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   Abstract—Accurate  fine-grained  geospatial  scene  classification
using  remote  sensing  imagery  is  essential  for  a  wide  range  of
applications.  However,  existing  approaches  often  rely  on  manu-
ally  zooming  remote  sensing  images  at  different  scales  to  create
typical  scene samples.  This  approach fails  to  adequately  support
the  fixed-resolution  image  interpretation  requirements  in  real-
world scenarios. To address this limitation, we introduce the mil-
lion-scale  fine-grained  geospatial  scene  classification  dataset
(MEET), which contains over 1.03 million zoom-free remote sens-
ing scene samples,  manually annotated into 80 fine-grained cate-
gories. In MEET, each scene sample follows a scene-in-scene lay-
out, where the central scene serves as the reference, and auxiliary
scenes  provide  crucial  spatial  context  for  fine-grained  classifica-
tion. Moreover, to tackle the emerging challenge of scene-in-scene
classification, we present the context-aware transformer (CAT), a
model  specifically  designed  for  this  task,  which  adaptively  fuses
spatial  context  to  accurately  classify  the  scene  samples.  CAT
adaptively  fuses  spatial  context  to  accurately  classify  the  scene
samples  by  learning  attentional  features  that  capture  the  rela-
tionships  between  the  center  and  auxiliary  scenes.  Based  on
MEET, we establish a comprehensive benchmark for fine-grained
geospatial  scene  classification,  evaluating  CAT  against  11  com-
petitive baselines. The results demonstrate that CAT significantly
outperforms  these  baselines,  achieving  a  1.88% higher  balanced
accuracy  (BA)  with  the  Swin-Large  backbone,  and  a  notable
7.87% improvement  with  the  Swin-Huge  backbone.  Further

experiments validate the effectiveness of each module in CAT and
show  the  practical  applicability  of  CAT  in  the  urban  functional
zone mapping. The source code and dataset will be publicly avail-
able at https://jerrywyn.github.io/project/MEET.html.
    Index Terms—Fine-grained  geospatial  scene  classification  (FGSC),
million-scale  dataset, remote  sensing  imagery  (RSI), scene-in-scene,
transformer.
  

I.  Introduction

F INE-GRAINED  geospatial  scene  classification  (FGSC)
with  remote  sensing  imagery  (RSI)  aims  to  categorize

scene  samples  into  fine-grained  geospatial  scene  categories.
Compared  to  coarse-grained  remote  sensing  scene  classifica-
tion [1]−[4], FGSC presents greater challenges but offers sig-
nificant utility in various applications, such as water resource
management [5], [6], urban planning [7], habitat conservation
[8]−[10], etc. Along with increasing high-resolution RSI [11],
[12] and  powerful  deep  learning  models [13], [14] available,
FGSC holds substantial promise and has become a focal point
of research [15].

To  pursue  FGSC,  existing  research [15]−[17] manually
zoom RSI  with  different  rates  to  form typical  scene  samples
(e.g., the samples from Fig. 1(a)), which are further utilized to
train  FGSC  models.  However,  in  practical  applications
[18]−[22],  the  input  RSI  to  be  classified  is  often  with  fixed-
resolution.  In  this  situation,  the  trained  FGSC  model  with
zooming  samples  may  perform  poorly.  Without  no  doubt,
manual  zooming  intervention  of  the  input  imagery  may
improve  the  scene  classification  performance  but  inevitably
harm  automatic  process.  With  this  consideration,  this  paper
tries to leverage the fixed-resolution RSI without zooming to
form  scene  samples.  However,  the  zoom-free  solution  may
raise  another  issue  (e.g.,  the  samples  from Fig.  1(b))  that
fixed-resolution  samples  presents  inter-class  and  intra-class
confusion,  especially  for  fine-grained  categories.  To  address
this  issue,  we  introduce  scene-in-scene  layout  to  form  the
scene sample. As shown in Fig. 2, the center scene is the basic
unit for classification, while the surrounding scene and global
scene  serve  as  auxiliary  contexts.  Only  focusing  on  center
scene  leads  to  confusion  between  river  and  lake  categories,
while  this  issue  can  be  addressed  by  introducing  auxiliary
scenes. In summary, as shown in Table I, existing scene clas-
sification  datasets  have  the  following  issues:  1)  Manually
zooming  scene  samples  with  different  rates  results  in  a  gap
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with fixed-resulotion image interpretation in real-world appli-
cation;  2)  Insufficient  sample  quantity  and  limited  category
coverage restrict the effectiveness of the dataset.

To  address  the  above  challenges,  we  introduce  a  million-
scale  fine-grained  geospatial  scene  classification  dataset
(MEET).  In  terms  of  sample  size  and  category  coverage,
MEET  contains  1.03  million  samples  across  80  geospatial
scene  categories,  surpassing  existing  datasets [4], [15]−[17],
[23]−[39] in  sample  quantity,  diversity,  and  fine  granularity.
This  initiative  is  designed  to  provide  a  robust  foundation  for
advancing scene classification methods and enhancing practi-
cal land-cover applications. To address the challenge of avoid-
ing  zoomed  scene  samples,  we  incorporate  surrounding  and
global scenes as essential auxiliary context, enriching the clas-
sification process. Each sample includes the image to be clas-
sified, along with two ranges of surrounding images captured
from different field-of-views. Grouping these surrounding and

global  scenes  together  provides  the  necessary  contextual
information  for  accurate  classification  of  the  center  scene.
Furthermore,  this  organization  offers  scalability,  enabling
adaptive  context  fusion  for  varying  classification  tasks  that
require different ranges of context. As illustrated in Fig. 2, the
center  scene  serves  as  the  core  unit  for  classification,  but
focusing solely on it can lead to confusion between categories,
such  as  rivers  and  lakes.  By  incorporating  auxiliary  scenes,
this  issue  can  be  resolved.  The  need  for  additional  context
depends on the specific classification task. For instance, in the
airport  category,  the  model  can  easily  identify  the  salient
object  (i.e.,  an  airplane)  from  the  center  scene,  so  no  addi-
tional context is necessary. However, for categories like rivers
and lakes, the introduction of auxiliary scenes becomes essen-
tial.  These  scenes  provide  a  broader  field-of-view,  allowing
the  model  to  better  discern  features  such  as  riverbanks  and
water  bodies,  which  helps  reduce  both  inter-class  and  intra-
class confusion.

To  advance  the  research  on  fundamental  and  practical
issues,  we  propose  a  new  challenging  yet  meaningful  task:
FGSC  with  zoom-free  RSI.  By  contrast  to  existing  FGSC
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Fig. 1.     Illustration of  the zoom-free and fine-grained characteristics  of  our
MEET dataset. (a) shows that the existing FGSC dataset forms typical scene
samples by manually zooming remote sensing images at different rates. In (b),
the center scene outlined in red, is the basic unit for classification, while the
surrounding scene outlined in green and global scene outlined in blue serve as
auxiliary  contextual  images.  With  zoom-free  samples  and  auxiliary  scenes,
MEET  addresses  inter-class  and  intra-class  confusion  in  zoom-free  image
samples.
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Fig. 2.     Superiority  illustration  of  the  remote  sensing  image  scene  sample
with  the  scene-in-scene  layout.  The  sample  labeled  as  an  airport  shows  the
case that models can successfully infer the fine-grained scene category using
only the center scene and the auxiliary scenes may benefit improving the clas-
sification performance. For the samples from first row and second row, mod-
els fail to predict the fine-grained scene category using only the center scene
but has a great potential to obtain the right fine-grained scene category using
both the center scene and the auxiliary scenes.
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methods [40]−[42] that used expensive external modalities to
improve the interpretation of fine-grained categories, utilizing
readily available surrounding RSIs is a more suitable and nat-
ural choice. Other potential difficulties can be categorized into
two  main  aspects:  1)  Avoiding  performance  degradation  in
most  cases  when integrating  contextual  information;  2)  Miti-
gating  drastic  memory  consumption  when  applying  contex-
tual  information,  which  limits  practical  usability.  Based  on
MEET, we propose a context-aware transformer (CAT) which
can  flexibly  exploit  RSI  with  multiple  field-of-views  for
FGSC. CAT offers two key advantages: 1) Leveraging spatial
context information while avoiding performance degradation;
2)  Being  user-friendly,  lightweight  and  compatible  with  pre-
trained  models.  In  summary,  the  MEET  dataset  and  CAT
framework  proposed  in  this  paper  aim  to  establish  a  new
benchmark  for  FGSC  with  zoom-free  RSI.  With  the  help  of
this  benchmark,  more  innovative  algorithms  can  be  devel-
oped to facilitate the development of FGSC. The main contri-
butions of this paper are as follows:

1)  We  introduce  MEET,  the  first  million-scale  dataset  for
FGSC with zoom-free RSI. It provides over 1.03 million sam-
ples  where  each  sample  employs  a  scene-in-scene  layout,
offering a new data organization for FGSC.

2) To avoid excessive memory consumption, a new CAT is
proposed to  address  FGSC with  zoom-free  RSI  and achieves

progressive  visual  feature  extraction  through  multi-level
supervision.

3) We establish a new benchmark for FGSC with zoom-free
RSI based on MEET. Comparisons with existing state-of-the-
art  algorithms  demonstrate  the  superiority  of  our  CAT.  This
benchmark  may  contribute  to  the  fundamental  evaluation  of
FGSC  and  promote  the  advancement  of  practical  land-cover
applications.

The  rest  of  this  paper  is  organized  as  follows:  Section  II
reviews  existing  FGSC  datasets  and  algorithms.  Section  III
describes  the  proposed  MEET  dataset  in  detail.  Section  IV
introduces  the  proposed  CAT  for  FGSC.  Section  V  presents
the  experimental  results.  Finally,  Section  VI  summarizes  the
paper and provides insights for future work.  

II.  Related Works

In this section, we provide a concise review of the most per-
tinent  studies  in  the  field,  encompassing  scene  classification
datasets, remote sensing scene classification methods and aux-
iliary image context exploitation methods.  

