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Abstract— Nonrigid deformation (NRD) and image noise in
multimodal remote sensing images (MRSI) lead to abrupt
changes in feature directions, resulting in sensitivity to rotational
variation, sparse correct matches, and high false match rates.
In order to address these challenges, this article proposes a
second-order tensor orientation feature transformation (SOFT)
method to improve the rotational invariance of MRSI matching
and increase the number of correct matches (NCMs). The SOFT
method has two main contributions: 1) a novel second-order
tensor orientation descriptor is constructed by generating
a tensor orientation feature map using a designed second-order
tensor function, which is then combined with a gradient location
and orientation histogram (GLOH)-like descriptor framework to
achieve robust rotational invariance in multimodal image match-
ing and 2) an error-removal global-local iterative optimization
(EGIO) is introduced, employing a skewness of mixed pixel
intensity (SMPI) function to automatically select matching seed
points, followed by an iterative partition optimization strategy
for refining corresponding points. Experiments on 744 groups
of typical MRSIs demonstrate that the SOFT method signifi-
cantly outperforms nine state-of-the-art methods, achieving an
average 97% improvement in the NCMs, an average 25.51%
improvement in the rate of correct matches (RCMs), and an
average reduction in RMSE of 2.69 pixels. The proposed SOFT
method, thus, offers robust MRSI matching with strong rotational
invariance and precise identification of corresponding points,
proving its effectiveness for complex remote sensing scenarios.
Access to experiment-related data and codes will be provided at
https://skyearth.org/research/.

Index Terms— Bidirectional matching, gradient location and
orientation histogram (GLOH)-like, multimodal remote sensing
image (MRSI), rotation invariant, second-order tensor orienta-
tion feature, skewness of mixed pixel intensity (SMPI).
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I. INTRODUCTION

MULTIMODAL remote sensing image (MRSI) match-
ing is the process of identifying and aligning two or

more images with overlapping regions acquired by different
sensors [1]. With the rapid development of sensor technology
and artificial intelligence science, the data sources of MRSIs
are becoming more and more abundant [2]. MRSIs are widely
used in many fields, such as change detection, 3-D recon-
struction, simultaneous localization and mapping (SLAM)
positioning, and carbon neutrality; however, the prerequisite
for the application of MRSI is that they need to be matched
and aligned.

A large number of experts and scholars have carried
out multimodal research on region-based methods, feature-
based methods [3], and deep learning-based methods [4]
and achieved certain results; however, on whether it is
based on traditional multimodal matching or deep learning-
based matching, there are still challenges in achieving robust
rotation-invariant matching of MRSIs. There are mainly two
problems: 1) due to the contrast difference, intensity differ-
ence, and Nonrigid deformation (NRD) between the MRSI, the
extreme value of the orientation feature of the MRSI changes
suddenly, resulting in the rotation relationship between the
images and 2) the high error rate of MRSI matching makes it
difficult to identify the correct corresponding points.

We, therefore, propose a second-order tensor orienta-
tion feature transformation (SOFT) MRSI matching method
(see Fig. 1). In order to further enhance feature extrac-
tion robustness, the proposed SOFT method integrates a
GLOH-like descriptor framework. The gradient location
and orientation histogram (GLOH) descriptor, an extension
of the well-known scale-invariant feature transform (SIFT)
descriptor, provides enhanced robustness by offering a more
comprehensive representation of image features. By using
log-polar spatial bins, GLOH achieves finer feature discrimina-
tion and improved rotation invariance, making it particularly
suitable for the complex and variable conditions present in
MRSI matching. This integration allows the SOFT method
to maintain consistent identification of corresponding points
even in the presence of nonlinear distortions and varying
sensor modalities, effectively addressing some of the inherent
challenges in multimodal image matching.

Subsequently, the SOFT method uses a second-order ten-
sor orientation feature to accurately compute the feature
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Fig. 1. Matching results of our proposed SOFT method.

descriptor, which is further refined by the error-removal
global-local iterative optimization (EGIO) method. This EGIO
method is specifically designed to remove outliers and enhance
the accuracy of corresponding point identification, thereby
ensuring robust matching with strong rotation invariance in
MRSI. Within the EGIO method, we introduce the skewness
of the mixed pixel intensity (SMPI) feature, inspired by
skewness metrics used in the probability distribution analysis
of real-valued random variables. Skewness [5] is a statistical
measure that quantifies the asymmetry of a distribution around
its mean, ideally suited for identifying key features from the
complex mixed pixels in remote sensing imagery.

The proposed SOFT method has two main contributions.
1) A novel SOFT method is proposed. The method gen-

erates a tensor orientation feature map through the
designed second-order tensor orientation function, and
the orientation feature map combines a GLOH-like
descriptor framework to calculate the descriptor vec-
tor, which significantly improves the rotation of the
descriptor.

2) An EGIO is proposed. This method uses the designed
SMPI to adaptively extract the seed points and then
combines the seed points to achieve fine filtering of the
corresponding points through the EGIO method, which
significantly improves the accuracy of the recognition
rate of the corresponding point.

This article is structured as follows. Section I describes
the purpose of the study, the limitations of previous studies,
and the significance of this paper. Section II reviews the
related methods and their challenges. Section III details the
processing of the proposed SOFT method. Section IV provides
a comprehensive experimental analysis, including the effects
of different parameter settings on SOFT performance. Finally,
Section V summarizes the contributions of this study and
suggests future directions.

II. RELATED WORK

Image matching is divided into traditional methods and
deep learning methods [6], [7]. Traditional methods can be
further divided into region-based matching and feature-based
matching.

