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Abstract— Semantic 3-D reconstruction from multiview images
is essential for applications such as 3-D city modeling and
robot navigation. However, existing methods treat semantic seg-
mentation (SS) and height estimation (HE) as separate tasks,
leading to suboptimal reconstruction results. To bridge this
gap, we introduce MVSR3D, the first end-to-end framework
for semantic 3-D reconstruction using multiview satellite images.
MVSR3D employs a dual-stream architecture, consisting of the
segmentation branch (MVSAM) based on segment anything
model (SAM) and the HE branch based on multiview stereo
(MVS). To enhance multiview feature fusion, we propose the
epipolar cross attention (ECA) module in the MVSAM branch,
which integrates image embeddings primarily along epipolar
line to exploit complementary multiview information. Unlike
conventional multitask learning approaches, we design dedicated
interaction modules—the SAM feature-guided (SAM-FG) module
and the elevation-guided sparse prompts generator (EGSPG)—to
facilitate multitask interaction and feature fusion. Extensive eval-
uations on the DFC19 and SpaceNet4 datasets demonstrate that
MVSR3D significantly outperforms the state-of-the-art multiview
multitask learning (MV-MTL) method, improving the mIoU3
metric at a 2.5-m threshold by 37.09%-45.11%.
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I. INTRODUCTION

EMANTIC 3-D reconstruction is an essential task in
S remote sensing image processing, aiming to generate 3-D
models enriched with semantic labels. This technique is widely
applied in various fields, including 3-D city modeling [1],
robot navigation [2], and autonomous driving [3]. However,
most existing methods primarily rely on monocular remote
sensing images or epipolar rectified image pairs, often result-
ing in suboptimal reconstruction results. Given that multiview
observation is a fundamental capability of satellites [4], fully
leveraging multiview image information is crucial for improv-
ing reconstruction accuracy.

Most existing multiview semantic 3-D reconstruction meth-
ods treat height estimation (HE)—defined as the absolute
elevation of objects relative to a reference surface—and
semantic segmentation (SS) as two independent tasks [1],
[5], [6]. This separation overlooks the potential benefits of
multitask learning, where SS can enhance HE accuracy, and
vice versa [7], [8]. In addition, none of these methods exploit
the potential benefits of multiview information for SS.

Although some methods employ multitask learning to
jointly handle SS and HE using monocular images [9], [10],
[11] or epipolar rectified image pairs [12], [13], [14], [15],
they typically rely on a shared encoder followed by separate
decoders for each task. While this strategy improves perfor-
mance to some extent, they still have significant limitations:
1) they do not explicitly establish interactions between differ-
ent task branches within the multitask network and 2) they fail
to fully exploit multiview information to enhance SS.

To this end, we propose MVSR3D, a novel end-to-end
framework for semantic 3-D reconstruction using multiview
satellite images. As illustrated in Fig. 1, MVSR3D consists
of two branches: a HE branch based on multiview stereo
(MVS) and a SS branch, MVSAM. A key aspect of our
approach is the bidirectional interaction between these tasks,
enabling more effective information exchange. Additionally,
we leverage the geometric constraints of multiview images to
enhance semantic information aggregation.

1558-0644 © 2025 1IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence
and similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Wuhan University. Downloaded on May 26,2025 at 07:24:52 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0009-0001-5510-7505
https://orcid.org/0000-0001-5333-8054
https://orcid.org/0000-0001-6777-6047
https://orcid.org/0000-0001-9545-2760
https://orcid.org/0009-0005-7405-1374
https://orcid.org/0000-0001-9845-4251

5621114

Semantic 3D
Reconstruction

MVS Embeddings

Fig. 1. Main idea of this article. MVSAM fuses multiview image embeddings
primarily along the epipolar line and guides the HE based on MVS, and the
HE result in turn facilitates SS.

Compared to previous studies in this field, our method offers
the following contributions.

1) We propose MVSR3D, the first end-to-end framework
for semantic 3-D reconstruction using multiview satel-
lite images, leveraging multiview fusion and multitask
learning.

2) We apply epipolar constraints for multiview semantic
information fusion and propose a novel epipolar cross
attention (ECA) module to aggregate segment anything
model (SAM)-encoded features from multiview satellite
images.

3) We enhance multitask learning through bidirectional

task interaction: the elevation-guided sparse prompts
generator (EGSPG) utilizes HEs as sparse prompts for
the MVSAM branch, while the SAM feature-guided
(SAM-FG) module integrates rich SAM features into the
HE branch.
Extensive quantitative and qualitative experiments on the
DFC19 and SpaceNet4 datasets demonstrate consistent
improvements over standalone HE and segmentation
models, as well as SOTA semantic 3-D reconstruction
methods.

4)

The remainder of this article is structured as follows:
Section II reviews related literature; Section III details the
proposed framework and its three key modules; Section IV
presents the dataset and our experimental results; and
Section V concludes the study.

II. RELATED WORK

In this section, we briefly review related previous works,
including segmentation foundation models, 3-D reconstruc-
tion, and semantic 3-D reconstruction.

A. Segmentation Foundation Model

Meta proposed SAM [16], which sparked the rapid growth
of segmentation foundation models. SAM is a versatile model
capable of both interactive and fully automatic segmentation.
Pretrained with a large amount of data, it possesses extreme
generality. In recent years, numerous foundation models have
been introduced in the segmentation domain, often exceed-
ing 100 billion parameters and demonstrating exceptional
zero-shot generalization performance [17], [18], [19].
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Due to significant differences between remote sensing
images and natural images in resolution, spectral character-
istics, and imaging mechanisms, directly applying generic
segmentation foundation models to remote sensing images
yields suboptimal results. To bridge this gap, researchers
have proposed various improvements, primarily focusing
on fine-tuning or adapting SAM [20], [21]. For example,
SAMRS fine-tuned SAM on classic remote sensing datasets
to address the issue of SAM’s segmentation results lack-
ing semantic categories [22]. Additionally, other studies
have introduced task-specific decoders to enable SAM-based
models to produce semantic masks for domain-specific appli-
cations [23], [24].

Beyond SAM-based fine-tuning approaches, SkySense [25]
has introduced a new paradigm as a segmentation foundation
model specifically tailored for remote sensing applications.
Unlike SAM, SkySense is pretrained on a multimodal remote
sensing dataset comprising 21.5 million time-series images and
incorporates billions of parameters, making it more suitable for
remote sensing tasks.

However, existing segmentation foundation models are
primarily tailored for single-view remote sensing images,
neglecting the valuable multiview information that could
enhance segmentation accuracy. Our work aims to address
this limitation by integrating multiview information into the
foundation model, thereby fully unlocking its potential in
image segmentation.

B. 3-D Reconstruction

Most deep learning-based 3-D reconstruction algorithms
built upon MVSNet [26], [27], with various extensions
such as Mono-MVS [28], R-MVSNet [29], and AACVP-
MVSNet [30], demonstrating enhanced performance in general
3-D reconstruction tasks. However, when applied to aerial
imagery, these methods face significant challenges due to
differences in image characteristics, such as resolution and
imaging mechanisms, necessitating specialized adaptations.
To address this, Liu and Ji [31] introduced RED-Net, a recur-
sive architecture for cost map regularization, which was later
extended by Yu et al. [32] into an automatic 3-D building
reconstruction method specifically designed for multiview
aerial imagery.

