit of the efficient training of the PI-ADFM 
method to enhance its generalization capabilities, we have 
curated a representative MRSI dataset, which includes three 
distinct data types: optical, SAR, and infrared. The PI-ADFM 
method, trained on this comprehensive dataset, has achieved 
high-precision matching across various platforms and 
temporal conditions, thereby showcasing its robust 
generalization ability on analogous data. 

The structure of this paper is as follows: Section 2 reviews 
existing methods in MRSI matching. Section 3 details the PI-
ADFM method. Section 4 outlines the dataset, presents 
experimental results, and evaluates both quantitative and 
qualitative findings. Section 5 concludes the research. 

Ⅱ. RELATED WORK 

High-precision MRSI matching has long been one of the 
research hotspots. As previously mentioned, multimodal 
image matching methods can be broadly divided into two 
categories: handcrafted feature-based methods and deep 
learning-based methods. This section briefly reviews previous 
relevant work on image matching. 

A. Handcrafted Feature-based Methods 

Traditional image matching techniques predominantly 
depend on image intensity and gradients. Methods based on 
intensity include normalized cross-correlation [14] and mutual 
information [15], which utilize pixel values for measuring 
image similarity. However, these methods are highly sensitive 
to variations in lighting and noise, particularly when there are 
substantial differences in intensity between images. They also 
demonstrate limited robustness in addressing nonlinear 
radiometric variations. To counter these limitations, 
researchers have introduced frequency-domain-based 
methods. The underlying concept involves performing image 
matching in the frequency domain subsequent to the 
application of the Fourier transform. Li et al. [16] proposed a 
method leveraging directional phase features, employing the 
Harris detector for point feature identification. They utilized 
Log-Gabor filters to derive phase feature maps in multiple 
orientations for these points, constructing descriptors from 
these maps. Ye et al. [17] expanded upon the histogram of 
oriented phase congruency (HOPC) by introducing the 
channel feature of oriented gradients (CFOG). This approach 
calculates gradients in multiple directions to create a three-
dimensional directional feature map. Feature descriptors were 
then formulated by convolving these maps with a Gaussian-
like kernel, thereby enhancing matching efficiency and 
precision. Fan et al. [18] presented angle-weighted oriented 
gradients (AWOG) descriptors, which allocate gradient values 

between the two most salient directions and apply a three-
dimensional phase correlation for similarity measurement, 
substantially boosting matching performance. While these 
frequency-domain methods offer some resilience to noise and 
nonlinear radiometric distortions, they still confront 
challenges, including robustness and computational 
complexity. 

Additionally, feature-based matching methods, encompass 
algorithms such as SIFT [19], SURF [20], and ORB [21]. 
SIFT-like algorithms are robust to linear radiance differences 
and seem to have limited adaptation to nonlinear radiance 
differences. Building upon these foundational algorithms, 
numerous researchers have contributed improvements, 
propelling extensive research in the domain of MRSI 
matching. Li et al. [22] introduced the radiation-variation 
insensitive feature transform (RIFT) algorithm, which 
achieves rotation invariance in feature detection through phase 
consistency, utilizing the maximum index map (MIM) for 
descriptor construction. These handcrafted descriptors 
maintain rotation invariance and have yielded satisfactory 
matching outcomes in MRSIs. Yao et al. [7] proposed the co-
occurrence filtering spatial matching (CoFSM) method, which 
fortifies MRSI matching by employing an optimized euclidean 
distance function to mitigate the impact of outliers. Gao et al. 
[23] advanced a feature-based local main orientation 
multiscale mistogram (MS-HLMO) registration algorithm, 
employing harris corner detection for feature identification, 
followed by the computation of partial main orientation 
histograms. They integrated a histogram-like feature 
descriptor with generalized gradient location and orientation to 
counter scale and rotation distortions stemming from diverse 
viewpoints. Cristiano et al. developed a multispectral feature 
descriptor specifically tailored for imagery captured across 
different frequencies of the electromagnetic spectrum. This 
descriptor has been evaluated on public datasets, confirming 
its superiority. Subsequently, they introduced a scale- and 
rotation-robust feature descriptor to address issues related to 
image scale and rotation. The results demonstrated that this 
descriptor possesses strong robustness against geometric 
transformations [24], [25]. Xiong et al. [26], [27] employed 
self-similarity features for multimodal remote sensing image 
matching. Their method enhances matching performance by 
utilizing an improved feature detector to maximize self-
dissimilarity and a directional self-similarity feature 
descriptor. Ye et al. [28], [29] leveraged robust filtering for 
multimodal remote sensing image matching. Their approach, 
which combines first and second-order gradients to construct 
matching descriptors, employs Fourier transform techniques 
and integral images to enhance matching efficiency, yielding 
promising results in both optical and SAR image matching. 
Hu et al. [30] presented a multiscale structure feature 
transformation method tailored for MRSI matching, utilizing a 
multiscale structure feature detector for keypoint extraction 
and employing logarithmic coordinate descriptors based on 
multiscale structural orientations. This methodology has 
shown robustness against rotation distortions and pronounced 
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nonlinear radiometric differences. Wan et al. [31] proposed an 
MRSI matching method leveraging weighted structure 
saliency features (WSSF), which constructs scale space 
through texture scale filtering. They amalgamated second-
order Gaussian directional filters, edge confidence maps 
(ECMs), and phase features to generate salient structural 
feature maps, exhibiting enhanced robustness over traditional 
gradient-based maps. Despite these advancements, 
handcrafted feature-based matching methods encounter 
intrinsic limitations, particularly in terms of limited 
representational capacity and a lack of robustness against 
geometric distortions and significant nonlinear radiometric 
variations. 

B. Deep Learning-based Methods 

Deep learning-based matching methods have emerged as a 
prevalent research focus due to their formidable capacity for 
nonlinear feature representation, effectively overcoming the 
limitations inherent in traditional matching techniques. These 
approaches leverage CNNs to serve as high-level feature 
extractors, capturing contextual image features through a 
series of complex nonlinear mappings. Learning-based 
matching methods are broadly divided into two categories: 
template-based learning methods [32] and feature learning-
based methods [33]. Mei et al. [34] introduced a deep neural 
network-based method for rapid template matching, extracting 
pixel distribution information via the expanded slice transform 
(eSLT) matrix. This process standardizes images of varying 
modalities to a uniform surface image modality, facilitating 
MRSI matching. Cao et al. [35] utilized a pre-trained VGG 
network to distill deep image features and proposed an MRSI 
matching technique. However, these deep learning-based 
methods are not without their drawbacks, including challenges 
in template size determination and elevated computational 
expenses. 