A. Region-Based Methods

Region-based matching methods (also known as intensity-
based methods) are more commonly used to measure similarity
based on strength and mutual information (MI) methods or
similarity measures in the transform domain [8]. In the MRSI

iterative process, various criteria are designed according to the
intensity difference between two images [9]. The commonly
used similarity measures include a sum of squared differences
(SSDs), a sum of absolute differences, cross correlation,
and normalized cross correlation (NCC). SSD and NCC are
sensitive to NRDs and are not suitable for MRSI matching.
In contrast, MI is more robust to complex NRDs and has been
successfully applied to multisource image alignment; however,
MI is usually computationally intensive [10], and MI is more
sensitive to noise and has poor positional accuracy [11].

In order to ensure the matching accuracy while resist-
ing the problems of nonlinear grayscale differences, NRD,
and geometric difference, some experts and scholars have
proposed transfer optimization to maximize MI [12] and a
combination of oriented gradient distance histogram and gray
wolf optimizer [13], to thus improve accuracy and avoid
matching results falling into local optimum solutions. Mean-
while, matching based on efficiency divergence as a similarity
measure [14], matching based on the histogram of orienta-
tion phase consistency (PC) [15], based on channel features
of orientated gradients [16], and controlled structure feature
matching [17] combining steerable filters of first- and second-
order channels, which are better at overcoming problems such
as NRD and contrast differences between MRSIs, can achieve
robust matching in MRSIs with displacement differences only,
but do not have geometric invariance and perform poorly,
especially against scale and rotation invariance. The main
reason is that they rely on MRSI’s own geospatial landmarks
(e.g., rational polynomial coefficient parameters for satellite
images and position and orientation system data for unmanned
aerial vehicle (UAV) images); however, they do not work for
some satellite images, UAV images, or ground images without
spatial reference information. Feature-based methods that do
not rely on spatial reference information are, therefore, of wide
research value.

B. Feature-Based Methods

Feature-based methods, starting with the SIFT matching
proposed by Lowe [18] have seen rapid development of many
SIFT-like methods [19]. These methods have been explored
from various perspectives, such as scale robustness, rotational
invariance, binary description optimization, descriptor opti-
mization, and multifeature extraction. The inability of gradient
features to accommodate modal differences in multimodal
images, however, makes such methods inappropriate for mul-
timodal image matching. Chen et al. [20] proposed the partial
intensity invariant feature descriptor (PIIFD) algorithm, which
achieves rotational invariance by computing the grayscale
features of the image and works for small NRDs and contrast
differences between images. Ma et al. [21] proposed the
position scale orientation-SIFT (PSO-SIFT) algorithm, which
works well for both nonlinear brightness differences and
rotation variations by building new image gradient features,
whereas contrast differences and signal-to-noise differences
are more sensitive. Sedaghat and Mohammadi [22] proposed
the histogram of the oriented self-similarity algorithm HOSS,
which can guarantee rotation invariance better, and it performs
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well in large contrast and nonlinear radiometric aberrations
in multimodal images. In contrast, the oriented self-similarity
(OSS) method proposed by Xiong et al. [23] has overcome the
differences in MRSI, but there is a loss of rotational invariance
to the images. This author’s improved ASS [24] algorithm
on OSS is much better adapted to rotational invariance but
still not well adapted to MRSI with large NRD. Other experts
and scholars have addressed MRSI matching from a phase-
coherence model. For example, Li et al. [25] proposed the
radiation invariant transformation feature matching (RIFT)
method, which includes a maximum index map that can
overcome the NRD discrepancy of MRSI better; however,
it requires a strategy of ring feature calculation to overcome
the rotation discrepancy, which is less technically efficient.
Li et al. [26], therefore, proposed a new rotation strategy to
optimize the efficiency. Yao et al. [27] proposed a histogram
of the absolute phase orientation matching method, in which
an absolute phase orientation feature is designed to adapt to
differences between MRSIs and resist scale, displacement,
and rotation differences between images, but the limitation
of this method is that it can only be applied to matching
tasks with small rotation differences. Yang et al. [28] pro-
posed a robust matching algorithm that designs a local phase
sharpness orientation feature to accommodate MRSI matching
and improve the applicability of MRSI rotation differences.
Yao et al. [29] proposed a multiorientation feature-based
diffusion tensor descriptor (MoTIF), which can be better
used in MRSI matching with large noise differences, but
this method has limited support for rotation transformations.
Recently, the cooccurrence filter space matching (CoFSM)
method [1], Max-index-based local self-similarity descriptor
method, rotation-invariant self-similarity descriptor matching
method [30], adjacent self-similarity matching method, multi-
scale adaptive binning phase congruency feature, and matching
algorithm [31], [32] have been proposed to reduce MRSI dif-
ferences by improving the image scale space for matching. The
matching algorithm [33] is for enhancing multimodal image
similarity by establishing local normalized filtering. In addi-
tion, a recent study [34] improved the matching accuracy by
reducing nonlinear geometric and radial distortions through
detailed texture removal and radiation invariant similarity
functions. The AMES method [35] optimized the filtering
parameters through adaptive prediction, enhanced cross-modal
feature extraction, and used a coarse-to-fine strategy for match-
ing, which provided a higher success rate (SR) and matching
accuracy. All of these methods have improved the MRSI
matching problem, and all have good rotational invariance,
but these methods suffer from high computational complexity
and low computational efficiency and do not support scale
differences to different degrees.