While these advancements have improved MVS-based
approaches for aerial imagery, applying them to satellite
images remains challenging due to the complex rational
polynomial coefficient (RPC) model, which governs satellite
imaging geometry [33]. To address this issue, researchers
have explored various strategies, including approximating the
RPC model as a perspective camera model [34]. Additionally,
Gao et al. [33], [35] proposed a rigorous RPC warping
module to extend feature warping from pinhole models to
RPC models, leading to the development of SatMVSF—a deep
learning-based MVS framework tailored for satellite images.

More recently, multitask learning has been leveraged to
enhance HE in 3-D reconstruction [36], [37], while attention-
based stereo-matching networks have achieved SOTA per-
formance in satellite image reconstruction [38]. However,
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Overall framework of MVSR3D. It consists of the MVSAM branch and the MVS branch. Among them, the ECA module aggregates multiview

image embeddings, SAM-FG enhances feature extraction for MVS, and EGSPG provides sparse prompts to prompt the encoder through estimated height.

the feature encoding backbone of existing MVS models for
satellite imagery may still be a limiting factor, leading to
suboptimal performance in certain scenarios. To address this,
we integrate the semantic features of SAM into the MVS
encoder, aiming to enhance the accuracy of 3-D reconstruction.

C. Semantic 3-D Reconstruction

The semantic 3-D reconstruction task was first introduced
in [39] to explore the complementary nature of SS and HE in
satellite imagery. Since single-view semantic 3-D reconstruc-
tion struggles to fully exploit geometric constraints, research
focus has gradually shifted toward pairwise and multiview
semantic 3-D reconstruction.

In the pairwise setting, the top two winners of the semantic
3-D reconstruction challenge [40], [41] demonstrated that SS
and HE can mutually benefit. Building upon these insights,
researchers have recently developed an end-to-end pairwise
semantic 3-D reconstruction network to improve informa-
tion fusion [13], [14]. Additionally, S2Net and S3Net have
enhanced performance by integrating a multitask learning
framework [12], [15].

While recent studies have explored multiview semantic
3-D reconstruction, they do not adopt a multitask learning
framework, leaving multiview semantic 3-D reconstruction an
underdeveloped area [42]. For instance, competition-winning
approaches achieved semantic 3-D reconstruction through
postprocessing fusion [5], [6], while Leotta et al. [1] employed
a sequential processing pipeline. Although these methods
enable semantic 3-D reconstruction, SS and HE remain

independent tasks, failing to fully exploit the benefits of
multitask learning, which leads to suboptimal performance.
Although multitask learning has proven effective in various
domains [43], [44], [45], existing methods still fall short
in fully exploiting multiview information, resulting in sub-
optimal performance. Additionally, they primarily rely on a
shared encoder, which limits the interaction between different
task branches. In contrast, our approach not only integrates
multiview information using geometric constraints but also
facilitates deep interactions between different tasks, thereby
improving semantic 3-D reconstruction performance.

III. PROPOSED METHOD

In this section, we introduce our proposed method,
MVSR3D, which adopts a dual-stream structure comprising
the MVSAM and MVS branches. The framework consists
of four components: multiview semantic encoding, semantic-
enhanced 3-D reconstruction, height-guided SS, and semantic
3-D reconstruction. To ensure effective interaction between
the two tasks, we integrate the encoded embeddings from
the MVSAM branch into the MVS branch’s encoder via
the SAM-FG module, while utilizing HE results as sparse
prompts for the MVSAM branch through EGSPG. To further
enhance multiview semantic representation, we introduce the
innovative ECA module, which primarily integrates multiview
information along the epipolar line. The proposed method
enables semantic 3-D reconstruction in an end-to-end manner,
processing multiview images as input, where one serves as
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Fig. 3. Pipeline of the ECA module, and PE represents position encodings.

the reference image while the others act as source images.
The overall framework is illustrated in Fig. 2.

A. Multi Multiview Semantic Encoding

We employ a low-rank adaptation (LoRA) [46] strategy to
fine-tune the image encoder while applying full fine-tuning to
the prompt encoder and decoder of MVSAM. At the same
time, we designed the ECA module to fully integrate the
semantic encoding of multiview images. The core idea of this
module is to leverage feature fusion and geometric constraints
via the RPC, ensuring accurate feature extraction.

The ECA module is embedded after the image encoder
of MVSAM. For clarity, we illustrate our algorithm using
a standard three-view stereo image setup, where one image
serves as the reference and the remaining two act as source
images. Our proposed ECA module is shown in Fig. 3.

We first apply the cross-view attention [47], [48] to compute
the affinity matrix Att € RAW>HW

KT
Att = softmax (Q>

1

where Q € RH¥*WXC is the query matrix, obtained by

adding positional encoding (PE) to the encoded features of
the reference image (Emd.es), while K € R*W*C represents
the key matrix, containing encoded features of the source
image (Emdgc) with PE. Here, H, W, C represents the
height, width, and number of channels of the feature map,
respectively.

Since we cropped the image relatively small, we can
approximate the oblique parallel projection of the satellite
images as a central projection [33]. Specifically, we first obtain
the geographic coordinates of the center point using RPCg.
and then sample 1000 geographic 3-D coordinate points
(Lat, Lon, Hei) around it. Next, we transform these points
into the corresponding pixel coordinates X, X through the
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RPCy.. and RPC,¢, respectively, by

Lat
Lon
Hei
Lat

Lon
Hei

Xge = RPC!

src

2

X,ef = RPC)

ref (3)

Subsequently, we estimate the fundamental matrix F using
a point correspondence-based method that minimizes alge-
braic error. This allows us to establish the epipolar geometry
between the images, facilitating accurate multiview fusion.
We also calculate the cross-attention affinity matrix Attey; as
follows:

Eref = FXsrc
Attep; = 1 — Sigmoid(Dis(Xref, Erer))

4
®)

where Dis(:, -) denotes the distance from a point to a line,
E'\s represents the epipolar line corresponding to the X, and
Sigmoid(-) denotes sigmoid function. Note that a larger value
indicates a higher correlation between the corresponding pixels
of the source and reference encoding feature maps. Then, the
affinity matrix Att' and the output of the ECA(Q, K, V) €

RAXWxC i computed as
Att' = Att O Attepi (6)
Fusion = ECA(Q, K, V) = Att'V 7
where V € RH*WxC ig the value matrices, which represents

the Emd,.,; without PE.

Finally, the fused semantic encoding features fusion are
processed through residuals, normalization, and a multilayer
perceptron (MLP) before being input as the query matrix Q’
into the next ECA

Emding = ECA(Q',K', V') ®)

where K’ represents the key matrix, which corresponds to the
encoded features of the second source image with PE, while
V'’ represents the value matrix without PE.

B. Semantic-Enhanced 3-D Reconstruction

Given the limitations of traditional MVS models for 3-D
reconstruction in remote sensing, we leverage the Sat-MVS
model [33] as the foundation of our approach. Our pipeline,
shown in the bottom part of Fig. 2, follows a coarse-to-fine
HE strategy. First, each image undergoes feature extraction
and cost volume construction with RPC warping, followed by
regularization. Finally, a height map (DSM) is inferred using
a soft argmin operation along the height direction.

During the training phase, the pyramid network generates
height maps at three different resolutions, and the loss is
defined as

ST 05(hiw — bt if b — Y| < 1

Li — L xeM
M| Z|h,-,x —hi, otherwise
xeM

9)
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Fig. 4. Pipeline of the SAM-FG module.

where M denotes the valid grid cells in the true height
map, and &; , and A} denote the predicted height value and
the corresponding ground truth value at position x in stage
i, respectively. The MVS loss is formulated as a weighted
combination of the multistage loss terms L;

N
Lyvs = Zwi x Li

i=1

(10)

where w; = {0.5, 1, 2} represents the weight assigned to each
stage.