To overcome the limitations of template-based learning 
methods, particularly their vulnerability to nonlinear 
radiometric distortions, researchers have introduced a variety 
of feature learning-based methods. Han et al. [36] initially 
presented MatchNet, leveraging a Siamese network 
architecture for feature extraction and similarity assessment. 
Dusmanu et al. [37] subsequently proposed the innovative D2-
Net for MRSI matching, employing the network as both a 
feature detector and descriptor generator to facilitate end-to-
end matching. Revaud et al. [38] further refined the D2-Net 
algorithm, enhancing keypoint repeatability and descriptor 
reliability. Sarlin et al. [33], building upon the SuperPoint 
network framework, introduced SuperGlue, a method adept at 
concurrent feature matching and outlier removal. Aguilera et 
al. [39] proposed a novel network designed for the learning of 
local feature descriptors, employing two distinct spectral 
descriptors to train a quadruple network. Cristiano et al. [40] 
augmented the TFeat architecture with an additional mapping 
layer incorporating Log-gabor filters, thereby enhancing the 
network's capacity to process nonlinear intensity variations 
within images. Lan et al. [41] crafted CMM-Net, an evolution 

of D2-Net, tailored for heterogeneous remote sensing image 
matching. This network utilizes a dynamic adaptive Euclidean 
distance threshold coupled with the RANSAC algorithm to 
effectively constrain and eliminate mismatches. Quan et al. 
[42] bolstered feature representation through the integration of 
an adaptive learning attention module, capitalizing on the 
complementary nature of diverse features for MRSI matching. 
Continuing this progression, Quan et al. [43] advanced the 
approach by integrating an attention learning module into a 
deep CNN and devising a feature optimization loss function. 
This innovation helps to mitigate network overfitting, thereby 
enhancing the generalization of semantic features and 
achieving robust registration of MRSIs. Ye et al. [44] 
proposed a hybrid matching method that enhances structural 
features with attention mechanisms, integrating traditional 
methods with deep learning techniques to improve the 
matching performance of optical and SAR images. Zhang et al. 
[45] proposed the modality-invariant consistency matching 
(MICM) method, which amalgamates CNN and Transformer 
architectures to synthesize multi-modal features, thereby 
augmenting feature representation and enabling MRSI 
matching. Despite the considerable advancements in matching 
performance by current learning-based methods, challenges 
persist. For instance, the efficacy of MRSI matching is often 
curtailed by the insufficient representational capacity of local 
and global features in single-branch networks. Moreover, there 
is an absence of comprehensive MRSI datasets, which are 
indispensable for training robust and widely applicable 
networks. 

Ⅲ. METHODOLOGY 

In this section, we introduce a novel MRSI matching 
method, which incorporates key components such as PSFD, 
descriptor generalization through the MFIAM, and a multi-
level outlier removal strategy, as depicted in Fig. 2. The 
foundational framework is composed of three key components: 
(1) the application of PSFD to detect keypoints that are both 
highly repeatable and exhibit minimal redundancy; (2) the 
utilization of MFIAM for the generalization of deep 
descriptors; and (3) the implementation of a multi-level outlier 
removal strategy to ensure high-precision matching. 

A. Phase Structure Feature Detector 

MRSIs, due to their diverse imaging modalities, are prone 
to significant nonlinear radiometric distortions and speckle 
noise. Traditional feature detection methods, which depend on 
image intensity and gradient information, are susceptible to 
these distortions and noise. In contrast, phase consistency 
information demonstrates greater robustness against such 
nonlinear radiometric variations. This robustness stems from 
the fact that, despite capturing different textural information 
through various sensors, images retain similar structural 
features. Accordingly, this paper introduces a phase structure 
feature detector that capitalizes on both the structural and 
phase information of images to identify keypoints that are 
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highly repeatable and exhibit minimal redundancy, as 
illustrated in Fig. 3. The method commences with the 
application of PSTF [46] to extract the structural features of 
the image. It then calculates the phase consistency of the 
filtered image to generate an edge moment map. Ultimately, 

the Brisk algorithm [47] is applied for keypoint detection. This 
method harnesses the structural features of the image to 
delineate edge characteristics, mitigate noise expression, and 
isolate salient keypoints. 

 
Fig. 2. Schematic representation of the PI-ADFM method's framework, encompassing three principal stages: (a) Phase structure 
feature detector (PSFD) for keypoint detection; (b) Extraction of deep feature descriptors; and (c) Outlier removal. 

(1) PSTF: To effectively mitigate noise interference and 
accentuate salient structural features, we employ PSTF to 
extract the image's structural characteristics. The PSTF 
algorithm is integrated within a joint bilateral filtering 
framework, which is adept at preserving edges while 
smoothing homogeneous regions. The formulation of PSTF is 
delineated as follows: 

    1
( , ) ,

p

p q p q
q Np

O G d p q g I I I
K 

   (1) 

where pO  and qI  respectively represent the pixel values of 

the input and output, p  and q  represent the index positions of 

two pixel values, G  and g represent gaussian filtering 

functions,  ,d p q  denotes the distance between p  and q , 

and pK is the normalization factor for neighboring weights. 

In the PSTF algorithm, the orientation of filtering is a 
critical determinant of the filtering outcome, rendering the 
acquisition of a guidance image essential. Initially, it is 
imperative to compute the texture cleanliness for each pixel, 
centered at pixel p . Line segments of a predefined length k  

are constructed in n  directions, with each segment being 

assigned a cleanliness measure. The ECM of the input image 
is derived using a structure-learning-based edge classifier [42]. 
The clearest line segment is defined as: 
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where  l p  represents the line segment centered at pixel p , 

  denotes the direction,   cL l p  signifies the cleanliness 

of the line segment, and   ECV l p  denotes the confidence 

of pixel values on the line segment. Upon obtaining the 
cleanliness of pixels, the guidance image can be computed 
using the following mathematical formula: 
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where ( )D p  represents the average of  L p .  s p  

represents the smoothness of the image.  G p  represents the 

guidance information. 

 
Fig. 3. Workflow of the phase structure feature detector. 

(2) Maximum moment map: To further enhance the edge 
information of the image, phase consistency (PC) calculation 
is applied to the texture-filtered image. PC can be computed 
using the following formula: 

  
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where  ,nw x y  denotes the weight factor for frequency 

expansion.  ,mnA x y  is the amplitude of the wavelet scale 

n and orientation at  ,x y . T is the noise threshold,  is a 

small value used to avoid division by zero. .    denotes a 

mathematical operation where a value equals itself if it is 
positive; otherwise, it is zero.  ,mn x yΔ  represents the 

phase deviation function. Furthermore, the mathematical 
expression can be represented by: 
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Then, the maximum moment map can be calculated using: 
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where maxM  denotes the maximum moment map.   is the 

direction of PC. 
This study employs the Brisk algorithm for the rapid 

extraction of keypoints on the maximum moment map, aiming 
to identify keypoints that are both robust and repeatable. 
Based on the comparative results of keypoint detection 
algorithms such as SIFT, SURF, KAZE, AKAZE, and ORB 
[49], the Brisk algorithm has been found to offer a good 
balance between the accuracy and efficiency of keypoint 

extraction. Consequently, we have opted for the Brisk 
algorithm to extract keypoints in this study. Fig. 4 presents a 
comparative evaluation of various keypoint detection methods. 
Figs. 4(a)-(c) illustrate the impact of nonlinear radiometric 
distortions and noise on the detected keypoints, which results 
in the inclusion of noisy keypoints. While these methods may 
detect a plethora of keypoints, a significant portion of these 
may be noise points or features that lack robustness. 
Consequently, this could lead to an escalation in the temporal 
and computational costs associated with the matching process, 
potentially compromising the precision of the matching 
accuracy. 

