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GACNet: A Geometric and Attribute
Co-Evolutionary Network for Citrus Tree Height

Extraction From UAV Photogrammetry-Derived Data
Haiqing He , Fuyang Zhou , Yongjun Zhang , Member, IEEE, Ting Chen, and Yan Wei

Abstract—The undulating terrain and complex backgrounds of
citrus plantations introduce nonlinear variations that significantly
impede the high-precision estimation of citrus tree heights from
remote sensing data. To overcome these obstacles, we introduce
a novel geometric and attribute co-evolutionary network, tailored
for extracting citrus tree heights using unmanned aerial vehicle
photogrammetry-derived data. Our approach integrates a mul-
tisource feature interaction module with a multisource feature
aggregation module, fostering the co-evolution of deep feature
responses across various datasets. Notably, this includes a sophisti-
cated triple-feature interaction mechanism that considers position,
channel, and spatial correlation to enhance the aggregation of
geometric features. In addition, we employ a multilevel feature
aggregation decoder leveraging cross-attention, ensuring attribute
context consistency and facilitating efficient tree height extraction.
Quantitative analysis across datasets reveals our method’s superior
performance, with a 2% –7% increase in mean intersection over
union for canopy segmentation and a robust correlation of 0.77
between estimated and reference tree heights, accompanied by an
MAE of 0.25 m and an RMSE of 0.38 m. Comparative experiments
indicate that our method outperforms current state-of-the-art net-
works, showing resilience to terrain undulations and offering reli-
able cross-region and cross-scale tree height estimation capabilities.

Index Terms—Canopy height, co-evolutionary network, feature
interaction and aggregation, undulating terrain, unmanned aerial
vehicle (UAV).

Received 13 September 2024; revised 19 November 2024; accepted 8 Febru-
ary 2025. Date of publication 13 February 2025; date of current version 3
March 2025. This work was supported in part by the National Natural Science
Foundation of China under Grant 42261075 and Grant 41861062, in part by the
Jiangxi Provincial Natural Science Foundation under Grant 20224ACB212003,
in part by the Jiangxi Provincial Training Project of Disciplinary, Academic,
and Technical Leader under Grant 20232BCJ22002, and in part by the State Key
Laboratory of Geo-Information Engineering and Key Laboratory of Surveying
and Mapping Science and Geospatial Information Technology of MNR, Chinese
Academy of Surveying and Mapping under Grant 2022-02-04. (Corresponding
author: Haiqing He.)

Haiqing He, Fuyang Zhou, and Yan Wei are with the School of Surveying and
Geoinformation Engineering, East China University of Technology, Nanchang
330013, China, and also with the Jiangxi Key Laboratory of Watershed Ecolog-
ical Process and Information (Platform No. 2023SSY01051), East China Uni-
versity of Technology, Nanchang 330013, China (e-mail: hyhqing@163.com;
fuy_zhou@163.com; ywei0623@163.com).

Yongjun Zhang is with the School of Remote Sensing and Infor-
mation Engineering, Wuhan University, Wuhan 430079, China (e-mail:
zhangyj@whu.edu.cn).

Ting Chen is with the School of Water Resources and Environmental Engi-
neering, East China University of Technology, Nanchang 330013, China (e-mail:
ct_201607@ecut.edu.cn).

Data is available online at https://doi.org/10.1109/JSTARS.2025.3541395.
Digital Object Identifier 10.1109/JSTARS.2025.3541395

I. INTRODUCTION

C ITRUS is one of the most important economic crops
globally, ranking as the largest category of fruits and

the third-largest traded agricultural commodity worldwide. Cur-
rently, citrus cultivation is primarily concentrated in Asia, with
its cultivation area accounting for 52.90% of the total global
citrus cultivation area [1]. Particularly, citrus trees represent a
representative fruit tree in southern China, exerting significant
economic and ecological impacts, and have emerged as one of
the vital sources of income for local residents in southern China
[2], [3]. Accurate and rapid acquisition of canopy area, height,
and positional information of citrus trees is crucial for monitor-
ing tree health, estimating citrus yield, and managing orchard
resources effectively [4]. However, existing technological meth-
ods face challenges in automatically and efficiently acquiring
growth status information of citrus orchards, thereby hindering
the implementation of precision management in citrus cultiva-
tion. Given that the terrain in southern China is predominantly
hilly and mountainous, characterized by significant fluctuations
and dense tree growth, monitoring large areas of citrus orchards
dynamically poses difficulties [5]. Traditional field survey meth-
ods can offer reliable canopy information of citrus trees but
are constrained by limited measurement range, long intervals,
and high costs, thus failing to meet the requirements of precise
monitoring of citrus orchards [6]. Therefore, in this study, we
focus on achieving high-precision and efficient extraction of
citrus trees that are insensitive to terrain undulations, aiming
to enhance the accuracy of canopy and height extraction for
large-scale citrus trees in complex terrains.

In terms of data acquisition techniques, light detection and
ranging (LiDAR) is one of the most prevalent methodologies
for the measurement of canopy and height within extensive
forested regions [7]. The three-dimensional point cloud data
derived from LiDAR apparatuses can precisely estimate numer-
ous biophysical variables within forests, including canopy area,
canopy height, canopy volume, and tree density [8], [9], [10],
[11], [12]. However, there are certain limitations associated with
the estimation of tree canopy height using LiDAR data, such
as high costs, limited coverage, and inability to acquire color
and texture information, which hampers the interpretation of
terrestrial objects, leading to challenges in widespread applica-
tion within complex mountainous terrain scenarios [13], [14],
[15], [16]. To address these issues, some studies have integrated
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satellite imagery with LiDAR data to estimate the area and height
of large-scale tree canopies. These methodologies offer advan-
tages such as extensive coverage and reduced data acquisition
costs. Nevertheless, there are constraints in obtaining fine-scale
canopy parameters, including low image resolution, significant
weather impact, and diminished real-time capabilities, making
it challenging to meet the demands for individual tree canopy
segmentation and height estimation [13], [17], [18], [19]. In con-
trast, images captured by unmanned aerial vehicles (UAVs) offer
advantages such as high resolution, low cost, and ease of data
acquisition. Furthermore, high-precision canopy point clouds
with texture information can be generated from overlapping
UAV images through aerial triangulation and dense matching
techniques. These advantages can, to some extent, compensate
for the shortcomings of LiDAR and satellite imagery in estimat-
ing canopy height in complex mountainous terrains, fulfilling the
requirements for large-scale and fine-grained extraction of fruit
tree canopy height [20], [21], [22]. Consequently, data derived
from UAV photogrammetry (UAVPD) can serve as a reliable
source for the extraction of citrus tree information. This study
also focuses on estimating the canopy height of fruit trees using
UAVPD.