It should be noted that the accuracy of feature extraction
directly affects the accuracy of 3-D reconstruction. To address
this, we design the SAM-FG module to embed the rich
encoded features of the MVSAM encoder into the MVS
encoder. Fig. 4 illustrates the feature enhancement process.
Specifically, feature enhancement begins with the multiscale
extraction of Emdg,n,, where Emd gy, represents the semantic
encoding features from the MVSAM. This process can be
expressed as follows:

Emdy_gm = Unet(Emdg,m) (11D

where Emdy_g,m 1s then resized to match the dimensions of
the feature pyramid network features from the MVS encoder,
Emd s [35]

Emd psam = Resize(Emdy _sam, size(Emdpys)). (12)

Subsequently, the resized SAM features are fused with the
Emd s through an elementwise addition operation

Emd cnhanced = Emdfsam + Emdpys. (13)

C. Height-Guided SS

Given the observation that the height of the building is
generally higher than that of the ground and water, we use the
height estimated by the MVS branch as the basis for creating
sparse prompts for MVSAM.

Specifically, we first calculate the average height value H,y.
of the reference image based on the MVS prediction His.
Then, we obtain the mask mypg, for regions with heights

5621114
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Fig. 5. Schematic illustrates the generated sparse prompts, with the images
presented from left to right: the predicted height map, the mask mp;gn obtained
from the Haye, the sparse prompts for the mpign region, and the sparse prompts
for the mjoy region.

greater than H,. and the mask my, for regions with heights
less than H,,., respectively, by

{ Mhigh = Hiet > Hyye

(14)
Miow = Href < Have-

We then randomly sample points (termed sparse prompts)
from the foreground and background regions of the tar-
get object within the masked areas, denoted as P =
{thiogrh, Plg‘é%k, Plor. pPak)  Fig. 5 visually demonstrates the
randomized sparse prompts generation method.

Finally, we feed these points into the prompt encoder,
Encoderpromp;, to obtain the prompt-encoded features
Emdgpage. Meanwhile, the ECA module extracts the
image-encoded features Emdin,. Both feature sets are then
fed into the decoder, with full fine-tuning applied to both the
prompt encoder and the decoder

5)
(16)

Emd gparee = Encoderprompi(P)
Cls = Decoder(Emdimg, Emdparse).

In addition, due to the pronounced seasonal variation in
foliage within the dataset and the indistinguishable height of
elevated roadways, sparse prompts are not added for these
two categories. Therefore, in the DFC19 dataset, we add
{thiogrh, Plg‘é%k} to the building category, and add {P[r, PPk

to the ground and water categories. In the SpaceNet4 dataset,
for

the building category is also added with {P,, PR}, and

the ground category by adding {P, PP} Here, we add
1200 points to the foreground and 600 points to the back-
ground, with the number of points determined based on the

image size.

D. Semantic 3-D Reconstruction

To achieve semantic 3-D reconstruction, we use multitask
learning to train the network. Specifically, we combine the loss
function of the SS branch Lyysam and the loss function of
the HE branch Lyys to train the network together

L = aLyvsam + BLyys (17)

where o and S denote the weights of the MVSAM and
MYVS branch loss functions, respectively. We set « = 20 and
B = 1 to appropriately weight the segmentation and MVS
losses. Fixed values provided stable results for our multitask
learning framework.

Finally, during 3-D point cloud generation, the postpro-
cessing procedure follows the approach described in [35].
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Specifically, the reference image point P; is projected onto
the source image P, using RPC and estimated height, and is
then back-projected back onto the reference image to generate
P;. The two views are considered geometrically consistent
if ||Ps — Pill, < ¥. To ensure geometric consistency, the
number of source views is represented by the parameter z.
In addition, for each geometrically consistent point, we use the
majority voting method to assign class labels. Specifically, the
most frequently occurring label among segmentation results is
assigned as the final class label for the corresponding point.

IV. EXPERIMENTS

We first introduce two datasets for semantic 3-D reconstruc-
tion. Next, Section IV-B details the experimental setting and
evaluation metrics. In Section IV-C, we provide a compari-
son with SOTA methods, followed by an ablation study in
Section IV-D. Finally, Section IV-E presents an analysis of
the strengths and weaknesses of our approach.

A. Data Preparation

We used two optical satellite image datasets to evaluate
our proposed method: the DFC19 dataset and the SpaceNet4
dataset. Partial samples of the two datasets are shown in Fig. 6.
In addition, geometric processing is often used to correct
inaccuracies between RPC models [49], [50]. We used the
bundle adjustment method [39] to refine the RPC parameters.

1) The DFCI19: dataset contains 26 images collected in
Jacksonville, Florida (JAX) from 2014 to 2016 and
43 1images collected in Omaha, Nebraska (OMA)
from 2014 to 2015. These images are WorldView-3’s
visible images with approximately 0.3 m ground sam-
pling distance (GSD). In addition, the dataset provides
DSM and semantic labels for each image, including
six semantic categories: ground, foliage, building, water,
elevated roadway, and others [51], [52], [53], [54].
The dataset covers diverse regions, including urban
areas, forests, water bodies, and road networks. To miti-
gate the impact of seasonal variations on label accuracy,
we selected images with different off-nadir angles from
the JAX and OMA city datasets. The corresponding
index values are (4, 15,19) for JAX and (1,33, 38)
for OMA. We then combined these images with their
height maps and semantic labels to create a standardized
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three-view semantic 3-D reconstruction dataset. Each
image in the dataset was cropped to 512 x 512 pixels.
The training dataset consists of 2976 sets of images, and
the test dataset has 368 sets of images.

The SpaceNetd: dataset consists of 27 WorldView-2
satellite images with approximately 0.5 m GSD from
different viewpoints. The images were acquired within
a 5-min timeframe and cover an extensive 665-km?
area in downtown Atlanta. The dataset also contains the
corresponding DSM and semantic classification labels
for four semantic categories: ground, foliage, building,
and others [55]. It exhibits significant diversity, not
only in its multiview characteristics but also in its
extensive coverage of urban structures, parks, forests,
roadways, and water bodies. We selected original images
with different off-nadir angles, with corresponding index
values (7,25, 32). Then, we combined them with the
corresponding height maps and semantic labels to gen-
erate a set of standardized three-view semantic 3-D
reconstruction datasets. Each image in the dataset was
cropped to 512 x 512 pixels. The training dataset
comprises 4528 images, while the validation and test
datasets each contain 528 images.

2)

B. Experimental Setting and Evaluation Metrics

1) Experimental Setting: To ensure fair comparisons among
methods, all experiments were conducted on a server equipped
with eight NVIDIA' GeForce RTX 4090 GPUs (24GB VRAM
each), running on an Ubuntu 22.04 operating system. All codes
were implemented using the PyTorch framework. The model
was trained using the RMSprop optimizer (¢ = 0.9) with a
learning rate of 0.001 and a total batch size of 2.

For the MVS branch, referring to the settings in the original
paper [33], [35], the height interval is determined based on
the image height range provided in the RPC parameters, the
number of depth hypotheses planes for the three stages is
set to {64, 32, 8}, and the down-sampling rate of the image
is set to {1/4,1/2,1}. Since the depth resolution of each
stage is different, their loss weights are set to {0.5, 1.0, 2.0},
respectively.

