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AllSpark: A Multimodal Spatiotemporal General
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Abstract— RGB, multispectral, point, and other spatiotempo-
ral modal data fundamentally represent different observational
approaches for the same geographic object. Therefore, leveraging
multimodal data is an inherent requirement for comprehending
geographic objects. However, due to the high heterogeneity in
structure and semantics among various spatiotemporal modali-
ties, the joint interpretation of multimodal spatiotemporal data
has long been an extremely challenging problem. The primary
challenge resides in striking a trade-off between the cohesion and
autonomy of diverse modalities. This trade-off becomes progres-
sively nonlinear as the number of modalities expands. Inspired
by the human cognitive system and linguistic philosophy, where
perceptual signals from the five senses converge into language,
we introduce the language as reference framework (LaRF),
a fundamental principle for constructing a multimodal unified
model. Building upon this, we propose AllSpark, a multimodal
spatiotemporal general artificial intelligence model. Our model
integrates ten different modalities into a unified framework,
including 1-D (language, code, and table), 2-D (RGB, synthetic
aperture radar (SAR), multispectral, hyperspectral, graph, and
trajectory), and 3-D (point cloud) modalities. To achieve modal
cohesion, AllSpark introduces a modal bridge and multimodal
large language model (LLM) to map diverse modal features
into the language feature space. To maintain modality auton-
omy, AllSpark uses modality-specific encoders to extract the
tokens of various spatiotemporal modalities. Finally, observing
a gap between the model’s interpretability and downstream
tasks, we designed modality-specific prompts and task heads,
enhancing the model’s generalization capability across specific
tasks. Experiments indicate that the incorporation of language
enables AllSpark to excel in few-shot classification tasks for
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RGB and point cloud modalities without additional training,
surpassing baseline performance by up to 41.82%. Additionally,
AllSpark, despite lacking expert knowledge in most spatiotem-
poral modalities and utilizing a unified structure, demonstrates
strong adaptability across ten modalities. LaRF and AllSpark
contribute to the shift in the research paradigm in spatiotemporal
intelligence, transitioning from a modality-specific and task-
specific paradigm to a general paradigm. The source code is
available at https://github.com/GeoX-Lab/AllSpark.

Index Terms— General intelligence model, large language
model (LLM), multimodal machine learning, spatiotemporal
data.

NOMENCLATURE
M AllSpark.
fi Modal encoder for mi .
8 Modal bridge.
T Text tokenizer.
F Multimodal LLM.
Htask Task head.
L Loss function.
Encn n-layer transformer encoders.
Emb Embedding layer.
EncResNet ResNet.
Grouper Point grouper of the PointBERT [48].
Conv1d 1-D convolution layer.
FFN Feedforward network.
σ Softmax.
mi Modal i .
q Query vectors of the bridge.
si Tokens of mi .
pi Text prompt for mi .
θ Model parameters.
y Label.
ti Tokens of mi .
W Weights of the linear layer.
wi Word of the code or text.

I. INTRODUCTION

BENEFITING from the increasingly diverse observational
methods available for spatiotemporal scenes, geographic

objects can be described by various spatiotemporal modalities,
such as RGB, synthetic aperture radar (SAR), multispectral,
graph, point cloud, and trajectory data [7], [8], [9]. Each
modality provides unique information about different aspects
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of the geographic object. Analogous to the human process
of perceiving and understanding the world through multiple
modalities, such as vision, hearing, and touch, joint inter-
pretation of multimodal data is an inherent requirement for
intelligent models to achieve cognition of geographic objects.

However, due to the inherent differences in the mechanisms
of each modality, various modalities are often highly heteroge-
neous in both structure and semantics. For example, in terms
of structure, a table is composed of rows and columns. Point
clouds are represented by 3-D coordinates along with various
feature values. A text is composed of sequences of words.
In terms of semantics, RGB imagery reflects the electromag-
netic characteristics of visible light bands emitted and reflected
by geographic objects, whereas SAR imagery reflects the
electromagnetic characteristics of microwaves emitted actively
by radar for scattering from geographic objects.

For a long time, constrained by the high heterogeneity
across various modalities mentioned above, researchers have
often developed specific methods based on prior assump-
tions related to a particular modality or designed multimodal
approaches for a few low-heterogeneity modalities. For
instance, in single-modal research, Qi et al. [10] proposed
PointNet for the point cloud modality, emphasizing the invari-
ance of point cloud data ordering and the significance of global
and local features. For language modality, Vaswani et al. [11]
introduced the transformer, which focuses on the long-range
dependencies within word sequences. For the graph modality,
Kipf and Welling [12] and Li et al. [13] proposed the graph
convolutional network (GCN) based on the adjacency rela-
tionships between nodes in a graph. In multimodal research,
the fusion of optical and SAR imagery has been widely
explored in both traditional and deep learning remote sens-
ing [14]. Moreover, visual-language models have undergone
rapid development in recent years [15], [16], [17], [18],
[19]. The diverse prior assumptions associated with each
modality have resulted in significant gaps between methods
designed for different modalities, making it challenging to
perceive and understand different modalities using a unified
model.

We believe that the key challenge in addressing this issue
lies in striking a trade-off between the cohesion and autonomy
of diverse modalities. In our article, “cohesion” refers to the
presence of mutually correlated shared information among
modalities. For instance, both RGB and SAR images may
describe the contour of the same object. “Autonomy,” on
the other hand, refers to the existence of unique information
specific to each modality relative to others. For example, the
RGB modality can describe an object’s color and texture, while
the SAR modality can capture the object’s scattering properties
in relation to radar waves. Cohesion forms the foundation for
the interrelation between modalities, while autonomy high-
lights the value of multimodal joint interpretation—gaining
a complete understanding of an object by integrating multiple
modalities.

If we merely project data from different modalities into
a shared representation space to emphasize intermodality
cohesion, this approach risks losing modality-specific infor-
mation, ultimately undermining the unique contributions of

each modality and weakening the core value of multimodal
collaboration. In contrast, if we excessively stress the auton-
omy between modalities, it may hinder the establishment
of connections among them, limiting the model’s ability
to simultaneously perceive multiple modalities. Moreover,
as the number of modalities increases, balancing cohe-
sion and autonomy becomes progressively more challenging
nonlinearly.

We observe that in the process of comprehending the
world, humans integrate information from multiple modali-
ties, such as hearing, touch, smell, and vision. The concepts
formed through the parsing of these modalities ultimately con-
verge in language. Humans engage in associating, reasoning,
and expressive behaviors through language. In other words,
language precisely encodes human perception and understand-
ing of the world, providing clear definitions and meanings
to abstract concepts from each modality. Inspired by this,
we propose the language as reference framework (LaRF) as
a fundamental principle for constructing multimodal models.
It means that the abstract concepts derived from each modality
should align with language, enabling joint interpretation in the
unified representation space of language.