A.  Scene Classification Datasets
As  shown  in Table  I,  the  emergence  of  numerous  datasets

led to significant advancements in remote sensing scene clas-
sification.  The  earliest  dataset  in  this  field  was  UC  Merced

 

TABLE I 
Comparison Among Open-Source RSI Scene Classification Datasets Fine-Grained Characteristic Refers to a Dataset That

Contains More Than 30 Categories. “*” Indicates the Statistic of the Publicly Released Part From the Whole Dataset

Dataset Number of categories Number of samples Spatial resolution (m) Image size Fine-grained Zoom-free

UC-Merced [23] 21 2100 0.3 ×256 256 × ✓

WHU-RS19 [24] 19 1013 up to 0.5 ×600 600 × ×

RSSCN7 [4] 7 2800 – ×400 400 × –

SAT-4 [25] 4 500 000 1–6 ×28 28 × ×

SAT-6 [25] 6 405 000 1–6 ×28 28 × ×

BCS [26] 2 2876 – – × –

RSC11 [27] 11 1232 0.2 ×512 512 × ✓

SIRI-WHU [28] 12 2400 2 ×200 200 × ✓

NWPU [16] 45 31 500 0.2–30 ×256 256 ✓ ×

AID [17] 30 10 000 0.5–8 ×600 600 ✓ ×

RSD46-WHU [29] 46 117 000 0.5–2 ×256 256 ✓ ×

EuroSAT [30] 10 27 000 10 ×64 64 × ✓

PatternNet [31] 38 30 400 0.06–4.7 ×256 256 ✓ ×

OPTIMAL-31 [32] 31 1860 – ×256 256 ✓ –

BigEarthNet [33] 43 590 326 10, 20, 60 × ×[20 20, 120 120] ✓ ×

RSI-CB256 [34] 35 24 000 0.3–3 ×256 256 ✓ ×

RSI-CB128 [34] 45 36 000 0.3–3 ×128 128 ✓ ×

MLRSN [35] 46 109 161 0.1–10 ×256 256 ✓ ×

CLRS [36] 25 15 000 0.26–8.85 ×256 256 × ×

Million-AID* [15] 51 10 000 0.5–153 × ×[256 256, 512 512] ✓ ×

SR-RSKG [37] 70 56 000 – ×256 256 ✓ ×

Multiscene [38] 36 100 000 0.3–0.6 ×512 512 ✓ ×

WH-MAVS [39] 14 47 137 1.2 ×200 200 × ✓

Our MEET 80 1 033 778 1 × × ×{256  256, 768  768, 1280 1280} ✓ ✓
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[23].  Despite  having  a  relatively  small  number  of  samples
(only  100  samples  per  category),  it  played  a  crucial  role  in
advancing research on geospatial scene classification tasks. In
the  subsequent  decade,  nearly  20  additional  remote  sensing
scene  classification  datasets  were  introduced,  each  contribut-
ing to the evolution of the field. The total number of samples
in these datasets grew significantly, from a few thousand [4],
[23], [24], [26]−[28], [32] to  tens  of  thousands [16], [17],
[30], [31], [34], and even to hundreds of thousands [25], [35],
[37], [38].  This  expansion  significantly  broadened  the  scope
and  application  scenarios  for  scene  classification  tasks.  In
terms  of  category  diversity,  the  number  of  categories  also
increased over time, from fewer than 10 [4], [25], [26] to over
40 [15], [16], [29], [33], [35].  For  example,  the  SR-RSKG
dataset [37] reached 70 categories, further enhancing the rich-
ness  of  classification  tasks.  Regarding  data  sources,  most  of
these datasets were primarily based on Google Earth imagery
[4], [15]−[17], [24], [27],  while  some  used  freely  available
medium-resolution  satellite  imagery,  such  as  Sentinel-2 [30],
[33].  A  smaller  subset  of  datasets  utilized  data  from  other
sources,  including  the  United  States  Geological  Survey
(USGS) [23], Bing Maps [34], [36], and Tianditu [29].

Despite  efforts,  existing  datasets  with  zoom-free  RSI [17],
[23], [27], [28], [30], [39] were limited in  terms of  the num-
ber of categories. To address this issue, many approaches [15],
[16], [25], [29], [31], [34]−[38], [43] manually zoomed RSI to
construct  datasets  aimed  at  improving  class  separability  for
FGSC.  However,  this  data-construction  technique  created  a
mismatch  with  practical  land-cover  applications,  which
require  fixed-resolution  imagery.  Therefore,  developing
datasets  that  incorporate  a  fine-grained  and  distinguishable
scene category system with zoom-free RSI remained an unad-
dressed area in previous work.  

B.  Scene Classification Methods
To  motivate  FGSC  with  zoom-free  RSI,  in  the  following

paragraphs,  we  reviewed  existing  deep  learning  methods  for
scene classification with RSI and explored potential technolo-
gies to address FGSC challenges using zoom-free RSI. Scene
classification has been extensively studied across both natural
images  and  RSI,  with  various  approaches  applied  to  both
domains.

For natural images, numerous studies [44]−[49] focused on
optimizing  the  design  of  general  scene  classification  back-
bones,  which  were  validated  across  a  wide  range  of  visual
downstream  tasks.  Similarly,  in  the  domain  of  RSI,  signifi-
cant  advancements  in  scene  classification  were  achieved
through  three  primary  approaches:  1)  Training  models  from
scratch [50]−[53];  2)  Adapting pre-trained models  from Ima-
geNet to RSI [16], [54], [55]; 3) Fine-tuning pre-trained mod-
els specifically for RSI data [14], [56]−[59]. Among the meth-
ods  involving  training  from  scratch,  ARC-Net [50] incorpo-
rated residual blocks with asymmetric convolution (RBAC) to
reduce  computational  cost  and  shrink  the  model  size.  Addi-
tionally,  dilated  convolutions  and  multi-scale  pyramid  pool-
ing  modules  were  used  to  expand  the  receptive  field  and
improve  accuracy.  Bai et  al. [51] proposed  a  multiscale  fea-
ture  fusion  covariance  network  with  octave  convolution,

which  extracted  multifrequency  and  multiscale  features  from
RSIs. Chen et al. [52] introduced GCSANet, which leveraged
global  context  spatial  attention  (GCSA)  and  densely  con-
nected  convolutional  networks  to  capture  multiscale  global
scene features.  For methods involving fine-tuning pre-trained
models  specifically  for  RSI  data,  Guo et  al. [14] introduced
geo-context  prototype  learning  to  learn  region-aware  proto-
types  based  on  RSI’s  multi-modal  spatiotemporal  features.
Each  of  these  approaches  uniquely  enhanced  the  discrimina-
tive ability and robustness of models, driving advancements in
the field. For the more challenging task of FGSC, many stud-
ies  turned  to  auxiliary  data  to  improve  the  interpretation  of
fine-grained categories. Srivastava et al. [60] optimized FGSC
performance  by  utilizing  visual  cues  from side-view pictures
sourced  from  Google  street  view  (GSV).  Similarly,  Fang
et  al. [40] incorporated  street  view  images  (SVI)  and  devel-
oped a spatial context-aware land-use classification method to
enhance land-use classification accuracy. Yao et al. [61] intro-
duced  temporal  resolution  time-series  electricity  data  to
explore  the  relationship  with  socioeconomic  attributes  and
constructed a neural network that can fuse time-series electric-
ity  data  and  RSIs  to  identify  urban  land-use  types.  Arbinger
et  al. [62] introduced  geographic  coordinates  or  geoinforma-
tion  data  to  enable  a  better  understanding  of  the  image  con-
tent  and  thus  facilitate  their  classification.  The  limited  avail-
ability  and  high  acquisition  cost  of  additional  data  sources
posed  challenges  and  restricted  the  broader  application  of
these methods.  

C.  Auxiliary Image Context Exploitation Methods
In  literature,  incorporating auxiliary contextual  information

was  regarded  as  a  natural  and  effective  approach  to  enhance
the  interpretability  of  RSI.  In  semantic  segmentation  of  RSI,
Li et  al. [63] proposed  a  deep  adaptive  fusion  network  with
multi-scale  context,  specifically  designed  for  RSI  semantic
segmentation.  GLNet [64] preserved  both  global  and  local
information  in  a  highly  memory-efficient  manner,  capturing
high-resolution  fine  structures  from  zoomed-in  local  patches
and  contextual  dependencies  from  the  downsampled  input.
CascadePSP [65] used a global step to refine the entire image,
providing sufficient image context for a subsequent local step
to  perform  full-resolution,  high-quality  refinement.  In  object
detection of RSI, HBD-Net [66] addressed bridge detection by
incorporating  multi-scale  context  within  the  dynamic  image
pyramid  (DIP)  of  large-scale  images,  while  employing  a
shape-sensitive  sample  re-weighting  (SSRW) strategy  to  bal-
ance regression weights for bridges with varying aspect ratios.
GLGCNet [67] extracted  global  representations  and  com-
bined  them  with  local-context-aware  features  gathered  from
three saliency-up modules for comprehensive saliency model-
ing. An edge assignment module was also employed to refine
preliminary detections. GeoAgent [68] enhanced performance
by adaptively capturing contextual information based on geo-
graphical objects, using a feature indexing module to differen-
tiate  locations.  However,  to  the  best  of  our  knowledge,  no
work on scene classification has yet utilized contextual infor-
mation, let alone for FGSC. Furthermore, these semantic seg-
mentation and object detection methods could not be directly
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adapted  to  FGSC  with  image-level  labels.  This  left  the
exploitation  of  contextual  information  in  FGSC  as  an  open
and significant research space.  

III.  The Proposed MEET Dataset

Our  goals  for  developing  a  new  dataset  for  FGSC  are
twofold:  1)  To  promote  a  new  meaningful  yet  challenging
task:  FGSC  with  zoom-free  RSI;  2)  To  occupy  the  niche  of
FGSC  datasets  with  context  image.  This  section  provides  a
comprehensive  overview  of  the  MEET  dataset,  focusing  on
three key aspects: data collection and organization, data anno-
tation, and data analysis.  

A.  Data Collection and Organization
We  select  fixed-resolution  samples  and  supplement  them

with  surrounding  imagery  as  multi-scale  context.  To  ensure
data  diversity,  images  are  collected  globally,  covering  varia-
tion  in  appearance,  illumination  and  occlusion.  The  fine-
grained geospatial scene category is determined by the center
scene, with auxiliary scenes serving as contextual information.
The MEET dataset provides global coverage through the col-
lection  of  1.03  million  samples  spanning  Asia,  Africa,  South
America,  North  America,  and  Europe,  and  covering  80  typi-
cal  scene  categories,  as  shown  in Figs.3.  and 4.  The  images
are collected from 2018 to 2022, with each sample containing
a center scene with 256 × 256 pixels,  along with a surround-
ing scene with 768 × 768 pixels and a global scene with 1280 ×
1280 pixels.  The  overall  distribution  and  some  samples  are
shown in Fig. 5. It is important to note that the spatial resolu-
tion of all samples is consistently set to 1.0 m. Some represen-
tative  examples  from  all  categories  of  the  proposed  MEET
dataset are presented in Fig. 6.

To  comprehensively  obtain  RSI  with  diverse  and  compre-
hensive  scene  categories  on  a  global  scale,  we  leverage  data
from OpenStreetMap (OSM), which is a collaborative project
creating  a  free,  editable  map  of  the  world.  OSM  provides
semantic  annotations  by  labeling  geographical  features  and

land-use  within  its  maps,  offering  detailed  information  about
roads,  buildings,  and  other  points  of  interest.  Subsequently,
we  preprocess  the  acquired  data  by  performing  coarse  filter-
ing or  integration of  scene categories  based on the quality of
OSM annotations, and design a series of rules to reduce noise
at the image-level labels. Finally, we ensure a global distribu-
tion and high richness of samples by defining random spatial
windows using geographic coordinates.

We randomly divide the entire dataset into training, valida-
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Fig. 3.     Statistics and visualization of samples from MEET.

 

MEET

 
Fig. 4.     Hierarchical  scene category of MEET. All  categories are hierarchi-
cally organized in a two-level tree: 80 leaf nodes fall into 9 parent nodes, rep-
resenting 9 underlying scene categories of commercial land, residential land,
water  area,  unutilized  land,  industrial  land,  agriculture  land,  transportation
land and public service land.
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tion,  and  testing  sets  by  category,  with  a  ratio  of  6  :  2  :  2.
More  specifically,  the  training  set,  validation  set,  and  testing
set  contain  620  237  206  755,  and  206  755  samples,  respec-
tively.  

