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A B S T R A C T   

Three-dimensional (3D) lines are common elements in artificial scenes and serve as basic, yet essential features 
for structural 3D reconstruction. The crucial step of 3D line reconstruction, namely two-view line segment 
matching, still faces challenges in terms of both accuracy and efficiency improvements. Therefore, robust and 
efficient constraints are needed to establish valid line candidates. This paper introduces a novel geometry 
constraint called “one-point-one-line geometry” (OPOL) to enhance the precision of line matching and reduce 
computational complexity. OPOL offers two remarkable advantages: (1) It takes point orientations as the 
constraint, which is not only invariant to projective transformations, but also alleviates computational re-
quirements. (2) It needs only one point match to construct the geometry constraint, thus both the grouping and 
validation are greatly reduced. Additionally, we incorporate the line sweep strategy into OPOL, leveraging depth 
and space constraints derived from existing 3D points to further enhance efficiency. Extensive experiments 
conducted on large-coverage and high-resolution images (as large as 10336 × 7788 pixels) demonstrated that 
OPOL matched lines within a second for an image pair. Both quantitative and qualitative results also demon-
strated the superior accuracy and efficiency performance of OPOL. We integrated OPOL into multiple view line 
reconstruction frameworks, and the promising experimental results reveal the performance of OPOL for robust 
line reconstruction. The OPOL code is publicly available at https://github.com/JoeAlexxxxx/OPOL.   

1. Introduction 

Three-dimensional (3D) lines containing rich structural details are 
prominent features in artificial scenes (Hofer et al., 2015). Line segment 
matching, serving as the fundamental step in recovering 3D lines from 
two-view or multiple view images, is essential for various aspects of 3D 
reconstruction, including structure recovery, plane reconstruction, and 
scene abstraction. Line matching is much more complicated than 
traditional point matching due to the challenging trade-offs between 
robust matching descriptors and low matching complexity (Lange et al., 
2019, Vakhitov et al., 2019, Lange et al., 2020). The description is weak 
when the texture along the line region is poor. Although introducing 
scene plane geometry could enhance the robustness of matching de-
scriptors, the encountered feature grouping operations for establishing 

geometry constraint would greatly prolong the processing time and in-
crease algorithms complexity. Efficient and accurate line segment 
matching is still on the way. 

Researchers have dedicated efforts for line matching with joint fea-
tures, such as joint points and lines. They first recovered the local 
transformation and then checked whether the line candidate were 
aligned with the transformation. Fan et al. (2010) used four points to 
obtain local projections, which had a complexity of o(n5) for the whole 
matching. When the relative pose of two-view images is known, three 
points are generally required to calculate the local projection, and thus 
the time complexity reaches to o(n4). Ramalingam et al. (2015) accel-
erated the validation of line matches with two points and two lines, and 
the time complexity was reduced to o(n3) with the line sweep strategy. 
Wei et al. (2022) used two junction lines to obtain and validate the local 
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projection, but it still has the complexity of o(n3). For this kind of 
matching paradigm, the time complexity closely depends on the number 
of features required to establish the geometry constraint. The fewer joint 
features that are required, the more efficient the matching will be. Thus, 

researchers always consider the accurate geometry constraint with 
fewer joint features. 

Generally, point orientations could have been obtained in advance in 
many SfM (Structure from Motion) (Wu et al., 2013, Gong et al., 2023) 
or SLAM (Simultaneous Localization and Mapping) tasks. While it is 
usually neglected in constructing the geometry constraint of line 
matching. In this paper, we exploit point orientation and propose a 
novel one-point-one-line (OPOL) constraint to establish line correspon-
dence. The key idea of OPOL is simple while effective: if a point and line 
lie in the same plane of the object space, they have the same projection 
in two image planes; also, the main orientation of the two key points 
should be aligned with the transformation. This basic hypothesis re-
quires only one point match to validate the line pair, thus benefits the 
time complexity to o(n2). The pipeline of line matching with OPOL is 
shown in Fig. 1. OPOL uses the existing point match, of which the 

Fig. 1. The pipeline of OPOL.  

Fig. 2. Illustration of one-point-one-line geometry. l ↔ l′ is the line candidate need to be checked. p ↔ p′ is a pair of point matches outside the line and containing the 
main directions (o and o′) obtained from the local descriptor. The local homography H can be calculated with l ↔ l′ and p ↔ p′, with which we could compute the 
rotation of o in the second image as o. Finally, l ↔ l′ can be validated via the orientation difference θ. 