C. Deep-Based Methods

With the rapid development of deep learning techniques,
these methods have been widely applied to MRSI matching.
Early methods, such as convolutional neural network (CNN)-
based feature matching [36] and Superglue matching with
graph neural networks (GNNs) [37], were used to improve

image matching accuracy. These methods, however, still have
limitations in matching efficiency and handling grayscale
differences and modality variations. Deep learning-based
MRSI matching methods have been extensively studied to
address these issues. In the domain of CNNs, the D2-Net
network [38] has been used for multisource image feature
extraction and description, significantly improving matching
performance. Additionally, XFeat [39] proposed extracting
more robust keypoints using efficient CNNs, further opti-
mizing feature learning and matching accuracy. In terms
of Transformer architectures, a Transformer-based MRSI
patch matching method [40] successfully applies a Trans-
former encoder architecture to improve MRSI patch matching
accuracy. LoFTR [41], based on the Transformer frame-
work, uses cross-self-attention and cross-attention mechanisms
for feature extraction and similarity learning, significantly
improving matching performance on weak-textured images.
SE2-LoFTR [42] adds rotational invariance to LoFTR, further
improving matching accuracy. Matchformer [43] proposed a
framework for simultaneous feature extraction and similarity
learning, optimizing the matching process. In the field of
GNNs, CoAM [44] uses common attention modules and
saliency scores to improve matching accuracy. LightGlue [45]
builds on Superglue, enhancing matching speed through the
use of self-attention and cross-attention mechanisms in GNNs.
Efficient image matching methods based on GNNs [46]
have improved matching efficiency, particularly in large-
scale datasets. In dense matching methods, DKM [47] and
RoMa [48] are two representative dense matching methods.
While they are capable of matching a large number of
keypoints, they require longer matching times and perform
less effectively when applied to MRSI compared to sparse
methods. Overall, these deep learning methods demonstrate
strong feature learning capabilities and have shown great
potential in MRSI matching. Large differences in ground
features between multimodal images, along with the difficulty
in obtaining training samples, however, limit the generalization
ability and applicability of these methods.

III. METHOD

The proposed SOFT method is shown in Fig. 2, and the
MRSI is preprocessed. Then, the maximum moment map is
generated with the help of the PC model, and the Block-Harris
detector [49] is used to complete the feature point extraction.
The construction of the descriptor is the key part of this
article, which can be subdivided into two steps: 1) a novel
second-order tensor orientation function is designed to gener-
ate a tensor orientation feature map, which is used to describe
the main direction information of the feature points and
2) the orientation feature map is combined with the improved
GLOH-like descriptor framework to calculate the descriptor
vector so that the descriptor has good rotation invariance.
Next, the initial matching is done through a two-way matching
strategy.

Then, EGIO was proposed. This method includes four steps:
1) automatically completing the global seed point calculation
by designing the SMPI function; 2) partitioning and screening
the candidate points for the seed points in 1); 3) iterating the

Authorized licensed use limited to: Wuhan University. Downloaded on May 27,2025 at 02:33:23 UTC from IEEE Xplore.  Restrictions apply. 



4701314 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 63, 2025

Fig. 2. Technical roadmap of the proposed method.

candidate points Optimization; and 4) global conversion model
calculation.

A. Feature Point Extraction

First, a simple preprocessing is performed on the MRSI,
which requires feature point detection. Considering the non-
linear distortion of MRSIs, differences in contrast, and
differences in texture details, etc., it further increases the
difficulty of identifying feature points. The PC model has
a good ability to extract image structure features and edge
features, and the maximum moment in the PC model can
be convenient for extracting edge and corner features of the
image. In this article, therefore, Block-Harris feature point
extraction is performed on the maximum moment map, and
nonmaximum value suppression is performed to retain signif-
icant feature points.

B. Second-Order Tensor Orientation Descriptor

The construction of a second-order tensor orientation
descriptor is the key to achieve rotation-invariant multimodal
feature matching. First, Gaussian image pyramid scale shadow
diffusion is performed on the preprocessed image to obtain
multiscale features. Then, the second-order tensor orientation
feature of the image is constructed. Finally, a 204-D descrip-
tor vector is obtained by using the directional feature map
combined with the GLOH-like feature calculation framework,
and the rotation invariant feature matching of MRSIs can be
realized through this descriptor (see Fig. 2).

1) Second-Order Tensor Orientation Feature: The key to
the second-order tensor orientation descriptor method is to
build a second-order tensor orientation map, which calculates
the main direction and statistical descriptor vector of the
feature points through the feature map. The image gradients
cannot be directly relied on in image registration owing to
their high sensitivity to image distortions. In this section, the
second-order gradient was first calculated, followed by com-
puting the second-order gradient amplitude in the horizontal
and vertical directions by using the improved Sobel template.
Their equations are given in the following equation:

∇Sx =

 −1 0 1
−

√
5 0

√
5

−1 0 1

, ∇Sy =

−1 −
√

5 −1
0 0 0
1

√
5 1

.

(1)

The first-order and second-order gradients of the image
are computed by the two templates of (1), its mathematical
expression is (1) and as follows:

G(x, y)1
σ =

√
(L(x, y) · σ · ∇Sx )

2
+

(
L(xy) · σ · ∇Sy

)2 (2){
G(x, y)2

x = (G(x, y)1
σ · σ · ∇Sx )

2

G(x, y)2
y = (G(x, y)1

σ · σ · ∇Sy)
2 (3)

where G(x, y)1
σ denotes the first-order gradient; G(x, y)2

σ

denotes the second-order gradient; L(x, y) represents the
grayscale of the image and is the standard deviation of
Gaussian distribution. ∇Sx and ∇Sy denote the Sobel template
in the horizontal and vertical directions, respectively. The more
detailed calculation is presented in the following equation:

Wσ =
1(√

2πσ
)2 e−

x2
+y2

2σ2 . (4)

The tensor provides the edge information in terms of its
shape and direction. Despite its shape changes with con-
trast and illumination, the edge direction always remains
unaltered. Consequently, the tensor model is frequently used
in extracting the structural features of the image [50]. The
definitive second-order tensor feature expression is given as
follows:[

T xx T xy

T yx T yy

]
=

[
Gσ ∗ P(x, y)xx ∗ Wσ Gσ ∗ P(x, y)xy ∗ Wσ

Gσ ∗ P(x, y)yx ∗ Wσ Gσ ∗ P(x, y)yy ∗ Wσ

]
(5)

where P(x, y)xx and P(x, y)yy represent the sum of squares of
second-order gradients in the x- and y-directions, respectively.
P(x, y)xy denotes trace of the second-order gradient and
∗ denote the dot product operation P(x, y)yx = P(x, y)xy ,
where Gσ is the Gaussian kernel function.