In tree canopy extraction tasks, traditional algorithms such
as watershed algorithms, edge detection, and threshold seg-
mentation are popular due to the simplicity of data processing
[23]. However, detecting individual trees in complex scenes in
mountainous areas is still a challenge for traditional methods
due to the overlapping of tree canopies and large differences
in shape and size [24]. In addition, traditional methods are
unable to deeply mine the texture information of tree canopy,
which limits the improvement of canopy extraction accuracy and
does not solve the problem of tree height estimation. Despite
UAVPD’s capability to capture fine surface details of citrus
tree plantations, the undulating terrain in these areas makes
it difficult for traditional methods to represent such complex
nonlinear variations with explicit functional relationships. This
poses significant challenges for the estimation of citrus tree
canopy height.

In recent years, deep learning has achieved significant suc-
cess in the domain of image processing [25], and due to its
superior performance in nonlinear representation, it has been
extensively applied to tree canopy segmentation [26], [27], [28]
and canopy height estimation in forestry [23], [29], [30], [31].
Typically, existing methods for canopy semantic segmentation
utilize high-resolution true-color orthophotos, generated from
UAVPD, as network inputs and employ convolutional neural
network (CNN)-based architectures to extract canopy features
[32], [33]. Furthermore, canopy height is estimated through
the use of three-dimensional dense point clouds or canopy
height models (CHMs) derived from UAVPD. The crux of these
methods lies in the network’s ability to extract abundant spatial
information (e.g., position, shape) and semantic information
(e.g., class, attributes) from true-color images, thereby enabling
effective canopy extraction in forest environments with uniform
tree structures, especially in flat terrains. However, deep learning
methods that rely solely on true-color imagery have certain
limitations: 1) they cannot capture the height features of tree

canopies, making them less suitable for canopy height extraction
tasks; and 2) in complex mountainous plantation areas, the un-
dulating terrain complicates the differentiation of features with
spatial characteristics similar to those of citrus tree canopies,
thus constraining further improvements in the accuracy of deep
learning-based canopy extraction. To address these limitations,
some researchers have fused various data types, such as visible
spectral imagery, multispectral imagery, digital surface models
(DSMs), and CHMs, through channel stacking. They then apply
deep learning methods to extract semantic features from the
fused data sources [22], [34], [35]. These methods help leverage
features from other data sources to enhance the distinction be-
tween tree canopies and the background, while also introducing
additional feature information of tree canopies, such as CHMs,
to obtain additional biomass indicators of tree canopies, such
as tree height. Under typical circumstances, it is evident that
the addition of multiple data sources brings forth more sup-
plementary information, which aids in enhancing the accuracy
of fruit tree extraction. For example, Hao et al. [22] extracted
large-scale plantation canopy heights from UAV imagery and
field-surveyed canopy height data using CNN-based methods.
Xie et al. [36] achieved a correlation coefficient of 0.871 between
the segmentation results and the ground truth by weighting and
fusing RGB images with the CHM and inputting them into a
Mask R-CNN network for canopy segmentation.

Although the above studies utilized deep learning-based mul-
tisource data combination methods to mitigate the impact of ter-
rain undulation on canopy extraction and tree height estimation
to a certain extent. However, on one hand, these methods destroy
the original data structure through channel combination, making
it difficult for the network to extract complementary features
from different data sources and hindering the co-evolution of
different data features. On the other hand, the fused multichannel
data can experience severe interference from different modality
features during the single-channel network feature extraction
process, which inhibits the network’s ability to effectively ex-
tract high-quality canopy height features from data sources such
as CHM and DSM. Moreover, for the task of canopy height
extraction, existing deep learning methods heavily rely on the ac-
curacy of CHM, which is highly dependent on the accuracy of the
digital terrain model (DTM). Traditional methods for obtaining
DTM struggle to account for the complex nonlinear variations in
vegetated areas. Therefore, it is an urgent problem to construct
a method applicable to canopy segmentation and tree height
estimation in complex scenes in mountainous areas by digging
deeply into the canopy and tree height features directly from
RGB and DSM images. In this study, we innovatively introduce
the idea of “co-evolution” and explore a geometry and attributes
co-evolutionary network of multisource data to achieve deep
interaction and calibration of multisource data, so as to achieve
the goal of high-precision citrus tree canopy segmentation and
tree height estimation in complex terrain. This study fills the
research gap in this field by using the co-evolutionary approach
to mine the tree height information from RGB and DSM data and
provides important support for the accurate extraction of citrus
canopy height using DTMs and true-color images in complex
mountainous terrains.
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In this study, we propose a geometric and attribute co-
evolutionary network (GACNet) for multisource data feature
interaction and aggregation, which independently extracts high-
quality features from true-color imagery and other data sources,
designed for the extraction of citrus tree canopy height from
UAVPD in complex terrains. In detail, GACNet comprises
two core modules: 1) Multisource feature interaction module
(MFIM): achieves deep interaction of geometric and attribute
features from different data sources by leveraging correlations
in location, channel, and spatial dimensions. This allows the
network’s multiple data streams to focus more on each other’s
complementary features, and to calibrate feature responses from
different data streams, thereby reducing feature discrepancies
between different data sources. 2) Multisource feature aggrega-
tion module (MFAM): employs two depthwise separable con-
volution layers to aggregate features from multiple independent
data streams. A soft attention mechanism is utilized to efficiently
extract tree canopy features from the two data streams, thereby
enhancing the model’s output features. Additionally, in the
decoding phase of the GACNet, to enhance the network’s ca-
pability to discern small-scale canopies within complex terrains
and to bolster its generalization across various terrain scenarios,
this study has devised a multilevel feature aggregation decoder
(MFA-Decoder) that is founded on cross-attention mechanisms.

The main contributions of this study are as follows:
1) We propose a GACNet, which enables effective large-

scale segmentation and height extraction of citrus trees
in complex mountainous terrain scenarios using only
UAVPD, such as true-color orthophotos and DSMs.

2) We designed the MFIM and MFAM modules for the
calibration and aggregation of multisource data features
(e.g., geometric and attribute features). Furthermore, we
have designed the MFA-Decoder, which significantly
enhances the capability to discern small-scale canopies
while markedly reducing the computational expense of
the model.

3) Extensive experimental validation in four diverse terrain
scenarios demonstrates that our proposed model surpasses
other state-of-the-art networks in terms of accuracy and
computational load. Our model facilitates precise and
rapid segmentation of citrus tree canopies and estimation
of tree height, thereby advancing studies in the monitoring
of fruit tree areas, numbers, and heights.

II. MATERIALS AND METHODS

A. Study Area

The study has selected four representative areas located in
Jiangxi Province, southern China, as depicted in Fig. 1. The
study area, nestled within a mountainous zone, exhibits signif-
icant topographic variation, and the surrounding vegetation is
lush, primarily consisting of extensive citrus orchards. Further-
more, to compare and analyze the applicability of the GACNet
under various terrain and growth conditions, experiments were
conducted across four representative plots. As shown in Fig. 1,
these plots exhibit varying degrees of topographic relief and tree
density. In fact, for citrus trees as an economic crop, fruit-bearing

trees are typically around 2.5 m tall [37]. This study primarily
focuses on citrus trees that have reached an economic scale, with
tree heights predominantly ranging from 1 to 4 m.