Building upon this, we propose a multimodal spatiotem-
poral general intelligence model [20], AllSpark, that inte-
grates ten different modalities into a unified framework,
including 1-D (language, code, and table), 2-D (RGB,
SAR, multispectral, hyperspectral, graph, and trajectory),
and 3-D (point cloud) modalities. As shown in Table I
and Fig. 1, previous work either overlooked some impor-
tant spatiotemporal modalities, such as hyperspectral and
trajectory, or focused solely on natural images without con-
sidering remote sensing imagery. AllSpark covers a broader
range of spatiotemporal modalities, such as multispectral,
hyperspectral, graph, trajectory, and more, while demon-
strating excellent few-shot learning capabilities and modality
adaptability.

To achieve modal cohesion, AllSpark uniformly maps
diverse modal features to the language feature space. To main-
tain the autonomy between modalities, AllSpark introduces
specific modal encoders for each modality to extract indepen-
dent tokens. Given the high heterogeneity among modality
data and modality encoders, a significant dimensional gap
exists between the tokens of each modality and the language
modality. To address this issue, we introduce a modality
bridge, a mechanism from perceiver [21], to accomplish
dimensional mapping from each modality’s tokens to the
language tokens [22].

Finally, considering the existing gap between the inter-
pretability of the multimodal large language model (LLM)
and the specific downstream tasks, we design task heads
and modality-specific text prompts for each downstream task
to enhance the model’s generalization capability. Given the
powerful interpretability capabilities of the multimodal LLM,
we adhere to a lightweight design principle in task heads.

Experiments demonstrate that AllSpark, despite lacking
expert knowledge in most spatiotemporal modalities and
utilizing a unified structure, achieves competitive accuracy
in modalities such as RGB and spatiotemporal trajectories
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TABLE I
ALLSPARK INTEGRATES TEN SPATIOTEMPORAL MODALITIES

Fig. 1. AllSpark demonstrates excellent adaptability across up to ten heterogeneous modalities and shows outstanding few-shot learning capabilities in RGB
and point cloud modalities.

compared to state-of-the-art models. Specifically, in the RGB
modality, the accuracy of AllSpark is only 0.84 lower than
that of the SOTA model, and in the trajectory modality,
the average displacement error (ADE) metric differs by
only 0.07 compared to that of the SOTA model. Addition-
ally, AllSpark exhibits excellent adaptability in various other
modalities, including point cloud, multispectral, hyperspectral,
table, graph, and code. Theoretically, our proposed model has
the potential for seamless extension to an arbitrary number of
modalities.

In other words, our contributions can be summarized as
follows.

1) We first propose a unified multimodal spatiotemporal
general model, AllSpark, that successfully integrates ten
spatiotemporal modalities into a single model.

2) Inspired by the human cognitive system and linguistic
philosophy, we propose the LaRF, which offers a novel
solution to balance cohesion and autonomy among mul-
tiple modalities.

3) Experiments indicate that AllSpark demonstrates strong
few-shot learning capabilities and supports ten modali-
ties. Theoretically, our proposed model has the potential
for seamless extension to an arbitrary number of
modalities.
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II. RELATED WORK

Leveraging multimodal data is an inherent requirement for
achieving cognitive recognition of geospatial objects. An ideal
multimodal model should possess the capability to integrate all
the modalities for joint interpretation. Hence, a crucial trend
in the research of intelligent methods in the spatiotemporal
domain is the continual increase in the number of modalities
available for joint interpretation.

Initially, early researchers often constructed single-modal
expert models based on prior assumptions about a specific
modality, achieving remarkable success within each respective
modality. In recent years, with a deeper understanding of
single-modal interpretation methods, numerous researchers
have attempted to integrate several low-heterogeneity modal-
ities to construct multimodal interpretation approaches. How-
ever, as the number of modalities increases, the challenge
of balancing cohesion and autonomy among the modalities
becomes increasingly difficult.

In the following, we recall the development of intelligent
methods in the spatiotemporal domain from the perspective of
the continually increasing number of modalities, and finally,
we present the principles and approach of our proposed model,
AllSpark.

A. Single-Modal Model

For 1-D modalities, we focus on code, language, and table.
Given the excellent characteristics of code, such as strict syn-
tax, unambiguous nature, and ability to interact with machines,
code is treated as a separate modality.

Feng et al. [23] pretrained a model, CodeBERT, which
facilitates the mutual transfer of information between code
and natural language modalities. For the language modality,
landmark contributions include a transformer [11], BERT [24],
and the GPT series [25], [26], [27], [28], which have inspired
subsequent series of works.

The table is one of the commonly used modalities for
recording and expressing information. TabNet, proposed by
Arik and Pfister [29], employs a sequence attention mechanism
to achieve feature selection in the table modality, thereby
enabling interpretable and more efficient learning.

We categorize RGB, multispectral, hyperspectral, SAR,
graph, and trajectory as 2-D modalities.

Among the 2-D modalities, standard three-channel RGB
images are among the most common. For the RGB modality,
the ResNet proposed by He et al. [30], which is based on
the importance of visual global and local information, and the
vision transformer (ViT) introduced by Dosovitskiy et al. [31],
which leverages a global attention mechanism, represent two
landmark contributions.

An increase in the number of channels in images leads to
multispectral and hyperspectral modalities. Huang et al. [32]
proposed the STDCNN, leveraging the characteristic of a
greater number of bands in multispectral images to simulta-
neously model the global spatial and spectral properties of
multispectral images. In comparison to multispectral images,
hyperspectral images have even more bands, often reach-
ing hundreds. Based on this, Yang et al. [33] introduced

the R-3D-CNN to further enhance the extraction of spectral
features.

In the case of SAR images formed by active microwave
radar, Chen et al. [34] introduced AConvNet, a widely used
fully convolutional neural network for intelligent SAR image
interpretation.

The trajectory modality reflects the temporal changes
in the spatial positions of objects. Gupta et al. [35] pro-
posed the social generative adversarial networks (GANs) based
on the characteristic of trajectory multiplicity. This model
combines historical trajectory information with social context
information to predict multiple plausible future outcomes.

For the graph modality, Kipf and Welling [12] introduced
the classic GCN, which is based on the adjacency relationships
between nodes in the graph. Veličković et al. [36] proposed
the GAT, which incorporates attention mechanisms into the
graph modality.

Finally, we turn our attention to 3-D modalities: point cloud.
The point cloud modality captures information about the

position, shape, color, texture, and other aspects of 3-D
objects. Qi et al. [10] introduced the classic PointNet for
the point cloud modality, emphasizing the importance of
invariance through point data permutation and the significance
of global and local features. Wu et al. [37] extended convo-
lution operations to 3-D point clouds with the introduction of
PointConv.

B. Multimodal Model

While the single-modal methods in Section II-A have
demonstrated excellent performance within their respective
modalities, they often face challenges in generalizing across
multiple modalities due to their construction based on specific
prior assumptions. Recognizing the intrinsic requirement for
intelligent models to utilize multimodal data for geographic
object cognition, numerous researchers have endeavored to
balance the cohesion and autonomy among modalities to
construct multimodal models.

