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Abstract— In the realm of image retrieval with text feedback,
existing studies have predominantly concentrated on the intrinsic
attribute of target objects, neglecting extrinsic information essen-
tial for remote sensing (RS) images, such as spatial relationships.
This research addresses this gap by incorporating RS image scene
graphs as side information, given their capacity to encapsulate
internal object attributes, external structural features between
objects, and the relationships among images. To fully leverage
the features from the reference RS image, scene graph, and
modifier sentence, we propose a scene graph-aware hierarchical
fusion network (SHF), which optimally integrates the multi-
modal features in a two-stage fusion process. Initially, image
and scene graph features are fused hierarchically, followed by
transforming content information with a proposed multimodal
global content (MGC) block, ultimately transforming style infor-
mation. To validate the superiority of SHF, we constructed three
datasets with images from several popular RS datasets, named
Airplane (3461 image + text–image pairs), Tennis (1924 image +

text–image pairs), and WHIRT (3344 image + text–image pairs).
Extensive experiments conducted on these datasets show that
SHF significantly outperforms state-of-the-art methods.

Index Terms— Image retrieval with text feedback, multimodal
features, remote sensing (RS) image retrieval, scene graph.
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I. INTRODUCTION

IN THE era of remote sensing (RS) big data, RS image
retrieval has become an essential technology for acquiring

RS images and plays a cornerstone role in a wide range
of human-related applications such as disaster rescue and
ecological prediction [1], [2], [3]. The predominant retrieval
mode takes a reference image as an input query to seek images
that bear similarity to the reference, known as image–image
matching [4], [5]. However, the results often prioritize cate-
gories, overlooking the granular details of concrete content.
Another widely-used retrieval paradigm is image–text match-
ing [6], [7], wherein a natural language description of the
target image’s content serves as the input. However, it is
laborious to accurately reflect the user’s target concept with
just a sentence. As a result, these two retrieval paradigms
can only provide rough results that are insufficient to sat-
isfy the user. In addition, both paradigms are infeasible for
further refining results that fail to match the user’s intent
precisely.

Image retrieval with text feedback refines reference images
through specific modifications that articulate changes from
the reference to the target, as illustrated in Fig. 1(a). For
instance, the user might envision changing the airplane color
from white to purple while preserving other attributes like
the parking place. By leveraging visual-linguistic information,
users are allowed to express their intent more flexibly and
precisely. The core principle of this task is to combine the
representation of the reference image and the modifier sen-
tence into an integrated representation that is as similar as
possible to the representation of the target image. To achieve
the goal, the main efforts of researchers have focused on
designing a compositor capable of selectively preserving and
transforming visual features according to modification from
coarse-grained to fine-grained and from local to global [8],
[9], [10]. Vo et al. [8] adopted a gated connection and a
residual connection to determine what to change and how to
change, respectively. Although the core idea is intuitive, it is
suitable for concrete modifications (e.g., changing the airplane
color from white to purple) but fails to deal with abstract
ones (e.g., changing the airplane color darker). Chen et al. [9]
harnessed multimodal nonlocal blocks (MNLs) to integrate
the text feature with the image feature at varying depths.
Lee et al. [10] disentangled the reference image into content
and style, extending MNL to disentangled MNL (DMNL)
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Fig. 1. Examples of RS image retrieval with text feedback. Given a reference
RS image and a sentence as input, we consider searching for a new image
from the database that is similar to the reference while resembling the
user’s feedback described by the text. The text generally states the visual
content in the reference image that demands refinements, such as (a) intrinsic
modification or (b) extrinsic modification.

for capturing the content modification. Although accommo-
dating sentences of diverse granularity, these methods entail
additional computational overhead due to intricate matrix
computations. Primarily, existing methods focus on intrinsic
modifications, altering properties of target objects themselves,
which are suited for simple scenes with one or a few distinct
targets. However, in complex RS scenarios, images often fea-
ture numerous nontarget objects. Moreover, beyond intrinsic
properties, the environment of target objects should also be
regarded as extrinsic properties as they play a crucial role
in facilitating RS scene understanding [11]. The changes of
extrinsic properties, as shown in Fig. 1(b), are considered as
extrinsic modifications, and they generally entail changes in
nontarget object properties and spatial relationships induced
by modifier sentences in retrieval. While these algorithms
showcase potential in computer vision, their performance is
notably constrained in RS.

To address the aforementioned limitation in complex RS
image retrieval with text feedback, we introduce scene graphs
as side information for two key reasons: 1) a scene graph
constitutes a structured representation of an image, typi-
cally comprising objects and the spatial relationship between
them [12], [13], [14], therefore enhances our capacity to
comprehend the image scene; and 2) shared edges among
scene graphs signify consistency, aligning with the modifier’s
intent, while divergent edges encapsulate differences between
images. In essence, our overarching objective pivots toward
learning a unified visual-semantic-structural representation of
the reference image, the modifier, and the reference scene
graph, and converges it closer to an integrated representation
of the target image and its scene graph in the embedding space.
To summarize, our research unfolds with two pivotal objec-
tives: 1) designing a comprehensive framework seamlessly
integrating RS image features, scene graphs, and modifier
sentences; and 2) validating the effectiveness of scene graphs
and the envisioned framework.