B. UAV Image Acquisition and Processing

This study employed a DJI Phantom 4 RTK UAV equipped
with an RGB camera for capturing high-resolution imagery. The
imagery was acquired in October 2022, with data collection
occurring between 10:00 AM and 2:00 PM. Then, the raw images
captured by the UAV were processed using Agisoft Photoscan
Professional software, and digital orthophotos maps and DSM
were generated with a ground resolution of 1.5 cm/pixel through
aerial triangulation.

1) Manual Annotation of Training Samples: We utilized Ar-
cGIS 10.8 software in conjunction with RGB orthophotos to
manually delineate tree canopies, resulting in a total of 2392
tree canopy annotations. Subsequently, the heights of the 2392
trees were categorized at 0.1-m intervals. For instance, citrus
trees with heights ranging from 2.00 to 2.10 m were assigned a
height category of 2.05 m, which was then integrated into the
attribute data for each individual tree. The distribution of tree
heights for the 2392 citrus trees is illustrated in Fig. 2.

In this study, we introduced a methodology for ascertaining
reference values for tree height, predicated on multiview man-
ual optimization, hereinafter referred to as MMO. Specifically,
leveraging an optimized high-precision point cloud derived
from ground control points, we applied the photogrammetric
collinearity equations to project the initial three-dimensional co-
ordinates of tree vertices onto multiview imagery, as illustrated
in Fig. 3. The tree vertex p′ was projected onto the corresponding
image points p1, p2, and p3 in image 1, image 2, and image 3,
respectively. Thereafter, the positions of p1, p2, and p3 were
manually refined to attain more precise coordinates. Ultimately,
the refined coordinates for the tree vertex p′ were calculated
through multiview forward intersection coupled with the least
squares method. In a similar vein, the coordinates for three
exemplary ground points, g′1, g′2, and g′3, were also refined.
Ultimately, (1) was employed to compute the exact heights of
the trees

TreeHeight = p′ − 1

3
(g′1 + g′2 + g′3) . (1)

In the literature [38], the UAVPD horizontal accuracy is
reported as 0.035 m, and the vertical accuracy as 0.048 m.
Within the study area, we selected a subset of samples and
conducted a comparative analysis with field measurements.
Benefiting from the higher resolution of the UAV imagery we
obtained, we achieved improved surveying accuracy (namely,
a horizontal accuracy of 0.015 m and a vertical accuracy of
0.02 m). Consequently, we deem the tree heights derived from
the MMO method to satisfy the precision requirements for the
training samples in this study and are also regarded as reference
true values for comparative analysis. Subsequently, we deter-
mined 478 citrus tree heights from 2392 canopies according to
the principle of random sampling to validate our method. The
number of citrus trees identified across the four plots were 150,
85, 94, and 149, respectively. It is important to note that within



6366 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 18, 2025

Fig. 1. Location of the study area in Xinfeng County, Ganzhou City, Jiangxi Province, China. The upper left inset in the figure represents the regional map of the
study area, with the four red solid circles indicating the specific locations of the local enlarged diagrams (a), (b), (c), and (d), which correspond to the representative
experimental plots. (a_t), (b_t), (c_t), and (d_t) represent the terrain variations in each of the four plots, respectively.

Fig. 2. Tree height distribution histogram.

the GACNet training dataset, individual trees are discriminated
by the assignment of a singular height value to each tree’s canopy
within the annotated data; these pixel values correspond to the
respective canopy heights (as illustrated in the ground truth of
Fig. 4). This approach signifies that the GACNet, as proposed,
has been conceptualized and designed with a dual focus on
both the delineation of canopy boundaries and the extraction of
canopy heights, thereby facilitating the instance segmentation
of individual trees. This integrated consideration, from model
architecture to sample data, is fundamental to achieving accurate
instance segmentation and height extraction for solitary trees.

2) Dataset Preparation: As previously analyzed, RGB or-
thophotos and DSM provide foundational data for tree canopy
segmentation and tree height estimation. Specifically, vegetation
indices based on the visible spectrum can be used to provide
initial canopy distribution. To improve the accuracy and effi-
ciency of canopy extraction integrated with deep learning, this
study utilizes vegetation indices to preselect canopy candidates.
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Fig. 3. Schematic representation of the calculation of tree heights based on
the MMO method.

Therefore, we investigated the impact of vegetation indices such
as gamma-transformed green leaf index (GGLI) [39], green leaf
index (GLI) [40], and normalized green-red difference index
(NGRDI) [41] on citrus canopy segmentation and height esti-
mation under complex terrain. We computed GGLI, GLI, and
NGRDI values for each plot based on RGB orthophotos using

GGLI = 10γ
(
2G−R−B

2G+R+B

)γ

(2)

GLI =
2G−R−B

2G+R+B
(3)

NGRDI =
G−R

G+R
(4)

where R, G, and B, respectively, represent the red, green, and
blue pixel values, and γ represent the gamma value, which was
set to 2.5 in this study.

This study created multimodal datasets by combining five
data sources: RGB orthophotos, DSM, GGLI, GLI, and NGRDI,
including combinations such as RGB-DSM, GGLI-DSM, GLI-
DSM, and NGRDI-DSM, which were then used as input for
GACNet. To facilitate the execution of large-scale image-
based tree height extraction on a standard computer, the high-
resolution experimental images were partitioned into a series of
256×256 pixel patches (i.e., each patch representing an actual
area of 14.7 m2, with an average of 5 trees per patch) for
patch-wise processing. The dataset is then augmented through
data enhancement techniques, including rotation, flipping, and
affine transformations. Ultimately, this study procured training
datasets for each data source, with each dataset comprising
12436 images. Within these images, 60% (from 1434 citrus
trees) were designated for the training set, 20% (from 480 citrus
trees) for the validation set, and the remaining 20% (from 478
annotated citrus trees) constituted the test set. Here, what we
need to clearly state is that the validation and test sets do not
participate in the model training. The RGB data, labels, and
vegetation index data used in the experiments are all in PNG
format, while the DSM data is stored in 32-bit TIFF format to
represent tree height information.

C. Proposed Method

Our work comprises two main components: network predic-
tion and downstream applications, as depicted in Fig. 4. Initially,
we conduct canopy segmentation and tree height estimation
using the proposed GACNet. The network computes the error
loss by comparing the predictive outcome, denoted as Pred, with
the ground truth. It then adaptively adjusts the weight parame-
ters of the network based on this loss, yielding more precise
predictive results. Subsequently, we extract the canopy from the
RGB image using the acquired single-band canopy segmentation
image, which also allows us to determine the number of citrus
trees in the area. In addition, we derive the height of each
individual citrus tree based on the canopy categories estimated
by the GACNet and constructed a 3D model of the tree height
of each tree.

