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Abstract. 3D occupancy prediction has been an emerging trend in 3D
perception for its superiority in preserving exquisite geometric and se-
mantic details. However, existing vision-based approaches either leave
features unrefined or neglect depth ambiguity due to defective 2D-to-
3D feature lifting modules, leading to imprecise prediction results. In
this paper, we introduce SurfOcc, a vision-centric 3D occupancy pre-
diction framework which addresses these limitations fundamentally. Sur-
fOcc decouples the learning process of observed surfaces and occluded re-
gions while seamlessly integrating them into an end-to-end architecture.
Specifically, we first propose surface-based feature lifting to precisely lo-
cate observed surfaces and enhance the selected surface voxels via cross-
attention during feature lifting. Then we design a feature diffuser which
incorporates both local and global features to diffuse the reliable surface
features to occluded regions. Experiments show that SurfOcc achieves
state-of-the-art performance with 13.75 mIoU on SemanticKITTI and
42.38 mIoU on Occ3D-nuScenes, which also demonstrates the poten-
tial of SurfOcc in handling occlusion situations. Code is available at
https://github.com/sullicsullic/SurfOcc.

Keywords: Autonomous Driving · 3D Computer Vision · 3D Occu-
pancy Prediction · Feature Lifting

1 Introduction

An essential component of automation applications like robotics and autonomo-
us driving is the ability to perceive the environment. Even while 3D object
detection[34,27,32,49] has advanced significantly, there is a growing interest in 3D
occupancy prediction[3,24,48] because it can preserve more details and even de-
scribe irregular items. With superior geometry demonstration[42] and semantic
preservation[21,22] capabilities, voxel-based representation is intrinsically well-
suited for 3D feature learning. This makes it straightforward for 3D occupancy
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Fig. 1: Comparison of feature lifting methods. (a) Lift-Splat-based meth-
ods can only represent observed surface in each optical ray but can’t depict the
occluded regions. (b) Attention-based methods lift same feature to voxels along
an object ray. Due to their alignment with the car’s optical ray, the red vox-
els receive the car’s feature even though only the blue voxels depict the car’s
actual location. (c) Only the surface voxels (positions with the highest depth
confidence) are enhanced as observed surfaces. Through cross-attention, surface
voxels are projected onto 2D image feature maps to obtain updates.

network to depict both foreground and background objects with different shapes,
using different geometric structures of 3D cubes. With the proliferation of datas-
ets[41,45,42,23] and solutions[24,17,55,52,18], 3D occupancy prediction is paving
the way for novel developments in 3D perception.

Relying on explicit depth measurements, LiDAR solutions[38,8,50] have been
leading in performance for a long time. Some works like 3DPPE[39] even trans-
form images into 3D points for detection. However, LiDAR sensors suffer from
high cost and sparse scanned points, which motivates the study of vision-centric
approaches for low cost, rich visual cues and high generality. As camera images
store scene information in 2D planes, feature lifting, the process of constructing
3D features from 2D inputs, is crucial for generating accurate 3D outputs.

Up to now, there have been primarily two solutions for feature lifting in
vision-centric 3D perception (see figs. 1a and 1b). Methods[16,26,55] based on
Lift-Splat (see fig. 1a) employ a straightforward lift and splat approach[35,36]
that is ubiquitous in 3D object detection[32,28,26,16], adhering to a 2D-to-3D
paradigm. By taking the outer product of estimated depths and 2D features, they
first lift 2D image features into 3D frustums. Next they sample the 3D voxel fea-
tures from the 3D frustums using a pooling mechanism[35,16,15]. oh[39] Though
having depth priors, this type of solution only represents observed surface in
each optical ray, leaving occluded regions unconcerned.

Instead of Lift-Splat, some other works[46,27,31,48,47] utilize attention mech-
anism[43,5,56] for feature lifting, following a 3D-to-2D paradigm. To begin with,
key-value pairs are taken from image features, and a predefined number of em-
beddings are initialized to serve as 3D queries in the ego or LiDAR coordinate
system. Then the 3D queries are projected to 2D image feature maps to get the
corresponding pixels according to camera parameters. Finally, the 3D features
are lifted through cross-attention between 3D queries and 2D image features.
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Though dense 3D features are constructed, the lack of depth information leads
to feature ambiguity. Specifically, same feature is sampled by voxels along a ray
(see fig. 1b), hindering the model from distinguishing between instances and air.