To achieve this goal, we propose a new scene graph-aware
hierarchical fusion network (short for SHF) that applies a
two-stage multimodal information fusion strategy. We first
perform a hierarchical fusion of multilevel graph–image fea-
tures to generate the scene feature and then use a scene–text
compositor to fuse the scene feature with the modifier feature.
Specifically, in the first stage, considering that the lower level
image and graph features capture local information while the
higher level features capture global information, we fuse visual
and structural representations of varying depths in order to
understand the image scenes better as well as to explicitly
inject signals reflecting the similarities and differences of
the images contained in the structural representations into
the scene representation. Drawing inspiration from [10], the
second stage employs a content modulator and a style mod-
ulator to convey the content and style changes, respectively.
The content modulator first extracts content information of
scenes and sentences, leveraging a multimodal global content
(MGC) block to transform the content information of scenes
without the complex matrix computation of DMNL. The style
modulator reintroduces style information into the transformed
scene representation based on the style information of the
sentence.

To substantiate the effectiveness of our proposed SHF,
we construct three datasets, Airplane, Tennis, and WHIRT,
comprising images from renowned RS datasets. The empirical
findings on these datasets reveal the remarkable performance
of SHF, showcasing a substantial improvement over the
advanced model. Specifically, SHF outperforms Cosmo by
41.24%, 25.65%, and 2.76% points on Recall@1 for the
Airplane, Tennis, and WHIRT datasets, respectively. Overall,
our contributions are three-folds as follows.

1) For a better understanding of complex RS scenarios,
we introduce scene graphs as side information. Then,
we propose a new SHF to seamlessly integrate the
features of scene graphs, images, and texts with a
hierarchical multimodal information fusion strategy.

2) We propose a compositor MGC block, which reduces
the computational complexity associated with DMNL,
ensuring a streamlined yet effective modification of
content information.

3) To rigorously validate our SHF, we meticulously
crafted three datasets using publicly available RS image
datasets: Airplane, Tennis, and WHIRT, which will be
made publicly available along with this article. To the
best of our knowledge, this represents the first dataset
for RS image retrieval with text feedback.

The remainder of this article is organized as follows.
Section II introduces literatures that most related to our work.
Section III describes our methods in detail. Section IV presents
our experimental result and analysis. Our conclusion and
future work are discussed in Section V.

II. RELATED WORK

In this section, we briefly summarize the previous literature
that is most relevant to our work, including RS image retrieval
and image retrieval with text feedback.
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A. Image Retrieval

The primary objective of image retrieval lies in the quest for
images that align with the conceptualization in the user’s mind
within an extensive collection of candidates, which can be
divided into unimodal image retrieval and cross-modal image
retrieval.

In unimodal image retrieval, where the query and target
share the same modality, researchers engage in similarity
matching based on the visual content features of images. In the
early stages, these features were predominantly handcrafted
descriptors, encompassing aspects such as color [15], textu-
ral [16], or a combination thereof [17], [18]. While these
methods rely on high-quality low-level features, the advent
of convolutional neural networks (CNNs) offers new oppor-
tunities as they empower researchers to adaptively extract
fundamental features within an image without the need for
complex hand-crafted features, proving their effectiveness in
image retrieval [19], [20]. To address challenges like high
storage requirements and slow retrieval associated with the
high-dimensional feature computation, the deep hash neural
network (DHNN) is utilized as encoder [21], [22], [23], [24],
showcasing its capacity to map high-dimensional features into
low-dimensional binary representations.

Cross-modal image retrieval, on the other hand, involves
queries and targets from disparate modalities, necessitating
the bridging of semantic gaps between them. A founda-
tional solution paradigm involves using distinct networks to
independently extract features for queries and targets, optimiz-
ing the networks with tricks to maximize feature similarity.
In scenarios like cross-source image retrieval, where query
and target images originate from two distinct data sources,
Li et al. [25] leveraged two different DHNNs for feature
extraction and devised optimization constraints for stable train-
ing. For text–image retrieval, where queries are in the form
of natural language descriptions, a recurrent neural network
(RNN)-like module is employed to extract content informa-
tion. Abdullah et al. [26] utilized a long–short-term memory
(LSTM) network with an average fusion strategy as a text
encoder, Qin et al. [27] and Zhao et al. [28] employed Bi-BRU
and Bert, respectively. Furthermore, taking sketches [29] and
sound [30] as queries has captured the attention of researchers.
Although these methods retrieve similar RS images based
on available data, they fall short when the data inadequately
reflects the user’s intent. Thus, the refinement of results based
on user feedback becomes imperative.

B. Image Retrieval With Text Feedback

Many studies have taken various forms of user feed-
back, encompassing aspects like relevance [31], concrete
attributes [32], or modifier sentences [8], [33], all aimed at
enhancing retrieval outcomes that may have content gaps mis-
aligned with the true user intent. In this work, our focus is on
leveraging modifier sentences as feedback, recognizing natural
language as the quintessential medium for human-system inter-
action. To address this task, a prevalent paradigm is to adopt
a multimodal compositor adept at efficiently amalgamating
image–text features [8], [9], [10], [34], [35], [36]. Vo et al. [8]