The architecture of the GACNet is depicted in Fig. 5. The
GACNet takes into account the geometric and attribute corre-
lations between multisource data in terms of position, channel,
and spatial relationships, and enhances the deep interaction and
fusion of feature maps at various levels. Specifically, the GAC-
Net employs a dual-branch parallel design to extract geometric
and attribute features from multimodal data in an interactive
and fused manner, with each branch aimed at capturing the
unique characteristics of the corresponding input data. Given
the significant differences in features between data types such
as RGB and DSM, we have designed the MFIM for multisource
data features between the two branches. This module facilitates
cross-modality feature interaction and correction, enhancing
unique characteristic extraction through a geometric and at-
tribute co-evolution mechanism, thereby improving GACNet’s
capabilities in canopy segmentation and tree height estimation.

At each stage of the dual-branch architecture, the feature
interaction and correction promote high-quality feature ex-
traction in the deeper layers of the GACNet. Additionally, to
extract robust features that represent citrus tree canopies and
tree heights while reducing model complexity, we designed
the MFAM. This module effectively integrates features from
different data sources (geometric and attribute features) through
a soft attention mechanism, which helps focus on key infor-
mation while reducing interference from irrelevant information.
Finally, we have designed the MFA-Decoder, which leverages
a cross-attention mechanism to continuously interact with and
aggregate geometric and attribute features from different levels,
and enhance the model’s perception of multiscale tree canopy.
Subsequently, a lightweight multilayer perceptron (MLP) is
utilized to restore the resolution of the feature maps.

As shown in Fig. 5, this architecture mainly includes three
core modules: MFIM, MFAM, and MFA-Decoder.

1) Multisource Feature Interaction Module: In data derived
from UAVPD, RGB orthoimages provide advantageous infor-
mation for interpretation, such as the color and texture of the
Earth’s surface, while datasets like the DSM can offer to-
pographic information, including surface elevation. The two-
dimensional RGB imagery and the topographic height informa-
tion are typically complementary; the integration of these two
types of data can yield more comprehensive spatial and attribute
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Fig. 4. Workflow of the proposed method.

information. Consequently, this study introduces the MFIM, as
shown in Fig. 5(a). The MFIM provides complementary features
for different data sources and achieves mutual correction of
geometric and attribute features, thereby enabling the network
to extract high-quality unique features from multisource data.
The MFIM mainly comprises three operations: channel feature
interaction (CFI), spatial feature interaction (SFI), and position
feature interaction (PFI). Detailed descriptions are as follows.

a) CFI: To encapsulate the global information of each chan-
nel within the feature maps of the multimodal data, we
initially conduct global average pooling and global max
pooling operations along the channel dimension for the
input multisource datasets Rin ∈ R

H×W×C and Xin ∈
R

H×W×C , where H, W, and C represent the height, width,
and number of channels of the input data, respectively.
Subsequently, two vectors are concatenated and an MLP is
employed to facilitate deep interaction among the feature
vectors of the multisource data, followed by the compu-
tation of vector weights using a sigmoid function. The
resultant weights are then split into two weight vectors
of equal magnitude, WC

R ∈ R
1×1×C and WC

X ∈ R
1×1×C .

This process can be mathematically articulated as

YGAP, YGMP = fgap(Rin, Xin), fgmp(Rin, Xin) (5)

WC
R,W

C
X = fsplit (σ (fmlp ([YGAP, YGMP]))) (6)

where σ(·) denotes the Sigmoid function, and [, ] denotes the
concatenate operation. Through these operations, the geometric
and attribute information of the two distinct modalities engages
in profound interaction. Thereafter, to encourage the original

feature maps to concentrate more on the tree canopy areas, we
employ (7) to adjust the channel features of the original data
characteristics across different modalities{

RC
rec = WC

X ⊗Xin

XC
rec = WC

R ⊗Rin
(7)

where ⊗ denotes channel-wise multiplication.
SFI: As the CFI is primarily utilized for the acquisition
of global information from various modality data, we have
further incorporated a spatial feature awareness module to
facilitate the interaction and correction of local information
among different modality data. Initially, the input multi-
source featuresRin andXin are concatenated along the chan-
nel axis, and two 1×1 convolutional layers are employed
to enable the interaction of multisource features, culmi-
nating in the generation of feature map YConv ∈ R

H×W×2.
Subsequently, the weight map of the interactive features is
computed using a sigmoid function and then split into two
weight maps of equivalent dimensions, W S

R ∈ R
H×W and

WS
X ∈ R

H×W . The mathematical expression is delineated
as follows:

YConv = Conv (ReLU (Conv ([Rin, Xin]))) (8)

W S
R ,W

S
X = fsplit (σ (YConv)) . (9)

Similar to the channel feature correction module, the spatial
feature correction can be mathematically executed{

RS
rec = W S

X ⊗Xin

XS
rec = W S

R ⊗Rin
. (10)
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Fig. 5. Architecture of GACNet.

PFI: Due to SFI’s focus on the overall spatial arrangement
of feature maps rather than specific detailed locations,
we have introduced a PFI mechanism to further enhance
the network’s ability to model long-range dependencies,
thereby preserving more accurate target location informa-
tion in the spatial domain. This mechanism embeds two
datasets, Rin and Xin, along the horizontal (h-axis) and
vertical (w-axis) directions, respectively, into four atten-
tion weight maps such as W h - axis

R ∈ R
1×W×C , Ww - axis

R ∈
R

H×1×C , W h - axis
X ∈ R

1×W×C , and Ww - axis
X ∈ R

H×1×C .
Specifically, we first perform global average pooling on Rin

and Xin in the horizontal and vertical directions, respec-
tively, to retain more target location information. We then
concatenate the resulting horizontal and vertical feature
maps to obtain feature mapYcat ∈ R

H×1×4C . Subsequently,
we employ an MLP to enable information interaction within
the Ycat features and use the split function to separate
features in the X and Y directions, resulting in Yh−axis ∈
R

H×1×2C and Yw−axis ∈ R
1×W×2C . Finally, according to

(12), we use a sigmoid function to redistribute the weights
of the feature maps and then separate them into horizontal

and vertical attention weights using split operation

Yh−axis, Yw−axis = fsplit(fmlp(Ycat)) (11){
W h−axis

R ,W h−axis
X = fsplit (σ (Yh−axis))

Ww−axis
R ,Ww−axis

X = fsplit (σ (Yw−axis))
. (12)

Next, we perform position feature correction on the original
data features from different modalities using{

RP
rec = W h−axis

X ⊗Ww−axis
X ⊗Xin

XP
rec = W h−axis

R ⊗Ww−axis
R ⊗Rin

. (13)

After the operations of interaction and correction of chan-
nel, spatial, and positional information, the complete corrected
features of the two modalities can be represented as

Rout = Rin + λRC
rec + δRS

rec + εRP
rec (14)

Xout = Xin + λXC
rec + δXS

rec + εXP
rec (15)

where λ, δ, and ε are hyperparameters. Experiments conducted
in Section III-D were designed to ascertain the optimal values
for these three parameters.
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Fig. 6. Structure of MFA-Decoder.