B.  Data Annotation
Overall, fine-grained geospatial scene categories are defined

by  considering  the  center  scene  along  with  its  auxiliary
scenes.  To  ensure  precise  annotations  of  MEET  dataset,  ten
trained experts in the field of remote sensing participate in the
annotation  process  with  cross-validation.  During  the  annota-
tion  process,  each  annotator  receives  the  center  scene  along
with  the  corresponding  contextual  imagery.  For  samples
whose categories can be determined solely based on the cen-
ter scene, annotators use the predominant scene classification
within the image as the scene label for the current sample. For
example, a mosque located within a residential area of a city,
due  to  its  smaller  footprint  and  relative  rarity,  is  categorized
under mosque. This strategy enhances the coverage of smaller
target features, thereby enriching the holistic understanding of
urban  attributes.  As  far  as  samples  whose  categories  require
contextual  imagery  to  determine,  annotators  can  also  make
correct labeling choices by combining the corresponding con-
text. For instance, for texture-poor water body region images,
annotators  can distinguish whether  the sample belongs to  the
river or lake category by considering the shape of the banks in
the surrounding context.

The  procedure  of  labeling  MEET  encompasses  a  tripartite
framework  consisting  of  three  stages:  pre-annotation  stage,
expert  feedback  and  optimization  stage,  and  large-scale
detailed  annotation  stage.  In  the  initial  phase  of  pre-annota-
tion,  we  form  a  specialized  team  comprising  10  members,

each  possessing  extensive  expertise  in  the  field  of  remote
sensing  interpretation.  This  team  undergoes  comprehensive
training  in  fundamental  annotation  techniques  and  subse-
quently conducts annotation tests on a representative subset of
the dataset. In the following feedback and optimization stage,
experts  thoroughly  review  and  evaluate  the  team’s  initial
annotations,  leading  to  the  formulation  of  improved  annota-
tion standards. Subsequently, guided by these adjustments, the
team  embarks  on  the  formal  large-scale  annotation  process,
accompanied by experts’ random sampling inspections.  

C.  Dataset Analysis
The MEET dataset distinguishes itself from existing remote

sensing  scene  classification  datasets  through  several  unique
attributes: the breadth of its category coverage, the scale of its
sample  size,  the  diversity  of  its  samples,  and  the  incorpora-
tion of contextual information. Additionally, the dataset main-
tains  a  uniform  sample  resolution  and  is  tailored  to  support
models designed for large-scale scene classification and map-
ping tasks, further emphasizing its distinctive characteristics.

1) Fine Granularity of Categories: The MEET dataset com-
prises  80  fine-grained  geospatial  scene  categories,  catego-
rized into 11 major scene types. With the introduction of aux-
iliary contextual information, it has become possible to anno-
tate  more  fine-grained  categories.  These  categories  compre-
hensively  cover  discernible  remote  sensing  scene  categories.
Therefore,  our MEET dataset  offers advantages over existing
remote  sensing  scene  classification  datasets  by  providing
more  high-value  fine-grained  scene  categories.  Especially  in
urban  mapping  and  analysis  applications,  these  fine-grained
scene  categories  make  a  wider  range  of  scene  classification
applications possible.
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Fig. 5.     The geographical distribution map of the sampled images from the proposed MEET dataset.
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2)  Large  Volume  of  Samples: The  MEET  dataset  includes
1  033  801  samples,  covering  over  3.3  billion  square  kilome-
ters  globally.  It  surpasses  other  publicly  available  datasets  in
both  sample  volume  and  richness  of  annotation  data  for
remote sensing scene classification.

3)  High  Intra-Class  Variability  and  Inter-Class  Similarity:
Intra-class  variation  is  mainly  due  to  differences  in  appear-
ance. Inter-class similarity arises from similar appearance rep-
resentations in the center scene, but it manifests differently in
auxiliary  scenes.  As  shown in Fig.  7(a),  samples  in  the  river
category  exhibit  high  richness  in  image  quality,  color  varia-
tions, seasonal changes, geographic regions, and river widths.
Conversely,  inter-class  similarities  underscore  the  utility  of
contextual  information  in  enhancing  classification  accuracy,
as illustrated in Fig.  7(b) where incorporating context  aids in
discerning challenging objects within the current block.

Although  the  distribution  of  the  MEET  dataset  exhibits  a
certain  degree  of  class  imbalance,  as  shown  in Fig.  3,  it
closely mirrors the frequency distribution of real-world scene
categories. This characteristic enhances its value for practical
applications.  Additionally,  it  is  important  to  emphasize  that

the  selected  samples  exhibit  significant  variation  within  each
category, ensuring that even among the head classes, homoge-
neous low-value samples are also relatively few.  

IV.  Proposed Method

To flexibly and efficiently exploit the scene-in-scene layout
in  FGSC  with  zoom-free  RSI,  this  paper  introduces  CAT,  a
novel approach specifically tailored for this task.  CAT incor-
porates  an  adaptive  context  fusion  module  to  effectively
extract  multi-scale  contextual  features  from  the  transformer
backbone. To ensure performance without excessively increa-
sing  parameters,  we  utilize  parameter-efficient  fine-tuning
(PEFT) methods to finetune the backbone, instead of training
from  scratch  or  parameter  synchronization.  Additionally,  we
introduce  multi-level  supervision  through independent  classi-
fication heads during training. This improves feature learning
at each level and mitigates overfitting that can arise from aux-
iliary scenes. More specifically,  we utilize the scene-in-scene
layout for each sample with large range of context. However,
contemporary  deep  networks  face  limitations  in  directly  pro-
cessing  large-size  RSI  due  to  GPU  memory  constraint.  To
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Hills Hospital Lake Landfill Low-rise residential area Mangrove Meadow Military center
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Fig. 6.     Some examples from the proposed MEET dataset, which employs a scene-in-scene layout. These images exhibit rich variations in appearance, illumi-
nation, background, occlusion, and other factors.
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address this challenge, we resize each image to a uniform size,
denoted as ,  and , respectively. Among them,  cor-
responds  to  center  scene,  while  and  correspond  to  the
surrounding  and  global  scene,  respectively.  During  both  the
training and inference stages,  the  input  to  CAT remains  con-
sistent. The whole architecture of our method is illustrated in
Fig. 8. This section is dedicated to provide a detailed explana-
tion of the CAT.  

A.  AdaptFormer Tuning
For  the  currently  constructed  scene-in-scene  layout,  three

branches  are  needed  to  perform  feature  extraction  respec-
tively  while  using  pre-trained  weights.  Although  efficiency
has  been  improved  by  resizing  input  images,  using  three
branches  for  feature  extraction  still  poses  difficulties.  Using
completely independent backbones for full-parameter training
would  significantly  increase  the  model’s  parameter  size,
which  is  unacceptable  given  the  current  trend  towards  larger
model parameters. While using shared weights does not intro-

duce  additional  parameters,  it  would  hinder  performance
because  the  three  branches  have inputs  with  fixed but  differ-
ent spatial resolutions. To address this issue, we introduce the
AdaptFormer  tuning  (AFT)  on  the  transformer  backbone  for
multi-level  image  feature  extraction.  AdaptFormer  replaces
the MLP modules in the transformer encoder with AdaptMLP.
The  computation  of  the  AFT  module  in  transformer  can  be
expressed as follows:
 

zi =W-MSA(LN(zi−1))+ zi−1 (1)
 

ẑi =MLPAFT (LN(zi))+ zi (2)
 

ẑi+1 = SW-MSA(LN(ẑi))+ ẑi (3)
 

zi+1 =MLPAFT (LN(ẑi+1))+ ẑi+1 (4)
ziwhere  denotes the feature output of the i-th module in trans-

former.  For  each  branch,  the  backbone  uses  shared  weights
and is  initialized with  the  pre-trained model’s  weights,  while
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Fig. 7.     Illustration of intra-class variation and inter-class similarity in MEET.
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Fig. 8.     Overview of CAT. The structure contains three components (from left to right): AdaptFormer tuning (AFT), adaptive context fusion (ACF), and multi-
level supervision optimization (MLS).
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independent AdaptFormer modules are used for training in the
three  branches.  During  training,  we  freeze  the  weights  from
the  pre-trained  model  and  only  update  the  weights  of  the
AdaptFormer.  With  this  design,  the  three  branches  use  the
AFT method to enable feature extraction from input images of
different  spatial  resolutions.  At  the  same  time,  the  three
branches share most of the parameters, ensuring that the total
parameter  size does not  increase significantly,  thus maintain-
ing the model’s efficiency and practicality.  

B.  Adaptive Context Fusion

IC IS IG FC FS FG
FC

FS FG
FG

The model  uses a  backbone combined with AFT to extract
features  from ,  and ,  denoted  as ,  and ,
respectively. Among them, feature  contains rich semantic
information  most  relevant  to  the  labels,  while  and 
serve as contextual features supplementing .

These contextual  features often contain redundant informa-
tion  and  are  not  entirely  correlated  with  the  labels.  As  men-
tioned in [69], excessive redundant contextual information can
impair  classification  results  for  certain  samples.  Therefore,
inspired  by  the  design  of  multi-head  self-attention  modules,
we  propose  the  adaptive  context  fusion  (ACF)  module  to
adaptively integrate features from the center scene with either
the  surrounding  scene  or  the  global  scene.  For  the  features
extracted from each level of contextual images, the most rele-
vant and valuable features associated with the center scene are
further extracted, reducing the redundant information brought
by large-scale geographic areas.

FC

FS FG

FS
ACF FG

ACF

Specifically,  we  employ  two  multi-head  attention  modules
for  adaptive  contextual  image  feature  fusion  on  surrounding
scene  and  global  scene.  The  query  feature  retrieves  fea-
tures  from  the  current  block,  while  the  keys  and  values,
derived from  or , are obtained from the corresponding
contextual  blocks.  This  process  facilitates  adaptive  feature
extraction from the context based on the visual feature of the
current  block,  thereby  enhancing  focus  on  the  most  relevant
features.  The  ACF  module  is  implemented  using  the  Multi-
HeadAttention  module.  The  and  are  defined  as
follows:
 

FS
ACF = ACF(FC ,FS ) (5)

 

FG
ACF = ACF(FC ,FS ,FG) (6)

FS
ACF FG

ACF

FC
ACF FS

ACF
FS

Fused FC FS
ACF FG

ACF
FG
ACF

where  and  are the high-value visual features adap-
tively extracted from the surrounding scene and global scene,
respectively,  based  on  the  center  scene.  For  the  median
branch,  features  and  are  concatenated  to  obtain

.  For  the  global  branch,  features , ,  are
concatenated to obtain .  These factors can be expressed
as
 

FS
fused =Concat(FC

ACF,F
S
ACF) (7)

 

FG
fused =Concat(FC

ACF,F
S
ACF,F

G
ACF). (8)

FS
Fused FG

ACF FC

The  ACF  Module  outputs  two  contextual  fusion  features,
 and , along with the center scene feature . Fea-

tures at each level contain high-value visual information rele-

FCvant  to  the  center  scene,  with  as  the  primary  feature  for
that scale.  

