
  

  

Abstract— 3D mesh generated from UAV photogrammetry 

can depicts the urban scene realistically. Most of the studies on 

semantic segmentation of 3D mesh based on deep learning 

convert mesh data into point cloud or 2D image, resulting in 

original information lost and poor segmentation effect. To 

address the problem, a semantic segmentation convolutional 

neural network UMeshSegNet is designed in this paper based on 

MeshCNN, which directly processes the mesh data. The 

network combines geometric, elevation and texture features, 

and attention mechanism is also introduced to enhance the 

sensitivity to the feature. Experiments and analyses are 

conducted on public dataset SUM and our own Wuhan test data, 

and the experimental results indicate that UMeshSegNet can 

effectively segment mesh data with significantly higher semantic 

segmentation accuracy than previous deep learning methods. 

I. INTRODUCTION 

3D Real Scene is an important component of Digital City, 
and currently, the construction of 3D Real Scene of China is 
rapidly progressing. Compared to traditional photogrammetry 
techniques, 3D mesh models generated from UAV 
photogrammetry have the advantages of accurate morphology 
and realistic texture, making them an important source of data 
for city-level realistic 3D construction. However, the model 
constructed through UAV oblique photogrammetry 
technology is in an inseparable state and lacks semantic 
information on specific features, which limits its further 
application. To better utilize 3D mesh models and serve urban 
level realistic 3D construction, it is necessary to obtain 
semantic information on specific features. Deep learning has 
achieved good results in the semantic segmentation of images 
and point clouds, and has achieved significant results. 

Due to the current mainstream deep learning methods 
mainly targeting data such as images and point clouds, rather 
than mesh data of oblique photography models, most classic 
deep learning models cannot be directly applied to oblique 
photography models. Most existing semantic segmentation 
methods for oblique photography models convert them into 
images or point clouds for processing. Image-based methods 
[1] obtain semantic results on multi-view images of mesh 
models and map the results back to the mesh model. These 
methods can utilize mature two-dimensional image processing 
techniques, but are susceptible to interference from occluded 
objects. Point cloud based methods directly or indirectly 
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convert mesh data into point cloud data. Tutzauer et al. [2] 
calculated multi-scale geometric and spectral features on a 
triangular surface, created feature points at the center of 
gravity of the triangular surface, constructed feature point 
clouds, and inputted 1DCNN for semantic segmentation. 
Laupheimer et al. [3] fused LiDAR point cloud features with 
mesh features, extended the feature vectors of mesh data, and 
implemented semantic segmentation of mesh data using 
PointNet++. Point cloud based methods can directly utilize 
existing neural network models for point clouds, but cannot 
effectively utilize the geometric and texture information of 
mesh data itself. 

Compared to the point clouds, mesh data can adaptively 
change density according to expression needs, storing 
geometric information of the same resolution in less space. At 
the same time, mesh data contains topological information and 
high-resolution texture information, making direct semantic 
segmentation based on mesh data have great potential. In 
recent years, some deep learning methods for mesh data have 
been proposed [4-6]. Among them, Hanoka et al. [7] 
analogized CNN models on images, defined grid convolution 
and pooling with neighboring edges as the neighborhood and 
central edges as the core, and proposed a neural network called 
MeshCNN that can be directly used for mesh data, making it 
possible to directly apply deep learning methods to the 
semantic segmentation task of mesh models. 

In this paper, the state-of-the-art neural network 
MeshCNN is improved for mesh data by incorporating texture 
and elevation features, and introducing attention mechanisms 
to enhance feature perception. A convolutional neural network, 
UMeshSegNet, is proposed for semantic segmentation of 
mesh models. To address the partitioning problem of 
large-scale mesh data, Breadth First Search (BFS) algorithm is 
used to process mesh data. Experiments were conducted using 
the public dataset SUM and data from a certain area in Wuhan. 
The results showed that the semantic segmentation results of 
UMeshSegNet are superior to other classical 3D deep learning 
methods, and all the used features and attention mechanisms 
could improve the model performance. The research provides 
new ideas and solutions for semantic segmentation of mesh 
data generated from UAV photogrammetry based on deep 
learning. 