devised a gated residual connection to modify the image
feature in the image embedding space, which was intuitive
but difficult to cope with abstract properties. To comprehend
semantic information from concrete to abstract, Chen et al. [9]
and Jandial et al. [37] employed multiple compositors to
integrate linguistic features with visual features at multiple
levels of the image CNN. However, their approach involved
complexities with numerous compositors or off-the-shelf mod-
els. Lee et al. [10] decomposed images into content and style,
which were consistent with concrete and abstract linguis-
tic granularity, and modified them based on accompanying
text. Despite achieving stable and effective training, their
compositor’s matrix computation posed challenges with large-
scale features. Specifically, these methods primarily focus
on intrinsic attribute changes, overlooking extrinsic spatial
relationships, rendering them more suitable for simple natural
images rather than complex RS images. With the advancement
of large-scale models, the utilization of pretrained models to
enhance image and text features has garnered increasing atten-
tion from scholars, alongside the development of image–text
composition modules. For instance, Tian et al. [38] employed
the Swin transformer [39] and DistilBERT [40] to extract
image and text features, respectively, subsequently integrating
them into a transformer-based additive attention composition
module. Similarly, Han et al. [41] and Baldrati et al. [42]
initialized their language encoders and visual encoders with
the pretrained clip model [43]. Then, in their second stage,
Han et al. adopted cross-attention adapters and task-specific
adapters for visual-linguistic representation generation, and
Baldrati et al. merged the multimodal features with a simple
nonlinear compositor. Another work line involves the design
of regularization terms. For example, Chen et al. [44] extended
Cosmo [10] by introducing an uncertainty regularization.
In this article, we endeavor to design a network that also
focuses on the extrinsic spatial relationships for better RS
scene modification.

III. METHODOLODY

Fig. 2 illustrates the overall framework of our proposed
SHF. Given a reference RS image, its scene graph, and a
modifier sentence as inputs, the ultimate aim of SHF is to
learn an integrated representation that well-aligns with the
joint representation of the target RS image and its scene graph.
Our SHF mainly consists of five components: Fig. 2(a) an
image encoder, Fig. 2(b) a graph encoder, Fig. 2(c) a text
encoder for vision, structural, and linguistic representation
learning, respectively; Fig. 2(d) multiple image–graph com-
positors that generate the scene representation by injecting
structural features at different hops to visual features at varying
layers; and Fig. 2(e) a scene–text compositor modifying the
scene representation based on the text. All the components are
optimized by minimizing the objective function in an end-to-
end manner. In Section III-A, we overview the three basic
encoders. In Section III-B, we introduce our image–graph
compositor. In Section III-C, we elaborate on our scene–text
compositor. And the model optimizer is introduced in
Section III-D.
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Fig. 2. Overall architecture of SHF framework. Given a triplet of the reference RS image, its corresponding scene graph, and the user feedback sentence
as input, our goal is to learn a unified representation that is exclusively aligned with the joint representation of the target image and its scene graph. SHF is
mainly composed of five components: (a) image encoder, (b) graph encoder, (c) text encoder (see Section III-A), (d) image–graph compositors that compose
visual and structural features at varying layers (see Section III-B), and (e) scene–text compositor that integrates the scene and text feature (see Section III-C).
All components are co-optimized by (f) optimizer learning (optimizer).

A. Basic Representation Learning

1) Image Representation: In order to encode visual infor-
mation into discriminable representations, we employ a
standard CNN as the image encoder for image representation
learning. The convolutional layer extracts features by sliding
the convolutional kernel over the image, which essentially
extracts local features, so the lower convolutional layer cap-
tures information from different location regions, while the
higher convolutional layer can extract global information by
combining the information obtained from the lower convo-
lutional layer [45], [46]. Considering the specificity of the
features extracted from the low to high convolutional layers
from local to global, we construct a feature pyramid [47]
for the feature maps from different layers to generate a
more powerful scene representation. Specifically, the feature
pyramid 8 constructed by three different levels of feature
maps from the image encoder fimg

8r =
{

X L
r , X M

r , X H
r

}
= fimg(Ir )

8t =
{

X L
t , X M

t , X H
t

}
= fimg(It ). (1)

Here, 8r and 8t are the feature pyramids of the reference
image Ir and the target image It , respectively, and each
pyramid contains three feature maps X L , X M , and X H , which
are obtained from the low, middle, and high layers of fimg.

2) Graph Representation: Inspired by the significant
progress of graph convolutional networks (GCNs) on graph
task [48], [49], we employ a GCN-based network for scene
graph representation learning. The standard GCN generates
new node representations by stacking multiple graph convolu-
tional layers to recursively aggregate the features of neighbor

nodes. However, it does not distinguish between the types
of edges (i.e., relationships) that are not negligible for the
scene graph. Therefore, we use the relational GCN [50] as
our image encoder, which assigns a specific weight matrix to
each type of relationship during the feature aggregation pro-
cess. Considering that the GCN inherently learns increasingly
comprehensive structural information in a hierarchical manner,
we also construct a feature pyramid 9 for the different hops
of graph feature maps of the graph encoder fgraph

9r =
{

Z L
r , Z M

r , Z H
r

}
= fgraph(Gr )

9t =
{

Z L
t , Z M

t , Z H
t

}
= fgraph(G t ). (2)

Here, Gr and G t refer to the reference scene graph and the
target scene graph, respectively; 8r and 8t are their feature
pyramids, respectively, and each pyramid also consist of three
feature maps Z L , Z M , and Z H , which are generated by the
low, middle, and high layers of fgraph.

3) Text Representation: To capture the linguistic informa-
tion of modifications, we represent the user feedback with
an RNN, which has been proven to be powerful in encoding
natural language [51], [52]. Specifically, we implement the
text encoder ftext as an LSTM [53], which outputs the text
representation T ∈ RD , where D is the feature dimension.