Fig. 3. Illustration of line sweeping. With the middle point of the red line in the left image, we could sweep its candidate along the epipolar line by pre-building the 
line map of the right image. Also, the depth of the neighbor points of pmid is used to constrain the interval of the line sweeping. Finally, the candidates of l are 
constrained in the red interval to be l′i to l′k. 

Table 1 
The image datasets in each section.  

Section Dataset Image Number Image Size(pix) Two-view pairs 

5.1 Herze-Jesu 25 3072 × 2048 75 
Castle 30 3072 × 2048 87 
Rathaus 84 5184 × 3456 252 

5.2 Dublin 368 9000 × 6732 1104 
7360 × 4912 

Guangzhou 419 10336 × 7788 1235  
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matching method has been quite robust. Inspired by (Barath et al., 
2018), OPOL introduces the point orientation to construct a reliable line 
matching geometry. Furthermore, the depth constraint of neighbor 
points is used to accelerate the search for line candidates by shrinking 
the epipolar line trace. 

Three common properties in photogrammetry contribute to the 
effectiveness of OPOL. First, in artificial scenes, line segments are 
frequently found inside planes and are easy to be coplanar with neigh-
boring points. Second, the main orientations of point features in the 
plane are aligned under the projective transformation (Lowe et al., 
2004). Third, OPOL can utilize point clouds such as sparse points, dense 
points, or LiDAR points, which have been readily available in many 
applications. The experiment with thousands of image pairs in large size 
would present two notable advantages of OPOL: (1) it is quite fast due to 
its low complexity and few grouping processes; (2) OPOL can obtain 
more line matches because fewer joint features have the higher chance 
to be coplanar while it only requires one neighbor point for validation. 

This paper is organized as follows. Section 2 provides a brief over-
view of line segment matching. In Section 3, we present OPOL geometry 
constraints for corresponding line segments, which leverages the infor-
mation derived from points and their orientations. The process of 

filtering candidate matches using a line-sweep strategy is also elucidated 
within the same section. The algorithmic complexity of OPOL is 
analyzed in Section 4. Experiments are described in Section 5. Finally, 
Section 6 concludes the article. 

2. Related works 

2.1. Matching with textures 

Like point matching, many line-matching algorithms used texture 
along line segments to construct the line descriptor and establish line 
matches. Bay et al. (2005) built the gradient histogram to obtain initial 
candidates, and a topological filter was used to remove mismatches. 
Wang et al. (2009) proposed a line descriptor constructed by mean- 
standard deviation (MSLD) of the texture matrix. But it was sensitive 
to the affine transformation. Some studies have been conducted to 
address the change in viewpoint. Zhang and Koch (2013) proposed the 
line band descriptor (LBD) that incorporated local textures and geo-
metric constraints. It could overcome the affine transformations to a 
certain degree. López et al. (2015) constructed the descriptor with 
multiscale information and introduced it into the matching with 

Fig. 4. The line matching results of two-view ground images. For all of the experiments, (C) means that the algorithm is controlled with dense points; (NC) means 
that no control is employed. Note that in the following experiments, we use dense points as ground truth to validate the correctness of the result. 
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geometry constraint. Li et al. (2016) introduced the line-junction-line 
(LJL) structure composed of junction lines and intersection points, 
within which the orientation histograms were grouped as the descriptor, 
and the multiscale pyramid was also built to counter the scale change. Li 
and Yao (2017) then improved LJL to be affine and scale invariant by 
recovering the affine transformation with the junction lines and their 
intersections, in which the image pyramid was no longer required. 

Recently, learning-based line matching methods (Lange et al., 2019, 
Vakhitov et al., 2019, Lange et al., 2020, Abdellali et al., 2021), such as 
SOLD2 (Pautrat et al., 2021) and L2D2 (Abdellali et al., 2021), have 
been proposed with the rapid development of deep learning. These 
methods could extract and describe the line simultaneously and showed 
great potential in line matching. But these methods also had the com-
mon drawbacks of deep learning methods, e.g., the low efficiency for 
large size images and the limitation of the transferability for different 
scenes. 