To address the aforementioned limitations, we propose an end-to-end frame-
work for 3D occupancy prediction called SurfOcc. Since sensors can only observe
the visible surfaces of objects and cannot access information about internal parts
concealed by self-occlusion[23], our geometrically-motivated approach is designed
to propagate features from observed surfaces to occluded regions. As shown in
fig. 2, rather than predicting the entire scene synchronously, we conceptually
divide the entire prediction process into two phases and integrate them in an
end-to-end manner. Specifically, during feature lifting phase, to mitigate depth
ambiguity and refine lifted features, we propose surface-based feature lifting (see
fig. 1c) to select and enhance surface voxels (positions with the highest depth
confidence) as observed surfaces, which are the few reliable informational units
in 3D features. During feature diffusion phase, we transform voxel features into
pseudo points and design a feature diffuser to diffuse the reliable features to
occluded regions, utilizing local and global features. Our experiments demon-
strate that our two-phase prediction scheme is particularly effective in handling
complex scenes, especially those involving occlusion. Our contributions are sum-
marized as follows:

• We propose SurfOcc, an end-to-end 3D occupancy prediction framework
which predicts the observed surfaces in feature lifting phase and associates
the occluded regions in feature diffusion phase. The specially designed two-
phase scheme ensures the model to accurately acquire information from ob-
servable surfaces and use it as a basis to make predictions at the scene level.

• We propose a novel feature lifting method, termed surface-based feature
lifting, which accurately lifts image features into 3D space by locating and
enhancing surface voxels. Grounded in geometry, our method resolves the
long-standing issues of feature unrefinement and ambiguity inherent in ex-
isting feature lifting methods.

• We evaluate the proposed SurfOcc on both monocular and surround-view
settings. SurfOcc surpasses existing approaches and achieves 13.75 mIoU on
SemanticKITTI[1] and 42.38 mIoU on Occ3D-nuScenes[41]. Experimental
results demonstrate the potential of SurfOcc in handling occlusion situations
and advancing scene understanding.

2 Related Works

2.1 3D Occupancy Prediction

3D occupancy prediction generates 3D volumetric semantics to depict the de-
tailed occupancy states and semantics of a scene. SSCNet[40] is the first to
jointly inferences both geometry and semantics leveraging Truncated Signed
Distance Function (TSDF). The follow-ups usually enhance the geometrical in-
formation with explicit priors like depth[30,10,20,8,19], occupancy grids[38,50]
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or point cloud[37]. Recently, the pioneer work MonoScene[3] proposes the first
vision-centric method using a 3D U-Net. TPVFormer[17] promotes 3D occu-
pancy prediction to multi-view case with tri-perspective view representation.
SurroundOcc[48] generates the 3D feature volume by cross-attention, which in-
troduces depth ambiguity. Employing masked-attention[7], OccFormer[55] pre-
dicts the final occupancy in a dual and multi-scale manner. VoxFormer[24] tack-
les the lack of depth by generating voxel proposals at the first stage, but the
networks in two stages are trained separately, which is complex and inelegant.
SceneRF[4] proposes PrSamp to implicitly learn to correlate high mixture values
with surface locations. Differently, we devise an end-to-end pipeline to seamlessly
integrate the phase which predicts the observed surfaces with the phase which
diffuses the features to occluded regions.

2.2 Feature Lifting Methods

Lift-Splat-based Feature Lifting. These methods[36,16,26,28,32] usually fol-
low the mechanism pioneered by Lift-Splat-Shoot[35] and improved it from dif-
ferent perspectives. CaDDN[36] puts forward a linear-increasing discretization
(LID) to provide balanced depth estimations. BEVdet[16] and BEVFusion[32]
improve the computational efficiency by optimizing the underlying computa-
tional logic. BEVStereo[25] tries to enhance performance by improving depth
quality using temporal stereo depth. However, depth distribution only character-
izes the geometry of observed surfaces but fails to capture the overall geometric
structure. In this work, we overcome this limitation by diffusing surface features
to occluded regions to help our model understand the overall geometry.