II. METHODS 

A. Convolution and Pooling 

In a triangular mesh, the shared edge between two 
triangular faces has four fixed neighboring edges, which can 
form a fixed convolutional receptive field. Therefore, edges 
can be treated as "pixels", and each edge can be assigned a 
feature vector to define convolution on an edge basis. As 
shown in Fig. 1, given the eigenvector e of a shared edge, the 
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set of eigenvectors of its neighboring edges is fixed. In 
counterclockwise order, the adjacent edge feature vectors of e 

have two arrangements: ( ), , ,a b c d  and ( ), , ,c d a b . Due to the 

need for convolution operations to ensure that each feature 
vector in the receptive field has a definite order, symmetry 
transformation is used to eliminate the influence of order. The 
transformation formula is shown in the formula (1). After 
eliminating the influence of order, conventional convolution 
operations can be performed on the edges. The convolution 

formula is shown in the formula (2), where e and j
e  represent 

the feature vectors of the shared edge and the adjacent edge of 
the shared edge, respectively. 

0k  and 
jk  are convolution 

kernel parameters. Since convolution is only calculated within 
local neighborhoods, traversing all edges in any order is 
feasible. 

 

Figure 1.  Edge of Mesh and Neighbor Edges 
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The pooling operation on two-dimensional images can be 
abstracted into three steps: dividing data into specific pooling 
regions, merging features in pooling regions, and updating the 
adjacency relationships of merged features. Due to the 
irregularity of mesh data, pooling operations on 
two-dimensional images cannot be directly transferred to 
mesh data. Therefore, by analogy with these three steps, a 
pooling method for mesh data is proposed. Firstly, define each 
edge and its 1-ring neighborhood as a pooling region. As 
shown in Fig. 1, for the shared edge feature vector e, the set 
composed of its feature vectors is used as the pooling region. 
Different pooling orders produce different results, therefore, 
based on the importance extent of each edge, the pooling order 
is determined by the L2 norm of the eigenvalues. To control 
the degree of pooling, it is also necessary to define the target 
number of edges n for pooling. During the pooling process, it 
will collapse in sequence until there are n remaining edges. 
During the collapse process, the central edge is folded, and the 
remaining four adjacent edges are merged into two edges. As 
shown in the formula (3), the eigenvector of the collapsed new 
edge ( ),p q  is obtained by taking the average of the 

eigenvectors ( ), ,a b e  and ( ), ,c d e  of the original triangle edge. 

 ( ), ,= avgi i i ip a b e  () 

 ( ), ,= avgi i i iq c d e  () 

Unpooling process can restore collapsed edge structures 
during the pooling process, which is the reverse process of 
pooling. The UMeshSegNet proposed in this paper adopts an 
encoding-decoding structure, where each pooling layer 
corresponds to an unpooling layer. In the decoder module, the 
pooled feature map will be aligned with the corresponding 
pre-pooled feature map, and will be stacked and added into the 
convolutional layer. To achieve the above operations, it is 
necessary to record changes in the mesh structure during 
pooling, and to recover collapsed edge structures by inputing 
the recorded structural changes during unpooling. After 
performing the pooling operation, except for maintaining the 
original features of the central edge, the features of other 
adjacent edges are consistent with those of the collapsed edges. 
The specific process is shown in Fig. 2. 

 

Figure 2.  Pool and Unpool of Mesh 

B. Network Structure 

The UMeshSegNet network is designed based on the 
encoding decoding structure of the U-Net network, and 
introduces an attention mechanism module. The network 
structure is shown in Fig. 3. Each layer of the encoder consists 
of a DownConv convolution module and an SE (Squeeze and 
Excitation) attention mechanism module, which gradually 
extracts high-level semantic features through four rounds of 
pooling. Each layer of the decoder consists of an UpConv 
deconvolution module, which restores the original input size 
through four rounds of unpooling. The input of each layer of 
the decoder includes the unpooling result of the upper output 
feature map and the corresponding encoder output feature map. 
Finally, the feature map restored to its original input size will 

be subjected to a 1×1 convolution module and a sigmoid 

activation function to obtain semantic segmentation results. 
The DownConv convolution module and UpConv 
deconvolution module consist of basic MeshConv operations, 
where the DownConv module's MeshConv operation 
increases the number of output feature channels, while the 
UpConv module's MeshConv operation reduces the number of 
output feature channels. The operation process of MeshConv 
is shown in Fig. 4. 

UMeshSegNet uses SE attention mechanism [8] to model 
the importance of different features for semantic segmentation 
tasks. Attention mechanism considers the importance of 
different data regions in learning. The SE attention mechanism 
assigns weight parameters to each input feature, emphasizing 
important features and suppressing secondary features, 
thereby improving the accuracy of the results. SE attention 
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multiplies the learned channel weight vector with the feature 
map to adjust the model's feature perception ability. 