C.  Optimization With Multi-Level Supervision

FG
ACF

PC PS PG

Intuitively,  directly  utilizing  the  visual  features  richest  in
 might  achieve  the  highest  classification  performance.

However, introducing auxiliary scenes may overlook discrimi-
native  features  of  the  center  scene  itself  and  lead  to  model
overfitting, thus undermining the performance. Therefore, uti-
lizing only the branch features rich in contextual  information
for supervised learning is expected to be insufficient and may
also reduce the model’s  generalization capability.  To address
this,  we  propose  a  multi-level  supervision  (MLS)  strategy.
Specifically, the features extracted from the three branches are
subsequently fed into three classification heads for prediction

,  and . These factors can be expressed as
 

PC = HEADC(FC) (9)
 

PS = HEADS (FS
fused) (10)

 

PG = HEADG(FG
fused). (11)

MLS  strategy  uses  ground  truth  to  constrain  predictions
from  all  branches  to  calculate  the  loss.  This  ensures  that  the
model extracts effective features even at smaller field-of-view,
thereby  reducing  the  risk  of  associating  category  semantics
with erroneous visual features from the context, thus prevent-
ing overfitting. The total loss of FGSC is defined as follows:
 

Lossall = LossC +LossS +LossG. (12)
PGDuring  inference,  we  use  as  the  model’s  predictor,

which possesses the complete auxiliary scene information and
gets sufficient generalization by MLS.  

V.  Experimental Results and Analysis

In this subsection, we first introduce the evaluation metrics,
and then describe our implementation details and mainstream
methods  for  FGSC.  Finally,  extensive  evaluation  of  our  pro-
posed CAT are performed on the MEET dataset.  

A.  Evaluation Metrics
Considering  the  natural  long-tail  distribution  of  different

scene categories in real-world scenarios, this study uses over-
all  accuracy (OA) and balance accuracy (BA) as  the primary
evaluation  metrics.  The  overall  accuracy  (OA)  is  defined  as
the number of correctly classified images divided by the total
number of images in the dataset. The score of OA reflects the
overall  performance  of  classification  models  instead  of  per
class as follows:
 

OA =
Nc

Nt
(13)

Nc
Nt

where  represents  the  number  of  correctly  classified
images,  and  represents  the  total  number  of  images  in  the
dataset.  The balance accuracy (BA) is defined as the average
OA across all classes in the dataset. The BA score reflects the
average  performance  of  the  classification  model  across  each
class as follows: 
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BA =
1
C

C∑
i=1

OAi (14)

OAi

BAmany BAmed BAfew

where  represents  the  OA  of  the i-th  class.  To  further
understand the performance on the dataset,  we categorize the
MEET  dataset  based  on  sample  quantities.  Specifically,  we
define  a  set  of  sample  ranges  as  (0, 1500],  (1500, 10  000],
(10  000, 150  000].  Categories  are  classified  based  on  their
sample counts into many, medium (Med), and few. The corre-
sponding BAs are denoted as , , and .  

B.  Implementation Details
Generally,  most  algorithms  used  in  our  experiments  are

sourced  from  the  open-source  PyTorch-based  library  TIMM.
This library integrates various state-of-the-art computer vision
models, along with their respective backbones, feature extrac-
tors,  and  classification  heads.  They  are  capable  of  reproduc-
ing the original accuracy of their respective algorithms within
a unified framework, ensuring fairness. Additionally, for other
models, we use official open-source code as much as possible
to  ensure  experimental  rigor.  The  experiments  are  conducted
on  a  server  with  1  NVIDIA  GeForce  RTX 3090 GPU  and
24 GB of memory. To ensure a fair comparison, we apply the
most consistent pre-trained model parameters across all meth-
ods.  We  use  the  Adam  optimizer  with  a  learning  rate  of
0.00005.  For  some  remote  sensing  models,  which  are  rela-
tively smaller,  a  learning rate  of 0.0005 is  used to  avoid sig-
nificantly  reducing  training  efficiency,  except  for  SkySense.
In all experiments, the batch size is set to 16, except for those
using Swin-Huge as the backbone, where it is set to 8.  

C.  Mainstream Methods
To  establish  a  benchmark  for  FGSC  with  zoom-free  RSI,

we  re-implement  scene  classification  methods.  In  the  remote
sensing  field,  we  select  several  representative  works:  ARC-
Net [50],  MF2CNet [51],  GCSANet [52],  DOFA [59] and
SkySense [14].  Given  the  rapid  progress  in  exploring  back-
bone  models  in  the  general  computer  vision  field,  we  also
incorporate many widely validated methods as strong compar-
ison benchmarks,  including ResNet [45],  HRNet [46],  Incep-
tion-Next [44],  MaxViT [47],  DAVit [48],  and  swin  trans-
former  (Swin) [49].  To  ensure  the  performance  of  baseline
methods,  we  train  all  baseline  methods  with  full  parameters.
While considering the practical usability of our CAT, we use
AFT for parameter-efficient fine-tuning, which means perfor-
mance  of  CAT  could  potentially  be  further  improved  with
full-parameter training.

Considering  the  substantial  benefits  of  pre-trained  model
weights  for  downstream  tasks,  we  use  pre-trained  model
weights on ImageNet-22K for initialization wherever possible,
and thus use center scenes or global scenes as model input to
meet the three-channel input requirement. For our CAT, since
it  is  specifically  designed  for  scene-in-scene  layout,  both  the
center scene and auxiliary scenes are used as inputs.  

D.  Results and Analysis
The  benchmark  and  experimental  results  of  FGSC  on  the

MEET dataset are shown in Table II. The experimental results
indicate  that  when  using  Swin-Large  as  the  backbone,  our
method  outperforms  comparison  methods  on  the  MEET
dataset benchmark. Our CAT achieves an OA of 95.87% and
a  BA  of  83.38%.  Compared  to  all  baselines  with  a  similar
number  of  parameters  (excluding  Swin-Huge),  our  method
shows  an  improvement  of  nearly  1% in  OA and  over  4% in
BA compared to methods using center scenes as input. Com-
pared  to  methods  using  global  scenes  as  input,  our  method
shows an improvement of over 0.3% in OA and over 1.8% in
BA. These results highlight a significant advantage across all
evaluated  metrics,  surpassing  both  methods  specifically
designed  for  scene  classification  and  those  generally  pro-
posed for image recognition. Additionally, compared to some
other  backbone  networks [44], [46], [48],  the  Swin-Large
model outperforms other methods significantly by incorporat-
ing the ACF to fully utilize contextual image information and
using MLS and AFT methods to further enhance performance.
Specifically,  the  performance  gains  come  from  the  model’s
more powerful  feature extraction capabilities.  The model  can
incorporate  complementary  cues  from  surrounding  imagery
for  the  center  scene,  especially  for  cases  where  the  center
scene lacks prominent visual features. Additionally, the model
does not overfit due to the large amount of redundant informa-
tion  in  the  surrounding  imagery.  This  is  reflected  in  the  per-
formance gains for the tail classes in terms of BA.

To further demonstrate the effectiveness and generalization
capabilities  of  our  CAT,  we  also  conduct  experiments  using
the  large  fundation  model,  namely  Swin-Huge  from  Sky-
Sense [14]. It can be observed that the model’s performance is
further  enhanced  when  employing  our  CAT,  achieving  the
best performance on both OA and BA, with scores of 97.74%
and  89.37%,  respectively,  thanks  to  the  pre-training  parame-
ter  methodology of  the  SkySense model.  Compared to  meth-
ods  using  Swin-Huge  as  backbone,  CAT shows  an  improve-
ment of over 2.8% in OA and over 9.5% in BA. Therefore, it
can be further verified that CAT achieves stable performance
improvements across backbone models of different sizes. For
the  following  ablation  study,  we  opt  to  use  the  Swin-Large
version to reduce the cost of training resources.

As shown in Fig. 9, the top 3 predictions from various com-
parison  methods  are  presented,  as  well  as  those  provided  by
CAT.  It  can  be  seen  that  CAT not  only  performs  the  best  in
classification  but  also  achieves  the  highest  prediction  confi-
dence. This is due to CAT’s strong capability in adaptive fea-
ture  extraction  of  spatial  context,  ultimately  leading  to  more
stable and accurate classification results.

To illustrate the superiority of our CAT in fusing multi-level
contexts, we design several classical context fusion strategies,
as shown in Fig. 10. These strategies fuse at the input, feature,
and  decision  levels,  respectively.  The  performance  results  in
Table III demonstrate that  our CAT achieves the best  perfor-
mance through ACF.

Overall,  comparison  results  on  multiple  metrics  demon-
strate  that  our  CAT  is  highly  effective.  It  makes  full  use  of
contextual  information  for  feature  extraction,  achieving  the
best  performance.  Moreover,  each  component  of  our  method
is independent of specific scene classification methods, allow-
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ing  it  to  seamlessly  adapt  and  enhance  performance  across
most proposed backbones without encountering specific limi-
tations. This observation highlights the versatility and applica-
bility of our proposed method.  

E.  Ablation Study of Our CAT
The  ablation  experiment  on  the  MEET  dataset  is  to  assess

the impact of three key components of our proposed method:
ACF, MLS and AFT. As shown in Table IV,  we explore the
effectiveness of the proposed ACF module. The ACF module
significantly  improves  scene  classification  performance  by
adaptively  extracting  high-value  graphical  feature  informa-

tion  from  contextual  data.  Compared  to  the  baseline,  OA
increases by 2.06% and BA improves by 1.48%. This module
provides the greatest performance boost by introducing incre-
mental  information  and  effectively  merging  features.  The
introduction of MLS further improves BA, indicating it effec-
tively  reduces  overfitting  on  contextual  information  for  most
categories.  Compared  to  using  only  the  ACF  module,  MLS
results  in  a  slight  decrease  in  head classes,  due to  most  head
classes’ strong  reliance  on  contextual  information,  which  is
different  from  the  minority  classes.  The  introduction  of  the
AFT module  results  in  increases  of  0.65% and 2.03% in  OA
and BA, respectively, reflecting that we successfully enhanced
the feature extraction capabilities of the three branches for dif-
ferent  inputs  without  adding  excessive  parameters.  These
results  highlight  the  capability  of  our  method  to  enhance  the
performance  of  existing  state-of-the-art  scene  classification
methods. Additionally, we evaluate the running time per sam-
ple  and  the  parameter  number  for  CAT,  demonstrating  that
each module of CAT is lightweight and does not significantly
impact efficiency. To further demonstrate that CAT can mine
the  auxiliary  image  context  to  combat  intra-class  variability
and  inter-class  similarity,  we  compare  the  class-wise  accu-

 

TABLE II 
Performance (%) Comparison of the Proposed CAT and Other Methods on the Meet Dataset

Method Type Backbone Pretrain Dataset Input
Performance metrics

OA BAmany BAmed BAfew BA

Methods Generally Proposed for Natural Image Recognition

InceptionNext [44] CNN InceptionNext-Base ImageNet-1K
Center scene 90.37 93.66 67.99 66.71 71.02