Finally, the complete second-order gradient tensor feature
is calculated according to (5), as shown in the following
equation:

GSTOD =
1
2

·
[
arctan

(
Txy + Tyx , Txx − Tyy

)
+ π

]
(6)

where, GSTOD represents the final second-order tensor orien-
tation feature map.

In order to further show the advantages of second-order
tensor orientation descriptor, we use a set of synthetic aperture
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Fig. 3. Orientation maps of several methods. (a) Original image. (b) Orientation map of PSO-SIFT. (c) Orientation map of PIIFD. (d) Orientation map
of RIFT. (e) Orientation map of MS-HMLO. (f) Orientation map of our SOFT.

radar (SAR) images and different methods to calculate its
orientation feature map, as shown in Fig. 3. Fig. 3(b) is
based on the second-order gradient of the image orientation
feature map; Fig. 3(c) is the orientation feature map based on
image grayscale; Fig. 3(d) is the maximum index orientation
map based on image PC model; Fig. 3(e) is the orientation
map based on the image average squared gradient; Fig. 3(f)
is the second-order tensor orientation map proposed in this
article.

Fig. 3 shows that the orientation map of the PSO-SIFT
method contains too much detailed information and is sus-
ceptible to interference from noise. The characteristics of
the orientation maps of the PIIFD and MS-HMLO methods
are too coarse, and the detail information is filtered, which
easily leads to inaccurate direction calculation; the orientation
features of the RIFT method are indexed features calculated
by multidimensional features, which have a limited degree of
correct description of the main direction of the feature points.
The orientation results of the proposed SOFT method, on the
other hand, could better demonstrate the directional changes of
the features, overcome the directional inversion, and provide
a rotation invariant description.

2) Statistics of GLOH-Like Descriptor: After the SOFT
calculation is completed, the feature vector of the descriptor
needs to be calculated. Among them, one of the classical
frameworks is the GLOH descriptor framework, and it has
been successfully used in MRSI matching [51]. The divi-
sion of the circular area has a great impact on accurate
matching. Referring to the existing research and the GLOH-
like descriptor [31], we propose an improved GLOH-like
descriptor to count the feature vector of the image, as shown
in Fig. 4. In order to further enhance the stability of the

Fig. 4. GLOH-like descriptor template flowchart. (a) 17 subregions.
(b) 12-D orientation. (c) 204-D feature vector.

GLOH description, the subregion is divided into more detailed
regions.

Suppose S0 denotes the central circular region; Si
j (i =

1, 2, j = 1, . . . , NS) denotes the sector subregion j th in the
outer ring region i th, NS denotes the number of subregions in
each outer ring region, θ0 denotes the principal direction of
the feature points, and R1, R2, and R3 denote the radii of the
central and outer regions, respectively. In order to ensure the
stability of the descriptor, the area of each subregion needs to
be set consistently; thus, the relationship between R1, R2, and
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R3 can be defined by the following equation:

NS · π R2
1 = π

(
R2

2 − R2
1

)
= π

(
R2

3 − R2
2

)
. (7)

On the second-order gradient of the image orientation
feature map, the descriptor vector is calculated through the
GLOH-like framework, where the direction values within
(−π /2, π /2) are quantized by No, as shown in Fig. 4(b), where
ϕk(k = 1, 2, . . . , No) are quantized angles. A histogram of No
in each region is computed.

For each key point, the second-order tensor orientation
map value at its location is the main direction (reference
direction θ0). Then, all second-order tensor orientation map
values in the GLOH-like local area are also based on θ0 (0◦),
that is, all angle values minus θ0, and the excess angle values
(−π /2, π /2) are flipped to their opposite angles. It is, however,
unavoidable that in MRSIs, the image rotation and NRD may
cause the main direction jump or direction mutation of some
feature points near −π /2 and π /2. In response to this problem,
PIIFD, Chen et al. [20] proposed corresponding improvement
strategies. We use a similar strategy to deal with GLOH-like
descriptors within the GLOH-like feature neighborhood. The
features of the upper and lower parts are generated by
adding and subtracting the main direction axis so as not to
change the statistical order of the subregions, and the last one
204[(2 × NS + 1) × o]-dimensional feature vectors are
generated.

C. Bidirectional Matching

After the feature descriptors being constructed, the initial
matching of MRSI needs to be performed. In this article,
Euclidean distance is used as the similarity measure for nearest
neighbor matching. Images at each layer scale are matched.
The matching results are then merged step by step. In order to
ensure that image matching has a one-to-one correspondence,
a bidirectional matching strategy is implemented. Finally, the
feature point pairs after each layer of bidirectional matching
are merged as the initial matching result.

D. Error-Removal Global Local Iterative Optimization

After the initial matching is completed, the matching points
that still contain some errors need to be eliminated. The higher
the rate of outliers, the more difficult it is to obtain inliers [52].
The commonly used RANSAC method [53] requires feature
points to contain fewer outliers will work. Based on this, it is
necessary to design an algorithm suitable for a high rate of
outliers to extract the correct corresponding points. The fast
sample consensus (FSCs) algorithm proposed by Wu et al. [54]
could extract the correct corresponding points, but it is a must
to artificially set a fixed initial threshold for the algorithm,
and the algorithm cannot converge when there are few interior
points, which limits the flexibility of the algorithm.