2.2. Matching with geometry constraint 

Relying on texture descriptors alone will disregard the geometry 
information of line segments. Thus, many researchers introduced ge-
ometry constraints into line matching. Zhang et al. (2002) employed 
epipolar geometry to limit the search space to a quadrilateral, which 
greatly accelerated the candidate searching. Ok et al. (2012a) proposed 
the similarity measurement based on the daisy descriptor (Tola et al., 
2009) to establish the correspondence. In addition, a combination of 
epipolar, radiometric, correlation, and regional constraints is used to 
obtain a reliable match. Al-Shahri et al. (2014) combined global geo-
metric constraint with local texture validation, which employed epi-
polar constraint to identify candidate matches and then utilized local 
line configuration and transformation to reduce geometric ambiguities. 
Chen et al. (2021) classified line segments into structured line pairs, 
unstructured line pairs, and individual line pairs, with which the hier-
archical geometry constraint was used to overcome the viewpoint 

change. Wang et al. (2021) matched line segments with line pairs and 
constructed the double-layer matrix through collinear geometry to 
improve matching accuracy. Some studies (Schmid et al., 1997) also 
improved texture correlation with epipolar geometries, in which the 
local homography was calculated for texture distortion. 

Due to advanced development in the extraction and matching of 
point features, some studies have exploited point matches to assist line 
matching. Fan et al. (2010) and Sun et al. (2015) grouped joint points to 
obtain the local projection to validate line matching. Jia et al. (2019) 
constructed the topological adjacency between a point and a line, with 
which the candidate could be filtered and overall performance was 
improved. Furthermore, Shi et al. (2017) used the mesh topology to 
speed up the matching. Wang et al. (2020) used camera poses and point 
matches to solve the local affine projection. Then the line-to-point dis-
tance ratio was calculated to match the lines. In summary, the geometry 
combined matching tried to obtain the local transformation to match 
lines with position alignment or enhance the accuracy of line de-
scriptors. It could improve accuracy, while the computation increased 
exponentially with the number of joint features. 

2.3. Matching with multiple view geometry 

The matching of two image lines project to a certain position in other 
images. Thus, when there are more than two images, the geometry 
constraint for multiple images could be used. Beder et al. (2004) 
demonstrated that geometric information alone can satisfy the matching 
task for point and line features. Jain et al. (2010) introduced the global 
topology across multiple images and used a sweeping approach to avoid 
explicit line matching. This algorithm could overcome the rupture of 
line extraction. But it required large computations and might not sup-
port large image datasets. To make line matching more efficient, Hofer 
et al. (2015) used the graphics processing unit (GPU) and the graph cut 
method to improve line clustering in multiple images. As shown in the 
study by Li and Yao (2017), Wei et al. (2021a) and Wei et al. (2021b) 

Fig. 5. The time consumption of ground images. All the methods were run in a single thread. LJL was not plotted because it was much slower than OPOL and ELSR.  
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Fig. 6. Visualization of the matching result in ground images.  
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which embedded the alignment of the local homography in a global 
graph, building the graph for line matching across two or multiple im-
ages was helpful to control false positive. But both the graph construc-
tion and graph assignment are time-consuming. Thus, Wei et al. (2022) 
used greedy assignment to find the best line match that satisfied the 
most homography constraints induced by junction line matches. It 
significantly improved the speed, while the accuracy was not sacrificed 
due to the point constraint. Recently, Liu et al. (2023) proposed the 
LIMAP framework, which improved matching accuracy by vanishing- 
point constraint, and they used the point match to reduce the de-
generacy of line reconstruction. 

3. One-point-one-line geometry (OPOL) 

The method overview is presented in Fig. 1. Straight line segments 
and matched points are used as input. OPOL geometry for line corre-
spondence (Section 3.1) contains three main steps:  

(1) Given a line segment l in the left image, we construct the sweep 
trace in the right image on the basis of epipolar geometry and 
depth constraint. (Section 3.3)  

(2) Sweep along the trace in the line map, in which if there is a line 
segment l′i, OPOL validation is employed with l ↔ l′i and the 
neighbor point matches. The line match with the maximum score 
is selected as the best match. (Section 3.2) 

(3) The endpoint-to-local-mesh distance is used for the final valida-
tion if LiDAR point clouds or 3D meshes are available. (Section 
3.4) 

3.1. The homography of line and point matches 

Given a 3D point P and line L, we could obtain the scene plane π =

(v⊤, 1)⊤, where v = (v1, v2, v3)
⊤ is the normal vector of the plane. For the 

given π, there is a projective transformation between the two image 
planes, and Hartley et al. (2003) showed that this projective trans-
formation is calculated as 

H = [e′]×F − e′v⊤ (1)  

where e′ is the epipolar of the right image, [e′]× is the pseudo inverse 
matrix of e′, and F is the fundamental matrix; these could be induced 

Fig. 6. (continued). 