B. Image–Graph Compositor

The common characteristic of visual features from CNN
and structural features from GCN is that the lower level
features are local and the higher level features are global, how-
ever, CNN is more concerned with pixel-level relationships
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Fig. 3. Overall architecture of image–graph compositor. The image represen-
tation is concatenated with the graph representation broadcast along width and
height, and then the matrix is multiplied with the feature transformation matrix
(implemented as an 1 × 1 convolution) to generate the scene representation
at the current level. The input image feature and output scene feature are kept
as 3-D vectors.

while GCN is more concerned with object-level relation-
ships, thereby visual and structural features are consistent
and complementary. To generate scene representations with
multigranularity features, we fuse visual representation 8r and
structural representation 9r , as shown in Fig. 3. For the visual
feature X i

r (i ∈ {L ,M, H} is the level in the feature pyramid),
we concatenate it with the structural feature Z i

r at the same
level, followed by a transform function Ft to learn the scene
representation

X i
vs = F i

t

(
X i

r

∥∥Z i
r

)
. (3)

Here, ·∥· is the concatenation operation, which broadcasts the
graph feature Z i

r ∈ RDi
spatially along the dimensions of

height and width so that its shape is matched with the image
feature X i

r ∈ RC i
×H i

×W i
, in which Di is the dimension, H i

is the feature height, W i is the feature width, and C i is the
number of feature channel; F i

t is a learnable weight matrix
and is implemented as a 1 × 1 convolution.

Note that the lower level scene representations are fed
into the image encoder to generate the higher level visual
representation. After obtaining the final scene representation
Xs = X H

vs ∈ RC×H×W , we feed it into the scene–text
compositor for the preservation and transformation of content
and style.

C. Scene–Text Compositor

Fig. 4 illustrates the overall pipeline of our compositor
to generate the scene–text joint representation Xss, which
consists of two main components: 1) a content modulator that
modifies the content of scenes based on the content of the text
and 2) a style modulator which modifies the style of scenes
corresponding to the style of the text and reintroduces the style
information into scene representations.

Before feeding the scene representation into the con-
tent modulator, we remove its potential style information
(µXs , σXs ) by applying an instance normalization that has been
shown to normalize the style of each image to the target style,
allowing the network to focus solely on the content while
ignoring its initial style information [54], which is formulated
as

Xsi = IN(Xs) =
Xs − µXs

σXs

(4)

Fig. 4. Overall pipeline of our scene–text compositor.

where µXs and σXs are the channel-wise mean and variance
of Xs .

1) Content Modulator:
a) Disentangled multimodal nonlocal (DMNL) block:

The basic DMNL [10], as shown in Fig. 5, aims at cap-
turing the long-range dependencies between two locations
of multimodal input features. DMNL takes image and text
representations as input, and here we replace the image
representation with a scene representation, which is formulated
as

yi
s =

Np∑
j=1

f
(

X i
si, X j

si, T
)

g
(

X j
si

∥∥T
)

(5)

where i is the query position, Np = H · W is the number
of positions in the scene feature map, and j enumerates all
the possible positions. The value function g(·) outputs a new
representation of scene representation at position j under the
constraint of text representation T , and is implemented as an
1 × 1 convolution. A triplet function f (·, ·, ·) computes a
scalar representing the relationship between i and all j under
T , which can be decomposed into a pixel-wise self-attention
and a cross-attention, as

f
(

X i
si, X j

si, T
)

=
1

C(Xsi)

(
ψ

((
Wqi X i

si

)t
(

Wki X j
si

))
+ψ

((
Wqg T

)t
(

Wg X j
si

)))
(6)

where C(Xsi) is a normalization factor, ψ is softmax function,
t is transpose operation, and Wq , Wk , and Wg are train-
able transformation matrices. After obtaining the transformed
scene–text feature ys , the normalized scene feature Xsi is
content modified based on it, which is formulated as

Xsc = con1×1(ys)+ Xsi (7)

where con1×1 is a 1 × 1 convolution. +Xsi can be regarded
as a residual connection, that allows content modifications
to occur. Similar to the multihead self-attention block [55],
DMNL can be implemented with multiple heads and being
stacked multiple times for performance improvements.

DMNL block pursues efficient and stable training through
the synergy of two independent modules—pixel-wise self-
attention and cross-attention. Moreover, it can be regarded
as a global multimodal context modeling block that aggre-
gates query-specific global context features under specific
constraints (another modality, such as text) to each query
position. Therefore, the time and space complexity of the
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Fig. 5. Architecture of DMNL. The features are expressed in simplified
terms as their dimensions, e.g., C × H × W and D. ⊕ denotes element-wise
addition, ⊗ refers to matrix multiplication.

Fig. 6. Architectures of (a) SDMNL block and (b) our MGC block.

DMNL block are both quadratic to the position number N p,
which is obviously not friendly to large feature maps.

b) Simplying DMNL: Considering that numerous matrix
computation is contained in the self-attention module, we sim-
plify DMNL by omitting the pixel-wise self-attention module
but just keeping the cross-attention module. Our simplified
DMNL (SDMNL) block is formulated as

f
(

X i
si, X j

si, T
)

=
1

C(Xsi)
ψ

((
Wqg T

)t
(

Wg X j
si

))
(8)

where Wqg and Wg are trainable linear transformation matrices.
The architecture of SDMNL is shown in Fig. 6(a). We eval-
uate the importance of self-attention under our framework in
Table IV, and the result shows that our model can achieve
comparable results with or without it.