 
Fig. 4. Comparison of keypoint detection performance across 
various methods using a SAR image. Subfigures (a), (b), (c), 
and (d) respectively depict the keypoints detected using the 
FAST[43], BRISK, PC+FAST, and PSDF algorithms. 

In contrast, Fig. 4(d) demonstrates the efficacy of the PSFD 
algorithm, which significantly mitigates the impact of noise to 
extract high-quality keypoints, markedly reduces data 
redundancy, and ensures a uniform distribution of these 
keypoints across the SAR image. 

B. Multi-Level Feature Interaction and Aggregation Module 

Existing learning-based methods commonly employ single-
branch CNNs for the extraction of deep semantic image 
features. Primarily adept at capturing local features, CNNs 
exhibit inherent limitations in global feature extraction, which 
impedes the comprehensive representation of multi-level 
spatial semantics. To mitigate this, some researchers have 
integrated attention modules within CNN architectures to 
bolster the generalization of global semantic features. 

However, the reliance on a single-branch network structure 
remains restrictive for encapsulating both local and global 
feature generalization, thus complicating the robust matching 
of MRSIs. To counter this limitation, this study introduces an 
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attention-based MFIAM, as illustrated in Fig. 5. 

The PI-ADFM is structured around two branch networks: a 
CNN for local feature extraction and a transformer for global 
feature extraction. Our PI-ADFM, which is underpinned by an 
attention mechanism, facilitates the interaction and refinement 

of local and global features across the stages of the dual-
branch network. Subsequently, the channel attention-based 
dense feature fusion module (DFFM) consolidates deep 
features to form generalized deep descriptors.  

 
Fig. 5. Network architecture diagram highlighting two principal components: (a) the Attention-based Multi-level Feature 

Interaction and Aggregation Module (MFIAM), and (b) the Dense Feature Fusion Module (DFFM) 

This PI-ADFM network architecture holistically addresses 
the extraction of both local and global semantic features, as 
well as the spatial and channel correlations inherent in feature 
representation, facilitating feature interaction and aggregation 
across various stages. Specifically, the attention-based 
MFIAM incorporates a parallel dual-branch structure: the 
upper branch employs a CNN to capture local features, while 
the lower branch leverages the Transformer attention 
mechanism for global feature capture and for conducting 
feature interaction and aggregation. 

Furthermore, we have developed the DFFM based on 
coordinate attention (CA) to synthesize the deep features 
extracted by the dual branches. The CA within the DFFM is 
designed to enhance the salience of key features. Ultimately, 
the deep semantic features extracted by the PI-ADFM method 
are integrated to construct comprehensive deep feature 
descriptors. 

(1) Attention-based MFIAM: The CNN branch is tasked 
with extracting local detail information from MRSIs, whereas 
the Transformer branch is responsible for capturing global 
features. To facilitate effective interaction and fusion of these 

complementary features, this study introduces the attention-
based MFIAM, as depicted in Fig. 5(a). Drawing inspiration 
from a module presented in [50], this PI-ADFM network 
architecture promotes the interaction and refinement of spatial 
and channel features across distinct stages, enabling the 
extraction of features that are both highly repeatable and 
discernible. The attention-based MFIAM primarily 
encompasses two interaction stages: channel feature 
interaction and spatial feature interaction, which are pivotal 
for the aggregation of robust and descriptive features. 

(a) Channel feature interaction: To effectively capture 
global features from the dual-branch channels and enhance the 
semantic representation of features, we initially employ CA to 
augment the positional information of feature maps. 
Specifically, feature maps CNNF , derived from the CNN and 

TRAF , derived from the Transformer, are enhanced by CA. 

This enhancement provides a robust foundation for the precise 
localization of feature correspondences. Following this, we 
perform global max and average pooling operations along the 
channel dimension to generate four distinctive feature vectors 
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APCNNF ,
MPCNNF ,

APTRAF , and
MPTRAF , which are concatenated to 

form 1 1 4C
CF   . Finally, a multi-layer perceptron (MLP) is 

utilized for deep interaction, where weights of the vectors are 
computed using the sigmoid function, and subsequently 
divided into two equally sized weight vectors 

C

c
CNNW  and

C

c
TRAW  . After achieving deep feature 

interaction, the corrected feature vectors 
rct

C
CNNF and 

rct

C
TRAF can 

be obtained using Equation 10. 

 
      
      

AP CA MP CA

AP CA MP CA

,

,

CNN CNN

C Con

TRA TRA

f f F f f F
F f

f f F f f F

 
 
 
 

, (8) 

    spilt, MLP
C CCNN TRA C CW W f w F , (9) 

 rct C

rct C

C
CNN CNN CNN

C
TRA TRA CNN

F W F

F W F

  


 
, (10) 

where Cw  is the Sigmoid weight function.   represents the 

channel multiplication operation. 

(b) Spatial feature interaction: We further introduce a 
spatial feature perception module to enable interaction and 
correction of features at different stages of the feature maps. 

First, feature map H W 2C
ConvF     is obtained by applying two 

1×1 convolutional layers and the ReLU function for feature 
interaction along the channel dimension, concatenating the 
input feature maps CNNF  and TRAF . Then, compute the weights 

of the vectors using the Sigmoid function, dividing them into 

two equally sized weight vectors H W

SCNNW   and 

H W

STRAW  . After feature correction, feature maps 
rct

S
CNNF  

and 
rct

S
CNNF  can be obtained. 