2) Multisource Feature Aggregation Module: To enhance the
aggregation of the corrected features within the MFIM, we have
constructed a MFAM, as depicted in Fig. 5(b). Initially, we
integrate features using the Concatenate operation, followed by
the application of two depthwise separable convolutional layers
to deeply integrate the characteristics of features Rout and Xout.
Subsequently, the two fused features are concatenated, and the
weight maps W FAM

R ∈ R
H×W×C and W FAM

X ∈ R
H×W×C for

the two distinct features are computed using the Softmax func-
tion. Finally, features Rout and Xout are recalibrated individually
using the weight maps to obtain the final fused features for
feature decoding. The mathematical operation of the feature
aggregation can be expressed as

Y R
Conv, Y

X
Conv = Conv (Rout) ,Conv (Xout) (16)

W FAM
R ,W FAM

X

= Softmax
(
Conv

(
DWConv

(
Conv

(
[Y R

Conv,X
X
Conv

))))
(17)

Yout = W FAM
R ⊗ FR

Conv +W FAM
X ⊗ FX

Conv. (18)

3) Multilevel Feature Aggregation Decoder: Under normal
circumstances, within citrus cultivation areas, there is a presence
of citrus seedlings with smaller canopy sizes and lower tree
heights, which constitute a complex scenario that diminishes
the recognition capability of tree canopies by deep learning
networks. To address the significant scale variations in canopy
shape, size, and tree height within the cultivation area, in this
study, we have constructed the MFA-Decoder based on cross-
attention to enhance the model’s multiscale target recognition
capability. The network architecture of the MFA-Decoder is
depicted in Fig. 6.

Unlike conventional decoders, we first utilize a cross-attention
mechanism to deeply interact and aggregate feature maps across
different scales before proceeding with a layer-by-layer upsam-
pling operation, aiming to maintain consistency in contextual
information. Specifically, as shown in Fig. 7, the MFAM outputs
feature maps at four scales such asFT1,FT2,FT3, andFT4. First,
we upsampleFT4 to the same size asFT3, then flatten the upsam-
pledFT4 andFT3 to match the size, and apply a linear embedding
layer for linear mapping to improve the model’s generalization
ability. Next, we use the cross-attention mechanisms to achieve
feature interaction between FT4 and FT3, resulting in features
CAT4 ∈ R

256×C3

and CAT3 ∈ R
256×C3

. The cross-attention

mechanism can be mathematically expressed as

{
fT4 = KT

T4 × VT4

fT3 = KT
T3 × VT3

(19)

{
CAT4 = QT3 × Softmax(fT4)
CAT3 = QT4 × Softmax(fT3)

. (20)

Subsequently, we deploy two feedforward neural network
(FFN) layers and a DWConv layer to conduct nonlinear map-
pings on the feature vectors. It is important to highlight that
we have incorporated a depthwise separable convolutional layer
within the FFN, which not only augments the model’s capability
to articulate features across various scales but also fortifies the
local interconnections within multiscale features. Thereafter,
we employ a depthwise separable convolutional layer of 3×3
dimensions, coupled with two linear embedding layers, to fur-
ther amalgamate the features outputted by the FFN layers while
conserving a more substantial amount of spatial information,
yielding a feature mapZout ∈ R

256×C3

that is congruent in scale
with FT3. The FFN can be delineated as

FFN = Linear (GELU (DWConv (Linear (CA)))) . (21)

Finally, we aggregate FT3 and FT4 to obtain a two-
dimensional vector Zout, which is then resized to match the
size of FT3, resulting in the final aggregated feature CAT4−T3.
In addition, we continue to upsample CAT4−T3 to match the
size of FT2 and perform feature aggregation with FT2 using the
aforementioned method. Subsequently, through these iterative
operations, we ultimately obtain three aggregated features, i.e.,
CAT4−T3, CAT3−T2, and CAT2−T1.

As depicted in Fig. 6, during the layer-by-layer upsampling
of the aggregated features, we utilize multiple MLP blocks to
upsample the aggregated features, restoring the feature maps
to the dimensions equivalent to the original input data. This
approach serves to diminish the number of parameters and
concurrently augment computational efficiency.

D. Evaluation Metrics

We adopt three evaluation metrics, namely overall accuracy
(OA), F1 score, and mean Intersection over Union (mIoU),
to evaluate the performance of our methodology in estimating
the height of citrus trees under complex terrain. These three
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Fig. 7. Structure of multilevel feature cross-attention calculation module.

evaluation metrics can be mathematically formulated as

OA =
TP+ TN

TP + FP + TN+ FN
(22)

F1 = 2× Precision× Recall

Precision + Recall
(23)

mIoU =
1

k + 1

k∑
i=0

TP
TP + FP + FN

(24)

where TP, TN, FP, and FN denote true positive, true negative,
false positive, and false negative, respectively. k denotes the
number of classification categories. Precision and recall can be
calculated as

Precision (P) =
TP

TP + FP
(25)

Recall (R) =
TP

TP + FN
. (26)

In addition, we also employ MAE, RMSE, and the coefficient
of determination (R2) as metrics to evaluate the performance
of our method in canopy height extraction. The rationale for
choosing these three metrics is as follows: MAE quantifies
the average absolute error between true and predicted canopy
heights in the test dataset, while RMSE indicates the standard
deviation of residuals (prediction errors); lower MAE and RMSE
values indicate better performance in canopy height extraction.
Furthermore, R2 assesses the goodness of fit of the model to
the canopy height data; values closer to 1 indicate better fit.
Therefore, these three metrics comprehensively evaluate the
performance of our method. The calculation formulas for MAE,

RMSE, and R2 are provided below

MAE =
1

N

N∑
i=0

|yi − ŷi| (27)

RMSE =

√√√√ 1

N

N∑
i=0

(yi − ŷi)
2 (28)

R2 = 1−
∑N

i=1 (yi − ŷi)
2

∑N
i=1 (yi − ȳi)

2
(29)

where N is the number of canopy height extracted by the model,
yi is the true canopy height, ŷi is the predicted canopy height,
and ȳi is the average height from the assessed datasets.

E. Implementation Details

All experiments in this study were conducted using the Py-
Torch deep learning framework on a single computer equipped
with an NVIDIA GeForce RTX 3060 GPU (12 GB video mem-
ory). All models were trained using the AdamW optimizer with
a weight decay rate of 0.001, an initial learning rate of 1e-4, a
batch size of 8, and 50 epochs. We employed the Poly learning
rate decay strategy and used cross-entropy as the model’s loss
function. The two branch backbone networks of the proposed
GACNet utilized the encoder (MiT) from SegFormer [42], which
comprises four stages of Transformer modules, each containing
a varying number of transformer layers. To expedite convergence
on our dataset and reduce dependence on large-scale datasets,
the MiT backbone network was pretrained on ImageNet.
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Fig. 8. Linear regressions between reference values and GACNet estimates. (a)–(d) Show the linear regressions of NGRDI-DSM, GLI-DSM, GGLI-DSM, and
RGB-DSM as inputs, respectively.