Although SDMNL greatly reduces the complexity, it retains
the complex con1×1 computation in 7, which is computation-
ally intensive when the number of feature channels is large.
In this article, the scene feature is obtained from layer 4 of
ResNet-50 [56], whose number of channels is 2048, so the
parameter number of this con1×1 convolution is C ·C = 2048 ×

2048, which greatly increases the parameters of this block.
c) MGC block: Squeeze-excitation (SE) block [57]

employs a specially designed bottleneck containing a
1 × 1 convolution, a nonlinear activation layer Relu, another
1 × 1 convolution, and a nonlinear activation layer Sigmoid
to flexibly learn nonlinear interrelationships between channels,

where a scaling ratio r is designed to decrease the parameters
by scaling the number of channels. As the channel is C ,
the parameter is 2 · C · C/r . Benefiting from the lightweight
computation of SDMNL and SE block, we further simplify
SDMNL and propose a new block named MGC. As shown
in Fig. 6(b), in addition to simplifying the base DMNL,
we introduce an additional content extractor Ftc for content
representation generation of text, as we conjecture that the
content modifications should be determined by the content of
modifiers, which is given by

Tc = Ftc(T ). (9)

Here, Ftc:RD
→ RD′ is implemented as a fully connected

layer followed by a normalization layer. Thereafter, the output
of our content modulator can be reformulated as

Xsc = Fc(ys)+ Xsi (10)

where Fc is a bottleneck containing two transformation matri-
ces with scaling ratio r and a nonlinear activation Relu with
layer normalization. We set the ratio r to 16, at which point the
number of parameters of the module is 1/8 of the original, and
we show the effect of different ratios on the retrieval results in
Table VI. Note that the layer normalization is inserted before
Relu because it effectively alleviates the optimization difficulty
caused by the two transformation layers in the bottleneck [58].
Similarly, MGC can be implemented with multiheads as well
as being stacked multiple times.

2) Style Modulator: To update the style of the scene repre-
sentation, an affine transformation is applied to the individual
channel of the output of the content modulator Xsc to modulate
its channel-wise statistics, which is formulated as

Xss = αXsc + β (11)

where α ∈ RC and β ∈ RC are affine parameters, and are
defined as

α = σ(ϕα(Ts)) · σXs + fα(Ts)

β = σ
(
ϕβ(Ts)

)
· µXs + fβ(Ts) (12)

where σ(·) is the sigmoid function, ϕ(·):RD′′

→ RC is a gating
unit that determines the certain information of the original
scene feature (i.e., X s) to be retained while discarding others,
f (·):RD′′

→ RC is a linear transformation function that injects
new information into the scene features (i.e., Xsc) based on its
input signal, and Ts is the style of text, which is formulated
as

Ts = Fts(T ) (13)

where Fts:RD
→ RD′′

is a solely fully connected layer.

D. Optimizer Learning

After obtaining the unified representation of the reference
input Xss ∈ RC×H×W and the joint image–graph representation
of the target input X ts ∈ RC×H×W , we project them into the
same embedding place with a projector layer Fp, which is
formulated as

X ref = Fp(Xss)

X tar = Fp(X ts). (14)
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Here, Fp:RC×H×W
→ RL is implemented as a global average

pooling followed by a linear transformation layer and a
l2 normalization layer, in which L is the dimension of final
features.

Toward the purpose that the reference representation (i.e.,
X ref) is exclusively aligned with the target representation (i.e.,
X tar), we adopt the batch-based classification loss (BBCL) [8]
for parameter optimization, which encourages positive sample
pairs to be closer while negative pairs to be further away, and
is proven to be more discriminative and can converge faster.
BBCL is formulated as

L =
1
B

B∑
i=1

− log
exp

(
k
(

X i
ref, X i

tar

))∑B
j=1 exp

(
k
(

X i
ref, X j

tar

)) (15)

where B is the number of sample pairs in each training
minibatch, k(·, ·) is an arbitrary distance function and is
implemented as the cosine similarity due to its simplicity, and
X ref and X tar with the same superscript are positive sample
pairs, otherwise they are negative sample pairs.

IV. EXPERIMENTS

In this section, we conduct extensive experiments and anal-
yses to evaluate our proposed SHF. Section IV-A introduces
the experimental settings. Section IV-B shows the overall
comparison of SHF and baselines. Section IV-C evaluates how
the quality of the scene graph affects the retrieval results.
Section IV-D conducts extensive ablation studies.

A. Experimental Settings

In Section IV-A1, we introduce our constructed datasets.
In Section IV-A2, we summarize the baselines to be com-
pared. In Section IV-A3, we describe the implementation
details. The evaluation metric for quantitative evaluation is
introduced in Section IV-A4.

1) Experimental Datasets: To demonstrate the effective-
ness of our proposed SHF, we created three datasets named
Airplane, Tennis, and WHIRT, respectively. The datasets are
organized in terms of quintets, consisting of a reference RS
image and its scene graph, a target RS image and its scene
graph, and a pair of modifier sentences, examples are shown in
Fig. 7. For quality assurance, ten domain experts are involved
in the annotation and calibration of the dataset. When training
the model, two texts are combined by “and” into one as input.

a) Airplane dataset: The dataset contains 1600 RS
images with the category airplane and 3461 pairs of modifier
sentences. Among them, images are collected from three
public and widely used RS datasets, including UCM [59],
PatternNet [19], and NWPU-RESISC45 [60]. The scene graph
mainly contains the attributes (e.g., color, number, and ori-
entation) of the target object (i.e., airplane) and the spatial
relationships (e.g., one side, two sides, and round) between the
target object and other nontarget objects, while it does not con-
tain the spatial relationships between nontarget objects. The
modifier sentences focus on the description of the differences
in attributes of the target object and the differences in spatial
relationships between the target object and other objects.

b) Tennis dataset: This dataset focuses on further refin-
ing the reference image, i.e., identifying target images that
are similar to the reference image and meeting the modifier
sentences from the candidate images with the category tennis
court. The spatial relationship between target and nontarget
objects and the properties of the target object is emphasized in
the scene graph of each image, while the relationship between
nontarget objects is ignored. The Tennis dataset contains
1200 tennis court images from UCM, PatternNet, and NWPU-
RESISC45 and 1924 manually annotated pairs of modifier
sentences.

c) WHIRT dataset: The dataset contains 4940 RS images
from WHDLD [61] and 3344 manually generated ⟨reference
image, target image⟩ pairs. The scene graphs are constructed
based on the attributes of all objects in the image and the
spatial relationships between two objects. The modifier sen-
tences reflect all the differences between the reference and
target images.