In order to solve the above problems, an EGIO method is
proposed, which includes four steps: 1) designing the SMPI
function and performing FSC calculation according to the
function to obtain global seed points; 2) dividing image sub-
regions to screen candidate points; 3) iterative optimization of
candidate points; 4) global transformation model calculation,

Fig. 5. Schematic of iterative optimization of partitioning. (a) Subregion
of image. (b) Global seed point filtering. (c) Iterative optimization of the
corresponding points in the subregion.

Fig. 6. Implementation details and Pseudocode for EGIO.

as shown in Fig. 5. Implementation Details and Pseudocode
for EGIO is shown in Fig. 6.

Step 1 (Constructing SMPI Function and Extracting Seed
Points): Inspired by the asymmetry measurement algorithm
for the probability distribution of real-valued random
variables [55], we try to use the information between MRSIs
to automatically complete the algorithm’s outlier filtering.
Therefore, an SMPI function is designed. The function is
applied to statistically match the distribution of the SMPI
between the matching pairs. The mathematical expression of
the SMPI function is shown in the following equation:

ρ1 =

√√√√ 1
M1 · N1

M1∑
i=1

N1∑
j=1

(P1(i, j) − µ1)

ρ2 =

√√√√ 1
M2 · N2

M2∑
i=1

N2∑
j=1

(P2(i, j) − µ2)

SMPI =

(√
|ME1 − µ1| +

√
|ME2 − µ2|

+
√

|ρ1 − µ1| +
√

|ρ2 − µ2|

)
· 18.

(8)

In (8), SMPI represents the SMPI of MRSI; P1 and P2
represent the averaged intensity of the pixels of the left and
right images, respectively; ρ1 and ρ2 represent the standard
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deviation of the left and right images, respectively; ME1 and
ME2 represent the left image, respectively, and the median
of the right image; |·| represents the absolute value symbol;
18 represents the weight coefficient (set to 1/4 in this article).

The SMPI is used as the initial threshold of FSC for initial
outlier filtering, and the seed points of the left and right images
are obtained. The initial matching points for the left and right
images are noted as: Pmatch1, and Pmatch2.

Step 2 (Dividing Image Subregions to Filter Candidate
Points): First, the global subregion is evenly divided into
four subregions (k), where k ∈ [1, 2, 3, 4]. Then, the number
of seed points falling into each subarea is counted. When
the number of points is greater than 4, calculate the local
perspective transformation model (H) of each subarea; when
the number of points is less than 4, the subarea is judged to
be empty and returns 0.

Then, the H matrix of each subregion is used to calculate
the residual of the left image matching point and the corre-
sponding right image matching point falling in each subregion,
and its mathematical expression is shown in the following
equation: {

1εk
=

∥∥Pk
match1 ∗ Hk

− Pk
match2

∥∥
1ε′k

= fsort↑
(
1εk) (9)

where in (9), 1εk represents the residual set of the left image
matching point and the right image matching point in the
kth subregion; Pk

match1 and Pk
match2 represent the left image

matching point and the right image matching point falling in
the kth subregion, respectively; Hk represents the perspective
transformation matrix of the kth subregion; ∗ represents matrix
multiplication; fsort↑(·) represents the sort function; 1ε

′k rep-
resents the residual set after sorting the left image and right
image matching points in the kth subregion.

The standard deviation of the residual of the matching
point is calculated according to (9), and compare it with the
maximum pixel residual threshold (FT ). The expression is
shown in the following equation:{

1ϕ̃k
= min

(
fstd

(
1ε′k), FT

)
Pk

c1 = Pk
match1

∥∥
1ε′k̇<1ϕ̃k Pk

c2 = Pk
match2

∥∥
1ε′k̇<1ϕ̃k

(10)

where (10), 1ϕ̃k represents the standard deviation of the
kth subregion; fstd(·) represents the standard deviation cal-
culation function; FT represents the maximum pixel residual
threshold (this article is set to 6); Pk

c1 and Pk
c2 represent the

left image candidate point and the right image candidate point
of the kth subregion, respectively.

Step 3 (Candidate Point Iterative Optimization): The fitting
points corresponding to Pc2 are denoted by P ′1

c2 = P1
c1 · H1.

The residuals of P ′1
c2 and P1

c2 are denoted in 10(i) =

∥P ′

c2(i) − Pc2(i)∥2, i = 1, . . . , Nc. Nc is the number of
correct matches (NCMs). In accordance with a number of
experimental observations, a larger size fitting point is more
likely to be a point close to the correct position. Therefore, the
points are sorted in ascending order, and the last one-fourth
of the elements are found. Then, the points corresponding to
the last element in Pc2 are replaced by the fitting points. All

the points are updated in Pc2 until the sum of the residuals is
equal to the threshold (0.01). The position of Pc2 is updated.

Step 4 (Global Transformation Model Calculations): The
candidate point optimization in each subarea is completed
through Step 3). Then, the optimized points of the four
subregions are used as the final matching corresponding points.
Finally, by performing the least squares calculation again, the
refined global transformation modulus is obtained.