 

Figure 3.  Network Structure 

 

Figure 4.  MeshConv Operation Procedure 

The SE attention module can be divided into two parts: 
Squeeze and Excitation, as shown in Fig. 5. In which 

  H W CRx  is the input feature, 
  H W CRx  is the output 

feature, H and W are the height and width of the feature, and C 
is the number of channels for the feature. The compression 

part compresses the input features of  H W C  dimension 

into 1 1  C  through global average pooling. Global pooling 

can fully consider all samples within each channel. The 
incentive part consists of two fully connected layers and a 
Sigmoid activation function alternately connected. Two fully 
connected layers are used to compress and recover the number 
of feature channels, and reduce redundancy through this 
process. Normalize the weight vector using the sigmoid 

activation function. Finally, the input features of  H W C  

dimension are multiplied by the weight vector of 1 1  C  

dimension to obtain the output features x . 

 

Figure 5.  Network Structure of Attention Mechanism 

C. Feature calculation 

This section introduces the calculation method for the 
initial eigenvectors of each edge. The original MeshCNN only 
uses local geometric features to calculate the initial feature 
vector. As Rouhani et al. [10] and Verdie et al. [11] mentioned, 
texture features play an important role in semantic 
segmentation of mesh data generated from UAV 
photogrammetry. The elevation characteristics are also crucial 
for distinguishing buildings, vegetation, and ground. 
Therefore, UMeshSegNet extends the input features by using 
local geometric features, texture features, and elevation 
features related to edges as initial feature vectors. 

Geometric features: The geometric features of mesh 
edges include dihedral angles of two adjacent faces on each 

edge AB ; The opposite vertex angle of two adjacent triangles 

 A  and  B ; Height Ah  and Bh ; the ratio of height to the 

corresponding bottom edge length, ratioA  and ratioB . The 

geometric features are independent of the absolute position of 
edges in the mesh, and the position information of edges is 
only used for pooling operations throughout the entire 

network calculation process. As shown in Fig. 6,  CD  is the 

shared edge of triangle ACD  and BCD , m and n  is the 

normal vector of the triangle ACD  and BCD , respectively. 

The calculation method for their geometric features is: 

  = −ABcos
m n

m n
 () 

 

2 2 2
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+ −
= −A
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Figure 6.  Geometrical Features of Mesh Edge 

Texture features: We extract the RGB color values of 
mesh textures as texture features. Obtain the RGB color values 
of the texture corresponding to the two vertices of each edge in 
the mesh, and calculate their mean as the RGB color value for 

that edge. ,a b  represent the vertices of edge e, and the color is 

( ), ,a a aR G B  and ( ), ,b b bR G B , then the color value of edge e is: 
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+
= a b

e

R R
R  () 

 
2

+
= a b

e

G G
G  () 

390

Authorized licensed use limited to: Wuhan University. Downloaded on January 04,2025 at 08:47:54 UTC from IEEE Xplore.  Restrictions apply. 



  

 
2

+
= a b

e

B B
B  () 

Elevation features: We extract the mean value of 
Z-coordinate of each edge and two vertices in the mesh as 
elevation features. For possible terrain undulations, we use 
relative elevation as the input feature, and the relative 
elevation of each edge can be calculated: 

 min

max min

−
=

−
e

Z Z
Z

Z Z
 () 

where Z represents the absolute elevation of the edge, 
minZ  

represents the minimum elevation of the data block where the 
edge is located, and 

maxZ  represents the maximum elevation 

of the data block where the edge is located. 
eZ  is the relative 

elevation of each edge within this data block. The relative 
elevation value of each edge is limited within ( )0,1 . 

III. EXPERIMENTAL RESULTS  

A.  Dataset and Preprocessing 

The experiment in this paper was conducted on the 
semantic segmentation dataset SUM [12] of urban area mesh 
models and mesh data in Wuhan, China. SUM data covers 
four areas of the Finnish capital Helsinki, which includes six 
categories of land features: buildings, vegetation, ground, 
vehicles, water bodies, and ships. The SUM dataset divides 
the raw data into 64 pieces of data with a size of approximately 
250m  250m, including 40 pieces of training data, 12 pieces 
of validation data, and 12 pieces of testing data. The data 
distribution and labels are shown in Fig. 7. Wuhan data 
includes ground, buildings, vegetation, water bodies, et al., as 
shown in Fig. 8. 