Fig. 9. Comparison of citrus canopy segmentation and tree height estimation outcomes utilizing diverse data sources.

III. EXPERIMENTAL RESULTS

In this section, we first evaluated and analyzed the impact of
different data sources on citrus canopy segmentation and height
estimation using the GACNet. Then, we compared and analyzed
the GACNet with classical and state-of-the-art networks to
validate the superiority of the GACNet. Finally, we conducted
ablation experiments to verify the effectiveness and rationality
of the different module designs within the GACNet.

A. Citrus Tree Height Estimation

To validate the efficacy of the GACNet, we utilized a
test dataset comprising 478 citrus trees to assess the perfor-
mance of canopy height extraction. The tree heights estimated
by the GACNet (MiT-B2) were compared and analyzed against
those obtained using the MMO-based method. The accuracy
of tree height estimation by the GACNet, with inputs of
RGB-DSM, GGLI-DSM, GLI-DSM, and NGRDI-DSM, was
evaluated.

Fig. 8 illustrates the linear regression of tree height estimation
by GACNet using different modalities of input data. Referring to
the citrus tree heights determined by the MMO-based method,

GACNet was able to estimate the height of citrus trees in
complex terrain (R2 > 0.60) when using four dataset input
modes, demonstrating overall consistency with the reference
values. The GACNet, using RGB-DSM as input, achieved the
highest accuracy in tree height estimation as depicted in Fig. 9
(MAE = 0.27, RMSE = 0.42, R2 = 0.77), indicating that the
GACNet can extract high-dimensional terrain and tree height
features from DSM, thereby mitigating the impact of complex
terrain on tree height estimation. Compared to the use of GGLI-
DSM, GLI-DSM, and NGRDI-DSM, the use of RGB-DSM as
input resulted in RMSE reductions of 19.2% , 17.6% , and 23.6%
, respectively, and R2 increases of 18.4% , 16.6% , and 24.1% ,
respectively.

As depicted in Fig. 8, it can be observed that there is a signifi-
cant scattering of points in the regions below 1 m and above 4 m.
This indicates that models utilizing GGLI-DSM, GLI-DSM, and
NGRDI-DSM datasets encounter difficulties in detecting citrus
tree canopies with heights below 1 m or above 3.5 m. Such
limitations can lead to significant underestimations or overes-
timations of citrus tree heights and even frequent occurrences
of erroneously estimating tree heights as zero. This limitation is
primarily due to the scarcity of canopies below 1 m and above
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TABLE I
ACCURACY OF TREE HEIGHT ESTIMATION USING THE GACNET (MIT-B2)

WITH RGB-DSM AS THE INPUT ACROSS VARIOUS RANGES OF TREE HEIGHTS

4 m, resulting in the GACNet extracting limited information
regarding these canopy categories. Regarding the accuracy of
tree height estimation, it is evident that the model using RGB-
DSM data closely approximates the heights obtained through
the MMO-based method, with a coefficient of determination
(R2) reaching 0.77. This underscores that tree heights derived
from the MMO-based method serve as suitable foundational
data for model training. The well-trained GACNet effectively
circumvents the prerequisite for precise prior computation of
the DEM and CHM to derive tree heights across large-scale
areas.

To assess the impact of citrus canopy height on tree height ex-
traction, we evaluated the accuracy of canopy height estimation
within various height ranges (refer to Table I). It can be observed
from Table I that the GACNet demonstrates the highest accuracy
(MAE=0.12 m, RMSE=0.27 m) when citrus trees have heights
ranging from 2 to 2.5 m. The MAE metrics for citrus trees with
heights between 1 and 3 m are all below 0.2 m, indicating that
the GACNet is adept at accurately obtaining tree heights for a
wide spectrum of citrus trees. Conversely, the GACNet exhibits
the lowest accuracy (MAE > 0.35 m, RMSE > 0.60 m) when
canopy heights exceed 4 m or fall below 1 m. This discrepancy
is mainly due to two factors: 1) Since the main subjects of this
study are citrus trees that have reached an economic scale, trees
below 1 m and above 4 m are relatively scarce, significantly
fewer than trees in other height ranges; 2) the photogrammetry
techniques used in this study are unable to penetrate the canopy,
leading to potential inaccuracies in height estimation for short
citrus trees due to interference from other vegetation, thereby
resulting in lower accuracy for GACNet in this height range.

B. Citrus Tree Canopy Segmentation

In fact, accurate segmentation of citrus trees is a prerequisite
step for estimating the heights of the individual trees, as only
such precise delineation can effectively anchor the trees for
height estimation. Hence, this study also validates the efficacy of
the GACNet in segmenting citrus tree canopies under complex
terrain. Visual assessments presented in Fig. 10 demonstrate
the results of canopy segmentation and tree height estimation
using RGB-DSM as the input. It is evident that the GACNet
exhibits strong robustness and generalization capabilities when

addressing citrus tree canopies of various sizes and shapes in
complex terrains and diverse background environments.

In terms of evaluation metrics, including Recall, F1 score,
and mIoU, the canopy segmentation results using the GACNet
based on four data input modes are presented in Figs. 9 and
11. The outcomes obtained from the GACNet demonstrated
commendable performance in canopy segmentation (Recall >
91.86% , F1 score > 93.97% , mIoU > 92.28% ), with the
GACNet utilizing RGB-DSM data achieving the highest mIoU
index of 94.86% . Compared to the GACNet using GGLI-DSM,
GLI-DSM, and NGRDI-DSM as inputs, the mIoU for RGB-
DSM data was found to be 2.58% , 2.26% , and 1.70% higher,
respectively. This discrepancy primarily arises from the fact
that network models employing vegetation index inputs lack
the spectral and textural characteristics essential for accurate
canopy segmentation, which leads to inferior performance in
the recognition of citrus canopies.