To train the models, we split the datasets. The training set of
the Airplane contains 1280 RS images, of which 2667 pairs are
used for training, and the test set of 794 queries for evaluation.
As for the Tennis, the training set contains 960 RS images,
and the test set contains 458 queries. Among the 3952 images
in the training set of the WHIRT, there are 2203 image pairs.

2) Baselines: We compare our SHF with the following
baselines.

1) Image Only: It takes the image representation extracted
from the final layer of a CNN as the composed repre-
sentation.

2) Text Only: It takes the text representation extracted from
an RNN as the composed representation.

3) Concatenation: It concatenates the image and text rep-
resentations and then feeds the integrated representation
to a two-layer MLP with Relu to obtain the composed
representation.

4) TIRG [8]: It combines the image and text representa-
tions by concatenation and then obtains the composed
representation by learning a gated residual connection.

5) ComposeAE [35]: It projects the image and text repre-
sentations into a complex embedding space and learns
the combination of the projected representations through
a deep metric learning method.

6) Cosmo [10]: It uses a content modulator and a style
modulator to update the image representation to the
composed representation according to the text represen-
tation.

7) CLIP4Cir [42]: It encodes the image and text into
visual and linguistic representations using clip and
then integrates the multimodal representations through a
combiner composed of multiple linear layers, nonlinear
activation functions, and dropout layers.

8) AACL [38]: It utilizes the Swin transformer [39] as
the image encoder and DistilBERT [40] as the text
encoder, with the additive self-attention layer similar to
FastFormer [62] serving as the image–text compositor.

9) UncerRe [44]: It augments Cosmo by adding Gaussian
Noise to the target features and incorporating an uncer-
tainty regularization term to the original BBCL loss.
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Fig. 7. Example of (a) Airplane, (b) Tennis, and (c) WHIRT datasets.

For a fair comparison, all baselines are implemented using
the same image encoder and text encoder. However, we defer

the attempts of pretrained transformer-based encoders to future
work.

3) Implementation Details: Our image encoder, fimg,
is implemented as ResNet-50 pretrained on ImageNet [63]
without the final fully connected layer, whose output feature
map has 2048 channels. Both target and reference images
share the same image encoder. In the feature aggregation of
graph encoder, fgraph, we set the number of relational GCN
layers to 2, the hidden dimension and output dimension to
512, and each layer is followed by a batch normalization layer.
In addition, the graph encoder is shared by both the target and
reference scene graphs. Our text encoder is composed of a
one-layer LSTM with 512 hidden units, which outputs the
final text feature T ∈ R512. The text content extractor Ftc and
the style extractor Fts map 512-D features into a new 512-D
vector, respectively. We stack the content modulator twice and
set the number of attention heads to 8. The final projector,
Fp, consists of a global average pooling layer that compresses
the 3-D feature map into 1-D, followed by a linear layer that
projects the 1-D feature onto a 512-dimension vector to obtain
the final representation X ref, X tar

∈ R512 for retrieval.
A rectified Adam [64] optimizer is applied to optimize our

model whose initial learning rate is set to 2 × e−4 and decays
once after 30 epochs with a factor of 10. The training epoch is
set to 80. The batch size is set to 32 for the Airplane and Tennis
datasets and 16 for the WHIRT dataset. The parameters of the
baselines are set consistent with SHF or adjusted according
to the original paper. All the experiments are conducted in
Pytorch [65].

4) Evaluation Metric: To quantitatively compare our model
with baselines, a standard evaluation metric in retrieval, recall
at rank k (i.e., Recall@k, short for R@k) is adopted, defined
as the percentage of evaluation queries where the target image
is within the top k retrieved images. A larger R@k score
indicates a better performance. We report performance with
k ∈ {1, 5, 10, 20} on each dataset.

B. Comparison With Baselines

1) Overall Comparison on Airplane: Table I reports our
results on the Airplane dataset. It can be seen that our method
significantly outperforms the baselines. For instance, SHF sur-
passes the best scores of baselines by approximately 41% and
32% points on R@1 and R@10, respectively, showcasing the
effectiveness of introducing scene graphs in RS image retrieval
with text feedback. Comparing the results of image only and
text only reveals that solely relying on visual features may not
suffice, particularly when substantial differences exist between
the contents of reference and target images. In comparison to
text only, CLIP4Cir demonstrates an improvement of over 3%
scores for both R@1 and R@10, indicating that combining
visual and linguistic features using an appropriate compositor
leads to enhanced performance. In addition, UncerRe outper-
forms Cosmo, underscoring the effectiveness of introducing
uncertainty into the model. The retrieval results for the first
ranking of the different methods are visualized in Fig. 8,
and the results show that SHF significantly outperforms the
baselines. In the third example with better retrieval results
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TABLE I
QUANTITATIVE RESULTS ON AIRPLANE DATASET. THE BEST RESULTS

ARE MARKED IN BOLD AND THE SECOND BEST
RESULTS ARE UNDERLINED

for the baselines, the modifier sentences only modify the
intrinsic properties (color and orientation) of the target object,
which indicates that the baseline methods perform better in
understanding the changes in the intrinsic properties of the
target object. The qualitative results of SHF on the Airplane
dataset shown in Fig. 9 indicate that even the erroneous images
retrieved by SHF satisfy the modifier sentences to change the
intrinsic properties of the target object. Combining Figs. 8
and 9, it can be seen that SHF can not only change the intrinsic
properties of the target object (e.g., color and orientation) and
the external spatial relationship with other objects according to
the conditions of the text feedback but also accurately respond
to the change of the environment in which the target object is
located (i.e., parking place).