Global scene 92.98 96.72 73.00 62.88 72.34

Resnet [45] CNN Resnet101 ImageNet-22K
Center scene 81.58 91.21 52.71 47.44 55.96

Global scene 82.80 95.46 51.53 39.57 52.94

HRNet [46] CNN HRNet-w64 ImageNet-22K
Center scene 91.66 93.93 71.49 73.25 75.26

Global scene 94.27 96.52 78.80 67.25 76.76

MaxViT [47] Transformer Maxvit-Large ImageNet-22K
Center scene 91.22 94.94 69.43 69.79 73.08

Global scene 93.57 97.34 74.72 65.90 74.41

DAVit [48] Transformer Davit-Base ImageNet-22K
Center scene 90.85 94.64 69.02 66.54 71.58

Global scene 94.26 97.51 76.65 68.91 76.52

Swin [49] Transformer Swin-Large ImageNet-22K
Center scene 92.23 94.89 73.95 71.24 75.78

Global scene 95.58 97.82 83.04 73.82 81.50

Methods Specifically Proposed for RSI Scene Classification

ARCNet [50] CNN Resnet101 –
Center scene 88.55 93.27 63.04 59.94 65.99

Global scene 89.78 96.18 65.59 52.84 64.85

MF2CNet [51] CNN Resnet50 –
Center scene 67.52 85.75 31.90 25.18 36.70

Global scene 88.43 88.43 34.93 20.39 36.65

GCSANet [52] CNN Densenet121 –
Center scene 85.44 92.39 59.04 54.10 61.71

Global scene 89.04 95.72 63.55 50.39 62.88

DOFA [59] Transformer Vit-Large DOFA
Center scene 94.88 96.88 80.67 71.41 79.31

Global scene 93.31 94.37 77.52 78.97 80.40

SkySense [14] Transformer Swin-Huge SkySense-21.5M
Center scene 94.52 97.55 79.57 73.76 79.79

Global scene 94.93 98.41 81.43 67.72 78.45

Our CAT Transformer Swin-Large ImageNet-22K Scene-in-scene 95.87 97.04 82.14 80.05 83.38

Our CAT Transformer Swin-Huge SkySense-21.5M Scene-in-scene 97.74 99.00 90.80 84.19 89.37

 

TABLE III
Performance (%) Comparison of the Proposed CAT and

Other Fusion Strategies

Strategy OA BAmany BAmed BAfew BA

Input-level fusion 81.41 91.19 49.31 39.44 51.24

Feature-level fusion 86.26 95.37 57.99 46.74 58.77

Decision-level fusion 85.78 95.24 56.95 43.46 56.99

Our CAT 95.87 97.04 82.14 80.05 83.38
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racy across all 80 categories on the MEET dataset before and
after applying CAT, as illustrated in Fig. 11. The results show
a significant improvement in accuracy for the majority of cat-
egories.  Specifically,  the  accuracy  for  the  River  category
improved  by  3%,  and  the  accuracy  for  the  Lake  category

improved by 5%.
The  effectiveness  of  our  method  has  been  quantitatively

evaluated in Tables II and IV. To further illustrate its capabil-
ity  in  contextual  feature  extraction,  we  visualize  the  t-SNE
feature  map on each branch.  We employed t-SNE method to
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Fig. 10.     Illustration of three baseline fusion strategies.
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visualize  the  learned  representative  features  of  each  ablation
study  setting.  The  perplexity  for  all  four  cases  is  10  and  50

samples from all 80 geospatial scene categories are randomly
selected  to  create  a  t-SNE  plot.  As  shown  in Fig.  12,  after

 

TABLE IV 
Performance (%) Comparison of the Ablation Study (Running Time Refers to Running Time Per One Sample)

ACF MLS AFT Running time (s) Parameters (M) OA BAmany BAmed BAfew BA
× × × 0.0139 195.12 92.23 94.89 73.95 71.24 75.78
✓ × × 0.0168 226.05 94.29 97.94 79.00 67.80 77.26
✓ ✓ × 0.0168 226.05 95.22 97.01 80.64 76.65 81.35
✓ ✓ ✓ 0.0174 233.15 95.87 97.04 82.14 80.05 83.38
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Fig. 11.     Comparison of class-wise accuracy across all 80 categories on the MEET dataset before and after applying ACF + MLS + AFT.
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applying  ACF,  the  embeddings  do  not  become  significantly
more  separable  in  the  feature  space.  This  may  be  due  to  the
model overfitting to some extent on the auxiliary scene. How-
ever,  after  applying  MLS  to  enhance  the  feature  extraction
capabilities for both the center scene and surrounding scenes,
and applying the AFT module to enhance the feature capabili-
ties  of  the  three  branches,  the  embeddings  become  signifi-
cantly  more  separable.  These  results  indicate  that  our  CAT
achieves better class separability at the feature level.  

F.  Superiority Analysis of Our CAT
In Fig. 13, we present some examples with scores and class

activation  map  (CAM)  on  each  branch.  The  scores  represent
the prediction on the ground truth category (shown on the left
side)  after  applying  softmax  from  classification  head  on  that
branch. Changes in the scores reflect the gain in performance
due  to  the  accumulation  of  multi-level  context.  It  can  be
observed  that  the  predictions  consistently  improve  with  the
introduction  of  multi-level  auxiliary  scenes,  which  is  reason-
able  for  cases  that  require  auxiliary  scenes.  However,  for
cases  that  can  achieve  sufficient  saliency  without  auxiliary
scenes,  such as airport  example in Fig.  13,  the model perfor-

mance  has  not  degraded  with  the  introduction  of  redundant
information.  This  demonstrates  that  our  model  has  an  adap-
tive  context  fusion  capability,  showing  strong  generalization.
With  the  introduction  of  auxiliary  scenes,  the  model  can
extract  more  visual  features  from the  context  to  interpret  the
center  scene.  Specifically,  from  the  examples  of  river  and
lake,  it  can  be  observed  that  using  only  the  center  scene  as
input is  not  sufficient.  After  introducing auxiliary scenes,  the
input data includes contextual information, such as riverbanks,
enabling  the  model  to  correctly  differentiate  the  water  body
into  a  river  or  lake.  For  the  village  example  illustrated,  the
visual  features  of  fields  included in the auxiliary scenes con-
tribute  to  distinguish  the  village  category  from  other  similar
categories in the center scene, such as low-rise residential area
category.  

G.   Application  Evaluation  of  Our  MEET  on  Urban  Functional
Zone Mapping

To validate the setting superiority of the zoom-free charac-
teristic  and  scene-in-scene  sample  layout  of  our  MEET
dataset,  we  conduct  experiments  on  urban  functional  zone
mapping (UFZ). In the pilot application, UFZ aims to predict
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Fig. 12.     Visualization of the features for different ablation study settings of our CAT.
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×

the land-use category of  each fixed-resolution RSI block and
considers  8  land-use  categories:  the  residential  (Res.)  cate-
gory  denotes  various  types  of  residential  buildings  of  differ-
ent  heights;  the  commercial  (Com.)  category  indicates  com-
mercial  and  business  activities  including  offices,  retail  and
malls;  the  industrial  (Ind.)  category  denotes  the  land  with
industrial  purposes;  the transportation (Tra.)  category include
various  transportation  facilities;  the  educational  (Edu.)  cate-
gory  denotes  educational  institutions  including  universities,
colleges  and  primary  and  secondary  schools;  the  medical
(Med.) category is primarily dedicated to healthcare facilities;
the sport and cultural (Spo.) category indicates sports and cul-
tural activities including sports fields and art centers; the park
and  greenspace  (Par.)  category  consists  of  parks,  forests  and
other  public  green  spaces.  Across  five  cities  (e.g.,  Shanghai,
Lanzhou,  Wuhan,  Guangzhou  and  Yulin),  we  create  a  UFZ
evaluation  dataset  where  one  large  region  in  each  city  is
selected  and  its  corresponding  1-meter  spatial  resolution  RSI
is  split  into  blocks  with  256  256  pixels.  A  total  of  4323
blocks  are  manually  annotated  by  experts  in  remote  sensing
with  the  above  8-class  land-use  classification  system.  To
avoid  ambiguous  annotation,  we  only  choose  semantically
clear blocks for manual labeling, which results in a relatively

sparse  annotation  distribution.  The  specific  annotation  infor-
mation is summarized in Table V.

To  verify  the  practicability  and  superiority  of  the  given
MEET  dataset,  we  train  models  on  MEET  and  the  other
widely  adopted  datasets  such  as  AID  and  NWPU  to  address
UFZ. As far as models, RVSA [70] and MTP [71] are selected
as  they  are  the  state-of-the-art  models  on  AID  and  NWPU,
respectively. During inference, both the RVSA model trained
on AID and the MTP model trained on NWPU adopt the cen-
ter  block  as  input  for  classification.  To  facilitate  the  unified
evaluation, we map the classification results of models trained
on AID, NWPU and MEET into the 8-class land-use classifi-
cation system.

The  evaluation  results  of  different  models  trained  on  AID,
NWPU, and MEET are shown in Table VI. The experimental
results  indicate  that  the  combination  of  MEET  and  CAT
achieves the best performance in most categories,  with a sig-
nificant  improvement  over  the  other  combinations.  This
improvement  comes  from  both  the  dataset  and  the  method.
From  the  dataset  perspective,  MEET  has  more  fine-grained
categories, enabling the model to extract more detailed seman-
tic information from complex urban environments, leading to
a  more  comprehensive  understanding  of  different  UFZ  cate-
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Fig. 13.     Visualization of the samples using CAM with our CAT. The scores refers to the prediction probability on the ground truth category after applying
different amounts of contextual features. Changes in the score reflect the gain in performance due to the accumulation of multi-level context.
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gories.  From  the  method  perspective,  CAT  can  adaptively
integrate  auxiliary  scenes,  providing  more  stable  classifica-
tion performance for cases where the center scene is not very

salient.  Furthermore, Figs.  14 and 15 illustrate  the  mapping
results  under  various  settings  from  two  different  cities.  It  is
evident  that  our  CAT,  when  trained  on  the  MEET  dataset,

 

TABLE V 
Number of Annotated Blocks in the UFZ Evalulation Dataset

Location Res. Com. Ind. Tra. Edu. Med. Spo. Par. All

Wuhan 710 6 182 10 391 4 29 241 1573

Shanghai 784 34 89 119 69 4 38 110 1247

Guangzhou 196 43 107 18 155 4 165 393 1081

Lanzhou 95 9 5 0 26 2 11 78 226

Yulin 129 2 2 6 49 4 7 7 196

Total 1914 94 385 143 690 18 250 829 4323

 

TABLE VI 
Performance (%) Comparison of Different Experimental Settings on UFZ

Dataset Method Res. Com. Ind. Tra. Edu. Med. Spo. Par. OA BA

AID RVSA 52.87 51.06 71.43 42.66 26.67 0.00 10.40 91.07 54.61 43.27

NWPU MTP 11.08 63.83 70.91 81.82 0.00 0.00 83.60 52.47 30.21 45.46

MEET CAT 93.73 59.57 66.49 88.11 58.26 50.00 90.00 90.83 83.76 74.63

 

(a) Ground truth (b) NWPU + MTP

(c) AID + RVSA (d) MEET + CAT

Res. Com. Ind. Tra. Edu. Med. Spo. Par.