2) Evaluation Metrics: In this article, the following metrics
are used to assess the quality of SS, HE, and semantic 3-D
reconstruction.

a) Metrics for semantic segmentation: To evaluate the
accuracy of SS, we used mean intersection over union (mloU)
and meanF 1 — score (meanF'1).

1) mloU: the measurement of overlap between predicted
outcomes and GT

IoU TP* (18)
(0] =
TP* + FP* 4 FN*
1 & TP*
mloU = — 19
K;TPMFP’UFFN" (19)

where TP¥, FP*, TN*, and FN* denote the true positive
number, the false positive number, the true negative

Registered trademark.
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number, and the false negative number for kth class,
respectively, in the confusion matrix. K denotes the
number of categories.

2) mean FI: the harmonic mean of precision and recall

1 XK: Precision® x Recall®

mean F1 =2 x — — <
Precision” + Recall

(20)
K k=1

where Precision® and Recall® are defined as follows:
TP* TP*
TPX + FPK’ TP 4+ ENF’
21

Precision® = Recallk =

b) Metrics for HE: The mean absolute error (MAE), root
mean-square error (RMSE), and percentage of accurate grids
in total (PAG) [35] are used to evaluate the accuracy of HE.

1) MAE: the average over all pixels of the L1 distance
between the true value of the height and the predicted
height

Z(i,j)eGﬂG* |hij - h?j'

Z(iqj)ecm* I1((, j) e GNG*)
where I(A) denotes the Iverson bracket, /(A) = 1 if
A 1is true and 7(A) = 0, otherwise. G and G* denote
the valid grid cells in the height map predicted and true
height values, and A;; and h;"j denote the predicted and
true values of the heights in the pixels of the ith row
and jth column.

2) RMSE: the standard deviation of the L1 distance
between the true height value and the estimated height

£\ 2
2 0./)eGNG" (hij — h};)
> jyeang- 1(G. j) € GNG?)

3) PAG: the percentage of grid cells where the L1 distance
error is less than the threshold «

_ Z(i,j)eGﬁG* I(Vlij - hm < 0‘)
> i.peanc- (. j) € G¥)
c) Metrics for semantic 3-D reconstruction:

1) mloU3g: as a combined metric of mIOU and MAE,
denotes the measurement of overlap between semantic
prediction and SS GT with MAE less than threshold

B [39]

MAE =

(22)

RMSE =

(23)

PAG, 4)

K k

1 TP3,
mloU3g = — 25
4 K;TP3§+FP"+FN" 25)
TP3} = TP*(MAE < B). (26)

C. Comparison With SOTA Methods

In this study, MVSR3D was compared with several existing
SOTA methods, including single-view SS (SV-SS), multiview
HE (MV-HE), single-view multitask learning (SV-MTL), and
multiview multitask learning (MV-MTL). Brief descriptions of
these methods are as follows.

1) SV-SS: Includes classical CNN-based methods, such as
PSPNet [56] and DeepLab V3+ [57], as well as SOTA
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transformer-based methods, such as SAM-Frozen [16]
and SAM-LoRA [17].

2) MV-HE: Includes SOTA MVS methods, such as
A-SATMVSNet [38] and SatMVS [35].
3) SV-MTL: Includes SOTA methods like Car-

valho et al. [9], Mti-net [10] and MQTransformer [11].
4) MV-MTL: Includes baselines like Bosch et al. [39] and

Qin et al. [6], which decompose multiview images into

pairs and apply pairwise semantic stereo processing.

We report the quantitative evaluation results for the DFC19
dataset in Table I. Compared to the SOTA methods, the
MVSR3D achieves better performance in both SS and HE.
Specifically, compared to SV-SS, the MVSR3D is 0.70%
higher on mean F1 T and 1.06% higher on mloU metric.
Compared with MV-HE, the MVSR3D has a 0.076 m lower
error on RMSE metric, and 0.96% higher on PAG; s metric.
Compared to the SV-MTL model, the MVSR3D is 3.00%
higher on mean F'1 T, 4.40% higher on mloU metric, 10.39%
higher on mloU3; metric, and 8.69% higher on mloU3; 5
metric. Compared with the SOTA method of the MV-MTL
model, the MVSR3D is 41.04% higher on mean F1 T, 39.34%
higher on mloU metric, 12.673 m lower on RMSE metric,
52.16% higher on PAG, 5 metric, 44.56% higher on mloU3,
metric, and 45.11% higher on mloU3, s metric. It is worth
noting that we did not do the comparison experiment of
single-view HE and did not record the HE metrics from the
SV-MTL model, as single-view approaches can only estimate
height above ground level (AGL) rather than the true height.
In addition, for comparison purposes, we calculated the mloU3
metrics by summing the ground level height (DEM) with the
AGL. The visualization results are shown in Fig. 7.

We further conducted experiments on the SpaceNet4 dataset
for comparison. As shown in Table II, similar to the DFC19
dataset, the MVSR3D outperforms the current SOTA methods
in all metrics. In particular, compared with the SOTA MV-
MTL, the MVSR3D is 25.35% higher on mean F1 T, 30.80%
higher on mloU metric, 11.760 m lower on RMSE metric,
43.29% higher on PAG; s metric, 40.35% higher on mloU3; g
metric, and 37.09% higher on mloU3, 5 metric. Fig. § also
shows the qualitative results on the SpaceNet4 dataset, which
proves the effectiveness of the MVSR3D.

Overall, as shown in Tables I and II, our method outper-
forms all SV-SS and SV-MTL approaches. This can likely be
attributed to not only the fine-tuning of our MVSAM branch
based on SAM but also the effective integration of multiview
information from MVS data. Furthermore, our approach sur-
passes all MV-HE and MV-MTL methods, which may be due
to the deep interaction between the two task branches in an
end-to-end manner, rather than merely sharing an encoder.

In addition, we selected the top ten sets of three-view image
pairs with the highest scores based on the commonly used
principle [35]. The obtained HE results were postprocessed
with thresholds v and z set to 1 each. After fusing the ten
sets of prediction results, the semantic 3-D reconstruction
results were obtained, as shown in Fig. 9. From this figure,
it is evident that the reconstructed point cloud is assigned
semantic categories, resulting in a more detailed, categorized
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TABLE I
QUANTITATIVE RESULTS OF COMPARATIVE EXPERIMENTS ON THE DFC19 DATASET. THE BEST PERFORMANCE IS MARKED IN BOLD

Task: Semantic 3D

Methods Task: Semantic Seg. Task: Height Est. Reconstruction.
mean F1 mloU RMSE PAG, 5 mloU34, mloU3, 5
PSPNet [56] 43.17 33.19 - -- - --
SV-SS DeepLab V3+ [57] 42.95 32.63 -- -- -- --
SAM-Frozen [16] 69.18 54.80 - -- -- -
SAM-LoRA [17] 86.28 76.41 -- -- -- --
A-SATMVSNet [38] -- -- 11.370 46.65 -- --
MV-HE SaMVS [33] - - 3.884 78.77 - -
Carvalho et al. [9] 51.32 42.44 -- -- 26.56 34.07
SV-MTL Miti-net [10] 81.32 69.42 -- -- 48.45 58.39
MQTransformer [11] 83.98 73.07 -- -- 54.31 64.44
Bosch et al. [39] 45.94 38.13 16.481 27.57 20.14 28.02
MV-MTL Qin et al. [6] 40.71 31.47 16.553 27.95 14.27 21.63
MVSR3D (Ours) 86.98 77.47 3.808 79.73 64.70 73.13

il /L

¥ o e

— e B9
: S Sl Y S| :
Image SV-S8 SV-MTL MV-MTL MVSR3D(SS)  GT(SS) MV-HE MV-MTL MVSR3NHE) GT(HE)