2) Overall Comparison on Tennis: The quantitative com-
parison results between SHF and various baseline methods on
the Tennis dataset are presented in Table II. These results indi-
cate that SHF significantly outperforms the baseline method
across all evaluation metrics, akin to the findings on the Air-
plane dataset, albeit with a slightly smaller margin. Compared
to the best scores of the baseline methods, SHF achieved
performance gains of about 25% and 32% points on R@1 and
R@10, respectively. In contrast to the results observed on the
Airplane dataset, CLIP4Cir consistently outperforms UncerRe.
This observation suggests that in certain cases, a simpler com-
positor may prove to be more effective. The retrieval results in
Fig. 10 reveal that the baselines can make better modifications
to the intrinsic properties of the target object based on the mod-
ifier sentences. For example, Cosmo accurately retrieved the
correct images with corresponding changes to the number of
tennis courts in all three examples but exhibited limitations in
understanding the global changes of images, such as variations
in the numbers of nontarget objects and alterations in spatial
relationships between objects. Furthermore, the qualitative
results in Fig. 11 further demonstrate that SHF excels in jointly
comprehending the intrinsic properties and extrinsic spatial
relationships of the target object.

3) Overall Comparison on WHIRT: The quantitative eval-
uation results of SHF and various baselines on the WHIRT
dataset are shown in Table III. Unlike the Airplane and Tennis
datasets, the WHIRT dataset lacks a clearly defined target

TABLE II
QUANTITATIVE RESULTS ON TENNIS DATASET

TABLE III
QUANTITATIVE RESULTS ON WHIRT DATASET

object category, features more spatial relationships, and com-
prises more complex image scenes. In addition, the similarity
between the reference image and the target image is lower.
Consequently, retrieving images poses a greater difficulty,
resulting in relatively lower evaluation metric scores. Overall,
the evaluation metric scores of SHF are still significantly
ahead of other baseline methods, including 11% and 18%
points higher than the suboptimal scores on R@5 and R@10,
respectively, once again proving the superiority of SHF in
complex RS image retrieval with text feedback. Furthermore,
the baseline method text only consistently outperforms most
other methods, probably because the modifier sentences focus
more on alterations to the spatial relationships of objects, again
underscoring the challenge of accurately perceiving changes
in the extrinsic properties with the existing methods. The
comparison results in Fig. 12 prove the superiority of SHF,
and even the retrieved error images can also meet the sentence
content well. The qualitative results in Fig. 13 show that SHF
can perform better even if the content of the target image
has changed significantly, proving that SHF can cope with
complex content changes in RS image retrieval.

C. Impact of Scene Graph Quality

SHF significantly improves the retrieval accuracy of RS
images with text feedback by introducing scene graphs to
generate better scene representations. To explore the effect
of scene graph quality on retrieval results, we randomly
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Fig. 8. Visualization of the first ranked retrieval results on the Airplane dataset. The correct retrieval results are marked in red.

Fig. 9. Qualitative results of SHF on Airplane dataset. The top-5 retrieval results are reported. Green/red boxes: reference/target RS images.

Fig. 10. Visualization of the first ranked retrieval results on Tennis dataset.

masked a certain ratio of edges of the scene graph and varied
the masking ratio within {0, 0.1, 0.2, 0.3, 0.4}. Fig. 14 shows
the results on the Airplane and Tennis datasets. We observe
that as the masking ratio increases, the scores of evaluation
metrics decrease dramatically, indicating that the scene graph
quality has a significant impact on the model performance.

Specifically, as the proportion of edge masking reaches 0.4, the
R@10 of SHF on the Airplane and Tennis datasets decreases
by 40% and 38% points, respectively, and is even lower than
the performance of the baseline model Cosmo, indicating that
when the quality of the scene graph is relatively low, it will
have a negative impact on the retrieval. However, when the
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Fig. 11. Qualitative results of SHF on Tennis dataset.

Fig. 12. Visualization of the first ranked retrieval results on the WHIRT dataset.

Fig. 13. Qualitative results of SHF on WHIRT dataset.

masking ratio is lower than 0.4, SHF still performs better
than the baseline method, which reflects the superiority and
competitiveness of SHF.

D. Ablation Studies

1) Impact of Proposed Components: SHF is a model with
the following improvements over Cosmo: 1) the scene graph

is introduced as auxiliary information; 2) the text content and
style extractors are used to control the change of scene fea-
tures; 3) the self-attention module in DMNL is discarded; and
4) the 1 × 1 convolution is replaced by an excitation module
with a scaling factor r when the content is modified. To verify
the effectiveness of the improvements, we conducted ablation
experiments, and Table IV shows the experimental results on
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Fig. 14. Performance variation under different masking ratios for scene graphs on (a) Airplane and (b) Tennis datasets.