 
Fig. 14.     Illustration of the mapping results of different combinations of dataset and model on the pilot area of Shanghai. The displayed image is a sub-region
within the study area of Shanghai.

LI et al.: MEET: A MILLION-SCALE DATASET FOR FGSC WITH ZOOM-FREE RSI 1019 



demonstrates a substantial performance improvement in map-
ping accuracy and geographical coherence. It is noted that our
CAT can effectively utilize contextual information to improve
classification performance even in areas with low saliency. In
Fig. 14, the CAT with MEET shows better classification capa-
bilities  for  objects  such  as  parks,  airports,  and  residential
buildings,  thanks  to  the  effective  use  of  contextual  informa-
tion.  In Fig.  15,  the  CAT  with  MEET  demonstrates  signifi-
cantly better classification performance for the low-salient cat-
egories  of  Educational  and  Medical,  thanks  to  the  MEET
dataset’s  more  comprehensive  and  rich  subclass  samples  for
UFZ  categories.  As  a  whole,  these  comparisons  underscore
the effectiveness of the zoom-free scene-in-scene sample lay-
out in MEET.  

VI.  Conclusion

In this paper, we introduce a large dataset named MEET for
FGSC with zoom-free RSI. MEET is comprised of over 1.03
million samples with scene-in-scene layout, encompassing 80
fine-grained  geospatial  scene  categories.  Samples  are  col-
lected  globally  and  include  multi-level  spatial  context  infor-
mation.  The  large  sample  size,  the  granularity  of  categories,
and  the  inclusion  of  spatial  context  imagery  make  MEET  a

valuable  dataset.  It  provides  essential  data  conditions  for
advancing a challenging yet meaningful new task, FGSC with
zoom-free  RSI.  Additionally,  we  propose  a  CAT  for  FGSC,
which  effectively  integrates  contextual  information  and
achieves progressive visual feature extraction. Compared with
existing state-of-the-art  algorithms,  our  CAT performs excel-
lently  on  the  MEET  dataset,  demonstrating  the  CAT’s  value
from both quantitative and qualitative perspectives.

In future work, we plan to further enrich the MEET dataset
in  terms  of  sample  volume  and  category  diversity  and  pro-
pose  global-scale  scene  classification  mapping  products.
These  will  be  made available  to  a  broader  scientific  commu-
nity  in  need  of  related  analytical  data,  thereby  continuously
driving progress in this research area.

References 

 J.  Xie,  N.  He,  L.  Fang,  and A.  Plaza, “Scale-free  convolutional  neural
network  for  remote  sensing  scene  classification,” IEEE Trans.  Geosci.
Remote Sens., vol. 57, no. 9, pp. 6916–6928, Sept. 2019.

[1]

 X.  Tang,  Q.  Ma,  X.  Zhang,  F.  Liu,  J.  Ma,  and  L.  Jiao, “Attention
consistent network for remote sensing scene classification,” IEEE J. Sel.
Top. Appl. Earth Obs. Remote Sens., vol. 14, pp. 2030–2045, 2021.

[2]

 H.  Sun,  S.  Li,  X.  Zheng,  and  X.  Lu, “Remote  sensing  scene[3]

 

(a) Ground truth (b) NWPU + MTP

(c) AID + RVSA (d) MEET + CAT

Res. Com. Ind. Tra. Edu. Med. Spo. Par.

 
Fig. 15.     Illustration of the mapping results of different combinations of dataset and model on the pilot area of Wuhan. The displayed image is a sub-region
within the study area of Wuhan.

 1020 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 12, NO. 5, MAY 2025



classification  by  gated  bidirectional  network,” IEEE  Trans.  Geosci.
Remote Sens., vol. 58, no. 1, pp. 82–96, Jan. 2020.
 Q.  Zou,  L.  Ni,  T.  Zhang,  and  Q.  Wang, “Deep  learning  based  feature
selection for remote sensing scene classification,” IEEE Geosci. Remote
Sens. Lett, vol. 12, no. 11, pp. 2321–2325, Nov. 2015.

[4]

 S.  R.  Phinn,  C.  M. Roelfsema,  and P.  J.  Mumby, “Multi-scale,  object-
based image analysis for mapping geomorphic and ecological zones on
coral  reefs,” Int.  J.  Remote  Sens.,  vol. 33,  no. 12,  pp. 3768–3797, Jun.
2012.

[5]

 N. B. Mishra and K. A. Crews, “Mapping vegetation morphology types
in a dry savanna ecosystem: Integrating hierarchical object-based image
analysis  with  random  forest,” Int.  J.  Remote  Sens.,  vol. 35,  no. 3,
pp. 1175–1198, Feb. 2014.

[6]

 Z. Yang, H. Yu, M. Feng, W. Sun, X. Lin, M. Sun, Z.-H. Mao, and A.
Mian, “Small  object  augmentation  of  urban  scenes  for  real-time
semantic segmentation,” IEEE Trans. Image Process., vol. 29, pp. 5175–
5190, 2020.

[7]

 P.  Gamba, “Human  settlements:  A  global  challenge  for  EO  data
processing and interpretation,” Proc. IEEE, vol. 101, no. 3, pp. 570–581,
Mar. 2013.

[8]

 T. R. Martha, N. Kerle, C. J. Van Westen, V. Jetten, and K. V. Kumar,
“Segment  optimization  and  data-driven  thresholding  for  knowledge-
based landslide detection by object-based image analysis,” IEEE Trans.
Geosci. Remote Sens., vol. 49, no. 12, pp. 4928–4943, Dec. 2011.

[9]

 G.  Cheng,  L.  Guo,  T.  Zhao,  J.  Han,  H.  Li,  and  J.  Fang, “Automatic
landslide  detection  from  remote-sensing  imagery  using  a  scene
classification method based on BoVW and pLSA,” Int. J. Remote Sens.,
vol. 34, no. 1, pp. 45–59, Jan. 2013.

[10]

 G. Fu, C. Liu, R. Zhou, T. Sun, and Q. Zhang, “Classification for high
resolution remote sensing imagery using a fully convolutional network,”
Remote Sens., vol. 9, no. 5, p. 498, May 2017.

[11]

 X.-Y.  Tong,  G.-S.  Xia,  Q.  Lu,  H.  Shen,  S.  Li,  S.  You,  and  L.  Zhang,
“Land-cover  classification  with  high-resolution  remote  sensing  images
using  transferable  deep  models,” Remote  Sens.  Environ.,  vol. 237,  p.
111322, Feb. 2020.

[12]

 Z.  Liu,  H.  Hu,  Y.  Lin,  Z.  Yao,  Z.  Xie,  Y.  Wei,  J.  Ning,  Y.  Cao,  Z.
Zhang, L. Dong, F. Wei, and B. Guo, “Swin transformer V2: Scaling up
capacity  and  resolution,” in Proc.  IEEE/CVF  Conf.  Computer  Vision
and Pattern Recognition, New Orleans, USA, 2022, pp. 11999–12009.

[13]

 X. Guo, J. Lao, B. Dang, Y. Zhang, L. Yu, L. Ru, L. Zhong, Z. Huang,
K. Wu, D. Hu, H. He, J. Wang, J. Chen, M. Yang, Y. Zhang, and Y. Li,
“SkySense:  A  multi-modal  remote  sensing  foundation  model  towards
universal  interpretation  for  earth  observation  imagery,” in Proc.
IEEE/CVF  Conf.  Computer  Vision  and  Pattern  Recognition,  Seattle,
USA, 2024, pp. 27662–27673.

[14]

 Y. Long, G.-S. Xia, S. Li, W. Yang, M. Y. Yang, X. X. Zhu, L. Zhang,
and  D.  Li, “On  creating  benchmark  dataset  for  aerial  image
interpretation: Reviews, guidances, and million-AID,” IEEE J. Sel. Top.
Appl. Earth Obs. Remote Sens., vol. 14, pp. 4205–4230, 2021.

[15]

 G.  Cheng,  J.  Han,  and  X.  Lu, “Remote  sensing  image  scene
classification:  Benchmark  and  state  of  the  art,” Proc.  IEEE,  vol. 105,
no. 10, pp. 1865–1883, Oct. 2017.

[16]

 G.-S. Xia, J. Hu, F. Hu, B. Shi, X. Bai, Y. Zhong, L. Zhang, and X. Lu,
“AID: A benchmark data set for performance evaluation of aerial scene
classification,” IEEE  Trans.  Geosci.  Remote  Sens.,  vol. 55,  no. 7,
pp. 3965–3981, 2017.

[17]

 F. Hu, W. Yang, J. Chen, and H. Sun, “Tile-level annotation of satellite
images  using  multi-level  max-margin  discriminative  random  field,”
Remote Sens., vol. 5, no. 5, pp. 2275–2291, May 2013.

[18]

 Y. Li,  X.  Huang,  and  H.  Liu, “Unsupervised  deep  feature  learning  for
urban  village  detection  from  high-resolution  remote  sensing  images,”
Photogramm. Eng. Remote Sens., vol. 83, no. 8, pp. 567–579, Aug. 2017.

[19]

 Y. Huang, F. Zhang, Y. Gao, W. Tu, F. Duarte, C. Ratti, D. Guo, and Y.
Liu, “Comprehensive urban space representation with varying numbers
of  street-level  images,” Comput.  Environ.  Urban  Syst.,  vol. 106,  p.
102043, Dec. 2023.

[20]

 C. Xiao, J. Zhou, J. Huang, H. Zhu, T. Xu, D. Dou, and H. Xiong, “A
contextual  master-slave  framework  on  urban  region  graph  for  urban
village  detection,” in Proc.  IEEE  39th  Int.  Conf.  Data  Engineering,
Anaheim, USA, 2023, pp. 736–748.

[21]

 W.  Lu,  C.  Tao,  H.  Li,  J.  Qi,  and  Y.  Li, “A  unified  deep  learning
framework  for  urban  functional  zone  extraction  based  on  multi-source
heterogeneous data,” Remote Sens.  Environ.,  vol. 270,  p. 112830, Mar.
2022.

[22]

 Y.  Yang  and  S.  Newsam, “Bag-of-visual-words  and  spatial  extensions
for  land-use  classification,” in Proc.  18th  SIGSPATIAL  Int.  Conf.
Advances  in  Geographic  Information  Systems,  San  Jose,  USA,  2010,
pp. 270–279.

[23]

 G.-S.  Xia,  W.  Yang,  J.  Delon,  Y.  Gousseau,  H.  Sun,  and  H.  Maître,
“Structural high-resolution satellite image indexing,” in Proc. ISPRS TC
VII Symp.——100 Years ISPRS, Vienna, Austria, 2010, pp. 298–303.

[24]

 S. Basu, S. Ganguly, S. Mukhopadhyay, R. DiBiano, M. Karki, and R.
Nemani, “DeepSat:  A  learning  framework  for  satellite  imagery,” in
Proc.  23rd  SIGSPATIAL  Int.  Conf.  Advances  in  Geographic  Inform-
ation Systems, Seattle, USA, 2015, pp. 37.