    Conv 1 1 1 1Relu ,con CNN TRAF Conv Conv f F F  , (11) 

  spilt onv,
S SCNN TRA S CW W f w F  , (12) 

 rct S

rct S

S
CNN CNN CNN

S
TRA TRA TRA

F W F

F W F

  


 
, (13) 

Then, after the interaction and correction of channel and 
spatial information from different branches, the corrected 
features can be calculated by: 

 out rct rct

out rct rct

C S
CNN CNN CNN CNN

C S
TRA TRA TRA TRA

F F F F

F F F F

   


  
, (14) 

(2) DFFM: The dual-branch network is adept at extracting 
both local and global dense features from the imagery. 
However, these raw features are not directly amenable to 
feature matching. To surmount this limitation, we have 
architected the DFFM, which is predicated on CA. As 
depicted in Fig. 5(b), this module synthesizes the deep-level 
features extracted by the dual-branch network into 
comprehensive deep descriptors. The DFFM is composed of 
two interlinked submodules: a deep feature aggregation 
module (FAM) that consolidates feature information, and a 

feature fusion module (FFM) that integrates these features to 
forge robust descriptors. In FAM, the outputs 

outCNNF  and 

outTRAF  from the dual-branch network are first concatenated, 

and two 1×1 convolutional layers along with depthwise 
separable convolution (DWConv) are used for deep feature 
aggregation. Next, the softmax function is used to compute the 
weight maps 

DCNNW  and 
DTRAW  for the two different features, 

and these weight maps are utilized to obtain the aggregated 
features. The mathematical operations involved in FAM can 
be represented by: 

    1 1 1 1, ,
out out

CNN TRA
Conv Conv CNN TRAF F Conv F Conv F  , (15) 

     , max , ,Re ,
D D out outCNN TRA con CNN TRAW W soft f Conv BN lu f F F  ,  

(16) 

 D

D

D CNN
CNN CNN Conv

D TRA
TRA TRA Conv

F W F

F W F

  


 
, (17) 

where  , , Ref Conv BN lu represents a composite function 

composed of convolution, BN, and Relu. In FFM, it is 
necessary to fuse the aggregated dense features to obtain deep 
feature descriptors for matching. First, we use CA to enhance 
the representation of key features and suppress irrelevant 
features. Next, we use convolutional layers and BN layers to 
obtain a 256-dimensional feature vector  . To facilitate 
feature matching, we normalize   using 2L . The 

mathematical operations involved in FFM can be expressed 
as: 

    , ,Re ( , )
TRA

D D
CA con CNNf Conv BN lu f f F F   , (18) 

  2L  , (19) 

C. Loss Function 

To facilitate the training of the PI-ADFM network, which 
possesses a composite structure, we implement a composite 
loss function that encompasses both a primary loss component 
and an auxiliary loss component. The primary loss is based on 
the hybrid similarity measure and triplet loss (HSMTL) [51], 
which serves to supervise the main network. This loss function 
is designed to minimize the distance between highly similar 
feature descriptors while maximizing the distance between 
dissimilar ones, thereby enhancing the discriminative power of 
the features. 

Concurrently, the auxiliary loss incorporates second-order 
similarity regularization (SOSR) [52] to supervise the branch 
networks, aiming to mitigate the risks of gradient vanishing 
and overfitting, thus ensuring a more robust training process. 

The HSMTL includes two components: 2L  normalization 

and triplet loss. The normalization operation helps mitigate 
issues such as parallel gradients and enhances the network's 
robustness to image intensity. The formula for 2L  

normalization is as follows: 
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  
2
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1

1 N

L i i
i

R x x
N





  , (20) 

where ix  and ix  are a pair of positive descriptors before 2L  

normalization. To better generate gradients during network 
training, a hybrid similarity measure is used to enhance the 
triplet loss, which can be mathematically calculated using: 

     pso neg
triplet

1

1
max 0,

N

s i s i
i

L m H H
N

 


   , (21) 

        1
1sH k H D

Z
     , (22) 

where  1k    is a scalar used to adjust the proportion. 

Z  represents the maximum magnitude gradient normalization 
factor.   denotes the angle between descriptors. 

   cosH   ,     2 1 cosD    . The HSMTL can 

be defined as: 
 

2HSMTL triplet LL L R  , (23) 

where   is the regularization parameter. 
Additionally, to effectively supervise the learning process 

of the branch network and to mitigate the risks of overfitting 
and gradient vanishing, we employ the SOSR loss function. 
This function leverages both first order similarity (FOS) and 
second-order similarity for the regularization component of 
the loss. The FOS calculation is based on a predefined formula 
that measures the initial-order proximity between feature 
descriptors, typically expressed as: 

  2pos neg
FOS

1

1
max 0,

N

j j
j

L t d d
N 

   , (24) 

where pos
id  and neg

id  represent the distances between positive 

samples and negative samples, respectively. The formulation 
for calculating the second-order similarity among descriptors 
is: 

  (2) '
SOS

1

1
,

N

j j
j

L d x x
N 

  , (25) 

where    2 ',j jd x x  is the similarity measure between jx  and 

jx . jx  and '
jx  are a pair of matching positive sample 

descriptors. The SOSR loss can be mathematically calculated 
using: 
 SOSR FOS SOS .L L L   (26) 

The joint loss function, which amalgamates the HSMTL 
with the SOSR loss, is a critical component of our training 
regimen. This composite function is designed to refine the 
learning process by incorporating both first- and second-order 
similarities. It can be mathematically expressed as follows: 

 z
CNN TRA

HSMTL SOSR SOSRL L L L     , (27) 

where , ,    represent three weighting factor. CNN
SOSRL  and 

TRA
SOSRL  denote the loss values in the CNN and Transformer 

branches, respectively. By incorporating the joint loss function, 
the training process of the network can be more effectively 
optimized, leading to better generalization and robustness. 

D. Outlier Removal 

MRSI often exhibits complex geometric distortions and 
nonlinear radiometric differences, which inevitably leads to 
the presence of mismatches. To address this issue, we propose 
a multi-level outlier removal strategy designed to maximize 
the preservation of correctly matched points. This strategy 
comprises two stages: 1) An adaptive threshold constraint; and 
2) Coarse filtering based on grid-based motion statistics 
(GMS) [53], followed by fine matching using the 
MAGSAC++ algorithm [54]. 

Traditional methods often rely on ratio thresholds to 
identify high-quality candidate matches, yet selecting the 
optimal threshold value can be challenging. To overcome this 
challenge, our study employs an adaptive threshold constraint 
approach, which offers a more flexible and effective strategy 
for extracting candidate matches. Initially, the nearest 
neighbor algorithm is employed to obtain the closest distance 

fD  and the second closest distance sD  of the candidate 

matches. The average difference AvgD  between fD  and sD  

serves as the criterion, formulated as: 

  Avg s f
1

1

i

D D D
n 

  , (28) 

 s f AvgD D D  , (29) 

when the candidate matches satisfy equation (29), they are 
considered to have good quality. 

Although adaptive threshold constraints can reduce many 
mismatches, some may persist. To further refine the matching 
process, we employ GMS for motion smoothing, which 
coarsely filters the corresponding points. This approach 
effectively mitigates the interference from multiple feasible 
solutions. Additionally, we apply the MAGSAC++ algorithm, 
leveraging iteratively reweighted least squares for robust 
estimation, to achieve fine matching. This enhances both the 
quantity and accuracy of correct matches. 