Sadeghian et al. [38] extended the social GANs [35] and
introduced RGB images to enhance scene data in Sophie,
achieving better results in trajectory prediction tasks. Rec-
ognizing the high complementarity between RGB and SAR
images, Hughes et al. [39] proposed a three-step deep neural
network framework that utilizes a universal prediction of
matching regions, generates heatmaps, and eliminates outliers
to match RGB and SAR images. Li et al. [40] introduced the
DTCDN, a model that employs a GAN network to migrate
RGB and SAR images to the same feature space, facilitating
target detection. Yang et al. [41] proposed a dual-stream
convolutional network that uses high-resolution multispectral
images to enhance the spatial resolution of hyperspectral
images.

To achieve joint interpretation of multimodal data, tradi-
tional multimodal models typically design specific architecture
based on the priors of certain modalities. For example,
Hang et al. [42] proposed Coupled CNNs, which consist of
two CNN networks to extract spectral–spatial features from
hyperspectral data and elevation information from LiDAR
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data. They ultimately use both feature-level and decision-level
fusion methods to integrate the heterogeneous features of the
two modalities. Similarly, Zhang et al. [43] proposed SLA-Net,
which designs specific network structures to extract and fuse
spatial information and morphological characteristics from
hyperspectral imagery. These methods are typically designed
for specific purposes and modalities, making it difficult to
extend them to more modalities.

Additionally, Gao et al. [44] proposed DFINet, which
extracts self-correlation and cross correlation between mul-
timodal data to deeply fuse hyperspectral and multispectral
modality features. Likewise, Hong et al. [45] introduced S2FL,
which extracts modality-specific subspaces for each modality
and a shared subspace for all modalities, finally obtaining
multimodal interpretation results through a unified projection.
The issue with such methods is the lack of a unified alignment
reference, limiting them to collaboration between a few modal-
ities. As the number of modalities increases, the complexity
of aligning multiple modalities will grow exponentially.

Notably, CLIP, proposed by Radford et al. [15], associates
the RGB modality with the text modality using contrastive
learning [46], [47]. With pretraining guided by weak supervi-
sory signals from text, CLIP has demonstrated outstanding
capabilities in both visual single-modal tasks and visual-
language multimodal tasks, inspiring a series of subsequent
works [16], [17], [18], [19]. Zhang et al. [6] introduced a
meta-transformer, leveraging the contrastive learning paradigm
from CLIP to pretrain a universal backbone network under
the visual-language modality. It exhibits multimodal gener-
alization abilities across various modalities, such as point
cloud, infrared, and hyperspectral data. Han et al. [5] directly
employed a multimodal LLM as a universal backbone net-
work, proposing the One-LLM, which successfully unifies
eight modalities, namely, images, audio, videos, and points.
The success of these approaches implies the unique role of
language modalities in multimodal models.

Building upon the aforementioned efforts, we systematically
propose the fundamental principle of the LaRF. Guided by this
principle, we balance cohesion and autonomy among diverse
modalities and introduce a general intelligent model named
AllSpark, which unifies ten spatiotemporal modalities and
possesses the potential to extend to an arbitrary number of
modalities.

III. METHOD

A. Language as Reference Framework

We observe that in the process of comprehending the world,
humans integrate information from multiple modalities, such
as hearing, touch, smell, and vision. The concepts formed
through the parsing of these modalities ultimately converge
in language. Humans engage in associating, reasoning, and
expressive behaviors through language. In other words, lan-
guage precisely encodes human perception and understanding
of the world, providing clear definitions and meanings to
abstract concepts from each modality.

Inspired by our observation, we introduce the fundamental
principle of LaRF to balance cohesion and autonomy among
multiple modalities.

Fig. 2. Guided by the LaRF principle, multimodal data are transformed into
a token-context structure akin to language, based on their respective prior
assumptions. This approach preserves the autonomy of each modality while
achieving cohesion between them, enabling the interpretation of multimodal
data within a unified language representation space.

In terms of the cohesion of multimodalities, the high het-
erogeneity between multiple spatiotemporal modalities is a
major challenge, while the LaRF principle defines the align-
ment anchor between multimodalities as language explicitly.
As shown in Fig. 2, we observe that language is encoded by
tokens and their contexts, and this structure can be extended
to most spatiotemporal modalities. Therefore, we can align
highly heterogeneous spatiotemporal modalities to language
modalities in structure and semantics, enabling multimodal
interpretation in the unified representation space of language.
Additionally, the pivotal role of natural language prompts is a
key factor in the LaRF principle’s ability to achieve cohesion
across modalities.

In contrast, we can independently encode multiple spa-
tiotemporal modalities into token sequences under their
respective prior assumptions, so the LaRF principle does not
lead to the loss of modal autonomy. More importantly, LaRF is
not dependent on specific modalities; therefore, theoretically,
as long as token representations of modalities can be obtained,
the multimodal model guided by LaRF can be extended to
arbitrary modalities.

In summary, the significance of LaRF is as follows.

1) Alignment Capability: Language can accurately encode
both cohesion and autonomy information across multiple
modalities. Aligning each modality with the language
modality enables a unified representation in the same
feature space, addressing the challenge of high hetero-
geneity among modalities.

2) Reasoning Capability: Language, as a tool for human
thought and expression, inherently possesses the ability
to perform complex reasoning. Each modality, when
represented in a unified space with LaRF, inherits the
reasoning capability of language, unlocking the potential
for multimodal joint reasoning.
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Fig. 3. AllSpark architecture. Multimodal data are extracted by their respective modal encoders into token sequences. Following dimension alignment with
modality-specific text prompt tokens via a modal bridge, both the text prompt tokens and modality tokens are passed into a large language multimodal model
for interpretation. The interpretation results are then aligned with downstream tasks through task-specific heads.

3) Interpretability: Deep learning methods have long been
characterized as “black boxes.” However, a multimodal
intelligent system constructed based on the LaRF can
directly leverage language as a tool. This facilitates the
output of interpretable reasoning chains that humans can
understand, thereby achieving true explainable artificial
intelligence.

4) Interactivity: Language not only aids humans in under-
standing intelligent models but also facilitates intelligent
models in understanding humans. In an intelligent sys-
tem guided by the LaRF, humans can directly express
their needs using natural language. This iterative correc-
tion of the model’s output based on human interaction
will become a new paradigm for the training and infer-
ence of intelligent models.

5) Scalability: The multimodal system guided by the LaRF
is agnostic to specific modalities. New modalities need
to establish a mapping to the language model only
to participate in joint reasoning with other modali-
ties. Therefore, theoretically, a multimodal model based
on LaRF can be extended to an arbitrary number of
modalities.

B. Overview

Guided by the principles mentioned above, AllSpark con-
sists of five modules: the modal encoder, modal bridge,
text tokenizer, multimodal LLM, and task head. The overall
architecture is depicted in Fig. 3.