Attention-based Feature Lifting. These methods[27,51,46,31,48,47] update
3D features leveraging cross-attention between 3D queries and 2D image fea-
tures, but this paradigm usually introduces depth ambiguity. BEVFormer[27] is
the first to lift 3D feature through attention at both spatial and temporal space,
and an updated version[51] improves the performance via adding perspective
information. SurroundOcc[48] introduces this paradigm into 3D occupancy pre-
diction in a multi-scale manner, but the depth ambiguity is not been addressed.
DA-BEV[54] proposes a depth-aware cross-attention to solve depth ambiguity
and OPEN[13] advocates for focusing on the center of objects. In this work, we
argue that it is imperative for the model to choose the observed surfaces (surface
voxels) at an early stage, which is of great help in mitigating depth ambiguity.

3 Methodology

In this section, we propose SurfOcc, which predicts the observed surfaces and
associates the occluded regions separately, rather than predicts the whole scene
directly. We first introduce the overall architecture in section 3.1, after describing
the problem formulation. In section 3.2 we present surface-based feature lifting
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Fig. 2: Overall architecture of SurfOcc. There are two phases in the entire
end-to-end pipeline. The feature lifting phase consists of three parts: the image
encoder extracts image features from input image; the surface locator generates
coarse voxel features and surface mask from image features; the voxel enhance-
ment module takes the key-value pairs from image features and updates coarse
voxel features. Enhanced voxel features are taken as pseudo points in feature
diffusion phase, then both local features and global features are captured.

for constructing accurate 3D feature. Finally, we propose feature diffuser which
propagates features to occluded regions in section 3.3.

Problem Formulation. 3D occupancy prediction aims to predict a dense
semantic scene within a certain volume. Specifically, this task takes a monocular
image I ∈ RHI×W I×3 or N surround-view images {Ii ∈ RHI×W I×3} as input,
where i = 1, . . . , N . The output should be a labelled volume VO ∈ CXV ×Y V ×ZV

,
where XV , Y V , ZV denote the length, width and height of the volume respec-
tively. The labels are divided into M + 1 categories C = {c0, c1, . . . , cM}, with
c0 denoting the free voxel (air) and {c1, . . . , cM} denoting other semantic cate-
gories. Here M denotes the number of interested categories. Each voxel in VO

is occupied by a category in C.

3.1 Overall Architecture

As illustrated in fig. 2, SurfOcc has two main phases, namely feature lifting phase
and feature diffusion phase. SurfOcc first locates observed surfaces as surface
voxels in feature lifting phase, then diffuse these feature to occluded regions in
feature diffusion phase. We argue that the feature lifting phase provides a robust
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foundation for subsequent feature diffusion, and the sparse surface features lifted
during this phase play a vital role in the overall task.

In feature lifting phase, we propose surface-based feature lifting (section 3.2).
During feature lifting, extracted multi-scale 2D features go through surface lo-
cator and then do voxel enhancement. Surface locator simultaneously constructs
coarse voxel features V and predicts a binary surface mask M in which the value
of 1 represents the postion of surface voxel. Then surface voxels are enhanced via
deformable cross-attention with image features FI . The surface voxels contain
reliable information which is lifted from 2D features guided by depth, and they
represent the observed surfaces in the scene.

In feature diffusion phase, we introduce a feature diffuser (section 3.3) to
propagate correct features to occluded regions. The diffuser refines local context
on a per-voxel basis and aggregates global features to infer occluded regions.
Finally a light-weighted occupancy head is used to upsample and make final
predictions. To save computations, the volume spatial resolution X × Y × Z of
V,M and FV is lower than output resolution XV × Y V × ZV .

3.2 Surface-based Feature Lifting

Surface-based feature lifting aims to lift 2D features to the correct positions of
the 3D volume and mitigate feature ambiguity from the root. In brief, surface
locator provides the locations of surface voxels and then these surface voxels are
enhanced by cross-attention.