E. Implementation Details 

In an effort to expedite the training process, we have 
incorporated pre-trained weights from the ImageNet into the 
dual-branch backbone network of the PI-ADFM. The 
network's backbone, designed for attention-based MFIAM, 
consists of an improved MobilenetV2 [55] and MobileViTv2 
[56]. It is structured into four stages, with feature interaction 
and correction mechanisms at each stage, culminating in the 
extraction of 256-dimensional descriptors via the DFFM. To 
train a robust and generalizable network, we mixed three types 
of data from the multi-modal remote sensing image dataset as 
input for training, allowing the deep feature descriptors 
extracted by the PI-ADFM method to exhibit stronger 
discriminative power and better robustness. 
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Fig. 6. Loss value during the training process. 

Experiments were conducted utilizing an NVIDIA GeForce 
RTX 4070Ti GPU with 8GB VRAM, employing the PyTorch 
framework. The training regimen involved the Adam 
optimizer, initialized with a learning rate of 1e-3, a batch size 
of 24, and spanning 100 epochs. The regularization parameter 
for HSMTL was set to the default value of 1.2. After extensive 
trials, the weight ratios for the joint loss components— ,  , 

and  —were determined to be 0.5, 0.25, and 0.25, 

respectively. The learning rate was managed using a 
polynomial decay strategy, and the network was optimized 
using the aforementioned joint loss function. The loss values 
during the training process are shown in Fig. 6. As the 
network training progresses, the loss values gradually decrease 
and tend to converge. In the final few epochs of training, the 
loss stabilizes, indicating that the network training is 
complete. 

IV. EXPERIMENTAL RESULTS 

In this section, we first provide an overview of the training 
dataset and experiments, followed by a description of the 
evaluation metrics. Finally, we analyze and compare the 
experimental results. 

A. Training Dataset 

To train the PI-ADFM network, we created an MRSI 
matching dataset. This dataset includes three types: optical-
optical, optical-near-infrared, and optical-SAR, covering 
remote sensing images with multiple temporal phases, various 
sensors, and different spatial resolutions. It also includes data 
on different land cover types, such as buildings, roads, 
coastlines, forests, lakes, farmland, urban, and rural areas. The 
dataset comprises 60,000 pairs of image patches, with 20,000 
pairs for each type. Some examples are shown in Fig. 7. It 
should be noted that this study employed transfer learning to 
share some of the weight parameters from publicly available 
networks, thus the number of samples was sufficient to meet 
the training requirements. Consequently, no data augmentation 
was performed during the training process in this study. 

 
Fig. 7. Training samples. 

(1) Optical-Optical Dataset: The optical dataset comprises 
historical satellite images from Google Earth and the WUH 
dataset [57]. We sourced 40 multi-temporal pairs of 
5000×5000 pixel images from Google Earth, captured 
between 2020 and 2024, featuring a variety of landscapes such 
as cities, rural areas, farmlands, forests, rivers, and coastlines. 
These images have resolutions varying from 5 to 10 m. After 
performing geographic registration and geometric correction, 
we cropped the large images into 14,000 pairs of 256×256 
pixel patches. 

The WUH dataset, utilized for change detection, includes 
two sets of pre-registered aerial photos from 2012 and 2016 
over the same area in New Zealand, with a high resolution of 
0.075 m. We manually selected regions with minimal land 
feature changes and cropped them to acquire 6,000 patch pairs. 
In total, the optical dataset encompasses around 20,000 pairs 
of 256×256 pixel multi-temporal patches, with 18,000 
reserved for training and 2,000 for testing. 

(2) Optical-Infrared Dataset: The dataset primarily includes 
optical and infrared images from Landsat-9 and Sentinel-2 
satellites. The Sentinel-2 data is mainly sourced from the 
SEN12MS-CR dataset [58]. We obtained Landsat-9 images 
from the Geospatial Data Cloud, capturing various terrains 
such as plains, mountains, and hills, with a resolution of 30 m. 
The optical images are true-color composites created from 
Landsat-9 bands 2, 3, and 4, captured in 2022. In contrast, the 
infrared images correspond to Landsat-9 band 5, captured in 
2023. After preprocessing, these images were cropped into 
10,000 pairs of 256×256 pixel patches. 

The SEN12MS-CR dataset, known for its large-scale cloud-
free imagery with even distribution across major continents, 
provided us with cloud-free summer data from Sentinel-2, 
encompassing all available bands. We created optical images 
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by combining bands 2, 3, and 4 and used band 8 for the 
infrared images. From this dataset, we manually selected 
10,000 pairs of high-quality images, each 256×256 pixels in 
size. In total, the optical-infrared dataset comprises 
approximately 20,000 image pairs, allocated for training 
(18,000 pairs) and testing (2,000 pairs). 

(3) Optical-SAR Dataset: The optical-SAR dataset is 
sourced from the QXS-SAROPT dataset [59], created by 
Huang et al. in 2021, and the SAR2Opt dataset [60]. The 
QXS-SAROPT dataset includes 20,000 pairs of optical and 
SAR remote sensing image patches, derived from Gaofen-3 
SAR satellite images and Google Earth images, covering three 
port cities: Santiago, Shanghai, and Qingdao. From this 
dataset, we manually selected 16,000 high-quality image pairs, 
each 256×256 pixels in size. 

The SAR2Opt dataset primarily consists of TerraSAR-X 
satellite images and Google Earth images, capturing SAR 
images with a spatial resolution of 1 meter from 2007 to 2013 
across 10 cities in Asia, North America, Oceania, and Europe. 
By manually selecting ground control points, we registered 
Google Earth images with the corresponding SAR images, 
resulting in 600×600 pixel images. We utilized only the 
training portion of this dataset, cropping it into 6,000 pairs of 
256×256 pixel images. In total, the optical-SAR dataset 
comprises approximately 20,000 pairs of image patches, with 
18,000 pairs allocated for training and 2,000 pairs reserved for 
testing. 

B. Experimental Data 

To validate the effectiveness of the proposed method, we 
conducted matching experiments using both a self-constructed 
image dataset and publicly available datasets. Table I details 
the data sources, sensor types, pixel sizes, and spatial 
resolutions of the images in our dataset. This dataset 
encompasses three types of image pairs—optical-optical, 
optical-infrared, and optical-SAR—comprising a total of 30 
matching test pairs, with an equal distribution of 10 pairs per 
category. Captured by various platforms and sensors at 
different times and locations, these images exhibit variations 
in temporal, spatial, scale, and textural attributes. The 
experimental dataset covers various land cover types, such as 
urban areas, rural areas, rivers, farmland, lakes, and roads. To 
address the issue of matching remote sensing images with 
different spatial resolutions, we initially performed a 
geographic registration on the image pairs. Subsequently, we 
extract sub-image blocks that correspond to identical ground 
areas as candidates for matching, without the necessity of 
resampling the images of different resolutions, thus preserving 
the original image detail information to the fullest extent 
possible. The experimental images originate from a range of 
satellite sources, including Google Earth, the Landsat series, 
Sentinel-1 and Sentinel-2, ZY-3, GF-2, GF-3, and TerraSAR-
X. Such a diverse set is well-suited for assessing the 
performance of our method in matching different MRSI types. 
Fig. 8 displays a selection of these experimental images, 
showcasing the variety of scenes they represent.