TABLE IV
ABLATION STUDY OF COMPONENTS

TABLE V
PERFORMANCE VARIATION UNDER DIFFERENT INPUTS

the three datasets. It can be seen that each of the improvements
contributed to the retrieval performance. Comparing the third
and fourth rows shows that the text extractor can significantly
improve the performance of the model on the Tennis dataset;
comparing the fourth and fifth rows shows that the introduction
of scene graphs has significantly improved the retrieval results,
and the model has improved the R@10 on the three datasets
by 30%, 36%, and 22% points, respectively, verifying the
conjecture that scene graphs can help further understand the
RS image scenes and modify the text; comparing the fifth
and sixth rows shows that the self-attention module has even
a negative effect on retrieval when removing this module,
the model improves R@1 on the Airplane dataset by 15%
points, indicating that changes to the scene should be mainly
determined by the text (cross-attention module); the sixth and
seventh rows demonstrate the boosting effect of using the

bottleneck module FC to replace the 1 × 1 convolution on
retrieval results.

2) Impact of Different Inputs: An important improvement
of SHF is the introduction of RS image scene graphs as part
of the input to enhance the understanding of both scene and
modifier text. We explored the impact of scene graphs on the
results by varying the query and target inputs. The search
results are reported in Table V, where the scene representation
generation of the query image is consistent with that of the
target image, e.g., “graph” and “text + graph” indicate that
the scene representations of both the query and the target are
derived from the scene graph representation only. Comparing
the third and fourth rows, it can be found that the retrieval
results on the Tennis dataset drop significantly when using
only scene graphs for retrieval compared to using only images
as input, probably because the overall similarity of images in
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Fig. 15. Performance variation under different feature levels. (a) Performance on Airplane dataset. (b) Performance on Tennis dataset. (c) Performance on
WHIRT dataset.

the Tennis dataset is relatively high, which further narrows the
differences between images when using scene graphs to rep-
resent images, making retrieval difficult; comparing the fifth
and sixth rows, the retrieval accuracy decreases significantly
when the scene graph representation is directly converted using
modifier sentences, which may be mainly due to the fact that
the scene graph is a global structural representation of RS
images, while it lacks the most basic fine-grained features
such as spectra and textures; comparing the third, fourth, and
seventh rows, the retrieval accuracy is higher when using
a hybrid image-scene graph representation on the Airplane
dataset than when using only a single representation, which
indicates that scene graphs can help increase the variability
of images to a certain extent; the fifth and eighth rows
show that introducing scene graphs in the original retrieval
structure can effectively improve the retrieval accuracy, indi-
cating that scene graphs can help better understand the
text.

3) Impact of Multilevel Composition: In the image–graph
compositor, SHF fuses low-, middle-, and high-level features
of image and scene graphs, respectively. We explore how
the combination of features at different levels can help scene
representation learning by comparing SHF (low + middle +

high) with two baselines: 1) middle + high and 2) high. Fig. 15
shows that except in the WHIRT dataset, where the R@20 of
SHF (middle + high) is slightly lower than that of SHF (high),
the evaluation metric scores improve significantly with more
fusion levels, indicating that the combination of features at
multiple levels helps improve the overall performance, which
validates the efficacy of using feature compositors of different
depths to capture multigranularity information, consistent with

TABLE VI
PERFORMANCE VARIATION UNDER DIFFERENT SCALING RATIO

the fact that CNNs and GCNs continuously learn global
features from low to high levels.

4) Impact of Scaling Ratio: The bottleneck module FC is
designed to reduce the redundancy of parameters and provide a
good tradeoff between performance and parameters. The effect
of the scaling ratio on the results is shown in Table VI, where
w/o r indicates the use of the original 1 × 1 convolution
as the bottleneck module. The experimental results show that
an appropriate scaling ratio can improve the performance
of the model. When r is 8, 4, and 4, the model achieves
the best performance on the Airplane, Tennis, and WHIRT
datasets, respectively, indicating that the setting of r should
be appropriately selected according to the dataset. Overall, the
larger the number of parameters, the better the performance
of the model, indicating that SHF has a good balance between
the number of parameters and the model performance.

5) Impact of the Number of MGC: Fig. 16 shows that
as the number of stacks of the MGC module increases, the
performance of SHF on all three datasets tends to increase and
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Fig. 16. Performance variation under different MGC numbers. (a) Performance on Airplane dataset. (b) Performance on Tennis dataset. (c) Performance on
WHIRT dataset.

then decrease. The optimal performance is reached when the
number of stacks is 1, 2, and 2, respectively, probably because
multiple stacks help the model understand the content infor-
mation of the text and further modify the content information
of the scene representation based on this information; when
the number of stacks exceeds 2, the performance decreases
due to the overload of parameters and over-modification of
the content.

V. CONCLUSION

In this article, we propose a new SHF for RS image
retrieval with text feedback. The core idea is to leverage
scene graphs as side information to enrich image features
and to elucidate the consistency and difference between
images. Specifically, we first fuse multilevel visuals and struc-
tural features to generate scene representations with multiple
granularity, ranging from local to global. We then employ
a content modulator to modify the content of the scene
based on the modifier text content and a style modulator
to modify the style of the scene based on the text style,
aligning the scene representations of the target image. Exten-
sive comparative experiments conducted on three datasets
demonstrate that SHF outperforms the state-of-the-art methods
significantly.

The field of RS image retrieval with text feedback
remains relatively unexplored, and our work represents just
the beginning. In the future, we aim to design a com-
positor capable of simultaneously fusing features from the
image, scene graph, and modifier sentence. In addition,
we believe that joint learning of scene graph generation and
image retrieval with text feedback holds promise within our
framework.
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