Fig. 7. Qualitative results of HE and SS on the DFC19 dataset, where black pixels indicate no-data values.

point cloud. These results highlight the potential of MVSR3D 1) Effectiveness of Components on Semantic 3-D Recon-
for practical applications. struction: To assess the impact of each component, we report
the quantitative results for the various network variants in
Table III, along with SS performance. We can draw several

D. Ablation Study conclusions from Table III.

In this section, we conducted extensive ablation experiments 1) The ECA module and the EGSPG module do bring
on two datasets to validate the effectiveness of our proposed gains to the SS task and semantic 3-D reconstruction
modules and core ideas. Specifically, we set up ablation studies task. However, using them alone brings negative gains in
on the semantic 3-D reconstruction task, HE task, SS task, and some cases, which may be caused by the large seasonal
multiview fusion strategy, respectively. differences in the datasets. In addition, experiments
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TABLE I
QUANTITATIVE RESULTS OF COMPARATIVE EXPERIMENTS ON THE SPACENET4 DATASET. THE BEST PERFORMANCE IS MARKED IN BOLD

5621114

Task: Semantic Seg.

Task: Height Est. Task: Semantic 3D

Methods Reconstruction.
mean F1 mloU RMSE PAG, 5 mloU3;, mloU3, ¢
PSPNet [56] 82.05 70.11 -- -- -- --
SV-SS DeepLab V3+ [57] 82.18 70.27 -- -- -- --
SAM-Frozen [16] 76.33 62.49 - -- -- -
SAM-LoRA [17] 86.66 76.68 -- -- -- --
A-SATMVSNet [38] - - 5.685 57.66 -- --
MV-HE SatMVS [33] - - 4396 65.74 - -
Carvalho et al. [9] 84.32 73.35 -- -- 53.48 65.62
SV-MTL Mti-net [10] 86.78 76.97 -- -- 60.34 71.00
MQTransformer [11] 85.95 75.78 -- -- 57.18 68.95
Bosch et al. [39] 62.04 47.07 16.081 23.52 23.23 35.25
MV-MTL Qin et al. [6] 62.54 47.81 15.957 23.80 24.26 36.51
MYVSR3D (Ours) 87.89 78.61 4.197 67.09 64.61 73.60

Fig. 8.

2)

Image

SV-88 SV-MTL MV-MTL MVSR3D(SS)

woll

GT(SS)

MV-HE MV-MTL MVSR3D(HE) GT(HE)

Qualitative results of HE and SS on the SpaceNet4 dataset, where black pixels indicate no-data values.

demonstrate that using both modules together resulted in
greater gains, indicating that the two models are mutu-
ally reinforcing (comparing the fourth row with the first
row and the fifth row with the last row in each dataset).
These improvements stem from two complementary
aspects—ECA enhances multiview information inte-
gration, while EGSPG facilitates learning with sparse
prompts—as confirmed by the experimental results.

The combination of the SAM-FG module with either
the ECA or EGSPG module gives better results in most

3)

cases (comparing the third row with the seventh row
and the second row with the sixth row in each dataset).
This may be attributed to the improved accuracy of
HE, which enables the EGSPG module to provide more
precise prompts and enhances the learning of multiview
semantic features.

Our full model achieves the best performance on both
tasks (comparing the first row with the last row in each
dataset), which demonstrates the effectiveness of the
MVSR3D and its three modules. It is important to note
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TABLE III
ABLATION EXPERIMENTS FOR EACH MODULE IN THE MODEL. THE BEST PERFORMANCE IS MARKED IN BOLD
DFC19 Dataset. SpaceNet4 Dataset.
Components
(Higher Better) (Higher Better)

ECA EGSPG SAM-FG mean F1 miloU mloU3, 5 mean F1 mloU mloU3, 5
X X X 86.78 77.15 72.10 87.76 78.40 73.34
N X X 86.52 76.83 71.99 87.77 78.42 73.36
X N X 86.19 76.27 71.34 87.74 78.37 73.27
\ \ x 86.36 76.51 71.64 87.89 78.60 73.45
X X N 86.86 77.27 72.86 87.64 78.22 73.29
\ x N 86.69 77.03 72.64 87.84 78.53 73.44
x \ \ 86.64 76.99 72.09 87.79 78.44 73.43
\ \ \ 86.98 77.47 73.13 87.89 78.61 73.60

TABLE 1V
ABLATION EXPERIMENTS FOR SAM-FG. THE BEST PERFORMANCE IS MARKED IN BOLD
DFC19 Dataset. SpaceNet4 Dataset.
Methods (Lower Better) (Higher Better) (Lower Better) (Higher Better)
MAE RMSE PAG, 5 PAG, 5 MAE RMSE PAG, 5 PAG; 5
MTL 2.134 3.753 79.29 94.86 2.666 4267 66.98 91.74
MTL+SAM-FG 1.989 3.400 80.20 95.73 2.629 4.226 67.60 92.02

Foliage

Classified Ground

Fig. 9. Visualization of semantic 3-D reconstruction. The point clouds for
each study area are divided into three semantic categories (ground, foliage,
and building) for visualization.

that the first row in each dataset represents the baseline
model in our ablation study, which follows a standard
multitask pipeline but lacks our proposed two-branch
deep interaction mechanism and multiview information
fusion module.

2) Effectiveness of SAM-FG on HE: In this section, we set
up a series of experiments to validate the effectiveness of the
SAM-FG module for the HE task, with the results presented
in Table IV. We report quantitative results for two network
variants, including the multitasking network without any mod-
ules (MTL), and the MTL network with SAM-FG modules
(MTL + SAM-FG).

From Table IV, it can be seen that better HE results are
achieved by adding the SAM-FG module, which suggests
that enriched SAM semantic features can indeed facilitate the
learning of the HE branch.

3) Effectiveness of EGSPG on SS: In this section, we con-
ducted a quantitative study to evaluate the EGSPG module,
as shown in Table V. For the DFCI19 dataset, we added
sparse prompts to the ground, building, and water categories,
respectively. For the SpaceNet4 dataset, we added sparse
prompts to the ground and building categories, respectively.
We used the MTL network with the SAM-FG module as the
baseline. The experimental results show that adding EGSPG
either independently or in combination with ECA improves
the SS performance across most categories.

4) Effectiveness of ECA on Multi-Multiview Fusion: Here,
we validated the benefits of multiview image feature fusion for
both the SS and semantic 3-D reconstruction tasks, as consis-
tently emphasized throughout this article. We conducted a set
of comparative experiments, including MVSR3D without the
ECA module [MVSR3D (w/o ECA)] and the full MVSR3D
with the ECA module [MVSR3D (w/ECA)]. The experimental
results are shown in Table VI.

From Table VI, we can see that using the ECA module for
multiview feature fusion not only enhances the semantic 3-D
reconstruction task but also significantly improves SS quality.
We further visualized the impact of multiview information
fusion in Fig. 10, which is mainly reflected in the following
three aspects.