 
Fig. 8. Examples of multi-modal remote sensing images (MRSIs), illustrating the combination of optical, infrared, and SAR 
images. 
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TABLE I  
DATA DESCRIPTION 

Image type No. Image source Pixel Resolution (Unit: m) 

Optical-
Optical 

1 Aircraft / Aircraft 512×512 / 512×512 0.3 / 0.3 
2 Aircraft / Aircraft 512×512 / 512×512 0.3 / 0.3 
3 Google Earth / Google Earth 512×512 / 512×512 6 / 8 
4 Google Earth / Google Earth 512×512 / 512×512 6 / 5 
5 Google Earth / IKONOS 512×512 / 512×512 4 / 4 
6 Google Earth / IKONOS 512×512 / 512×512 4 / 4 
7 Google Earth / ZY-3 512×512 / 512×512 8 / 6 
8 Google Earth / ZY-3 512×512 / 512×512 6 / 6 
9 Arcgis / Jilin 1 512×512 / 512×512 5 / 5 

10 MRSIDatasets / MRSIDatasets[61] 500×422 / 500×422 - / - 

Optical-
Infrared 

11 Google Earth / Landsat-8 512×512 / 512×512 25 / 30 
12 Google Earth / Landsat-9 512×512 / 512×512 30 / 30 
13 Google Earth / Sentinel-2 512×512 / 512×512 10 / 10 
14 Google Earth / Sentinel-2 512×512 / 512×512 10 / 10 
15 Landsat-8 / Landsat-9 512×512 / 512×512 30 / 30 
16 Landsat-9 / Landsat-8 512×512 / 512×512 30 / 30 
17 Sentinel-2 / Sentinel-2 512×512 / 512×512 10 / 10 
18 Sentinel-2 / Sentinel-2 512×512 / 512×512 10 / 10 
19 Jilin 1 / GF2 512×512 / 512×512 5 / 3 
20 MRSIDatasets / MRSIDatasets[61] 512×512 / 512×512 - / - 

Optical-
SAR 

21 Google Earth / TerraSAR-X 600×600 / 600×600 1 / 1 

22 Google Earth / TerraSAR-X 600×600 / 600×600 1 / 1 

23 Arcgis / GF3 600×600 / 600×600 3 / 1.5 

24 Arcgis / GF3 600×600 / 600×600 1.5 / 1.5 

25 Sentinel-2 / Sentinel-1 600×600 / 600×600 10 / 10 

26 Sentinel-2 / Sentinel-1 600×600 / 600×600 10 / 10 

27 Google Earth / Sentinel-1 600×600 / 600×600 10 / 10 

28 Google Earth / Sentinel-1 600×600 / 600×600 10 / 10 

29 GF2 / GF3 600×600 / 600×600 3 / 1.5 

30` MRSIDatasets / MRSIDatasets[61] 500×600 / 500×600 - / - 

C. Evaluation Metrics 

To comprehensively evaluate the performance of the PI-
ADFM method, we use the number of correct matches (NCM) 
and root mean square error (RMSE) as quantitative evaluation 
metrics. In this study, we establish a criterion that if the 
correspondence between a keypoint on the reference image 
and a keypoint on the matched image is within a given 
distance  , the matching point is considered correct. The 
mathematical expression for this criterion is: 

 Cor( ) : ,i iX X X  


 (30) 

where iX  represents the keypoints on the reference image, 

and iX


 represents the corresponding points on the matched 

image. RMSE reflects the fluctuation in the accuracy of 
matches. The transformation matrix is computed based on the 
correct matches, and using the transformation parameters, the 

coordinates  ,i ix y  on the reference image and the 

transformed coordinates  ,i ix y  are calculated. Then, RMSE 

is computed using: 

 
NCM

2 2

1

1
RMSE ( ) ( ) .

NCM i i i i
i

x x y y


        (31) 

Additionally, another metric known as the F-measure is 
utilized to evaluate the matching performance, which is 
defined as the harmonic mean of precision and recall. The 
calculation formula is as follows: 

 
2 Re

Re

MP call
F measure

MP call

 
 


， (32) 

where MP represents the accuracy of matches, calculated as 
the total NCM divided by the total number of matches; Recall 
is the ratio of NCM to the total number of key points, used to 
assess the accuracy of correctly matched points. 
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D. Experimental Results and Analysis 

To comprehensively evaluate the performance of the PI-
ADFM method, six representative MRSI matching methods 
were selected for comparison. The descriptions of these 
methods are as follows: (1) RIFT [26], which is based on 
handcrafted features utilizing phase consistency information 
for feature detection and employing maximum and minimum 
torque graphs for feature description; (2) MS-HLMO [27], 
which employs Harris for feature detection and uses 
generalized gradients and directional gradient histograms for 
feature description; (3) WSSF [31], which utilizes structural 
and phase information for both feature detection and 
description; (4) R2D2 [38], which is an end-to-end matching 
network integrating reliability indicators; (5) CMM-Net [41], 

which is specifically designed for matching heterogeneous 
remote sensing images; and (6) LightGlue [62], a deep neural 
network dedicated to matching sparse local features within 
image pairs, employs an adaptive mechanism to adjust 
computational complexity across image pairs of varying 
difficulty, thereby achieving rapid and accurate matching. In 
the experiments, the PI-ADFM method set an accuracy 
threshold of 3 pixels, denoted as 3  [31], [41]. To ensure 
fairness in experimental comparisons, all methods were 
evaluated using parameters recommended by the authors who 
proposed these methods. 

(1) Qualitative Evaluation: Figs. 9-11 present comparative 
results across three types of experimental data, demonstrating 
that the PI-ADFM method successfully identifies a large 
number of correct matches in all image pairs. 

 
Fig. 9. Optical-Optical image matching results: (from left to right: results obtained by RIFT, MS-HLMO, WSSF, R2D2, CMM-
Net, LightGlue, and our method), (from top to bottom: pair1-pair10). 