Table II presents a comparative analysis of GACNet’s accu-
racy in canopy segmentation and tree height estimation when
employing backbone networks of varying scales. Two represen-
tative lightweight models were selected for comparison: Effi-
cientNetV2 from CNNs and SegFormer (MiT) from Transform-
ers. As demonstrated in Table II, GACNet achieved its highest
canopy segmentation accuracy (mIoU) of 95.08% and 92.02%
when utilizing the SegFormer-B3 (MiT-B3) and EfficientNetV2-
S backbones, respectively. For the EfficientNetV2 backbone,
the accuracy of GACNet’s canopy segmentation declines as the
network scale increases, whereas for the SegFormer backbone,
accuracy initially improves but then decreases with increasing
network depth. This suggests that augmenting network depth
does not invariably result in enhanced extraction accuracy, likely
due to the noise introduced by parameter redundancy in deeper
networks, which constrains the improvement in accuracy. No-
tably, when EfficientNetV2 serves as the backbone, the fixed
portion of the GACNet model reaches a maximum parameter
count and computational complexity of 4.67M and 52.22G,
respectively, leading to slower inference times. The variations in
parameter count and computational complexity of the GACNet
fixed portion across different backbone networks stem from
differences in the number of feature map channels input to
this segment. With the SegFormer backbone, the maximum
parameter count and computational complexity of the fixed part
of GACNet are 6.33M and 56.64G, respectively. Furthermore,
the majority of GACNet’s parameters are concentrated in the
backbone network, with the fixed portion of the model account-
ing for only 14.8% of the total parameter count. This indicates
that the proposed MFIM, MFIA, and MFA-Decoder modules
have a relatively small parameter count, allowing GACNet to
flexibly replace the backbone network to accomplish other se-
mantic segmentation tasks without significantly increasing the
computational burden.

C. Performance Comparison With Other State-of-the-Art
Networks

To further validate the performance of the GACNet in the
segmentation and height extraction of citrus tree canopies under
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Fig. 10. Visualization outcomes of canopy segmentation and tree height estimation conducted by the GACNet (MiT-B2) with RGB-DSM as input. (a), (b), (c),
and (d) correspond to four representative areas selected for comparative analysis.

TABLE II
COMPARISON OF CANOPY SEGMENTATION IN THE GACNET MODEL ACROSS DIFFERENT SCALES OF BACKBONE NETWORKS (RGB-DSM INPUT)

complex terrain conditions, we conducted a comparison be-
tween the GACNet and the current state-of-the-art networks,
including FCN [43], BiseNetV2 [44], UNet [45], HRCNet
[46], DeepLabV3+ [47], EfficientNetV2 [48], TransUNet [49],
CSwin Transformer [50], SegFormer [42], ConvNeXtV2 [51],
and Samba [52].

As depicted in Table III, the GACNet achieved the highest
accuracy in canopy segmentation (e.g., mIoU = 95.08% ),
with a maximum improvement of 7.32% in mIoU compared
to other representative networks. Compared to networks such
as DeepLabV3+, CSwin-Base, and SegFormer-B4, which use
channel-stacked data as input, the GACNet, which employs
multisource data interaction, demonstrated higher accuracy in
both canopy segmentation and tree height estimation, with mIoU

improvements of 3.62% , 3.06% , and 2.79% , respectively,
and RMSE errors reduced by 25.4% , 22.4% , and 20.8% ,
respectively. Furthermore, compared to the recently proposed
ConvNeXtV2-Base and Samba networks, the canopy segmen-
tation accuracy of the GACNet model was improved by 3.24%
and 1.81% , and the tree height estimation error (RMSE) was
reduced by 26% and 17.3% , respectively. This indicates that
for these state-of-the-art networks, effectively complement-
ing multisource features when using channel-stacked data is
challenging, thus limiting the improvement in accuracy for
canopy segmentation and tree height estimation. In contrast, the
GACNet, by utilizing multisource data interaction, can effec-
tively complement multisource features of geometry and at-
tributes, thereby exhibiting superior performance.
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TABLE III
COMPARISON OF TREE CANOPY SEGMENTATION AND TREE HEIGHT ESTIMATION BETWEEN THE GACNET MODEL AND STATE-OF-THE-ART NETWORKS (USING

RGB-DSM DATA AS INPUT)

Fig. 11. Visualization results of canopy segmentation and tree height estima-
tion for different data (all models use MiT-B2 as the backbone network). (a)–(f)
Tree canopy segmentation and tree height estimation results of NGRDI-DSM,
GLI-DSM, GGLI-DSM, and RGB-DSM as inputs, respectively.

The visualization results of canopy segmentation and tree
height estimation for GACNet and state-of-the-art networks are
shown in Fig. 12. The complex terrain and canopy backgrounds
in mountainous environments impede the state-of-the-art net-
works from capturing the height characteristics of canopies,
making it challenging to differentiate vegetation with spatial
characteristics akin to those of citrus canopies. In contrast, the
proposed GACNet can effectively identify the intricate edges
of citrus trees and accurately estimate tree height, resulting

in a complete and continuous citrus canopy with significantly
reduced fragmented patches. This is primarily attributed to
the MFIM and MFAM modules within the GACNet, which
efficiently extract a variety of high-dimensional geometric and
attribute features from RGB and DSM images, enabling deep
interaction, correction, aggregation, and co-evolution of these
features. This process significantly mitigates the impact of
complex terrain, yielding accurate edges and tree heights for
citrus canopies. Furthermore, the MFA-Decoder designed in
this study effectively integrates geometric and attribute features
across different scales, accurately capturing complex long-range
relationships. This capability aids the GACNet in identifying
small canopies. As shown in the boxes on the left side of
Fig. 12(a)–(o), the GACNet accurately segments the boundaries
of the canopy, including small canopies. In the boxes on the right
side, the GACNet accurately estimates the height of the entire
canopy, avoiding the ambiguity of multiple height values for a
single tree, which other networks struggle with.

D. Ablation Study

To evaluate the efficacy of the GACNet architecture, we
conducted ablation studies on the GACNet using the RGB-DSM
dataset with MiT-B2 as the backbone network (refer to Table IV).
The results indicate that GACNet achieved the highest accuracy
in tree canopy segmentation and tree height estimation when
all three modules were utilized concurrently (mIoU = 94.86%
, MAE = 0.27 m, RMSE = 0.42 m). Compared to the GACNet
without these modules, the mIoU increased by 3.17% , with the
MAE and RMSE being reduced by 0.09 and 0.18 m, respectively.
Examination of Table IV reveals that the MFIM contributes
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Fig. 12. Comparison of citrus canopy segmentation and tree height estimation results between GACNet and state-of-the-art networks. (a)–(o) UAV orthopho-
tograph, DSM, ground truth, and the outcomes obtained from FCN, BiseNetV2, UNet, HRCNet_W48, DeepLabV3+, EfficientNetV2, TransUNet, CSwin-Base,
SegFormer-B4, ConvNeXtV2-Base, Samba, and GACNet (MiT-B2), respectively. The rectangles are used to emphasize detail changes.

TABLE IV
ABLATION STUDY ON THE GACNET (MIT-B2) MODEL STRUCTURE (USING RGB-DSM AS INPUT)
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TABLE V
ABLATION STUDY OF THE CHANNEL, SPATIAL, AND POSITION INTERACTION MODULES IN THE MFIM

the most to the model’s performance, enhancing the mIoU by
1.47% and decreasing the MAE and RMSE by 0.07 and 0.14
m, respectively, when compared to the baseline model. The
MFA-Decoder is the next most impactful contributor, improving
the mIoU by 1.23% and reducing the MAE and RMSE by 0.04
and 0.15 m, respectively. The MFAM module’s contribution is
relatively modest. These improvements collectively demonstrate
that the three modules developed in this study enhance the
accuracy of canopy segmentation and tree height estimation in
the GACNet.