1) It effectively detects buildings with indistinct features,
especially those that are challenging to identify from
a single-view image, even for human observers (e.g.,
a rooftop parking lot). As illustrated in the first row
of Fig. 10, multiview observations correctly classify
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TABLE V
ABLATION EXPERIMENTS FOR EGSPG. THE BEST PERFORMANCE IS MARKED IN BOLD
DFC19 Dataset. SpaceNet4 Dataset.
Methods loU?t loU?t
Ground Building Water Ground Building

MTL+SAM-FG 85.47 80.36 87.88 78.70 70.23

MTL+SAM-FG+EGSPG 85.49 80.34 88.43 78.77 70.84

MTL+SAM-FG+ECA+EGSPG 85.60 80.87 88.05 78.98 71.01
TABLE VI

ABLATION EXPERIMENTS FOR MULTIVIEW FUSION. THE BEST PERFORMANCE IS MARKED IN BOLD

DFC19 Dataset. SpaceNet4 Dataset.
Methods (Higher Better) (Higher Better)
mean F1 mloU  mloU3,5 mean F1 mloU mloU3,5
MVSR3D (w/o ECA) 86.64 76.99 72.09 87.79 78.44 73.43
MVSR3D (w/ ECA) 86.98 77.47 73.13 87.89 78.61 73.60

MV-Images Sv MV

Fig. 10. Segmentation results before and after multiview fusion, highlighting
the improvement in SS achieved through multiview information fusion.
MYV and SV denote MVSR3D with and without the ECA module, respectively.

a rooftop parking lot instead of mislabeling it as a
building, while the second row demonstrates an accurate
identification of a building instead of a parking lot.

2) It significantly enhances the recognition of textureless
regions, as shown in the third row of Fig. 10.

3) It has the potential to effectively recognize hidden or
occluded objects, as shown in the fourth row of Fig. 10.
These surprising results above are mainly attributed to
the fact that the multiview observation provides addi-
tional information from different angles, and we have
successfully achieved the fusion of this information.

Additionally, we compared the experimental results of the
current SOTA SS method, SAM-LORA, with those of our
proposed MVSAM. It should be noted that MVSAM builds on
SAM-LORA by incorporating the ECA module, which inte-
grates multiview semantic information into this foundational
model. All models here were trained in a single-task manner,
without adding height branch loss. The experimental results
are shown in Table VII.

The experimental results indicate that our MVSAM, which
incorporates multiview information, outperforms SAM-LORA
across all metrics. This demonstrates the effectiveness of our
proposed model and highlights our success in embedding
multiview information into the foundational model, thereby
unlocking greater potential from MVS data.

E. Strengths and Weaknesses

In this study, we propose a novel framework MVSR3D
that combines MVS with the foundation model in an
end-to-end manner, effectively leveraging multiview infor-
mation to enhance SS and HE. A key innovation of our
approach is integrating multiview features into the seg-
mentation foundation model, unlocking the potential of
multiview satellite imagery within it. Consequently, our
method achieves superior semantic 3-D reconstruction and sur-
passes traditional SOTA methods across all evaluation metrics.
Furthermore, unlike conventional multitask learning methods,
we establish effective interactions between the MVSAM and
HE branches, forming a well-structured multitask learning
framework.

However, progress in this area remains constrained by the
limitations of existing datasets. The two datasets utilized in
this study are currently the only publicly available datasets for
this task, but they require extensive preprocessing, including
pair selection, due to their significant temporal differences.
Future advances in dataset quality are expected to further drive
improvements in this field.

In addition, the illumination of images taken on different
dates varies greatly, which poses a great challenge to this task.
Since the segmentation branch of the MVSR3D framework
is built on the foundation model, it is inherently robust to
changes in input color and illumination, as shown in the
first row of Fig. 11. However, this capability is not absolute.
As shown in the second row of Fig. 11, we observe that it
still leads to suboptimal segmentation in some extreme cases.
In the future, we can further mitigate this problem through
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TABLE VII

ABLATION EXPERIMENTS FOR MULTIVIEW FUSION (FOR THE SINGLE-TASK SS). THIS TABLE COMPARES THE PERFORMANCE OF MVSAM, WHICH
INCORPORATES EMBEDDED MULTIVIEW INFORMATION, WITH THE SOTA METHOD. THE BEST PERFORMANCE IS HIGHLIGHTED IN BOLD

DFC19 Dataset. SpaceNet4 Dataset.
Methods (Higher Better) (Higher Better)

mean F1 mloU mean F1 mloU

SAM-LORA 86.28 76.41 86.66 76.68

MVSAM (Ours) 86.79 77.17 87.82 78.50

Oct 18 May 01 Jun 15 Oct 18 May 01
o T FWgTwE T [5] P. d’Angelo et al., “3D semantic segmentation from multi-view optical
1 : i ¥ 1 satellite images,” in Proc. IEEE Int. Geosci. Remote Sens. Symp.,
ﬁo N Jul. 2019, pp. 5053-5056.

__
Segmentation Results

MV-Images

Fig. 11. Segmentation results for images affected by drastic illumination.

more advanced preprocessing techniques or by incorporating
specialized network components.

V. CONCLUSION

In this work, we propose a new technical approach based
on multiview fusion and multitask learning, introducing the
MVSR3D framework—the first end-to-end framework for
semantic 3-D reconstruction using multiview remote sensing
images. This marks a pioneering contribution in the field of
satellite remote sensing. Specifically, the network fully fuses
the multiview image features primarily along the epipolar line
by the ECA module. In addition, the SAM-FG module and
the EGSPG module facilitate effective interaction between the
MVSAM branch and the HE branch, forming a well-structured
multitask learning framework. The experimental results show
that the MVSR3D substantially leads the SOTA method of
MV-MTL. In future work, we will further explore the feasi-
bility of semantic 3-D reconstruction in an unsupervised or
self-supervised manner to get rid of the dependence on labels.
In addition, the MVSR3D framework holds great promise
for advancing 3-D modeling processes, potentially enabling
the generation of finer-grained 3-D building models, thereby
increasing its wider impact and practical applications.

REFERENCES

[1] M. J. Leotta et al., “Urban semantic 3D reconstruction from multiview
satellite imagery,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. Workshops (CVPRW), Jun. 2019, pp. 1451-1460.

V. Vineet et al., “Incremental dense semantic stereo fusion for large-
scale semantic scene reconstruction,” in Proc. IEEE Int. Conf. Robot.
Autom. (ICRA), May 2015, pp. 75-82.

D. Fernandes et al., “Point-cloud based 3D object detection and classi-
fication methods for self-driving applications: A survey and taxonomy,”
Inf. Fusion, vol. 68, pp. 161-191, Apr. 2021.

Q. Chen, W. Gan, P. Tao, P. Zhang, R. Huang, and L. Wang, “End-to-end
multiview fusion for building mapping from aerial images,” Inf. Fusion,
vol. 111, Nov. 2024, Art. no. 102498.

[2]

[3

[trt

[4]

[6] R. Qin, X. Huang, W. Liu, and C. Xiao, “Semantic 3D reconstruction
using multi-view high-resolution satellite images based on U-Net and
image-guided depth fusion,” in Proc. IEEE Int. Geosci. Remote Sens.
Symp., Jul. 2019, pp. 5057-5060.

S. Liu, E. Johns, and A. J. Davison, “End-to-end multi-task learning
with attention,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2019, pp. 1871-1880.

Y. Feng et al., “Height aware understanding of remote sensing images
based on cross-task interaction,” ISPRS J. Photogramm. Remote Sens.,
vol. 195, pp. 233-249, Jan. 2023.

M. Carvalho, B. Le Saux, P. Trouvé-Peloux, F. Champagnat, and
A. Almansa, “Multitask learning of height and semantics from aerial
images,” IEEE Geosci. Remote Sens. Lett., vol. 17, no. 8, pp. 1391-1395,
Aug. 2020.