To maintain autonomy among modalities, we designed
modality-specific encoders to encode highly heterogeneous
data into modality-independent tokens (for details, see
Section III-C). However, the dimensions of tokens outputted
by modal encoders are still inconsistent. To parse in the
unified representational space of language, we introduced the
modal bridge from the Lynx [49]. The modal bridge aims to
project tokens from each modality into the dimension of the
multimodal LLM (Section III-D for details). The formalization
of this process is as follows:

si = 8( fi (mi ), q). (1)

Here, {mRGB, mMSI, mHSI, . . . , mi , . . . , } represents the
inputs from various modalities, where mRGB represents the
RGB modality, mMSI represents the multispectral modality, and
so on. fi is defined as the modal encoder for the mi modality,
8 represents the modal bridge, and q ∈ RN∗D represents
N learnable vectors of dimension D in the modality bridge,
where D is set to 4096, representing the dimensionality of
the multimodal LLM. The input data mi of each modality are
mapped to a token sequence si ∈ RN∗D of the same dimension
as the language model. Nomenclature section summarizes the
main mathematical symbols and their meanings in the model.

To achieve cohesion among modalities, we employ a unified
multimodal LLM to parse data from various modalities. The
text tokenizer and multimodal LLM in AllSpark are based
on the visual-language model Lynx [49]. To extend Lynx
to ten spatiotemporal modalities, we designed specific text
prompts for each modality to guide the model in correctly
parsing information from each modality. Additionally, Lynx
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incorporates several lightweight multimodal adapter layers
internally to accommodate multimodal inputs. We continue
this design and do not freeze the parameters of the adapter
layers during training to enhance the model’s adaptability to
other spatiotemporal modalities. Finally, we acknowledge that
a gap exists between the parsing results of the model and
those of the downstream task. Therefore, we design specific
task heads for each task to enhance the model’s generalization
capability.

The entire model M can be formalized as follows:

M(mi , pi ) = Htask(F(si ⊕ T (pi ))) (2)

where pi represents the text prompt of mi , T denotes the
text tokenizer, ⊕ indicates the concatenation operation of text
tokens and modality tokens in the sequence, F represents the
multimodal LLM, and Htask signifies the task head.

All the tasks in our experiments are supervised tasks, with
y denoting the labels, L representing the loss function, and
θ representing the learnable parameters in our model. The
optimization objective of the model can be formalized as
follows:

θi = arg min
θ

L(y, M(mi , pi ); θi ). (3)

C. Independent Encoder for Each Modality

The modal encoder aims to encode the raw data of each
modality into a token sequence, formalized as ti = fi (mi ),
where ti ∈ Rn∗d . We designed different modal encoders for
each modality to maintain autonomy among modalities. The
following provides individual introductions for each modality:

1) 1-D Modal: Code & Language: Code is essentially a
specialized form of language. But due to its distinct properties
such as having a strict syntax, being unambiguous, and being
capable of interacting with machines, we separate it as a
distinct modality. Therefore, to avoid ambiguity, we will use
“text” and “language” interchangeably to distinguish between
the natural language and code modalities. Exploring intelligent
methods for the code modality is crucial for reliable AI
reasoning and achieving interaction between intelligent models
and the real world. Since the Lynx model is a language
model, we do not design an additional modal encoder for
the code and text modalities. Instead, we directly utilize
Lynx’s text tokenizer, i.e., f (mText/Code) = T (mText/Code),
where mText/Code = {w1, w2, w3, . . . , } represents the sequence
of words in the text or code.

Table: A table can be viewed as a sequence of rows, with
each row containing several fields, or columns, i.e., mTable ∈

Rrow∗col. The modal encoder for the table modality inherits
the design from TabFormer [50]: first, based on the different
degrees of discreteness for each column attribute, we use
independent Embedding layers to encode discrete and continu-
ous values separately. Subsequently, we employ a single-layer
transformer encoder to further extract features. The entire
process can be formalized as f (mTable) = Enc1(Emb(mTable)).

2) 2-D Modal: RGB: RGB imagery represents the visible
light spectrum and reflects the electromagnetic characteristics
of objects that emit or reflect visible light waves. It is the

most common modality in the field of computer vision. RGB
imagery is a standard three-band image, i.e., mRGB ∈ RH∗W∗3.
For the modal encoder of this modality, we adopted the visual
encoder from the Lynx model: EVA [51]. The EVA is a large
visual model composed of 40 stacked transformer blocks with
a width of 1408. During the experiments, AllSpark loaded
the official weights of the EVA model and froze them during
training.

MSI: Multispectral imagery is a modality extensively
studied in the remote sensing field. It incorporates multi-
ple nonvisible light bands, such as near-infrared, shortwave
infrared, coastal atmospheric aerosol, and cirrus bands. There-
fore, the number of channels in MSIs is usually greater than
the three bands in RGB imagery, i.e., mMSI ∈ RH∗W∗C , where
C > 3. We extended the PatchEmbed of the standard ViT [31],
modifying its channel count to match the number of bands in
the input multispectral imagery. This adaptation allows it to
serve as the feature encoder for the multispectral modality.

HSI: Hyperspectral imagery increases the number of bands
compared to multispectral imagery, often reaching hundreds
of bands, with each band containing rich information. Unlike
RGB and multispectral imagery, where an image serves as a
single sample, in hyperspectral imagery, all bands for each
pixel are treated as a single sample, i.e., mHSI ∈ R1∗1∗C .
In the modal encoder for hyperspectral imagery, we first use
a linear projection layer to expand the feature dimensions for
each pixel. This process is formalized as W ∗ mT

HSI, where
W ∈ R1∗d is the weight matrix of the linear projection layer.
Subsequently, we use a 12-layer standard transformer encoder
to extract its features. The entire process can be represented
as f (mHSI) = Enc12(W ∗ mT

HSI).
Trajectory: The trajectory modality reflects the changing

information of an object over time and space and is composed
of a series of 2-D coordinate points, i.e., mTrajectory ∈ Rl∗2,
where l represents the sequence length of trajectory points.
The encoder for the trajectory modality inherits the design
from TUTR [52]: first, a linear layer is used to expand the
dimensions of the 2-D trajectory features. This step can be
formalized as W ∗ mTrajectory, where W ∈ Rd∗(l∗2) is the weight
matrix of the linear projection layer. Then, we use a 2-layer
transformer encoder to extract its features. The entire process
can be formalized as f (mTrajectory) = Enc2(W ∗ mTrajectory).

SAR: The SAR modality is a type of active remote sensing
that reflects the electromagnetic characteristics of objects with
respect to microwave backscatter. Due to differences in polar-
ization modes, the final product of SAR imagery is typically
a two-band or single-band image, i.e., mSAR ∈ RH∗W∗2.
Therefore, we designed a simple three-layer convolutional
network as the modal encoder.