We further conducted ablation experiments on the channel,
spatial, and positional interaction modules within the MFIM
module (refer to Table V). λ, δ, and ε represent the weight
parameters for the channel, spatial, and positional features,
respectively. As indicated in Table V, when these three infor-
mation interaction modules are utilized concurrently, GACNet
achieves the highest accuracy, thereby further validating the
efficacy of the geometric and attribute multisource data feature
interaction modules. When λ, δ, and ε were set to 0.2, 0.3,
and 0.5, respectively, GACNet attained the optimal performance
metrics (mIoU = 94.86% , MAE = 0.27 m, RMSE = 0.42
m). This outcome underscores the critical role of the interaction
and correction of positional features from multisource data in
enhancing GACNet’s performance in tree canopy segmentation
and tree height estimation.

IV. DISCUSSION

A. Large-Scale Citrus Trees Segmentation and Height
Estimation

To estimate the height of the large-scale citrus trees depicted
in Fig. 13(a), we segmented the image with a quarter-pixel
overlap, ensuring that each tree canopy was fully captured within
a single image and enhancing the completeness of the canopy
segmentation results. Subsequently, the GACNet was utilized for
citrus tree segmentation and height estimation within each patch.
During the result merging process, we use opening operations
to erode and dilate the overlapping regions to overcome the
image block artifacts in the region of interest. As shown in
Fig. 13(b), the GACNet is capable of accurately segmenting
large areas of citrus tree canopies in complex terrain and pre-
cisely estimating the height of each individual citrus tree. The

height of the citrus trees in this area is generally around 2.5 m,
with significant variation in canopy size, primarily due to the
presence of citrus trees at various stages of growth. Fig. 13(c)–(g)
illustrates the second part of our work, which pertains to the
downstream applications of the GACNet. Utilizing the outcomes
of the GACNet, we can segment large-scale citrus canopies, and
based on the estimated tree heights, construct three-dimensional
height models of citrus trees for further analysis of extensive
citrus groves, including canopy area, tree height, quantity, and
density, facilitating orchard monitoring, management, and yield
assessment, which holds significant practical value in precision
orchard management.

Some studies [53], [54] have shown that the spatial resolution
of the image directly affects the canopy detection accuracy of
the model, and higher spatial resolution of the image can improve
the tree detection accuracy of the deep learning model, but the
resolution over a certain level does not significantly improve
the accuracy of the model. Additionally, the large variation in
tree canopy size in the study area is also one of the factors
affecting the accuracy of the model. Based on these study results,
GACNet designs a multilevel feature interaction and aggregation
method for some tiny tree canopies to reduce the error caused by
large differences in the size of tree canopies. Therefore, the error
of GACNet model mainly comes from the spatial resolution of
DSM and RGB images.

B. Model Complexity Analysis

We evaluated the spatial and temporal efficiency of the pro-
posed GACNet model using the number of model parameters,
floating point operations (FLOPs), frames per second (FPS),
training time, and inference time. Table VI presents the spatial
and temporal efficiency of the GACNet model compared to
various mainstream networks. Despite having a higher number
of parameters, the GACNet (MiT-B2) achieves lower computa-
tional complexity due to parameter sharing, and it outperforms
FCN, UNet, HRCNet_W48, DeepLabV3+, EfficientNetV2, and
CSwin-Base in terms of canopy segmentation accuracy.

We conducted training on an ensemble of distinct models uti-
lizing a dataset comprising 8026 images, meticulously recording
the duration of each training session. As evidenced in Table VI,
the GACNet, which employs a dual-branch architecture for fea-
ture extraction, exhibits a negligible increase in training duration
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Fig. 13. Results of canopy segmentation and tree height estimation for large-scale citrus trees. (a) Large-scale citrus tree cultivation area. (b) Canopy segmentation
and tree height estimation results obtained using the GACNet. (c) Ground truth for canopy segmentation. (d) A localized magnified view of the ground truth canopy
segmentation. (e) and (f) Localized three-dimensional models of tree heights, respectively, constructed based on the estimated tree heights. (g) Localized tree height
statistics results.
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TABLE VI
COMPARISON OF THE SPACE AND TIME EFFICIENCY OF THE GACNET MODEL WITH STATE-OF-THE-ART NETWORKS (USING RGB-DSM DATA AS INPUT)

when juxtaposed with single-branch counterparts. This minimal
escalation can be attributed to the judicious parameter sharing
within GACNet’s dual-branch construct, thereby curtailing the
computational intricacy of the model. In comparison with the
SegFormer-B3 model, which leverages MiT-B3 as its backbone,
the training period for GACNet, also backed by MiT-B3, ex-
tends by an additional 92.9 min. This marginal prolongation is
deemed permissible, considering the constraints imposed by the
computational infrastructure employed in this study. Upon eval-
uating the models across a validation set of 2065 images, it was
discerned that the SegFormer-B2 model outperforms in terms
of inference velocity. Conversely, the GACNet (MiT-B3), al-
though incurring an additional 5.77 min, demonstrates a marked
enhancement in the precision of canopy segmentation and tree
height estimation. Balancing both spatial and temporal metrics,
the GACNet (MiT-B3) emerges as a model that attains superior
canopy delineation and tree height estimation accuracy without
substantially augmenting the computational expenditure, thus
presenting a commendable attribute in the realm of practical
deployment.

V. CONCLUSION

This study proposes a geometric and attribute co-evolutionary
network, named GACNet, designed for the extraction of citrus
tree canopies and the estimation of tree height. The impact
of four data combination methods on the accuracy of canopy

segmentation and tree height estimation was evaluated. The
designed MFIM and MFAM modules facilitate deep interaction
and mutual correction of diverse data features, effectively
guiding the fusion of multimodal geometric and attribute deep
features. Furthermore, an MFA-Decoder was developed, which
effectively optimizes semantic information across multiple fea-
ture levels, enhancing GACNet’s ability to perceive multiscale
targets. Experiments conducted in four representative citrus
orchards demonstrated that the proposed GACNet achieves opti-
mal performance in citrus tree canopy segmentation and height
estimation under complex terrain conditions. Compared to
state-of-the-art networks, the GACNet achieved an improvement
in mIoU ranging from 2% to 7% , a 13.7% reduction in MAE,
and a 17.3% reduction in RMSE, with a correlation coefficient
of 0.77 between tree height estimates and reference values.

Our research is capable of improving the precision and ef-
ficiency of citrus tree canopy segmentation and tree height
estimation. The derived canopy and height data can be utilized
to ascertain the coverage of orchards and to evaluate the growth
conditions of the trees, thereby supporting the sophisticated
management, conservation, and utilization of forest resources
in plantations.
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