Surface Locator. Surface locator follows the paradigm of Lift-Splat-Shoot[35].
Based on this so-called forward projection paradigm, we made some adaptive
changes. The structure of surface locator is shown in fig. 3. Image feature FI is
first processed by a context network and depth distribution network, which are
adopted from CaDDN[36]. Typically, context network generates refined image
features Fcon ∈ RHF×WF×C and depth distribution network generates coarse
depth distribution Ddist ∈ RHF×WF×D , where HF and WF denote height and
width of feature map respectively, C and D denote context channels and number
of depth bins respectively. Then a frustum feature GV is generated by taking
the outer product of Ddist and Fcon , denoted as:

GV (u, v) = Ddist(u, v)⊗ Fcon(u, v) (1)

The outer product in eq. (1) is computed for each pixel, where (u, v) are
the feature pixel location. Finally GV is transformed to coarse voxel features
V ∈ RX×Y×Z×C leveraging voxel pooling, which is based on BEVDet[16,15].

During voxel pooling, every grid in frustum GV is assigned to its nearest
voxel in V and sum pooling is then performed. Based on this mechanism, voxel
pooling is suitable for selecting surface voxels, which represent observed surfaces.

For each pixel in Ddist , we set the value in the bin with the highest confidence
among D bins to 1. Values in the other D−1 bins are set to zero. In this manner,
a one-hot depth distribution Done−hot is generated.
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Fig. 3: Surface locator. The primary function of surface locator is to generate
both coarse voxel features and surface mask. The following steps are included
in their generation process: after obtaining the frustums through outer product
using depth distribution and corresponding features, voxel pooling is performed
to transform frustums into voxel representation.

Now that the goal is to select surface voxels, the only thing that matters is
location information and the specific context information is unnecessary. We use
an all-1 matrix Fones to replace context feature, and the surface frustum GS is
computed as:

GS (u, v) = Done−hot(u, v)⊗ Fones(u, v) (2)

Features in GS contains the depth information derived from Done−hot , su-
pervised by LiDAR provided by datasets. Via voxel pooling, a binary matrix
M ∈ RX×Y×Z×1 containing the locations of surface voxels (green voxels in M
in the bottom right corner of fig. 3) is generated.

Voxel Enhancement. Following surface locator, we then attend to image fea-
tures FI with surface voxels to gain rich visual features of the 3D scene, leverag-
ing attention mechanism[43]. To alleviate the huge computation cost, we utilize
deformable attention[56]. In vanilla deformable attention, queries focus on local
regions and sample Np points around the reference point to update attention
results, denoted as:

DeformAttn(q,p,F) =

M∑
m=1

Wm[

Np∑
p=1

AmpW
′
mF (p+ δpmp)] (3)

where q denotes query, p denotes reference point, and F represents input fea-
tures. m and p index the attention head and the sampled point. δpmp and Amp

denote the sampling offset and normalized attention weight of the pth sampling
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Fig. 4: Feature diffuser. Features are diffused to occluded regions via
PVConv[33].

point in the mth attention head, respectively. F (p+ δpmp) is the feature at lo-
cation p+ δpmp extracted by bilinear interpolation. Wm and W′

m are learnable
weights.

To enhance surface voxels, we leverage deformable cross-attention. For each
surface voxel as query qa, we first calculate its real-world coordinate pa based
on the volume resolution X × Y × Z and the interested scene range. Then we
project the 3D point coordinate to 2D image features FI according to camera
parameters. However, it is not certain whether the projected 2D point falls on
an image due to the field of view. We only use the image the 2D point falls on,
termed as Vhit. Afterwards, the projected 2D point is used as the reference point
of query qa, and we sample the features from Vhit around the reference point.
Finally, the output feature is a weighted sum of sampled features according to
deformable attention in eq. (3), denoted as:

DeformCrossAttn (qa,FI) =
1

|Vhit|
∑

i∈Vhit

DeformAttn (qa,P(pa, i),FI,i) (4)

where i indexes the images, and there is at most 1 image for monocular dataset.
P is the projection function that projects location pa to ith image to obtain
reference point.