Graph: A graph is constructed from a series of nodes and
edges, where the attributes of the nodes and the adjacency
attributes of the nodes reflect the majority of the features
of the graph, i.e., mGraph ∈ RK∗d , where K is the number
of nodes and d is the node feature dimension. In AllSpark,
the modality encoder of a graph is based on the STAE-
former [53], [54], whose main design idea is to first use
a linear layer to extend its feature dimension and then use
several Embedding layers to separately encode features such
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as the node’s characteristics, spatial characteristics, and tem-
poral characteristics. The entire process can be formalized as
f (mGraph) = Embnode(W ∗ mT

Graph) ⊕ Embspatial(W ∗ mT
Graph) ⊕

Embtime(W ∗ mT
Graph), where W ∈ Rhidden∗d is the weight of

the linear layer.
3) 3-D Modal: Point Cloud: A point cloud is typically

composed of 3-D coordinates and feature values mPointCloud ∈

RK∗(d+3), where K represents the number of 3-D points and
d represents the dimensionality of the point cloud features,
reflecting information such as the spatial position, shape,
color, and texture of objects. The encoder for the point cloud
modality inherits the design from PointBERT [48]: first, point
cloud data are grouped and encoded to unify the number of
points simultaneously inputted. This step can be represented
as PointGroup = Grouper(mPointCloud) ∈ RG∗N∗3, where G
represents the number of groups and N represents the number
of points in each group. Next, the grouped results are input
into a 1-D convolutional layer to extract feature vectors for
each group: fGroup = Conv1d(PointGroup) ∈ RG∗d . Finally,
the feature vectors for each group are input into a standard
12-layer transformer encoder to extract their global features.
The entire process can be formalized as f (mPointCloud) =

Enc12(Conv1d(Grouper(mPointCloud))).

D. Modal2Language Bridge

Although the modal encoders have transformed data
from various heterogeneous modalities into a unified token
sequence, there are still differences in dimensions between
different modal tokens, making it difficult to perceive by a
multimodal LLM. The modal bridge, based on the Perceiver
[21], aims to perform dimensional projection from tokens
of various modalities to tokens of the language modality.
In its implementation, the modal bridge consists of stacked
cross-attention layers and feedforward neural network layers.

In the cross-attention layer, we predefine a learnable query
vector Q ∈ RN∗D , where D is the internal dimensionality of
the language model and N serves as a hyperparameter that
can be flexibly adjusted to accommodate inputs from different
modalities. The keys and values in the cross-attention layer
are the features outputted by the modal encoders.

The feedforward neural network inherits the classic design
from the original transformer and consists of two linear layers
with an inserted activation layer.

The entire process can be formalized as follows:

8(Q, si ) = FFN

(
σ

(
QWT

q

(
si W T

k

)T

√
D

)
si W T

v

)
. (4)

Here, Wq ∈ RD∗hidden, Wk ∈ Rd∗hidden, and Wv ∈ Rd∗hidden

are the linear projection layer weights defined inside the
cross-attention layer for Q, K , and V , respectively. σ denotes
the softmax operation.

E. Task-Guided Text Prompts and Task Heads

To extend the visual-language multimodal model to ten
spatiotemporal modalities without intervention from modality
expert knowledge, we designed specific text prompts and task

TABLE II
SUMMARY OF HYPERPARAMETERS

heads for each modality and task. Text prompts are used to
guide the multimodal language model in correctly interpreting
each modality’s data, while task heads are employed to match
the model’s parsing results with specific downstream tasks.

We manually designed one to four specific text prompts
for each modality. During the training process, to enhance
model performance, we employed a strategy of diversifying
prompts, randomly selecting one prompt for each forward
pass. However, during testing, for the sake of result stability
and reproducibility, the prompt was fixed to be the first prompt
among all prompts. Table XVI provides a list of all the text
prompts.

To ensure the transferability of modalities across different
tasks, the design principle for task heads is to be as simple
and lightweight as possible.

For classification tasks or downstream tasks that can be
formalized as classification tasks, we uniformly use a sim-
ple single-layer linear layer as the task head. For instance,
we implemented standard classification tasks on the RGB,
MSI, SAR, and point cloud modalities. Although the task
involving the HSI modality is segmentation, it can be formal-
ized as a per-pixel classification task. Therefore, a single-layer
linear layer is used as the task head for the mentioned
modalities.

For regression tasks on the table, trajectory, and graph
modalities, we also use a linear layer to perform regression
predictions. The only difference from classification tasks is the
addition of an unscaled operation without learnable parame-
ters. Since the Lynx itself is a language model, the code and
text modalities directly use its native text decoder.

IV. EXPERIMENT

A. Setup

Our experiments aim to demonstrate the following: 1) the
distinct advantages of AllSpark over traditional models and
2) AllSpark’s ability to understand ten spatiotemporal modal-
ities simultaneously.

For the former, we believe that since language is a reference
framework, AllSpark’s advantage over traditional models lies
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in the richer semantic meaning of its features. In LLMs [26],
[27], [55], [56], a common way to measure this property is
through few-shot learning. Therefore, we evaluated AllSpark’s
performance on few-shot classification tasks in the RGB and
point cloud modalities without any extra training steps. The
experimental results can be found in Section IV-C.

For the latter, we select a task for each modality to conduct
the evaluation. Following the principles of simplicity and
reproducibility, we choose the widely studied datasets in each
modality’s respective field and employ similar experimental
settings across all modalities. Specifically, we use the AdamW
optimizer with a learning rate schedule based on cosine
annealing. The hyperparameters are adjusted slightly in terms
of training epochs and learning rates for different experiments.
The specific details on dataset selection can be found in
Section IV-B. Table II summarizes the hyperparameter settings
for the experiments on each modality. The experimental results
can be found in Section IV-D.

B. Dataset

Below, we will provide detailed explanations of datasets in
order.

Language: The IMDB [57] dataset is a binary sentiment
analysis dataset consisting of 50 000 reviews from the Inter-
net Movie Database (IMDb) labeled as positive or negative.
Additionally, the dataset includes some unlabeled data. In our
experiments, only the labeled data from the IMDB dataset
were utilized for supervised sentiment classification tasks.

Code: CodeSearchNet [58] is a large-scale dataset of func-
tion code and its documentation from GitHub that covers six
programming languages: Go, Java, JavaScript, PHP, Python,
and Ruby. The task performed on the code modality is code
document generation, and we tested it on the Ruby and
JavaScript.

Table: The PRSA [65] dataset is a collection of air quality
data from multiple stations in Beijing that contains hourly
measurements of air pollutants. The data spans from March 1,
2013, to February 28, 2017, across 12 monitoring stations.
In our experiments, we used various features, including time,
station information, four air pollutant variables (SO2, NO2,
CO, and O3), and six meteorological variables (temperature,
pressure, dew point temperature, amount of precipitation, wind
speed, and wind direction). The task was to predict the
concentration of PM2.5. We split the data into training (40%)
and testing sets.

RGB: NWPU-RESISC45 [66] is a large-scale open dataset
for visible light remote sensing image scene classification.
The dataset included 45 land use categories, such as airplanes,
baseball diamonds, beaches, and commercial areas. Each cate-
gory included 700 remote sensing images, for a total of 31 500
images. The image size is 256*256 pixels, and we selected a
version of the dataset split by the official release using 20%
of the data for training.

MSI: The EuroSAT [67] dataset is a multispectral dataset for
land use and land cover (LULC) classification. The samples
are sourced from the Sentinel-2 optical satellite and include all
13 bands. The data are categorized into ten classes for a total

of 27 000 images. We adopted a random 9:1 split for training
and testing.