Table 2 
The summary of matching with ground images.   

Herze-Jesu Castle Rathaus 

Two-view Task Number 75 87 252 

Line Quantity LJL(NC) 2028.373 2166.56 - 
ELSR(NC) 1162.76 1407.63 1814.05 
OPOL(NC) 1634.96 1771.09 2300.39 

Line Quantity With 3D Model LJL(C) 1199.45 980.23 – 
ELSR(C) 840.64 706.01 1084.52 
OPOL(C) 1348.16 1160.63 1487.96 

Match Time(s) on Average LJL(NC) 488.40 6103.6 – 
ELSR(NC) 1.20 1.17 3.79 
OPOL(NC) 0.84 0.72 2.38 
OPOL(C) 0.85 0.77 2.62  
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from the camera matrix or the fundament matrix. 
Because we have a point and line candidate, which form a plane in 

3D space, we can certainly obtain the local projective transformation 
corresponding to their 3D features. Let l ↔ l′ and p ↔ p′ be the match lines 
and points in two images. With the H in Equation (1), one could map l 
and p to the second image as l′ and p′, respectively. Conversely, if l ↔ l′ 

and p ↔ p′ are available, we could obtain H via listing the three equations 
to solve v: 

[ l′ l′ p′ ]⊤(Q − e′[ v1 v2 v3 ]
⊤
)[ x1 x2 p ] = 0 (2)  

where x1 and x2 are the endpoints of l and Q = [e′]×F. The three equa-
tions in Equation (2) give an exact solution for the three parameters in v. 
Hartley et al. (2003) give a derivation based on Equations (1)–(2) to 
directly solve the homography with a point and line match. 

H = [l′]×F+(p′ × e′)⊤
(p′ × ((Fx) × l′ ) )

‖p′e′‖2
(l⊤p)

e′l⊤ (3)  

3.2. Local rotation under the homography 

Equation (3) only calculates the local homography with a line and 
point match, while it cannot answer whether the line match is correct or 
the two features are indeed coplanar. Thus, under the assumption that 
the point match p ↔ p′ is a true positive, we introduce the point orien-
tation as additional cues for validation (See Fig. 2). If the point orien-
tations satisfy the local projective transformation, which is induced by 
the line and point matches, we assume that the line match is correct. The 
details are described as the follows. 

Inspired by Barath (2018), we calculate the local rotation for a pair of 
specific points under the homography. The relationship between the 
rotation α and an affine transformation A can be described as 

A =

[
a1 a2
a3 a4

]

=

[
cos(α) − sin(α)
sin(α) cos(α)

][
su w
0 sv

]

(4)  

In fact, A is the first-order Taylor approximation of the 3D→2D projec-
tion function (Molnár et al., 2014), namely, A is the first-order 
approximation of the homography matrix H. Therefore, given a pair of 
point match mp, of which p = [x1 y1 1]⊤ and p′ = [x2 y2 1]⊤, the 
first-order approximation at p ↔ p′ can be calculated with 

a1 =
∂x2

∂x1
=

h1 − h7x2

s
a2 =

∂x2

∂y1
=

h2 − h8x2

s

a3 =
∂y2

∂x1
=

h4 − h7y2

s
a4 =

∂y2

∂y1
=

h5 − h8y2

s

(5)  

where h* is the row major element of H; s is calculated with s = x1h7 +

y1h8 + h9. By combining Equation (4) and (5), we have 

Fig. 7. The statistic of the two-view matching in aerial images.  

Table 3 
The matching results of aerial images.   

Dublin Guangzhou 

Quantity of image pair 1104 1235 

Line quantity ELSR(NC) 6874.25 5795.78 
ELSR(C) 3124.96 3719.21 
OPOL(NC) 11748.4 9275.20 
OPOL(C) 5799.18 6166.49 

Runtime without line extraction (s) ELSR(NC) 13.932 10.919 
OPOL(NC) 1.228 1.562 
OPOL(C) 1.861 4.329  
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α = arctan
h4 − h7y2

h1 − h7x2
(6)  

We could score the line match ml by its n neighbor points: 

s
(
ml) =

∑

i
exp

(
− ∠

(
αi,∠

(
oi, o′

i

) )
/2tang

)
, s.t. ∠

(
oi, o′

i

)
< tang (7)  

where o and o′ are the orientations of the left and right point, respec-
tively; ∠(•) calculates the difference of two angles. Note that only when 
∠(o, o′) is smaller than a giving threshold tang, the line match will be used 
for further evaluation. 