As depicted in Fig. 9, various methods generally perform 
well in identifying correct matches within optical image pairs. 
However, the performance of the three handcrafted feature-
based methods—RIFT, MS-HLMO, and WSSF—declines 
notably on image pairs characterized by significant temporal 
and background variations, such as those labeled as pair3, 
pair7, and pair10. Among the these, WSSF demonstrates 
superior performance in optical image matching, particularly 

in terms of the NCM. It excels by integrating structural 
features and phase information to extract keypoints and 
descriptors, showcasing its robustness against complex 
backgrounds. In comparison, CMM-Net records fewer correct 
matches in optical images. Despite its simultaneous 
acquisition of keypoints and descriptors, the method's limited 
network depth hampers the extraction of sufficient semantic 
information, thereby reducing the number of correct matches. 
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Conversely, R2D2 offers distinct advantages for optical image 
matching by emphasizing both the repeatability of keypoints 
and the reliability of their detection. LightGlue achieves good 
matching performance on optical image pairs, primarily due to 
its training on such pairs, which gives it an advantage in 
handling optical imagery. In summary, the PI-ADFM method 
outperforms other state-of-the-art methods by integrating local 
and global semantic features into robust deep descriptors, 
which significantly enhances image matching performance. It 
not only achieves a higher NCM in optical images but also 
ensures a more uniform distribution of these matches across 
the image pairs. 

Fig. 10 illustrates the matching results for seven methods 
applied to optical-infrared images. The significant nonlinear 
radiometric differences between these image types pose a 

challenge for matching, leading to a decrease in the NCM for 
all methods when compared to optical-only image pairs. 
Notably, RIFT outperforms MS-HLMO and WSSF in terms of 
NCM on optical-infrared pairs. This advantage is attributed to 
RIFT's use of phase consistency information for descriptor 
generalization, which confers robustness against nonlinear 
radiometric variations. In contrast, the performance of the 
three deep learning-based methods—R2D2, CMM-Net, and 
LightGlue—is inferior to that of the handcrafted feature-based 
methods in terms of matching accuracy. The PI-ADFM 
method, which employs a dual-branch structure, showcases its 
strength by effectively handling the nonlinear radiometric 
differences between optical and infrared images, resulting in a 
higher NCM. 

 
Fig. 10. Optical-Infrared image matching results: (from left to right: results obtained by RIFT, MS-HLMO, WSSF, R2D2, 
CMM-Net, LightGlue, and our method), (from top to bottom: pair11-pair20). 

Fig. 11 displays the matching results of seven methods on 
optical-SAR images. The complex geometric distortions and 
significant nonlinear radiometric differences between optical 
and SAR images make the matching task particularly 
challenging. As a result, the performance of the six existing 
methods is less satisfactory compared to the PI-ADFM 
method. R2D2, CMM-Net, and LightGlue achieve fewer 
NCM than the handcrafted feature-based methods. 

Specifically, the performance of R2D2 and LightGlue is 
hindered by a lack of training data for this type of imagery, 
which affects their ability to match multiple image pairs. 
Furthermore, state-of-the-art deep learning-based methods, 
including R2D2, CMM-Net, and LightGlue, struggle with 
image pairs that have weak texture information, such as pairs 
5 to 8 depicted in Fig. 10. In contrast, the PI-ADFM method 
demonstrates a stronger generalization ability, identifying a 
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significantly higher number of NCMs on optical-SAR images. 
Initially, it employs a structural feature detector to mitigate 
speckle noise in SAR images, thereby enhancing keypoint 
repeatability and reducing redundancy. Following this, the 

attention-based MFIAM interacts with and aggregates local 
and global semantic information. Meanwhile, the DFFM 
refines feature representation and consolidates these features 
into robust deep feature descriptors. 

 
Fig. 11. Optical- SAR image matching results: (from left to right: results obtained by RIFT, MS-HLMO, WSSF, R2D2, CMM-
Net, LightGlue, and our method), (from top to bottom: pair21-pair30). 

In summary, the PI-ADFM method achieves a higher NCM 
across all image pairs and exhibits a more uniform distribution 
of these matches. It demonstrates superior matching 
performance and better generalization ability compared to 
other methods. Handcrafted feature-based methods struggle to 
extract high-level semantic information from multi-modal 
sources, resulting in inadequate descriptor representation and 
discriminability. While deep learning-based methods show 
robustness with optical images, they are sensitive to variations 
in infrared and SAR images. The suboptimal matching 
performance can be primarily attributed to two factors: 
insufficient comprehensive training data for the networks, 
which affects robustness and generalization; and the 
constraints of the single-branch network, which limits the 
interaction and aggregation of deep features. Additionally, all 
comparison methods exhibit sensitivity to SAR images due to 
their complex geometric distortions, significant nonlinear 
radiometric differences when compared to optical images, and 
the inherent speckle noise in SAR images. These challenges 

collectively complicate the matching process between optical 
and SAR images. 

(2) Quantitative Evaluation: To provide a quantitative 
assessment of the matching performance of the seven 
methods, Fig. 12 compares their performance metrics, 
including the NCM, RMSE, and F-measure. 

The results depicted in Fig. 12 indicate that the PI-ADFM 
method achieves the best overall performance on MRSI, with 
higher NCMs and lower RMSE. Specifically, the PI-ADFM 
method obtains significantly higher NCMs on optical-infrared 
and optical-SAR images, with RMSE within 2 pixels. The 
NCMs obtained by the PI-ADFM method are more than those 
of the handcrafted feature-based methods across all image 
pairs, with an average NCM of 528 and an average RMSE of 
1.689. Among the comparison methods, WSSF performs 
better than RIFT and MS-HLMO in optical-optical image 
matching, while RIFT outperforms WSSF and MS-HLMO in 
optical-infrared and optical-SAR image matching. R2D2 
achieves NCMs similar to the PI-ADFM method in a few 
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optical-optical and optical-infrared image pairs, but its 
matching accuracy is lower. Additionally, R2D2 exhibits 
matching errors in optical-SAR images, indicating its lack of 
robustness to significant nonlinear radiometric differences. 
The CMM-Net achieves correct matches across all image 
pairs, with better performance in optical image pairs compared 
to optical-infrared and optical-SAR images. However, a 
drawback of this method is its lower matching accuracy. 
LightGlue demonstrates superior matching performance on 

optical image pairs relative to optical-infrared and optical-
SAR image pairs; however, its performance is markedly 
inferior when matching optical and SAR images, indicating a 
limited generalization capability of the network. Moreover, the 
accuracy of matches achieved by LightGlue is lower 
compared to that of the PI-ADFM method. In terms of the F-
measure, it indicates that the PI-ADFM method exhibits 
superior matching performance in multi-modal image 
matching, such as optical to SAR imagery. 

 
Fig. 12. Quantitative comparison. (a) Optical-Optical. (b) Optical-Infrared. (c) Optical-SAR. 

 
Fig. 13. Comparative performance metrics of seven matching methods, displaying (a) the NMs and (b) the corresponding 
matching time for each method. 