HSI: The Pavia University dataset is a high spatial resolution
hyperspectral dataset acquired by the ROSIS sensor. It com-
prises 103 bands with a size of 610*340 pixels. The dataset
includes nine land cover categories, such as asphalt, meadows,
and gravel. We used a 4:6 split for training and testing.

Trajectory: The ETH-UCY [68], [69] dataset is a widely
used benchmark for pedestrian trajectory prediction and is
divided into five subsets: ETH, HOTEL, UNIV, ZARA1, and
ZARA2. In our experiments, we utilized the ETH subset.

SAR: The MSTAR [70] dataset is an SAR dataset designed
for military stationary target recognition that comprises ten
categories of military targets. We employed the standard
operating conditions (SOCs) dataset preprocessing method
proposed by Chen et al. [34], ensuring that the serial numbers
and target configurations are consistent between the test and
training sets while the aspects and depression angles differ.

Graph: METR-LA is a traffic dataset collected from
loop detectors on the Los Angeles highways spanning from
March 1, 2012, to June 30, 2012. The task is traffic flow
prediction.

Point Cloud: ModelNet40 [71] is a synthetic point cloud
dataset consisting of 40 object categories and a total of 12 311
point cloud objects. We follow the official dataset split, with
9843 objects used for training and 2468 for testing.

C. Few-Shot Learning

To demonstrate AllSpark’s unique advantages over tradi-
tional models, we tested its few-shot performance on the RGB
and point cloud modalities. It is worth noting that traditional
few-shot learning methods typically require additional training
steps. For instance, common approaches like ProtoNet [61]
and MatchingNet [59] involve randomly splitting support and
query sets on the training set for supervised training, a step
known as meta-learning. Thanks to the integration of natural
language, AllSpark requires no extra training step and can
directly evaluate few-shot classification accuracy on the test
set, significantly outperforming baseline models.

1) RGB: We evaluated AllSpark’s RGB image few-shot
classification performance on the UC-Merced [72] and WHU-
RS19 [73], [74] datasets, following the dataset splits from [62].
Specifically, the UC-Merced dataset uses six classes—Beach,
Golf course, Mobile home park, River, Sparse residential,
and Tennis court—as the test set, while the WHU-RS19
dataset uses five classes—Commercial, Meadow, Pond, River,
and Viaduct—as the test set. AllSpark does not require
meta-learning on the training set and is evaluated on
600 episodes directly on the test set, with 15 query samples
per episode. As shown in Table III, we report the results for
both 5-way 1-shot and 5-way 5-shot settings. The experiments
demonstrate that AllSpark significantly outperforms baseline
models without requiring any training, highlighting the advan-
tage of LaRF.

2) Point: We evaluated AllSpark’s point cloud few-shot
classification performance on the ShapeNet [75] and ScanOb-
jectNN [76] datasets, following the dataset settings from [77].
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TABLE III
FEW-SHOT CLASSIFICATION RESULTS FOR THE RGB MODALITY

TABLE IV
FEW-SHOT CLASSIFICATION RESULTS FOR THE POINT MODALITY

TABLE V
RGB IMAGE CLASSIFICATION WITH ALLSPARK

Similar to the RGB modality, AllSpark does not require
meta-learning on the training set and is evaluated on
700 episodes directly on the test set, with 15 query samples
per episode. As shown in Table IV, we report the results for
both 5-way 1-shot and 5-way 5-shot settings. The experiments
demonstrate that AllSpark surpasses most baseline models
even on previously unseen point cloud datasets, showcasing its
outstanding semantic richness and generalization capabilities.

D. Ability to Understand Ten Spatiotemporal Modalities

1) RGB: We evaluated the performance of AllSpark on
the RGB image scene classification task using the NWPU-
RESISC45 dataset, with the top-1 accuracy as the evaluation
metric. AllSpark leverages expert knowledge from Lynx by
loading its pretrained weights. Therefore, in Table V, we com-
pare AllSpark with the state-of-the-art models. The results
indicate that AllSpark outperforms most baseline models,
with a margin of only 0.84 compared to that of the SOTA

TABLE VI
MSI LAND COVER CLASSIFICATION WITH ALLSPARK

(95.69). This highlights AllSpark’s exceptional perception and
interpretation capabilities in the RGB modality.

2) MSI: We evaluated the performance of AllSpark on
the MSI scene classification task using the EuroSAT dataset.
In the experiment, all 13 spectral bands of the images were
simultaneously input into the model. The model’s objective
was to correctly classify the images into one of the ten
specified categories, and the evaluation metric chosen was the
top-1 accuracy. AllSpark does not possess expert knowledge
in the multispectral modality, so we categorize the base-
line models into two groups, as shown in Table VI: those
with expert knowledge intervention and those without. Expert
knowledge intervention refers to baseline models pretraining
on large datasets such as BigEarthNet and then fine-tuning
on the EuroSAT dataset, while no expert knowledge indicates
baseline models trained directly from scratch on the EuroSAT
dataset. The results show that our model outperforms most
models in the no expert knowledge group, with a margin of
only 2.60 compared to the state-of-the-art model (ResNet-
152). Furthermore, AllSpark lags behind the best result in
the expert knowledge group by only 4.75, demonstrating its
excellent adaptability to the multispectral modality.
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TABLE VII
HSI PIXEL CLASSIFICATION WITH ALLSPARK

TABLE VIII
PM2.5 PREDICTION WITH ALLSPARK

3) HSI: We conducted a pixel classification task on the
Pavia University dataset for the hyperspectral modality. The
model treats all spectral bands of a single pixel as one
sample and predicts the land cover category of that pixel.
The reported metrics include overall accuracy (OA), average
accuracy (AA), and kappa. Since AllSpark does not possess
expert knowledge of the hyperspectral modality, we compared
it with the semisupervised baselines summarized by Uchaev
and Uchaev [96]. The results in Table VII demonstrate that
AllSpark outperforms many hyperspectral image classification
methods, such as IFRF and S-DMM, by a factor of 6.42 com-
pared to the best result in terms of OA, highlighting AllSpark’s
superior adaptability to the hyperspectral modality.

4) Table: For the table modality, we evaluated AllSpark
on the regression prediction task using the PRSA [65] dataset.
The task involves predicting the concentration of PM2.5 in the
air using features such as time, site, four air pollutants, and
six meteorological variables (as detailed in Section IV-B).
The performance metrics include the root mean squared error
(RMSE), mean absolute error (MAE), and R-squared (R2).

Table VIII presents the comparative results between
AllSpark and the baselines. It is worth noting that some works
specifically focus on the prediction task on the PRSA dataset
and design expert models with specific architectures based
on dataset characteristics. For example, the CBAM-CNN-Bi-
LSTM proposed by Li et al. [99] used a CNN to extract spatial
dependencies between air monitoring stations and Bi-LSTM to
capture the temporal dependencies of PM2.5 data. Similarly,
the stacked ResNet-LSTM model proposed by Cheng et al.
[98] employs a stacking LSTM strategy to enhance the
extraction of temporal features in PM2.5 data. Therefore,
we categorize baseline methods into two types: those with an
expert architecture and those without an expert architecture.
Among the models without expert architecture, our approach

TABLE IX
CODE DOCUMENT GENERATION WITH ALLSPARK

achieves the best performance among the baselines and is
slightly inferior to the state-of-the-art method for models with
expert architecture (CBAM-CNN-Bi-LSTM). This reflects the
excellent adaptability of AllSpark to the table modality.