[25]

 O. A. B. Penatti, K. Nogueira, and J. A. Dos Santos, “Do deep features
generalize  from  everyday  objects  to  remote  sensing  and  aerial  scenes
domains?,” in Proc.  IEEE  Conf.  Computer  Vision  and  Pattern
Recognition Workshops, Boston, USA, 2015, pp. 44–51.

[26]

 L. Zhao, P. Tang, and L. Huo, “Feature significance-based multibag-of-
visual-words  model  for  remote  sensing  image  scene  classification,” J.
Appl. Remote Sens., vol. 10, no. 3, p. 035004, Jul. 2016.

[27]

 Q.  Zhu,  Y.  Zhong,  B.  Zhao,  G.-S.  Xia,  and  L.  Zhang, “Bag-of-visual-
words  scene  classifier  with  local  and  global  features  for  high  spatial
resolution  remote  sensing  imagery,” IEEE  Geosci.  Remote  Sens.  Lett,
vol. 13, no. 6, pp. 747–751, Jun. 2016.

[28]

 Z. Xiao, Y. Long, D. Li, C. Wei, G. Tang, and J. Liu, “High-resolution
remote  sensing  image  retrieval  based  on  CNNs  from  a  dimensional
perspective,” Remote Sens., vol. 9, no. 7, p. 725, Jul. 2017.

[29]

 P.  Helber,  B.  Bischke,  A.  Dengel,  and  D.  Borth, “EuroSAT:  A  novel
dataset  and  deep  learning  benchmark  for  land  use  and  land  cover
classification,” IEEE  J.  Sel.  Top.  Appl.  Earth  Obs.  Remote  Sens.,
vol. 12, no. 7, pp. 2217–2226, Jul. 2019.

[30]

 W.  Zhou,  S.  Newsam,  C.  Li,  and  Z.  Shao, “PatternNet:  A  benchmark
dataset  for  performance  evaluation  of  remote  sensing  image  retrieval,”
ISPRS J. Photogramm. Remote Sens., vol. 145, pp. 197–209, Nov. 2018.

[31]

 Q.  Wang,  S.  Liu,  J.  Chanussot,  and  X.  Li, “Scene  classification  with
recurrent  attention  of  VHR  remote  sensing  images,” IEEE  Trans.
Geosci. Remote Sens., vol. 57, no. 2, pp. 1155–1167, Feb. 2019.

[32]

 G.  Sumbul,  M.  Charfuelan,  B.  Demir,  and  V.  Markl, “BigearthNet:  A
large-scale  benchmark  archive  for  remote  sensing  image  understan-
ding,” in Proc.  IEEE  Int.  Geoscience  and  Remote  Sensing  Symp.,
Yokohama, Japan, 2019, pp. 5901–5904.

[33]

 H. Li, X. Dou, C. Tao, Z. Wu, J. Chen, J. Peng, M. Deng, and L. Zhao,
“RSI-CB: A large-scale remote sensing image classification benchmark
using crowdsourced data,” Sensors, vol. 20, no. 6, p. 1594, Mar. 2020.

[34]

 X. Qi, P. Zhu, Y. Wang, L. Zhang, J. Peng, M. Wu, J. Chen, X. Zhao,
N.  Zang,  and  P.  T.  Mathiopoulos, “MLRSNet:  A  multi-label  high
spatial  resolution remote sensing dataset  for semantic scene understan-
ding,” ISPRS J. Photogramm. Remote Sens., vol. 169, pp. 337–350, Nov.
2020.

[35]

 H. Li,  H.  Jiang,  X.  Gu,  J.  Peng,  W. Li,  L.  Hong,  and C.  Tao, “CLRS:
Continual  learning  benchmark  for  remote  sensing  image  scene
classification,” Sensors, vol. 20, no. 4, p. 1226, Feb. 2020.

[36]

 Y.  Li,  D.  Kong,  Y.  Zhang,  Y.  Tan,  and  L.  Chen, “Robust  deep
alignment network with remote sensing knowledge graph for zero-shot
and  generalized  zero-shot  remote  sensing  image  scene  classification,”
ISPRS J. Photogramm. Remote Sens., vol. 179, pp. 145–158, Sept. 2021.

[37]

 Y.  Hua,  L.  Mou,  P.  Jin,  and  X.  X.  Zhu, “MultiScene:  A  large-scale
dataset  and  benchmark  for  multiscene  recognition  in  single  aerial
images,” IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 5610213, 2022.

[38]

 J. Yuan, L. Ru, S. Wang, and C. Wu, “WH-MAVS: A novel dataset and
deep  learning  benchmark  for  multiple  land  use  and  land  cover
applications,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 15,
pp. 1575–1590, 2022.

[39]

 F.  Fang,  L.  Zeng,  S.  Li,  D.  Zheng,  J.  Zhang,  Y.  Liu,  and  B.  Wan,
“Spatial  context-aware  method  for  urban  land  use  classification  using
street  view  images,” ISPRS  J.  Photogramm.  Remote  Sens.,  vol. 192,
pp. 1–12, Oct. 2022.

[40]

LI et al.: MEET: A MILLION-SCALE DATASET FOR FGSC WITH ZOOM-FREE RSI 1021 



 R.  Minetto,  M.  P.  Segundo,  and  S.  Sarkar, “Hydra:  An  ensemble  of
convolutional neural networks for geospatial land classification,” IEEE
Trans. Geosci. Remote Sens., vol. 57, no. 9, pp. 6530–6541, Sept. 2019.

[41]

 H.  C.  Wittich,  M.  Seeland,  J.  Wäldchen,  M.  Rzanny,  and  P.  Mäder,
“Recommending  plant  taxa  for  supporting  on-site  species
identification,” BMC Bioinformatics, vol. 19, no. 4, p. 190, May 2018.

[42]

 Y.  Li,  L.  Wang,  T.  Wang,  X.  Yang,  J.  Luo,  Q.  Wang,  Y.  Deng,  W.
Wang, X. Sun, H. Li, B. Dang, Y. Zhang, Y. Yu, and J. Yan, “STAR: A
first-ever  dataset  and  a  large-scale  benchmark  for  scene  graph
generation  in  large-size  satellite  imagery,” IEEE  Trans.  Pattern  Anal.
Mach. Intell., vol. 47, no. 3, pp. 1832–1849, Mar. 2025.

[43]

 W.  Yu,  P.  Zhou,  S.  Yan,  and  X.  Wang, “InceptionNeXt:  When
inception  meets  ConvNeXt,” in Proc.  IEEE/CVF  Conf.  Computer
Vision and Pattern Recognition, Seattle, USA, 2024, pp. 5672–5683.

[44]

 K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc.  IEEE  Conf.  Computer  Vision  and  Pattern
Recognition, Las Vegas, USA, 2016, pp. 770–778.

[45]

 K.  Sun,  B.  Xiao,  D.  Liu,  and  J.  Wang, “Deep  high-resolution
representation learning for human pose estimation,” in Proc. IEEE/CVF
Conf.  Computer  Vision  and  Pattern  Recognition,  Long  Beach,  USA,
2019, pp. 5686–5696.

[46]

 Z. Tu, H. Talebi, H. Zhang, F. Yang, P. Milanfar, A. Bovik, and Y. Li,
“MaxViT: Multi-axis vision transformer,” in Proc. 17th European Conf.
Computer Vision, Tel Aviv, Israel, 2022, pp. 459–479.

[47]

 M. Ding, B. Xiao, N. Codella, P. Luo, J. Wang, and L. Yuan, “DaViT:
Dual  attention  vision  transformers,” in Proc.  17th  European  Conf.
Computer Vision, Tel Aviv, Israel, 2022, pp. 74–92.

[48]

 Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo,
“Swin  transformer:  Hierarchical  vision  transformer  using  shifted
windows,” in Proc.  IEEE/CVF  Int.  Conf.  Computer  Vision,  Montreal,
Canada, 2021, pp. 9992–10002.

[49]

 Y.  Liu,  J.  Zhou,  W.  Qi,  X.  Li,  L.  Gross,  Q.  Shao,  Z.  Zhao,  L.  Ni,  X.
Fan, and Z. Li, “ARC-Net: An efficient network for building extraction
from  high-resolution  aerial  images,” IEEE  Access,  vol. 8,  pp. 154997–
155010, 2020.

[50]

 L. Bai, Q. Liu, C. Li, Z. Ye, M. Hui, and X. Jia, “Remote sensing image
scene classification using multiscale feature fusion covariance network
with  octave  convolution,” IEEE  Trans.  Geosci.  Remote  Sens.,  vol. 60,
pp. 5620214, 2022.

[51]

 W.  Chen,  S.  Ouyang,  W.  Tong,  X.  Li,  X.  Zheng,  and  L.  Wang,
“GCSANet: A global context spatial attention deep learning network for
remote sensing scene classification,” IEEE J. Sel. Top. Appl. Earth Obs.
Remote Sens., vol. 15, pp. 1150–1162, 2022.

[52]

 H.  Song,  Y.  Yuan,  Z.  Ouyang,  Y.  Yang,  and  H.  Xiang, “Quantitative
regularization  in  robust  vision  transformer  for  remote  sensing  image
classification,” Photogramm.  Rec.,  vol. 39,  no. 186,  pp. 340–372, Jun.
2024.

[53]

 F. Hu, G.-S. Xia, J. Hu, and L. Zhang, “Transferring deep convolutional
neural  networks  for  the  scene  classification  of  high-resolution  remote
sensing  imagery,” Remote  Sens.,  vol. 7,  no. 11,  pp. 14680–14707, Nov.
2015.

[54]

 E.  Li,  J.  Xia,  P.  Du,  C.  Lin,  and  A.  Samat, “Integrating  multilayer
features  of  convolutional  neural  networks  for  remote  sensing  scene
classification,” IEEE  Trans.  Geosci.  Remote  Sens.,  vol. 55,  no. 10,
pp. 5653–5665, Oct. 2017.

[55]

 S.  Chaib,  H.  Liu,  Y.  Gu,  and  H.  Yao, “Deep  feature  fusion  for  VHR
remote  sensing  scene  classification,” IEEE  Trans.  Geosci.  Remote
Sens., vol. 55, no. 8, pp. 4775–4784, Aug. 2017.

[56]

 K.  Xu,  H.  Huang,  P.  Deng,  and  G.  Shi, “Two-stream  feature
aggregation  deep  neural  network  for  scene  classification  of  remote
sensing images,” Inf. Sci., vol. 539, pp. 250–268, Oct. 2020.

[57]

 J.  Fang,  Y.  Yuan,  X.  Lu,  and  Y.  Feng, “Robust  space-frequency  joint
representation  for  remote  sensing  image  scene  classification,” IEEE
Trans. Geosci. Remote Sens., vol. 57, no. 10, pp. 7492–7502, Oct. 2019.