S. Vandenhende, S. Georgoulis, and L. Van Gool, “MTI-Net: Multi-scale
task interaction networks for multi-task learning,” in Proc. Eur. Conf.
Comput. Vis., 2020, pp. 527-543.

Y. Xu, X. Li, H. Yuan, Y. Yang, and L. Zhang, “Multi-task learning with
multi-query transformer for dense prediction,” IEEE Trans. Circuits Syst.
Video Technol., vol. 34, no. 2, pp. 1228-1240, Feb. 2024.

P. Liao et al., “S2Net: A multitask learning network for semantic stereo
of satellite image pairs,” IEEE Trans. Geosci. Remote Sens., vol. 62,
pp. 1-13, 2024, Art. no. 5601313.

7Z. Rao, M. He, Z. Zhu, Y. Dai, and R. He, “SDBF-net: Semantic
and disparity bidirectional fusion network for 3D semantic detec-
tion on incidental satellite images,” in Proc. Asia—Pacific Signal
Inf. Process. Assoc. Annu. Summit Conf. (APSIPA ASC), Nov. 2019,
pp. 438-444.

Z. Rao, M. He, Z. Zhu, Y. Dai, and R. He, “Bidirectional guided
attention network for 3-D semantic detection of remote sensing images,”
IEEE Trans. Geosci. Remote Sens., vol. 59, no. 7, pp. 6138-6153,
Jul. 2021.

Q. Yang, G. Chen, X. Tan, T. Wang, J. Wang, and X. Zhang, “S3Net:
Innovating stereo matching and semantic segmentation with a single-
branch semantic stereo network in satellite epipolar imagery,” 2024,
arXiv:2401.01643.

A. M. Kirillov et al., “Segment anything,” in Proc. IEEE/CVF Int. Conf.
Comput. Vis., Oct. 2023, pp. 4015-4026.

K. Zhang and D. Liu, “Customized segment anything model for medical
image segmentation,” 2023, arXiv:2304.13785.

X. Zou et al., “Segment everything everywhere all at once,” in Proc.
Adv. Neural Inf. Process. Syst., Jan. 2023, pp. 19769-19782.

J. Oin et al., “FreeSeg: Unified, universal and open-vocabulary image
segmentation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2023, pp. 19446-19455.

L. P. Osco et al., “The segment anything model (SAM) for remote
sensing applications: From zero to one shot,” Int. J. Appl. Earth Observ.
Geoinformation, vol. 124, Nov. 2023, Art. no. 103540.

K. Chen et al., “RSPrompter: Learning to prompt for remote sensing
instance segmentation based on visual foundation model,” IEEE Trans.
Geosci. Remote Sens., vol. 62, pp. 1-17, 2024, Art. no. 4701117.

D. Wang, J. Zhang, B. Du, D. Tao, and L. Zhang, “SAMRS: Scaling-up
remote sensing segmentation dataset with segment anything model,” in
Proc. Adv. Neural Inf. Process. Syst., Jan. 2023, pp. 8815-8827.

Z. Yan et al., “RingMo-SAM: A foundation model for segment anything
in multimodal remote-sensing images,” IEEE Trans. Geosci. Remote
Sens., vol. 61, pp. 1-16, 2023, Art. no. 5625716.

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]
[17]
[18]

(19]

[20]

[21]

[22]

[23]

Authorized licensed use limited to: Wuhan University. Downloaded on May 26,2025 at 07:24:52 UTC from IEEE Xplore. Restrictions apply.



HUANG et al.: MVSR3D: AN END-TO-END FRAMEWORK FOR SEMANTIC 3-D RECONSTRUCTION

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31

—

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

S. Julka and M. Granitzer, “Knowledge distillation with segment any-
thing (SAM) model for planetary geological mapping,” in Proc. Int.
Conf. Mach. Learn., Optim., Data Sci. Cham, Switzerland: Springer,
Jan. 2023, pp. 68-77.

X. Guo et al., “SkySense: A multi-modal remote sensing foundation
model towards universal interpretation for Earth observation imagery,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2024, pp. 27662-27673.

Y. Yao, Z. Luo, S. Li, T. Fang, and L. Quan, “MVSNet: Depth inference
for unstructured multi-view stereo,” in Proc. Eur. Conf. Comput. Vis.
(ECCV), Jan. 2018, pp. 785-801.

E. K. Stathopoulou and F. Remondino, “A survey on conventional
and learning-based methods for multi-view stereo,” Photogramm. Rec.,
vol. 38, no. 183, pp. 374407, Sep. 2023.

Y. Fu, M. Zheng, P. Chen, and X. Liu, “Mono-MVS: Textureless-aware
multi-view stereo assisted by monocular prediction,” Photogramm. Rec.,
vol. 39, no. 185, pp. 183-204, Mar. 2024.

Y. Yao, Z. Luo, S. Li, T. Shen, T. Fang, and L. Quan, “Recurrent
MVSNet for high-resolution multi-view stereo depth inference,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 5520-5529.

A. Yu et al., “Attention aware cost volume pyramid based multi-view
stereo network for 3D reconstruction,” ISPRS J. Photogramm. Remote
Sens., vol. 175, pp. 448-460, May 2021.

J. Liu and S. Ji, “A novel recurrent encoder—decoder structure for large-
scale multi-view stereo reconstruction from an open aerial dataset,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2020, pp. 6049-6058.

D. Yu, S. Ji, J. Liu, and S. Wei, “Automatic 3D building reconstruction
from multi-view aerial images with deep learning,” ISPRS J. Pho-
togramm. Remote Sens., vol. 171, pp. 155-170, Jan. 2021.

J. Gao, J. Liu, and S. Ji, “Rational polynomial camera model warping
for deep learning based satellite multi-view stereo matching,” in Proc.
IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2021, pp. 6128-6137.
K. Zhang, N. Snavely, and J. Sun, “Leveraging vision reconstruction
pipelines for satellite imagery,” in Proc. IEEE/CVF Int. Conf. Comput.
Vis. Workshop (ICCVW), Oct. 2019, pp. 2139-2148.

J. Gao, J. Liu, and S. Ji, “A general deep learning based framework
for 3D reconstruction from multi-view stereo satellite images,” ISPRS
J. Photogramm. Remote Sens., vol. 195, pp. 446-461, Jan. 2023.

M. Shvets, D. Zhao, M. Niethammer, R. Sengupta, and A. C. Berg,
“Joint depth prediction and semantic segmentation with multi-view
SAM,” in Proc. IEEE/CVF Winter Conf. Appl. Comput. Vis. (WACV),
Jan. 2024, pp. 1317-1327.

X. Huang, S. Zhang, J. Li, and L. Wang, “A multitask network
for multiview stereo reconstruction: When semantic consistency-based
clustering meets depth estimation optimization,” IEEE Trans. Geosci.
Remote Sens., vol. 62, pp. 1-16, 2024, Art. no. 5612816.

L. Lin, Y. Zhang, Z. Wang, L. Zhang, X. Liu, and Q. Wang, “A-
SATMVSNet: An attention-aware multi-view stereo matching network
based on satellite imagery,” Frontiers Earth Sci., vol. 11, Apr. 2023,
Art. no. 1108403.

M. Bosch, K. Foster, G. Christie, S. Wang, G. D. Hager, and M. Brown,
“Semantic stereo for incidental satellite images,” in Proc. IEEE Winter
Conf. Appl. Comput. Vis. (WACV), Jan. 2019, pp. 1524-1532.

H. Chen et al., “Multi-level fusion of the multi-receptive fields con-
textual networks and disparity network for pairwise semantic stereo,”
in Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), Jul. 2019,
pp. 4967-4970.