5) Code: For the code modality, we evaluated the perfor-
mance of AllSpark on the code document generation task using
the CodeSearchNet dataset. This task involves generating
corresponding documents based on the provided function code.
We conducted tests for both the Ruby and JavaScript languages
using the mean reciprocal rank (MRR) [100] as the evaluation
metric.

Like in the previous modalities, since MSI-AGI does not
possess expert knowledge of the code modality, we categorized
the baselines into two groups: those with and without expert
knowledge. As shown in Table IX, AllSpark achieved SOTA
results in the group without expert knowledge, and the results
were comparable to those of models trained with expert
knowledge. This finding demonstrates the strong adaptability
of AllSpark to the code modality.

6) Point Cloud: For the point cloud modality, we evaluated
the performance of AllSpark on the ModelNet40 dataset for
the classification task, with the top-1 accuracy as the metric.
In the context of single-modal studies focused on point clouds,
we observed that due to the unique 3-D structure of point cloud
data, most works concentrate on designing specific structures
to maintain properties such as permutation invariance and sym-
metry in 3-D point clouds. However, these structures designed
for the unique priors of the modality are challenging to transfer
across modalities. Additionally, some methods tend to pretrain
on large point cloud datasets to acquire general modal expert
knowledge before generalizing to specific downstream tasks
to improve performance.

The AllSpark module is designed based on a general
sequence-to-sequence architecture. As shown in Table X,
in the absence of both modality expert architectural designs
and modal expert knowledge, AllSpark still outperforms clas-
sical networks with point cloud-specific structures (PointNet
and Kd-Net). This approach maintains comparability with the
state-of-the-art PointGPT model, which has both a modal
expert structure and modal expert knowledge. This finding sug-
gested that AllSpark has significant potential for applications
in the point cloud modality.

7) Trajectory: For the trajectory modality, we evaluated the
performance of AllSpark on the ETH dataset in the trajectory

Authorized licensed use limited to: Wuhan University. Downloaded on May 26,2025 at 06:44:01 UTC from IEEE Xplore.  Restrictions apply. 



5606620 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 63, 2025

TABLE X
POINTCLOUD CLASSIFICATION WITH ALLSPARK

TABLE XI
TRAJECTORY PREDICTION WITH ALLSPARK

prediction task. This task involves predicting possible 2-D
trajectories based on a set of 2-D coordinate points within
a certain time period. We report accuracy using the ADE
and final displacement error (FDE) [52]. Given the future
trajectory{xt , yt }

T
t=Tbos+1 (ground truth) and the predicted tra-

jectory {x̂t , ŷt }
T
t=Tbos+1, the ADE and FDE are used to measure

their L2 distances, calculated as follows:

ADE =
1

Tpred

T∑
t=Tbos

√(
xt − x̂t

)2
+
(

yt − ŷt
)2 (5)

FDE =

√(
xT − x̂T

)2
+
(

yT − ŷT
)2

. (6)

In Table XI, AllSpark is compared with the state-of-the-
art trajectory prediction models. The results indicate that
AllSpark, which uses a unified structure without trajectory
modality expert knowledge, outperforms most expert models.
It achieves a prediction accuracy close to that of the SOTA
model (STAR), with a difference of only 0.07 in the ADE
metric and 0.11 in the FDE metric. This finding suggested that
AllSpark demonstrated excellent adaptability to the trajectory
modality.

8) SAR: For the SAR modality, the adaptability of AllSpark
was tested on the MSTAR dataset, where the model is required
to identify SAR images of ten military targets, and the metric
used is the top-1 accuracy. In the experiment, the preprocess-
ing of the MSTAR dataset followed the SOC settings from
AConvNets [34]. Table XII presents the comparison results
between AllSpark and the state-of-the-art model under these

TABLE XII
SAR CLASSIFICATION WITH ALLSPARK

TABLE XIII
TRAFFIC PREDICTION WITH ALLSPARK

TABLE XIV
TEXT UNDERSTANDING WITH ALLSPARK

settings. AllSpark achieves 97.24% top1-accuracy, only 1.89%
lower than the SOTA model. The experiments demonstrate that
AllSpark is capable of effectively understanding SAR imagery.

9) Graph: For the graph modality, the performance of
AllSpark was evaluated on the traffic flow prediction task
using the METR-LA dataset. The evaluation metrics include
the RMSE, MAE, and R2. Table XIII compares AllSpark
and the state-of-the-art methods on the METR-LA dataset,
with the baseline derived from [53]. The results show that
AllSpark, without the intervention of modal expert knowledge,
is only 0.47 away from the best result in terms of the RMSE,
demonstrating its excellent adaptability to the graph modality.

10) Language: We tested AllSpark’s natural language pro-
cessing capabilities on the IMDB dataset [57] with the task of
binary sentiment classification (positive or negative). AllSpark
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TABLE XV
TRAINING AND INFERENCE COSTS

loads weights from the Lynx; therefore, it can be considered
to possess expert knowledge in the natural language modality.
Compared with the SOTA models on the IMDB dataset,
as shown in Table XIV, AllSpark outperformed most language
models, trailing the SOTA result by only 0.32. This highlights
AllSpark’s powerful understanding and analysis capabilities in
natural language.

E. Training and Inference Costs

As the scale of model parameters grows, the training and
inference costs of LLMs have been rapidly increasing. In this
section, we provide detailed training and inference costs of
AllSpark for reference. All experiments are conducted on
two NVIDIA A6000 48G GPUs, using a numerical precision
of torch.float32. The hyperparameter settings are detailed in
Section IV-A.

Due to the presence of modality-specific encoders, the acti-
vated parameters in AllSpark vary when processing different
modalities. Table XV summarizes the total parameters, train-
able parameters, training time, and inference computational
cost (measured in MACs) for each modality.

V. DISCUSSION

A. Limitations

Certainly, our work has several limitations, which will guide
our future research directions.

1) Lack of Interaction Between Different Modalities:
AllSpark only facilitates interactions between the lan-
guage and other modalities, without involving more
interactions, such as RGB and point cloud, or hyper-
spectral and multispectral. This is primarily due to
constraints such as the lack of multimodal paired data.
However, collecting large-scale paired data for ten
modalities is nearly impossible, so we attempt to use
language as the alignment reference for each modality,
achieving indirect alignment between modalities using
unpaired data. AllSpark represents the initial effort in
this approach and has demonstrated strong adaptability
across various modalities. Also, the adversarial examples
also affect the robustness of the proposed model [120].
In the future, we plan to explore and expand our efforts
in these directions in the further.