We can obtain the point orientation (o and o′ in Equation (7)) without 
additional computation. Because the point features extracted by clas-
sical point matching methods, such as SIFT (Lowe et al., 2004), SURF 
(Bay et al., 2008), and other new algorithms (Zhang et al., 2023), are all 
rotationally invariant. Moreover, the main direction can be extracted 
directly from the result of these point descriptors. 

3.3. Line-sweep matching 

Section 3.1 and 3.2 show the validation of the orientation for a point 
and a line match while in practice we must address the other two con-
tents. First, how to efficiently establish the OPOL candidate, because 
testing all the candidates would be a time cost. Second, how to resolve 
contradictory matches when dealing with multiple OPOL candidates. 
This section shows our line-sweep method to address the two concerns. 

As illustrated in Fig. 3, we use the middle point pmid of line segment l 
in the left image as the key point to generate the epipolar line in the right 
image. The line candidate is then searched along the epipolar line. To 
reduce the sweeping and validation, the depth constraint is used with 
the simple but reasonable assumption: the line segment is approximately 
coplanar with its neighbor points. Given the camera matrix and tnei 

neighbor space points {Pi = (x, y, z,1)⊤}n
i=1, the depth range can be 

calculated as 

pmid ∈ [depthmin, depthmax] =

(
m(3)⋅Pi

‖m(3)‖

)

min,max
i ∈ [1, n] (8)  

where m(3) is the third-row of the camera matrix. With depthmin and 
depthmax, the two space points starting from the camera center c and 
passing through pmid are 

p[min,max] = c+
[depthmin, depthmax]

V⊤
axi⋅Vc - mid

⋅Vc - mid (9)  

where Vc - mid is the normalized vector passing through c and pmid; Vaxi is 
the normalized principal vector. Finally, we could obtain the two image 
points on the epipolar line as 

p[min,max] = C′⋅
[
P(3)⊤
[min,max], 1

]⊤
(10)  

which determines the sweeping interval. Finally, any line segment that 
intersects the epipolar line should be validated with OPOL geometry. 

Every line match candidate will have the matching score with 
Equation (7). If two matches are contradictory, the one with the higher 
s
(
ml) will be retained. This resolving process is achieved by the greedy 

algorithm. 

3.4. Space points validation 

In practical applications, the dense matching points or LiDAR points 
may be available. Naturally, we could use them as the ground truth to 
control OPOL results. Also, they can be used to check whether the result 
of OPOL is true. With the 3D mesh constructed from the space points, the 
endpoint-to-mesh distance can be calculated for the 3D line triangulated 
from the line candidate. Then, the line segment with an abnormal 
endpoint-to-mesh distance should be incorrect. 

Fig. 8. Runtime in two-view aerial images. The time of the line segment detection is plotted in gray, which takes majority of the proportion in OPOL.  
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Now the key falls into finding the reasonable threshold tthr as the 
maximum endpoint-to-mesh distance. We follow (Hofer et al., 2015) to 
calculate tthr by shifting the image pixels and calculating the related shift 
in object space: 

tthr = depth⋅tan
(
∠
(
Vaxi, cpshift

̅̅̅→) )
(11)  

where depth is the endpoint depth; c denotes the camera center; Vaxi is 
the normalized principal vector as in Equation (9); pshift is the point 
shifted from the principal point in the vertical and horizontal direction 
by σ pixels. We use σ = 1.5 pixels in validation. Note that the ready- 
made 3D mesh can be used directly in this validation. 

4. Complexity 

The time complexity of the algorithm is 

f (n) = 3kmn+ 3mn+ km+ 3λmn+ 3n+m+ 1 (12)  

where n is the number of all line segments in the left image; m denotes 

Fig. 9. The visualization of matching with aerial images.  

Table 4 
The statistic of line number and run time in multiple view reconstruction.  