Quantitative results indicate that the PI-ADFM method 
demonstrates strong robustness against nonlinear radiometric 

distortions, validating the effectiveness of CNN features and 
Transformer attention mechanisms in MRSI matching. The PI-
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ADFM method combines structural features and phase 
information to obtain stable keypoints, reducing the impact of 
noise on keypoint detection. Additionally, the designed 
MFIAM deeply fuses local and global features, using attention 
mechanisms in the fusion module to integrate key features, 
thus generalizing deep descriptors invariant to nonlinear 
radiometric differences in MRSIs. Finally, a multi-level outlier 
removal strategy effectively eliminates mismatches, 
maximizing the retention of correct matches. Therefore, the 
PI-ADFM method is highly suitable for MRSI matching. 

Fig. 13 illustrates a comparison of the number of matches 
(NMs) and the matching time (MT) between the PI-ADFM 
method and the other six methods. Fig. 13(a) delineates the 
NMs comparison, revealing that the WSSF method attains the 
highest NMs; however, it exhibits lower NCMs compared to 
the PI-ADFM method, suggesting a higher incidence of 
mismatches within its set of matched keypoints. The median 
NM of the PI-ADFM method ranks second, following WSSF, 
establishing a foundation for securing an adequate NCMs. 
This is facilitated by the implementation of a multi-level 
outlier removal strategy, which enhances the inlier rate of 
matching. The RIFT method demonstrates the most consistent 

NMs, averaging around 1500, whereas the CMM-Net exhibits 
the lowest NMs, consequently yielding the lowest average 
NCMs. Fig. 13(b) illustrates a comparison of matching times 
between the PI-ADFM method and other comparative 
methods. Relative to these methods, although the PI-ADFM 
method does not possess a significant advantage in terms of 
time efficiency, it markedly outperforms the others in the 
number of matches and localization accuracy across three 
types of remote sensing data. Consequently, the additional 
time expenditure required to achieve higher NCM, F-measure, 
and RMSE is deemed acceptable. 

(3) Evaluation of Image Registration: MRSIs registration is 
one of the significant applications of image matching, with the 
accuracy of matching directly affecting the quality of image 
registration. As depicted in Figure 13, visually, there are no 
apparent seams in the overlapping regions of all experimental 
image pairs, indicating satisfactory registration outcomes. This 
also suggests that the PI-ADFM method possesses excellent 
matching performance and localization accuracy. The superior 
registration results across the three types of data demonstrate 
the robustness of the PI-ADFM method. 
 

 
Fig. 14. Registration results for three types of data. 
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V. DISCUSSION 

To substantiate the viability of the PI-ADFM method, 
ablation studies were meticulously executed to evaluate the 
influence of the MFIAM and DFFM components on the 
matching outcomes. The experimental design encompassed a 
comprehensive selection of 120 image pairs for the matching 
trials, meticulously allocated into 40 pairs per category. This 

categorization included pairs of optical-optical and optical-
SAR data from the WUH and SAR2Opt datasets, respectively, 
as well as optical-infrared data extracted from quartet Landsat-
9 satellite imagery captured between the years 2022 and 2024. 
It warrants emphasis that this dataset was distinct from those 
utilized in the training phase. The experimental findings are 
delineated in Fig. 15 and Table II, with Table II offering a 
compilation of the mean metric values for each data category.

 
Fig. 15. Ablation Results of the attention-based MFIAM and DFFM. (a) Optical-Optical. (b) Optical-Infrared. (c) Optical-SAR. 

TABLE II 
QUANTITATIVE MATCHING RESULTS OF THE PI-ADFM 

METHOD 
Types MFIAM DFFM NM NCM RMSE 

Optical-
Optical 

  1556 284 1.983 
  1811 524 1.864 
  1832 474 1.895 
  2132 639 1.698 

Optical-
Infrared 

  1583 323 1.959 
  1698 418 1.865 
  1785 449 1.802 
  2065 552 1.701 

Optical-
SAR 

  2710 200 2.040 
  2927 269 1.916 
  2996 275 1.929 
  3106 357 1.750 

The experimental outcomes underscore the pivotal role of 
both the MFIAM and DFFM in augmenting the matching 
performance. Notably, the network's efficacy is markedly 
compromised upon the sequential removal of these modules. 
As delineated in Table II, the progressive elimination of the 
MFIAM and DFFM leads to a decrement in the NMs and 
NCMs, concomitant with an escalation in the RMSE. The 
MFIAM is instrumental in facilitating the interplay and 
amalgamation of local and global features, endowing the 
resultant features with resilience against geometric distortions 
and nonlinear radiometric disparities, which in turn bolsters 

the matching performance. Furthermore, the DFFM module 
fosters the generalization of salient features, thereby 
enhancing the network's capacity for feature representation 
and rendering the ensuing feature descriptors more distinctive. 
This enhancement, in essence, contributes to the refinement of 
the matching performance. 

VI. CONCLUSION 

To counteract the complexities arising from geometric 
distortions and nonlinear radiometric variations in MRSI 
matching, which are often induced by disparate imaging 
modalities, we propose an innovative MRSI matching method 
known as PI-ADFM. This novel method commences with the 
deployment of a phase-structure feature detection algorithm. 
This algorithm synergizes image structural attributes with 
phase information, thereby significantly attenuating the 
adverse effects of image noise and nonlinear radiometric 
aberrations on the detection of keypoints. Subsequently, the 
MFIAM is engineered to amalgamate and integrate local and 
global features, thereby augmenting the capacity for deep 
feature representation and fortifying the robustness of the 
ensuing feature descriptors. In the final stage, a tiered strategy 
for outlier removal is implemented to bolster the inlier rate of 
NCMs and to refine the precision of the matching process. 
Compared to the state-of-the-art methods, the PI-ADFM 
method has significantly augmented the count of matches for 
optical-infrared and optical-SAR images by a factor of at least 
1.7 and 3.7, respectively, while concurrently enhancing the 

This article has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2025.3569174

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



 
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 
accuracy by a minimum of 10% and 6%, respectively. 

Additionally, we have curated an extensive MRSI dataset, 
encompassing diverse sensor inputs and sceneries, to facilitate 
the training of the PI-ADFM network. We have conducted a 
thorough evaluation of the PI-ADFM method across three 
distinct data types, juxtaposing its performance against that of 
predominantly utilized, advanced handcrafted features, and 
contemporary deep learning-based methods. The outcomes of 
our evaluation indicate that our method surpasses existing 
state-of-the-art methods in terms of matching efficacy, 
yielding a substantial and uniformly dispersed array of 
matches. However, the PI-ADFM method has not yet 
addressed the challenges associated with large-scale and 
rotational variations, which result in suboptimal performance 
in matching remote sensing images that exhibit such 
characteristics. Additionally, there is significant scope for 
improving the matching efficiency. Future work will 
concentrate on refining the method to improve multi-modal 
image matching performance in these areas. 
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