E. Complexity and Efficiency Analysis

The computational complexity of the proposed matching
algorithm involves four key stages: feature detection, feature
description, feature matching, and outlier filtering (EGIO).
Feature detection uses the Harris corner detector with a com-
plexity of O(n), where n is the number of pixels in the image.
This provides robustness but incurs a high computational
cost. Feature description uses our proposed descriptor with a
complexity of O(m ∗ l), where m is the number of keypoints
and l is the number of pyramid layers, making this step a
major computational component. Feature matching employs
bidirectional matching with a complexity of O(m ∗ n), which
is optimized through parallel processing. The EGIO outlier
filtering step includes global seed point calculation O(n),
subregion filtering O(k∧2), local optimization O(m ∗ log(m),
and transformation fitting O(p∧3). The number of iterations
is limited to 5 to balance efficiency and accuracy. Feature
description and outlier filtering are the primary computa-
tional bottlenecks, but parallel processing provides significant
improvements for handling large-scale datasets.

IV. EXPERIMENTS

Eight state-of-the-art traditional methods, i.e., PIIFD [19],
PSO-SIFT [20], ASS [24], RIFT2 [26], RIFT [25], MS-
HLMO [31], OSS [22], HOSS [22], and one deep learning-
based method, RoMa [48], were used for comparison. During
the tests, the image scale difference was set to 1.6 and 56 pix-
els concerning the neighborhood window. The maximum pixel
FT was set to 6. The parameters of the compared methods were
adjusted to the optimal stage accordingly. The proposed SOFT
method, PIIFD, PSO-SIFT, ASS, RIFT2, RIFT, MS-HLMO,
OSS, and HOSS were implemented in MATLAB-R2018a.
The RoMa method was implemented using Python. In those
methods, the number of key points was kept under 3000.
The experiments were performed on a Lenovo-R9000K2021H
laptop with an Intel1 Core2 i7-5900HX CPU, 32GB RAM, and
Windows 11 × 64 operating system. The image-space affine
transformation was used to model the geometric relationships
of image pairs. For each pair, over 15 well-distributed ground
truth points were manually collected to calculate the affine
transformation as the ground truth, which is used to measure
the location accuracy of the automatically matched points.

The SR is used as a measure of the probability of successful
image matching. The NCMs represent the number of corre-
sponding points in the reference and the sensing images. Rate
of correct matches (RCMs): it is a rate that reflects the NCMs

1Registered trademark.
2Trademarked.
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TABLE I
INTRODUCTION TO THE MRSI DATASET

Fig. 7. Partial multi-MRSIs. (a) Multitemporal images. (b) Infrared-optical.
(c) Depth-optical. (d) Map-optical. (e) SAR-optical. (f) Night-day.

to the total number of matches. The root of the mean-squared
error (RMSE) of the correct matches

RMSE =

√√√√ 1
N

(
N∑

i=1

[(
xi − x ′

i

)
+
(

yi − y′
i

)])
(11)

where, N represents the number of ground truth points;
(x ′

i , y′
i ) is the coordinate of the i th ground truth point converted

by matching the correspondence. (xi , yi ) is the coordinate of
the i th predicted point.

A. Data Sources

The experimental dataset consisting of 744 sets of
MRSI was collected. These images include multitemporal
images, infrared-optical, LiDAR deep image-optical, map-
optical, SAR-optical and night-day, and the majority of them
are 512 × 512 pixels. These data cover spaceborne, airborne
and ground remote sensing data. Detailed information can be
found in Table I. Each type of data contains images with
large rotation differences. At the same time, some images also
have scale differences, as shown in Fig. 7. In order to better
verify the performance of the proposed method, we performed
random rotations ranging from 0◦ to 180◦ at 30◦ intervals on
744 sets of test images to enhance sample randomness.

B. Results of Matching

In order to evaluate the matching accuracy of the proposed
SOFT method, the SOFT method with nine state-of-the-art
methods (PIIFD, PSO-SIFT, ASS, RIFT2, RIFT, MS-HLMO,
OSS, HOSS, and RoMa) are compared. Fig. 8 shows the
quantitative evaluation results of ten methods in three metrics.
Table II shows the average results of the ten methods in the
four metrics.

Fig. 8. Results in three metrics for SOFT and other nine methods. (a) NCM
results. (b) RCM results. (c) RMSE results.

The NCM and RCM of the matching failure results are
set to 0. The RMSE is obtained by ten algorithms (matching
failure or RMSE greater than 10 pixels are set to +∞).

1) Quantitative Evaluation: From Fig. 8 shows that the unit
of SR is %; the unit of NCM is points; the unit of RCM is %;
the unit of RMSE is pixel. Quantitative results as shown in
Fig. 8. The results of all three metrics are average values.

The light green dashed lines from Fig. 8(a)–(c) represent
the NCM, RCM, and RMSE results of the PIIFD method,
respectively. In the 744 sets of images, the SR is only 48.25%,
the NCM is 262.52, the RCM is only 14.60%, and the RMSE
is as high as 6.70 pixels, which shows that this method is
not suitable for multimodal matching. The light blue dashed
lines in Fig. 8(a)–(c) represent the NCM, RCM, and RMSE
results of the PSO-SIFT method, respectively. Its SR result
is better than that of the PIIFD method, but only 73.66%
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TABLE II
RESULTS IN FOUR METRICS OF THE SOFT AND THE COMPARED METHODS

(see Table II), and the obtained NCM and RCM are not high;
the NCM and RCM are 507.04 point and 29.71%, respectively
(see Table II). The RMSE of the ground truth computation
is 4.45 pixels. It can be seen that although the PSO-SIFT
method uses the second-order Sobel operator to calculate the
new image gradient feature, it still has a certain effect on the
brightness difference of the image, this method is still sensitive
to NRD.