[58]

 Z.  Xiong,  Y.  Wang,  F.  Zhang,  A.  J.  Stewart,  J.  Hanna,  D.  Borth,  I.
Papoutsis,  B.  L.  Saux,  G.  Camps-Valls,  and  X.  X.  Zhu, “Neural
plasticity-inspired  foundation  model  for  observing  the  earth  crossing
modalities,” arXiv preprint arXiv: 2403.15356, 2024.

[59]

 S. Srivastava, J. E. Vargas Muñoz, S. Lobry, and D. Tuia, “Fine-grained[60]

landuse  characterization  using  ground-based  pictures:  A  deep  learning
solution  based  on  globally  available  data,” Int.  J.  Geogr.  Inf.  Sci.,
vol. 34, no. 6, pp. 1117–1136, Jun. 2020.
 Y. Yao, X. Yan, P. Luo, Y. Liang, S. Ren, Y. Hu, J. Han, and Q. Guan,
“Classifying land-use patterns by integrating time-series electricity data
and high-spatial resolution remote sensing imagery,” Int. J. Appl. Earth
Obs. Geoinf., vol. 106, p. 102664, Feb. 2022.

[61]

 C. Arbinger, M. Bullin, and A. Henrich, “Exploiting geodata to improve
image  recognition  with  deep  learning,” in Proc.  Web  Conf.,  Lyon,
France, 2022, pp. 648–655.

[62]

 Y.  Li,  W.  Chen,  X.  Huang,  Z.  Gao,  S.  Li,  T.  He,  and  Y.  Zhang,
“MFVNet: A deep adaptive fusion network with multiple field-of-views
for remote sensing image semantic segmentation,” Sci.  China Inf.  Sci.,
vol. 66, no. 4, p. 140305, Mar. 2023.

[63]

 W.  Chen,  Z.  Jiang,  Z.  Wang,  K.  Cui,  and  X.  Qian, “Collaborative
global-local  networks  for  memory-efficient  segmentation  of  ultra-high
resolution  images,” in Proc.  IEEE/CVF  Conf.  Computer  Vision  and
Pattern Recognition, Long Beach, USA, 2019, pp. 8916–8925.

[64]

 H.  K.  Cheng,  J.  Chung,  Y.-W.  Tai,  and  C.-K.  Tang, “CascadePSP:
Toward class-agnostic and very high-resolution segmentation via global
and local  refinement,” in Proc.  IEEE/CVF Conf.  Computer Vision and
Pattern Recognition, Seattle, USA, 2020, pp. 8887–8896.

[65]

 Y.  Li,  J.  Luo,  Y.  Zhang,  Y.  Tan,  J.-G.  Yu,  and  S.  Bai, “Learning  to
holistically  detect  bridges  from  large-size  VHR  remote  sensing
imagery,” IEEE  Trans.  Pattern  Anal.  Mach.  Intell.,  vol. 46,  no. 12,
pp. 11507–11523, Dec. 2024.

[66]

 Z.  Bai,  G.  Li,  and  Z.  Liu, “Global-local-global  context-aware  network
for salient object detection in optical remote sensing images,” ISPRS J.
Photogramm. Remote Sens., vol. 198, pp. 184–196, Apr. 2023.

[67]

 Y.  Liu,  S.  Shi,  J.  Wang,  and  Y.  Zhong, “Seeing  beyond  the  patch:
Scale-adaptive semantic segmentation of high-resolution remote sensing
imagery  based  on  reinforcement  learning,” in Proc.  IEEE/CVF  Int.
Conf. Computer Vision, Paris, France, 2023, pp. 16822–16832.

[68]

 L.  Zhang,  Z.  Tan,  G.  Zhang,  W.  Zhang,  and  Z.  Li, “Learn  more  and
learn  useful:  Truncation  compensation  network  for  semantic
segmentation  of  high-resolution  remote  sensing  images,” IEEE  Trans.
Geosci. Remote Sens., vol. 62, pp. 4403814, 2024.

[69]

 D.  Wang,  Q.  Zhang,  Y.  Xu,  J.  Zhang,  B.  Du,  D.  Tao,  and  L.  Zhang,
“Advancing plain vision transformer toward remote sensing foundation
model,” IEEE Trans. Geosci. Remote Sens., vol. 61, pp. 5607315, 2023.

[70]

 D. Wang, J. Zhang, M. Xu, L. Liu, D. Wang, E. Gao, C. Han, H. Guo,
B.  Du,  D.  Tao,  and  L.  Zhang, “MTP:  Advancing  remote  sensing
foundation  model  via  multitask  pretraining,” IEEE  J.  Sel.  Top.  Appl.
Earth Obs. Remote Sens., vol. 17, pp. 11632–11654, 2024.

[71]

Yansheng  Li (Senior  Member,  IEEE)  received  the
B.S.  degree  in  information  and  computing  science
from  Shandong  University  in  2010,  and  the  Ph.D.
degree  in  pattern  recognition  and  intelligent  system
from Huazhong  University  of  Science  and  Technol-
ogy  in  2015.  He  is  currently  a  Full  Professor  and
Vice  Dean  with  the  School  of  Remote  Sensing  and
Information Engineering, Wuhan University.  He has
authored  more  than  100  peer-reviewed  papers  such
as IEEE TPAMI, RSE, IEEE TIP, CVPR, ECCV and

AAAI. His research interests include knowledge graph, deep learning and their
applications in remote sensing big data mining. He is an Associate Editor of
IEEE TGRS and a Junior Editorial Member of The Innovation.

Yuning  Wu received  the  B.S.  degree  in  computer
science  and  technology  from  Wuhan  University  in
2022. He is currently pursuing the M.S. degree with
the School of Remote Sensing and Information Engi-
neering,  Wuhan  University.  His  research  interests
include remote sensing scene classification and few-
shot learning.

 1022 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 12, NO. 5, MAY 2025



Gong  Cheng (Member,  IEEE)  received  the  B.S.
degree  in  biomedical  engineering  from  Xidian  Uni-
versity  in  2007,  and  the  M.S.  and  Ph.D.  degrees  in
pattern  recognition  and  intelligent  systems  from
Northwestern  Polytechnical  University  in  2010  and
2013,  respectively.  He  is  currently  a  Professor  with
Northwestern Polytechnical  University.  His  research
interests  include  computer  vision  and  pattern  recog-
nition.

Chao Tao received the B.S. degree from the School
of  Mathematics  and  Statistics,  Huazhong  University
of  Science  and  Technology  in  2007,  and  the  Ph.D.
degree from the Institute for Pattern Recognition and
Artificial  Intelligence,  Huazhong  University  of  Sci-
ence  and  Technology  in  2012.  He  is  currently  an
Associate  Processor  with the School  of  Geosciences
and  Info-Physics,  Central  South  University.  He  has
authored  more  than  30  peer-reviewed  articles  in
international journals from multiple domains, such as

remote sensing and computer vision. His research interests include computer
vision, machine learning, deep learning, and their applications in remote sens-
ing. He has been frequently serving as a Reviewer for more than four interna-
tional  journals,  including the IEEE Transactions on Geoscience and Remote
Sensing (IEEE-TGRS), IEEE Geoscience and Remote Sensing Letters (IEEE-
GRSL), IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing (IEEE-JSTAR), PERS, and ISPRS. He is also a Communica-
tion Evaluation Expert for the National Natural Science Foundation of China.

Bo Dang received the B.S. degree in remote sensing
science  and  technology  from  Wuhan  University  in
2022.  He  is  currently  working  toward  the  Ph.D.
degree with the School of Remote Sensing and Infor-
mation Engineering, Wuhan University. He has pub-
lished several papers in CVPR, AAAI, ISPRS Journal
of  Photogrammetry and Remote  Sensing,  etc.  His
research  interests  include  remote  sensing  semantic
segmentation and remote sensing foundation model.

Yu Wang received the B.S.  degree at  the School of
Remote  Sensing  and  Information  Engineering,
Wuhan University in 2023. He is  currently pursuing
his  M.S.  degree with  the School  of  Remote Sensing
and Information Engineering, Wuhan University. His
research  interests  include  deep  learning  and  knowl-
edge graph.

Jiahao Zhang is  currently  pursuing the  B.S.  degree
with the School of Remote Sensing and Information
Engineering,  Wuhan  University.  His  research  inter-
ests  include  developing  unified  modeling  frame-
works from multi-source geospatial data.

Chuge Zhang is  currently  pursuing  the  B.S.  degree
with the School of Remote Sensing and Information
Engineering,  Wuhan  University.  His  research  inter-
ests include remote sensing image segmentation and
model compression.

Yiting Liu is currently pursuing the B.S. degree with
the School of Remote Sensing and Information Engi-
neering,  Wuhan  University.  His  research  interests
include remote sensing scene classification.

Xu Tang (Senior Member, IEEE) received the B.S.,
M.S., and Ph.D. degrees in electronic circuit and sys-
tem from Xidian University in 2007, 2010, and 2017,
respectively.  From  2015  to  2016,  he  was  a  Joint
Ph.D. Student along with Prof. W. J. Emery with the
University  of  Colorado at  Boulder,  USA. He is  cur-
rently  an  Associate  Professor  with  the  Key  Labora-
tory of Intelligent Perception and Image Understand-
ing,  Ministry  of  Education,  Xidian  University.  His
research interests include remote sensing image con-

tent-based  retrieval  and  reranking,  hyperspectral  image  processing,  remote
sensing scene classification, and object detection.

Jiayi  Ma (Senior  Member,  IEEE)  received  the  B.S.
degree in information and computing science and the
Ph.D. degree in control science and engineering from
the Huazhong University of Science and Technology
in 2008 and 2014, respectively. He is currently a Pro-
fessor  with  the  Electronic  Information  School,
Wuhan  University.  He  has  authored  or  coauthored
more  than  200  refereed  journals  and  conference
papers,  including IEEE  Transactions  on  Pattern
Analysis and Machine  Intelligence  (TPAMI)/IEEE

Transactions on Image Processing (TIP), International Journal of Computer
Vision  (IJCV), Computer  Vision  and  Pattern  Recognition  Conference
(CVPR), International  Conference  on  Computer  Vision,  and European  Con-
ference on Computer  Vision.  His  research interests  include computer  vision,
machine learning,  and pattern recognition.  Dr.  Ma has been identified in the
2019–2022 Highly Cited Researcher lists from the Web of Science Group. He
is  an  Area  Editor  of Information  Fusion and  an  Associate  Editor  of Neuro-
computing, Sensors, and Entropy.

Yongjun Zhang (Member,  IEEE)  received  the  B.S.
degree  in  geodesy,  the  M.S.  degree  in  geodesy  and
surveying  engineering,  and  the  Ph.D.  degree  in
geodesy and photography from Wuhan University in
1997, 2000, and 2002, respectively. He is currently a
Full  Professor  and Dean with the School  of  Remote
Sensing  and  Information  Engineering,  Wuhan  Uni-
versity.  He  has  published  more  than  150  research
articles  and one book.  His  research interests  include
aerospace  and  low-attitude  photogrammetry,  image

matching,  combined  block  adjustment  with  multisource  datasets,  artificial
intelligence-driven  remote  sensing  image  interpretation,  and  3-D city  recon-
struction.

LI et al.: MEET: A MILLION-SCALE DATASET FOR FGSC WITH ZOOM-FREE RSI 1023 