Dataset Method Time(s) Line Quantity 

Herze-Jesu Line3D++ 12.859 1869 
ELSR  3.069 2596 
OPOL  3.227 2950 

Castle Line3D++ 13.421 2986 
ELSR  3.878 4620 
OPOL  3.398 4847 

Rathaus Line3D++ 51.302 4604 
ELSR  25.628 5801 
OPOL  21.413 7330 

Dublin Line3D++ 831.565 29,030 
ELSR  350.626 251,677 
OPOL  201.089 286,563 

Guangzhou Line3D++ 876.186 26,727 
ELSR  277.843 268,247 
OPOL  194.36 285,652  
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the number of candidate lines in the right image; λ ∈ {0,1} indicates 
that there is a probability that no calculation is performed. The coeffi-
cient 3 is the sub-iteration inside the main iteration. k is the number of 
neighbor points around the line segment and is fixed in OPOL (k = 15). 
After omitting the lower-power term of Equation (12), the time 
complexity is T(n) = O(mn). Because the line sweep strategy, n is much 
lower than m. Thus, the complexity of this algorithm is bigger than o(n)
and is o(n2) at most. In Section 5, we will further test the speed of OPOL. 

5. Experiments and discussions 

In this section, we tested OPOL on ground and aerial datasets with 
high-resolution images, of which the details are presented in Table 1. We 
preprocessed these images with VisualSFM(Wu et al., 2013) to obtain 
the camera matrix and tie-points. Because VisualSFM used the SIFT al-
gorithm for point matching, the main directions of the connection points 
were used directly for OPOL. We compared OPOL with LPI (Fan et al., 
2010), LJL (Li and Yao, 2017), GLM (Wei et al., 2021a) and ELSR (Wei 
et al., 2022) in two-view matching, and we compared OPOL to Line3-
D++ (Hofer et al., 2015) and ELSR in multiple view line reconstruction. 

Fig. 10. Results of the 3D line reconstruction. In each dataset, the first image shows an overview of OPOL line reconstruction. The next three images represent the 
result in local areas. Ellipse highlights the differences. 
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We used LSD (Von Gioi et al., 2012) to detect straight line segments for 
all the methods. In Section 5.5, we also tested OPOL with the line 
segment from DeepLSD (Pautrat et al., 2023) and the point from FAST 
(Rosten et al., 2006). For efficiency, our algorithms were implemented 
in C++ and were tested on a Windows system with an i9 12900Ks CPU 
and 32 GB of memory. 

5.1. Two-view ground images 

Three datasets with high-resolution ground image were used for the 
evaluation of two-view matching. Visual SFM was used to obtain the 
camera matrix, image pair, and connection points for all algorithms. LPI 
only requires the connection point, and LJL does not need prior 

Fig. 10. (continued). 
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Fig. 11. The six local regions of the two-view matching results.  
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information. We evaluated the two-view matching results with dense 
point clouds, with which we calculated the endpoint-to-mesh distance 
and counted the inliers with a specific threshold (the details are pre-
sented in Section 3.4). 

Fig. 4 and Fig. 5 show the results of LJL, ELSR, and OPOL on the 
Herze-Jesu, Castle, and Rathaus dataset. For the number of initial 
matches, the three methods performed similarly in different dataset. LJL 
obtained the most initial matches for all the datasets, and OPOL ac-
quired more matches than ELSR. After automatically controlling with 
space points, OPOL produced the most correct line matches, and ELSR 
was ranked third for correct line matches. Thus, OPOL achieved 
balanced performance in both quantity and accuracy of line matching, 
which demonstrated that the proposed one-line-one-point geometry 
could work. Fig. 6 shows the 3D line segments reconstructed from some 

two-view matching result. The visualization performs consistently with 
the statistic: LJL produced more incorrect lines, while OPOL could 
reconstruct the most correct 3D lines. 

Fig. 5 presents the time consumption. Because LJL ran for over 8 min 
on a pair of images in the dataset, which is far less efficient than ELSR 
and OPOL, we did not plot it in the graph. We can see that OPOL process 
the high-resolution image within a second, which was faster than ELSR 
in most image pairs. The time-consuming gap between ELSR and OPOL 
increased with the size of the image. In the Rathaus dataset, OPOL was 
nearly two times faster than ELSR. Statistical data are shown in Table 2. 
The notation (NC) means that no space points were used for the control. 
The notation (C) denotes the use of space points for control. Also, the 
figure showed that the control was quite efficient and took just a little 
time. The speed advantage is rooted in two aspects. First, ELSR requires 

Fig. 12. The influence of altering tang of OPOL in Herze-Jesu and Castle dataset.  