The red dashed line from Fig. 8(a)–(c) represents the
matching results of the RIFT method. This method is designed
with maximum index map descriptors based on the PC modal,
which improves the matching performance of the algorithm.
It achieves a better SR result of 3.90%. Its NCM, RCM, and
RMSE are 7.70, 5.13%, and 9.73 pixels, respectively (see
Table II). The main reason for the poor results of the RIFT
method on the three metrics may be the lack of a rotation
module in the published RIFT code by the authors. The pink
dashed line represents the results of the RIFT2 method. From
Fig. 8(a)–(c), we found that it achieves 94.49% SR results, and
its NCM, RCM, and RMSE results are 480.14, 46.94%, and
2.57 pixels, respectively (see Table II). Among them, the RCM
and RMSE metrics showed high, but the NCM performance
is poor.

The orange dashed line represents the results of the HOSS
method. From Fig. 8(a)–(c), we found that it achieves 82.26%
SR results, and its NCM, RCM, and RMSE results are 848.40,
42.76%, and 3.21 pixels, respectively (see Table II). The HOSS
method, however, has fluctuating results and unstable matching
in the three metrics. The green dashed line from Fig. 8(a)–(c)
represents the result of the OSS method. It achieves MRSI
matching by constructing an orientation self-similar feature
descriptor. The NCM is 531.88, the RCM is 27.99%, and the
RMSE result is 3.03 pixels. The overall effect of the OSS
method is better than PIIFD, PSO-SIFT, RIFT, and HOSS but
inferior to RIFT2.

The blue dashed line represents the results of the ASS
method. From Fig. 8(a)–(c), we found that it achieves 95.43%
SR results, and its NCM, RCM, and RMSE results are 974.90,
33.43%, and 3.02 pixels, respectively (see Table II). As an
optimized version of the OSS method, the ASS method
is slightly better than the OSS method in SR, RCM, and
RMSE, and the improvement in NCM is more significant.
The light yellow dashed line represents the results of the
MS-HLMO method. From Fig. 8(a)–(c), we found that it
achieves 95.56% SR results, and its NCM, RCM, and RMSE
results are 556.46, 50.62%, and 2.58 pixels, respectively
(see Table II). The MS-HLMO method gives better results
than the other seven conventional methods, but it performs

poorly and less efficiently in terms of scale differences and
large modal differences (SAR-optical) in MRSI. The purple
dashed line represents the results of the RoMa method (deep
learning method). From Fig. 8(a)–(c), we found that it achieves
41.40% SR results, and its NCM, RCM, and RMSE results are
1042.74, 34.76%, and 6.45 pixels, respectively (see Table II).
It is worth noting that the RoMa method is capable of obtain-
ing a large number of corresponding points in successfully
matched images, but it is poorly adapted to modality, and the
lack of a multimodal image dataset is the main reason for this
problem.

The red solid line from Fig. 8(a)–(c) represents the result
of the proposed SOFT method, which is successfully matched
in 744 sets of images, where the NCM is 1138.35, the RCM
is 57.28%, and the RMSE is 1.95 pixels, of which the result
is significantly better than the other nine methods.

2) Qualitative Match Results: In order to further evaluate
the performance of the SOFT method, we tested the qualitative
matching results by selecting a set of images from each of
the six MRSIs types, as shown in Fig. 9. And the matching
results of the SOFT method in the remaining images are shown
in Fig. 10.

Fig. 9(a) and (b) shows the partial matching results of
the PIIFD and PSO-SIFTs respectively. They are based on
image gradient features for matching, so they are more sen-
sitive to the NRD of MRSI and prone to matching failure.
Fig. 9(d) and (e) shows the partial matching results of the
RIFT2 and RIFT methods. They use a PC model to complete
the feature description, where the matching performance of
their maximum index map descriptor is more stable; however,
they do not support scale differences, and their performance is
also limited under rotational differences. Fig. 9(c), (g), and (h)
shows the partial matching results of the ASS, OSS, and HOSS
methods, we found that they achieve successful matching
among most image types, but there are still some limitations of
the method. Fig. 9(d) shows the partial matching results for
the MS-HLMO method, which was found to perform better
for rotational disparity but poorly for larger NRD and scale
disparity. Fig. 9(i) shows the partial matching results for the
RoMa method, which can obtain a large number of correspon-
dence points in the successfully matching images, but performs
poorly in terms of large NRD differences (e.g., map-optical
and night-day).

Fig. 9(j) shows the partial matching results of the method
proposed in this article. It can be seen that the SOFT method
demonstrates robust matching capabilities under conditions of
NRD, lighting variations, and contrast differences. Moreover,
it performs well in handling scale variations and displacement
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Fig. 9. Matching results of SOFT and the other nine methods. (a) PIIFD. (b) PSO-SIFT. (c) ASS. (d) RIFT2. (e) RIFT. (f) MS-HLMO. (g) OSS. (h) HOSS.
(i) RoMa. (j) SOFT.

Fig. 10. Part matching results of SOFT method.

differences, highlighting its strong applicability. In order to
further demonstrate the matching effect of the SOFT method,
the matching results of 16 groups of typical images are also
shown (see Fig. 10). It can be seen from Fig. 10 that the
proposed SOFT method has good stability against MRSI,
which can be obtained enough NCM in translation, scale, and
rotation difference.

C. Rotational Invariance Test

In order to verify the rotation invariance of the SOFT
method, we selected 22 typical image pairs for matching
testing, rotating every 45◦, as shown in Fig. 11. Fig. 11 shows
that MRSI images can be successfully matched under different
rotation angles. The NCM of each group of image pairs is
higher than 50 points, and most of the RCM are above 20%.
At the same time, it is not difficult to find that the performance
of the SOFT method does not decrease with the change of the
rotation angle. The quantitative results are shown in Fig. 12.

TABLE III
PARAMETER SETTINGS OF THE PROPOSED SOFT MODEL

D. Discussion

In order to comprehensively evaluate the matching robust-
ness of the SOFT method, three parts of the SOFT method,
the parameter setting, the construction of second-order tensor-
orientation feature descriptors and EGIO are further analyzed.