 

Figure 7.  Distribution of SUM Dataset 

In the process of deep learning training, large sample data 
cannot be directly input into the network, thus a blocking 
strategy is often adopted for large sample data. To ensure 
training effectiveness, the partitioned data should be kept of 
the same size as much as possible. Two-dimensional images 
can be divided into data of the same size according to a unified 
size, while oblique photography model data is irregular, and 
there may be significant differences in the number of edges 
between data divided according to a unified size. In response 
to the above issues, this paper uses a Breadth First Search 
(BFS) based method to divide the mesh model data into sub 
blocks with the same number of edges, while ensuring the 
topological continuity of each sub block. 

 

Figure 8.  Distribution of Wuhan Dataset 

During the iteration process, a complete face is added to 
each sub block to ensure the correctness of the topological 
relationship. The principle of searching for adjacent faces is 
that if the number of vertices shared by two faces is greater 
than or equal to 1, they are considered adjacent. During the 
iteration process, for each output sub block, all triangular faces 
belonging to that sub block will be marked as visited in the 
original data. When all faces are marked as visited, the 
iteration stops. 

The training set in the SUM dataset is divided into 9654 
sub blocks and the test set into 2109 sub blocks using this 
partitioning method. Each sub block contains 6000 edges, and 
due to the randomness of seed face selection, there may be a 
slight overlap between the sub blocks. 

B. Parameter Settings and Evaluation Criterion 

Precision is used to evaluate the semantic segmentation 
results of each category. Evaluate the overall results of 
semantic segmentation using F1 value, overall accuracy (OA), 
and intersection over union (IoU). The definitions of accuracy, 
recall, F1 value, OA, and IoU are as follows:  
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 =
+
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 () 
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We train the UMeshSegNet on NVIDIA GeForce GTX 
3090 on AMD Ryzen 9 5950X 16 Core Processor 3.40GHz 
using AdamW as the optimizer, with a batch size of 8. The loss 
function is cross entropy and the initial learning rate is set to 
0.001. 

C. Analysis of Comparative Experimental Results 

To verify the effectiveness of the proposed model, this 
paper compared four classic 3D data semantic segmentation 
networks: PointNet [13], PointNet++ [14], SPG [15], and 
RandLA Net [16]. The specific results are shown in Table 1. 
Compared to the classical methods mentioned above, this 
model achieved the highest mIoU, OA, and F1 values, and 
performed the best in vegetation and vessel categories. The 
performance in ground, building, and vehicle categories also 
differed slightly from the optimal method. Fig. 9 shows the 
results of partial semantic segmentation. From the first line, it 
can be seen that for the category of buildings, roofs can 
basically be correctly distinguished, but some facades are 
mistakenly divided into vehicles and floors, which are mostly 
located at the junction of facades and floors. Although 
elevation and texture features help distinguish between 
buildings, ground, and vegetation, the influence of features is 
weakened due to the tendency of the intersection between 
building facades and ground to collapse more edges during 
pooling. From the second line, it can be seen that the method 
proposed in this article has a good segmentation effect on 
vegetation, but there are some cases of misclassification 
between low and low vegetation and the ground. In addition, 
the method proposed in this article can segment most vehicles, 
but the edges of the vehicles are easily misclassified as the 
ground, and some vehicles are completely misclassified as the 
ground. 

TABLE I.  COMPARATION OF SEGMENTATION RESULT(%) 

Criterion PointNet RandLANet SPG PointNet++ 
UMeshSeg 

Net 

Ground 56.3 38.9 56.4 68.0 67.3 

Vegetation 14.9 59.6 61.8 73.1 84.2 

Building 66.7 81.5 87.4 84.2 86.7 

Water 83.8 27.7 36.5 69.9 50.7 

Vehicle 0.0 22.0 34.4 0.5 34.2 

Boat 0.0 2.1 6.2 1.6 20.1 

mIoU 36.9 38.6 47.1 49.5 57.3 

OA 71.4 74.9 79.0 85.5 87.6 

F1 44.6 49.9 49.9 57.1 69.5 

 

 

Figure 9.  Segmentic Segmentation Results  of SUM Dataset 

D. Ablation Study 

Ablation experiments are conducted on the SUM dataset, 
using the complete UMeshSegNet model as a benchmark. The 
elevation feature Z, texture feature RGB, geometric feature 

(dihedral angle AB , inner angle γ , ratio of height and 

bottom ratio), and SE attention mechanism modules were 

removed, respectively. The models without Z, RGB,  , γ , 

ratio, and SE were obtained respectively, and compared with 
the complete model to test the impact of each input feature and 
SE attention mechanism on the final result. Table 2 shows the 
specific results of the ablation experiment. 