Fig. 13. The influence of altering tnei of OPOL in Herze-Jesu and Castle dataset.  

Fig. 14. The correct line matches of matching with the line segment of DeepLSD. The right y-axis draws the average value.  
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the grouping process for neighbor lines, in which the computation in-
creases with the quantity of the line. Second, the validation geometry of 
OPOL is simpler and requires less computation than ELSR. 

5.2. Two-view aerial images for large areas 

To further explore the performance of OPOL, we used two larger 
datasets of areal images. All two datasets were captured by unmanned 
aerial vehicles in city scenes. The Guangzhou dataset contains 419 im-
ages with the size of 10336 × 7788, and the Dublin dataset contains 369 
images with the size of 7360 × 4912. After the structure from motion, 
we extracted 1104 and 1235 image pairs from the two datasets. Simi-
larly to the evaluation for ground images, we used the dense points and 
calculated the point-to-mesh distance to verify the correct match. 

As shown in Fig. 7, both of the two datasets showed the same trend in 
the matching results. In large size images, OPOL generally obtained 
more 3D lines, and OPOL had obvious advantages in the quantity of 
correct lines after points control. The quantity of lines produced by 
OPOL and ELSR is presented in Table 3 for the Dublin dataset. OPOL and 
ELSR obtained 11,748 and 6874 initial line matches on average, 
respectively. After the control with dense points, OPOL retained nearly 
50 % line matches while ELSR retained 45 %, which demonstrated that 
OPOL was more accurate and produced more matches than ELSR. The 
performance on the Guangzhou dataset was aligned with the Dublin 
dataset. OPOL obtained nearly twice the line quantity and achieved 
better accuracy under point control. Fig. 9 plots some matching results 
that supported the quantitative analysis well: OPOL could match more 
small line segments reflecting the details of the structure. 

We plot the run-time of the two methods in Fig. 8, and we present the 
summary in Table 3. There are three remarkable features for the run- 
time. First, OPOL showed the great advantage in speed when dealing 
with large-size images; it was more than ten times faster than ELSR 
because ELSR required large computations to group and validate the 
junction line; also, the runtime of ELSR raised quickly with the number 
of single lines and junction planes. Second, the matching time of OPOL 
was closely related to the line detection time, which indicates that OPOL 
runs in a linear time since it was only influenced by the line quantity. 
Third, in comparison to the time consumption of the line segment 

matching portion, the time taken for line segment extraction constitutes 
the majority of the program’s execution time; thus, a fast line detection 
algorithm would be quite helpful to speed up the whole algorithm. 

5.3. Line reconstruction of multiple images 

The experiments in two-view matching showed that OPOL could 
obtain more matches and significantly improved the time efficiency 
compared to other algorithms. In this section, we further explore how 
the two-view matching algorithm contributes to the performance of the 
line reconstruction of multiple images. We directly embedded OPOL into 
the ELSR framework to replace its two-view matching algorithm. Except 
for this, OPOL and ELSR shared the same inputs and algorithms. 
Line3D++, the robust line reconstruction algorithm is evaluated for 
comparison. 

Table 4 presents the reconstruction result. Line3D++ is the slowest 
in speed and has reconstructed the least 3D lines. OPOL performed 
similarly at runtime on Herze-Jesu and Castle datasets compared to 
ELSR. The run-time was significantly improved in the two large datasets 
(Guangzhou and Dublin). For the line quantity, OPOL still performed 
better than ELSR. This result was expected because of the better per-
formance of OPOL in two-view. As shown in Fig. 10, OPOL reconstructed 
many detailed lines from multiple images. 

Note that the reconstruction result could not fully reflect the 
advantage of OPOL. Because the line merging constraints in ELSR might 
wrongly eliminate many correct matches to highlight the key 3D line 
segments. We could have an intuitive look at all the two-view matching 
results in Fig. 11, in which both the global picture and the subfigure 
showed that OPOL produced more correct correspondences. Thus, OPOL 
has great potential to be a robust and effective unit in efficient and ac-
curate line segment reconstruction. 