1) Analysis of Parameter Settings: The proposed SOFT
method has parameters, such as Nw and FT , whose differ-
ent values will affect its matching performance. Therefore,
we quantitatively analyzed how the SOFT method functioned
under different settings. More details of parameter settings are
given in Table III.
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Fig. 11. Matching results for the SOFT method in rotational transformation. (a) Multitemporal images. (b) Infrared-optical. (c) Depth-optical. (d) Map-optical.
(e) SAR-optical. (f) Night-day.

Fig. 12. Matching results of the SOFT method for different rotation angles.
(a) NCM results of SOFT. (b) RCM results of SOFT.

We tested 744 sets of MRSIs according to the parameter
settings given in Table III to evaluate the impact of different
parameters on the SOFT method by observing the average
NCMs and average RMSEs of images, which are shown in
Figs. 13 and 14.

Figs. 13 and 14 show the effect of different settings of
the two parameters on the SOFT method. As can be seen
from Fig. 13, the SOFT method results in a gradual increase
in NCM and a gradual decrease in RMSE results for 24 <

NW < 56. When NW = 56, optimal results were obtained for
both NCM and RMSE. Subsequently, the NCM results start to
decrease gradually and the RMSE results increase gradually;
thus, an NW setting of 56 presents optimal results. As can
be seen from Fig. 14, the RMSE tends to decrease and then
increase with the increase of FT . When FT = 6, the RMSE of
the SOFT method reaches the best result. Therefore, setting FT

to 6 is optimal.

2) Descriptor Analysis of Nine Methods: The proposed
descriptors for the construction of second-order tensor-
orientation features play an important role in this article.
In order to compare the performance of the descriptors more
fairly, the image feature point extraction, matching methods
and coarse difference rejection methods are all used in the
same way, where the outlier filtering method module of the
SOFT method uses the FSC method, denoted as SOFT-FSC.
Three metrics, NCM, RCM, and RMSE, are used to quanti-
tatively evaluate the results of several descriptors, as shown
in Fig. 15.

As Fig. 15 shows, when other matching links remain
unchanged, the proposed descriptor in this article can still
achieve overall best results. Among them, the SOFT-FSC
method achieved successful matching in all sets of MRSI,
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Fig. 13. Matching results of different Nw values.

Fig. 14. Matching results of different FT values.

Fig. 15. Quantitative comparison results of descriptors for different methods.

its NCM is 999.6, the RCM is 44.95%, and the RMSE
is 2.40 pixels. The RMSE of the SOFT-FSC method is at
least 0.63 pixels lower than the OSS method and 4.30 pixels
lower than the PIIFD method. Compared with MS-HLMO and
RIFT2 with lower RMSE, the NCM of SOFT-FSC is 1.8 and
2.08 times higher than theirs, respectively. It can be seen
that the descriptors in the SOFT-FSC method have significant
effects on MRSI matching.

3) Analysis of Three Outlier Filtering Methods: The
proposed descriptors for the construction of second-order
tensor-orientation features play an important role in this article.
In order to compare our EGIO method, more fairly with FSC
and RANSAC, image feature point extraction, feature descrip-
tion, and matching methods are all used in the same way,
where the outlier filtering method module of the SOFT method
uses the RANSAC method, denoted as SOFT-RANSAC. Three

Fig. 16. Quantitative comparison results of different outlier filtering methods.

metrics, NCM, RCM, and RMSE, are used to quantitatively
evaluate, as shown in Fig. 16. As Fig. 16 shows, when other
matching links remain unchanged, the proposed EGIO method
achieves the best results across all three metrics—NCM, RCM,
and RMSE. Compared to FSC and RANSAC, our EGIO
method achieved a 13.89% and 3.45% improvement in NCM,
a 27.43% and 7.69% improvement in RCM, and a reduction
of 0.45 and 0.41 in RMSE, respectively. It can be seen that
the EGIO method have significant effects in MRSI matching.

V. CONCLUSION

In this article, an MRSI matching method based on second-
order tensor-orientation feature descriptors is proposed to
improve the rotational invariance of MRSIs and to overcome
the problems of NRD, noise interference, feature direction
reversal and abrupt changes of MRSI. Comprehensive exper-
iments on 744 sets of MRSIs demonstrate that the proposed
SOFT method can achieve robust matching of MRSI, by effec-
tively guaranteeing rotational invariance and obtaining high
correct matching rates, which can be concluded as follows.

1) Enhanced Matching Performance: The proposed SOFT
method exhibits superior matching performance, with
a 97% improvement in NCM, a 25.51% improvement
in RCM, and a reduction in RMSE by 2.69 pixels
compared to the other nine methods.

2) Robust Rotation Invariance: The SOFT method demon-
strates strong rotation invariance, achieving robust
matching results under arbitrary angular rotations in the
rotation simulation experiments.

3) Effective Error-Removal Optimization: The introduction
of an EGIO significantly enhances the correct matching
rate by better filtering and optimizing corresponding
points.

In summary, the proposed SOFT method offers strong
applicability in MRSI matching, providing robust support
for applications such as aerial triangulation, image stitching,
3-D reconstruction, and SLAM. Its capabilities extend to
diverse fields, including geospatial analysis for aerial and
satellite imagery, enhanced SLAM for autonomous driving,
and improved image registration in medical diagnostics.

Future improvements focus on enhancing computational
efficiency via GPU acceleration for faster, real-time per-
formance. Integrating deep learning could further improve
accuracy and robustness, especially in complex scenarios.
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These advancements will help solidify the SOFT method
as a versatile and efficient solution for MRSI matching in
challenging environments.
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