R. Qin, X. Huang, W. Liu, and C. Xiao, “Pairwise stereo image disparity
and semantics estimation with the combination of U-Net and pyramid
stereo matching network,” in Proc. IEEE Int. Geosci. Remote Sens.
Symp. (IGARSS), Jul. 2019, pp. 4971-4974.

S. Kunwar et al., “Large-scale semantic 3-D reconstruction: Outcome of
the 2019 IEEE GRSS data fusion contest—Part a,” IEEE J. Sel. Topics
Appl. Earth Observ. Remote Sens., vol. 14, pp. 922-935, 2021.

Q. Wu, Y. Wan, Z. Zheng, Y. Zhang, G. Wang, and Z. Zhao, “CAMP: A
cross-view geo-localization method using contrastive attributes mining
and position-aware partitioning,” IEEE Trans. Geosci. Remote Sens., vol.
62, pp. 1-14, 2024, Art. no. 5637614.

P. Xia, Y. Wan, Z. Zheng, Y. Zhang, and J. Deng, “Enhancing cross-view
geo-localization with domain alignment and scene consistency,” IEEE
Trans. Circuits Syst. Video Technol., vol. 34, no. 12, pp. 13271-13281,
Dec. 2024.

[45]

[40]

[47]

[48]

[49]

[50]

[51]

[52]

(53]

(54

[55]

[56]

(571

5621114

L. He, J. Lu, G. Wang, S. Song, and J. Zhou, “SOSD-net: Joint semantic
object segmentation and depth estimation from monocular images,”
Neurocomputing, vol. 440, pp. 251-263, Jun. 2021.

E. J. Hu et al., “LoRA: Low-rank adaptation of large language models,”
2021, arXiv:2106.09685.

B. Zhou and P. Krihenbiihl, “Cross-view transformers for real-time map-
view semantic segmentation,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2022, pp. 13750-13759.

H.-Y. Tseng, Q. Li, C. Kim, S. Alsisan, J.-B. Huang, and J. Kopf,
“Consistent view synthesis with pose-guided diffusion models,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2023,
pp. 16773-16783.

Q. Fu et al., “GPU-accelerated PCG method for the block adjustment
of large-scale high-resolution optical satellite imagery without GCPs,”
Photogramm. Eng. Remote Sens., vol. 89, no. 4, pp. 211-220, Apr. 2023.
Y. Zhang, N. Yang, and Q. Luo, “A matching optimization algorithm
about low-altitude remote sensing images based on geometrical con-
straint and convolutional neural network,” Photogramm. Eng. Remote
Sens., vol. 88, no. 8, pp. 527-533, Aug. 2022.

G. Christie, R. R. R. M. Abujder, K. Foster, S. Hagstrom, G. D. Hager,
and M. Z. Brown, “Learning geocentric object pose in oblique monoc-
ular images,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2020, pp. 14500-14508.

G. Christie, K. Foster, S. Hagstrom, G. D. Hager, and M. Z. Brown, “Sin-
gle view geocentric pose in the wild,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. Workshops (CVPRW), Jun. 2021, pp. 1162-1171.
B. Le Saux, N. Yokoya, R. Hinsch, and M. Brown, “2019 IEEE GRSS
data fusion contest: Large-scale semantic 3D reconstruction,” [EEE
Geosci. Remote Sens. Mag., vol. 7, no. 4, pp. 33-36, Jan. 2019.

W. Li, L. Meng, J. Wang, C. He, G.-S. Xia, and D. Lin, “3D build-
ing reconstruction from monocular remote sensing images,” in Proc.
IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2021, pp. 12528-12537.
H. Hao et al., “Improving building segmentation for off-nadir satellite
imagery,” 2021, arXiv:2109.03961.

H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing
network,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jul. 2017, pp. 6230-6239.

L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam,
“Encoder—decoder with atrous separable convolution for semantic image
segmentation,” in Proc. Eur. Conf. Comput. Vis. (ECCV), Jan. 2018,
pp. 833-851.

Xuejun Huang received the B.S. degree from
Harbin Engineering University, Harbin, China,
in 2022, where he is currently pursuing the Ph.D.
degree with the School of Remote Sensing and
Information Engineering.

His research interests include deep learning,
computer vision, semantic segmentation, and 3-D
reconstruction.

Xinyi Liu received the B.S. and Ph.D. degrees
from the School of Remote Sensing and Information
Engineering, Wuhan University, Wuhan, China, in
2014 and 2020, respectively.

She is currently a Post-Doctoral Researcher with
Wuhan University. Her research interests include
3-D reconstruction, LIDAR and image integration,
and texture mapping.

Authorized licensed use limited to: Wuhan University. Downloaded on May 26,2025 at 07:24:52 UTC from IEEE Xplore. Restrictions apply.



5621114

Yi Wan (Member, IEEE) was born in 1991.
He received the B.S. and Ph.D. degrees from
‘Wuhan University, Wuhan, China, in 2013 and 2018,
respectively.

He is currently an Associate Research Fellow with
Wuhan University. His research interests include
digital photogrammetry, computer vision, 3-D recon-
struction, and change detection in remote sensing
imagery.

Zhi Zheng received the B.S. degree in remote
sensing and the Ph.D. degree in photogrammetry
and remote sensing from Wuhan University, Wuhan,
China, in 2017 and 2023, respectively.

He is currently a Post-Doctoral Fellow at the
Department of Geography and Resource Manage-
ment, The Chinese University of Hong Kong,
Hong Kong, China. He has published more than
ten research articles. His research interests include
satellite remote sensing, stereo matching, change
detection, and geohazard monitoring using deep

learning technology.

Dr. Zheng was awarded the Research Fellowship Scheme by the Chinese
University of Hong Kong, in January 2024. In recent years, he has frequently
served as a referee for several international journals.

Bin Zhang received the B.S. degree in remote sens-
ing science and technology from Liaoning Technical
University, Fuxin, China, in 2017, and the M.S.
and Ph.D. degrees in photogrammetry and remote
sensing from Wuhan University, Wuhan, China, in
2019 and 2023, respectively.

His research interests include high spatial reso-
lution remote sensing image processing, computer
vision, and pattern recognition.

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 63, 2025

&
R

Yameng Wang received the B.S. degree in remote
sensing science and technology from Wuhan Univer-
sity, Wuhan, China, in 2018, where she is currently
pursuing the Ph.D. degree in photogrammetry and
remote sensing.

Her research interests include multimodal remote
sensing data processing and deep learning.

Haoyu Guo was born in 1992.
His research interests are in satellite imagery pho-
togrammetry and remote sensing.

Yongjun Zhang (Member, IEEE) received the B.S.
degree in geodesy, the M.S. degree in geodesy
and surveying engineering, and the Ph.D. degree
in geodesy and photogrammetry from Wuhan Uni-
versity, Wuhan, China, in 1997, 2000, and 2002,
respectively.

He is currently a Professor and the Dean of
the School of Remote Sensing and Information
Engineering, Wuhan University. He has published
more than 180 research articles and three books.
His research interests include aerospace and low-

attitude photogrammetry, image matching, combined block adjustment with
multisource datasets, object information extraction and modeling with artificial
intelligence, integration of LiDAR point clouds and images, and 3-D city

model reconstruction.

Dr. Zhang is the Co-Editor-in-Chief of The Photogrammetric Record.

Authorized licensed use limited to: Wuhan University. Downloaded on May 26,2025 at 07:24:52 UTC from IEEE Xplore. Restrictions apply.