5.4. The hyperparameters 

The OPOL geometry has an important hyperparameter tang (Equation 
(7)), which determines whether one point can be added to form the 
OPOL score of the line candidate. In this section, we altered tang from 10 
to 45 degrees to explore its influence in Herze-Jesu and Castle dataset. 
As shown in Fig. 12, we counted the time and line quantity in different 
tang. OPOL performed consistently in the two datasets and we could 
conclude their common features. First, tang was closely related to the line 
quantity. A bigger tang would produce more line matches, especially for 
the wide-baseline pair. It lowered the constraint to be a valid match. 
Second, tang had little influence on the accuracy. As shown in the figure, 
the results of both OPOL(NC) and OPOL(C) raised with the increase of 
tang, and the accuracy barely changed. Third, the runtime remained 
steady in different tang. As discussed in the first feature, although a bigger 
tang would bring about more validations in the line match, the runtime 
just increased a little, which also demonstrated the low complexity of 
the OPOL geometry validation. 

Fig. 15. The run-time of matching with the DeepLSD line segment.  

Table 5 
The line quantity of line reconstruction from multiple images.  

Dataset Method Line Quantity 

Herze-Jesu Line3D++ 1237 
ELSR 1722 
OPOL(SIFT) 1937 
OPOL(FAST) 1814 

Dublin Line3D++ 18,080 
ELSR 101,367 
OPOL(SIFT) 122,018 
OPOL(FAST) 97,427  
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In Section 5, we also used the hyperparameter tnei to give the false 
positive control, which constrained the least number of neighbors for the 
line candidate to satisfy Equation (7). We altered tnei from 2 to 10 to 
evaluate the performance of OPOL. As plotted in Fig. 13, with the 

increase of tnei, the line quantity slightly decreased and the slope of the 
change was obviously smaller than tang, which demonstrated that tnei = 4 
in our paper was robust enough. As for the runtime, we could see that it 
decreased with the increase of tnei. Because a bigger tnei will reduce the 

Fig. 16. The local result of the line reconstruction with different features.  
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initial line candidates and save time in the following process. Also, 
compared with tang, changing tnei brought about less influence on overall 
performance. 

5.5. Matching with different line and point features 

To evaluate the performance of OPOL with different inputs, we used 
DeepLSD (Pautrat et al., 2023) and FAST (Rosten et al., 2006) as the line 
and point feature to replace LSD and SIFT in the above experiments. 
DeepLSD is the state-of-the-art line detector with deep learning strategy, 
and the FAST algorithm obtains the feature point with orientations 
efficiently. We reduced the image size in the Dublin dataset by 1/3 to 
make DeepLSD executable on NVIDIA RTX 3090. Both the validation 
strategy and the hyperparameters were the same as those of the previous 
experiments. 

Fig. 14 and Fig. 15 show the quantity and the run time for all image 
pairs, both of which decreased because DeepLSD extracted fewer line 
segments and the line quantity was reduced. Compared to other line 
matching methods, we can draw the same conclusion as in Section 5.1: 
OPOL obtained more correct matches in less time in these datasets. The 
results of two-view matching directly influenced the reconstruction with 
multiple images. As shown in Table 5, all the methods reconstructed 
fewer 3D lines. However, Fig. 16 shows a better visualization because of 
the improvement in 2D line detection with DeepLSD. Also, the feature 
point influenced the result. In Table 5, OPOL produced fewer line seg-
ments when using the FAST point, mainly because it is less accurate than 
SIFT in both position and rotation. These experiments also indicate that 
line reconstruction for multiple images is a comprehensive work, in 
which the result of the sub-step will influence the final reconstruction. 

6. Conclusion 

In this paper, we propose the novel one-point-one-line geometry 
(OPOL) for two view line segment correspondence, which verifies the 
line match with only one point match by exploiting the point orienta-
tion. Due to the simple grouping and validation process of OPOL, effi-
cient experiments with thousands of image pairs showed that it ran more 
efficiently and generally produced more matches than previous 
algorithms. 

There are two drawbacks of the proposed method. First, OPOL is 
highly dependent on point matching, which limits its performance when 
point matching is not robust. Also, OPOL would fail in the weak texture 
scene, where point matching cannot work. Second, OPOL only works 
when the line correspondences are on the same plane with the point 
matches. Thus, the performance may be unsatisfied in a scene with many 
manifold shapes. 

There are two significant works in the future. First, the accurate line 
merging algorithm in multiple images should be explored, which could 
fully make use of the two-view matching result. Second, two-view line 
reconstruction has no constraint and is easier than point to be degen-
erate (Ok et al., 2012b); since we have established the coplanar geom-
etry with one point and one line, the point orientation could be used to 
improve the accuracy of line reconstruction from both two and multiple 
images. 
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