2) Initial Work: Our current work is still in its ini-
tial exploratory phase, and we have not carefully
refined AllSpark’s adaptability and performance on each
modality. As a result, the model exhibits suboptimal
performance on certain modalities, such as oblique pho-
tography, and video. The experimental results can be
found in Tables XVII and XVIII. In the future, we plan
to conduct more refined and targeted adjustments for
each modality to enhance overall performance.

3) Expensive Cost: Multimodal LLMs, due to prolonged
pretraining, typically possess universal reasoning capa-
bilities in certain modalities. We generalize their
applicability to other modalities by utilizing modality
bridges to project other modalities onto the language
modality. As shown in Section IV-E, although we
freeze most of the parameters, fine-tuning even once
on 2 A6000 GPUs often requires more than a day. Given
the increasing training costs for large models, exploring
methods to generalize their universal reasoning abilities
is one of our future research directions.

4) Interesting Phenomenon: During our exploratory exper-
iments, we discovered several interesting properties of
large models. For instance, spatial information tends
to degrade in large models, leading to collapse when
performing dense prediction tasks such as segmenta-
tion and detection. Additionally, these models struggle
to optimize when transferred to a small quantity of
downstream data. Large models often require smaller
hyperparameters and are sensitive to them. These obser-
vations might partially reveal the working mechanisms
of large models, and we plan to conduct additional
in-depth investigations into these phenomena in the
future.

B. Potential of the LaRF

Inspired by the human cognitive system and linguistic
philosophy, we propose the “LaRF” as the first principle for
constructing our unified multimodal model. Its foreseeable
potential includes at least the following three points.

1) Efficient Generalization of Large Models: Currently, the
computational power and data scale required for training
large models are rapidly expanding, and even the cost
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TABLE XVI
LIST OF PROMPTS

of fine-tuning large models is becoming prohibitive.
Therefore, in the future, training large models for every
domain will be almost impossible. Language, however,
holds the potential for achieving efficient generalization
of large models, expanding them from their native
domains to additional domains at minimal cost. With our
proposed AllSpark, we designed simple text prompts and

task heads for each modality, demonstrating significant
potential for multimodal expansion. In theory, AllSpark,
built on the LaRF principle, can be extended to arbitrary
modalities. In the future, we will conduct more in-depth
research on the impact of text prompts and lightweight
parameter modules on the generalization of large
models.
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2) Interpretable Reasoning: Deep learning models have
often been referred to as “black boxes,” indicating that
the reasoning process of these models is invisible and
challenging to interpret. Research on the interpretability
of deep learning models often relies on complex math-
ematical models and numerous assumptions, greatly
limiting the practical application of deep learning meth-
ods in fields such as clinical medicine, military, and
national resources where low fault tolerance or high
confidentiality is crucial. However, language, as a tool
for human thought and communication, provides mod-
els based on LaRF with the potential to use natural
language directly for outputting reasoning chains and
justifications.

3) Transition From an End-to-End to an Interactive
Paradigm: The end-to-end paradigm refers to the
learning approach where the model takes input and
directly outputs results. In recent years, the end-to-end
paradigm has become increasingly popular due to its
simple and clear architecture and excellent performance.
However, this approach also has clear disadvantages,
such as uncontrollable internal operations, the need to
optimize the whole for certain problems, and difficulty in
pinpointing the cause of issues. A LaRF-based architec-
ture has the potential to achieve an interactive paradigm
in which users input raw data and corresponding text
prompts and the model automatically performs relevant
operations based on the prompts. Users can even iter-
atively adjust the text prompts based on the results.
Therefore, in terms of both performance and control-
lability, the interactive paradigm has advantages that are
incomparable to those of the end-to-end paradigm.

VI. CONCLUSION

Leveraging multimodal data is an inherent requirement
for intelligent models to achieve geographic object cogni-
tion. Inspired by human cognitive systems and linguistic
philosophy, we propose that the construction of multimodal
models follows the fundamental principle of LaRF. Guided
by this principle, we use language to balance the cohesion
and autonomy of modalities, presenting a unified intelligent
model, AllSpark, encompassing ten spatiotemporal modalities.
The experimental results demonstrated that AllSpark exhib-
ited excellent adaptability and application potential across
various spatiotemporal modalities, highlighting the feasibility
and potential of constructing multimodal models with LaRF.
AllSpark remains an initial exploratory work, and in the future,
we aim to delve deeper into the mechanisms guided by natural
language, the efficient generalization of large models, and the
transition to an interactive paradigm.

APPENDIX

A. List of Prompts

The text prompts we used are listed in Table XVI.

TABLE XVII
VIDEO CLASSIFICATION WITH ALLSPARK

TABLE XVIII
3-D RECONSTRUCTION WITH ALLSPARK

B. Video

For the video modality, we evaluated AllSpark’s perfor-
mance on action recognition tasks using the UCF101 [121]
dataset. The UCF101 dataset is a human action recognition
dataset comprising 101 action classes with a total of 13 320
video clips. The videos have a combined duration of 27 h
and a resolution of 320*240 pixels and were sourced from
YouTube.

The model is tasked with understanding videos and accu-
rately classifying them into one of the 101 classes, with the
evaluation metric being the top-1 accuracy. In Table XVII,
we compare AllSpark with the current state-of-the-art models.

Currently, AllSpark’s adaptation to the video modality is not
optimal, as it shows a significant difference from the baseline
model results. We attribute this to two main reasons.

1) The high redundancy in video information increases
the training cost for AllSpark. We trained it for only
3 epochs on the dataset.

2) AllSpark’s model architecture lacks flexibility for 3-D
data, making it less effective at capturing temporal
information.

C. Oblique Photography

For the oblique photography modality, we tested AllSpark’s
performance on the 3-D reconstruction task using the WHU-
OMVS [122] dataset. WHU-OMVS is an oblique photography
dataset designed for 3-D reconstruction tasks. The dataset
provides imagery from five different viewpoints, along with
camera parameters and other relevant information. It consists
of six areas, and in our experiments, area 1 is used as the
training set, and area 2 is used as the test set.

The model takes five-view images as input, and the goal
is to output depth maps for reconstructing 3-D models. The
evaluation metric used was the percentage of accurate grids in
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total (PAG) [122], calculated by the following formula:

PAGa =

(ma

m

)
∗ 100. (7)

The suffixes in the PAG represent different accuracy stan-
dards, where PAG6 signifies an error within 0.6 m and PAG10
indicates an error within 1 m. Table XVIII compares AllSpark
with popular multiview 3-D reconstruction models on the
WHU-OMVS dataset.

AllSpark falls short in terms of accuracy compared to
modality-specific expert models. We speculate two possible
reasons: 1) dense spatial information gradually diminishes in
the deep structure of large models, a point verified in our
exploratory experiments involving segmentation, detection,
and so on and 2) the model architecture lacks flexibility and
cannot connect gradual features like expert 3-D reconstruction
models such as Ada-MVS. Additionally, these methods lack
the ability to design specific model structures for processing,
severely restricting their performance. Adapting multimodal
large models to dense prediction tasks and optimizing the
architecture are future research directions.
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