TABLE II.  COMPARATION OF SEGMENTATION RESULT(%) 

Method Z RGB AB  γ ratio SE OA F1 ΔOA ΔF1 

All √ √ √ √ √ √ 87.6 69.5 0 0 

No Z × √ √ √ √ √ 79.9 57.9 -7.7 -11.6 

No RGB √ × √ √ √ √ 78.2 51.4 -9.4 -18.1 

No θ √ √ × √ √ √ 82.6 62.9 -5.0 -6.6 

No γ √ √ √ × √ √ 84.0 66.9 -3.6 -2.6 

No ratio √ √ √ √ × √ 83.3 65.7 -4.3 -3.8 

No SE √ √ √ √ √ × 84.4 61.6 -3.2 -7.9 

 

The complete UMeshSegNet model performs the best. All 
input features and attention mechanisms contribute to 
improving model performance, with the removal of any term 
leading to a decrease in OA within the range of [3.2%, 9.4%] 
and F1 values within the range of [2.6%, 18.1%]. Among them, 
the model without RGB with removed texture features shows 
the greatest decrease in OA and F1 values, with an F1 value 
reduced by 18.1% compared to the complete model, indicating 
that texture features are the most important in improving 
model performance. This is related to the ability of texture 
features to distinguish between vegetation and non-vegetation. 
Elevation features are also important in models, which is 
related to their ability to distinguish between ground and 
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non-ground features. The OA and F1 values of the model 
without SE with removed attention mechanism module and 

the model without  , without γ , and without ratio with 

geometric features removed have both decreased, but the 
difference is not significant. The impact of attention 
mechanism on each category is relatively average. 

E. Generalization Study 

To test the generalization ability of the UMeshSegNet 
model, we use the model trained on the SUM dataset to 
perform semantic segmentation on Wuhan data. The results 
are shown in Fig. 10. It can be seen that the buildings, 
vegetation, and ground in the area have been roughly 
segmented correctly, but there are still some errors. For 
building categories, there are differences between the building 
types in Wuhan data and the SUM dataset, with some building 
facades being misclassified into ground and vegetation. For 
vegetation categories, some of the vegetation in the Wuhan 
data is misclassified into buildings, and the misclassified areas 
are mostly located on the shaded side of the vegetation and at 
the junction of the vegetation and the ground. This may be 
caused by the poor texture quality of these parts. The 
segmentation accuracy of water bodies and vehicles in Wuhan 
data is relatively low, with most water bodies mistakenly 
divided into ground and buildings, and some vehicles divided 
into ground. Due to objective differences in data, the model 
may make some errors when applied, but it retains the 
segmentation performance on the source data. Among them, 
categories with a large amount of training data such as 
buildings and vegetation have better segmentation results, 
while categories with less training data such as water bodies 
and vehicles have lower segmentation accuracy. 

 

Figure 10.  Segmentic Segmentation Results  of Wuhan Data 

IV. CONCLUSION 

A deep learning network called UMeshSegNet is proposed 
in this paper, which is designed for semantic segmentation of 
3D mesh generated from UAV photogrammetry and to 
address the problem of semantic segmentation methods that 
convert mesh models into images or point clouds for 
processing, resulting in loss of geometric and texture 
information. The proposed model incorporates geometric, 
texture, and elevation information from 3D mesh data and 
combines attention mechanisms to improve network 
performance. Experimental results on the public dataset SUM 
have shown that the semantic segmentation results of the 
UMeshSegNet are superior to other classical deep learning 
networks. The ablation experimental results indicate that all 
input features and attention mechanisms contribute to the 
improvement of model performance. Compared with other 

classical deep learning networks, UMeshSegNet has 
significant advantages in semantic segmentation performance, 
but there are still cases of building misclassification and low 
accuracy in some categories. In the future, the settings of 
edges number during partitioning and the combination with 
the point cloud based deep learning methods will be further 
researched to improve the network performance. 
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