At training stage, coarse features GV will be more and more sparse as the
iteration progresses. The reason of this is that under the supervision of depth
information, depth distribution will be concentrated in one depth bin. That is to
say, non-surface voxels will become increasingly obscure. To avoid this and obtain
updated voxel features FV , after the enhancement, we replace the non-surface
voxels with learnable parameters, maintaining the same number of channels.
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3.3 Feature Diffuser

The structure of feature diffuser is shown in fig. 4, and this U-Net-like archi-
tecture is commonly used in voxel-based approaches for multi-scale information
such as in HEDNet[53]. We first calculate the real-world coordinates for all vox-
els in FV based on the volume resolution X × Y × Z and the interested scene
range, then we take the x , y , z coordinates as three channels to expand the voxel
features. The expanded voxel features are regarded as pseudo points features
FP comprising three positional channels representing coordinates and additional
feature channels, which will be termed pseudo points hereafter.

To learn both local features and global features from pseudo points, we utilize
PVconv[33] to further process pseudo points. To begin with, all coordinates are
normalized to [0, 1] with the gravity center of pseudo points as origin. During
normalization, features FP keep unchanged. Afterwards, we merge the pseudo
points to bigger voxels by aggregating all features whose coordinates fall into
the bigger voxel grid. A stack of 3D convolutions are applied to aggregate local
features in bigger voxels. After getting coarse-grained local features, we use an
MLP for each individual pseudo point to get fine-grained features as global
features. As we need to fuse the local features and global features, we devoxelize
the bigger voxels back to the domain of pseudo points. To ensure that the features
mapped to each pseudo point are distinct and do not share the same local feature,
we leverage the trilinear interpolation for devoxelization. Finally, low-resolution
local features and high-resolution global features are fused with another MLP.

3.4 Loss Functions

Following VoxFormer[24], we directly use the widely used loss function Locc =
Lwce +Lsem

scal +Lgeo
scal for the occupancy network to supervise the occupancy head,

where Lwce is a weighted cross-entropy loss, Lsem
scal and Lgeo

scal are off-the-shelf SSC
losses derived from MonoScene[3]. To ensure the geometric positions of surface
voxels are correct, the depth distribution Ddist is supervised by the projections
of LiDAR points, with the binary cross-entropy loss Ldepth. The final training
loss is a simple summation:

L = Locc + Ldepth (5)

4 Experiments

4.1 Datasets

SemanticKITTI [1] is a popular semantic scene understanding dataset based
on KITTI Odometry Benchmark[11] including 22 outdoor driving scenarios.
The dataset provides dense semantic annotations for each LiDAR sweep rep-
resented as 256× 256× 32 grids of 0.2m voxels. The voxels are labelled with 20
classes (19 semantics and 1 free), and the 22 sequences are split into 10/1/11
for train/val/test. For SSC or 3D occupancy prediction, the dataset only focuses
on scenes within 51.2m to the front of the car, 25.6m to the left and right, and
6.4m in height.
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Table 1: 3D occupancy prediction results on SemanticKITTI[1] vali-
dation set. ∗ means the methods are adapted for the RGB inputs, which are
implemented and reported in MonoScene[3]. The symbol ⋄ means the perfor-
mance is achieved by our implementation using its official code. The top two
performances are marked by red and green respectively.
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LMSCNet∗[38] - 6.70 40.68 18.22 4.38 0.00 10.31 18.33 0.00 0.00 0.00 0.00 13.66 0.02 20.54 0.00 0.00 0.00 1.21 0.00 0.00
3DSketch∗[6] - 7.50 41.32 21.63 0.00 0.00 14.81 18.59 0.00 0.00 0.00 0.00 19.09 0.00 26.40 0.00 0.00 0.00 0.73 0.00 0.00
AICNet∗[19] - 8.31 43.55 20.55 11.97 0.07 12.94 14.71 4.53 0.00 0.00 0.00 15.37 2.90 28.71 0.00 0.00 0.00 2.52 0.06 0.00
JS3C-Net∗[50] - 10.31 50.49 23.74 11.94 0.07 15.03 24.65 4.41 0.00 0.00 6.15 18.11 4.33 26.86 0.67 0.27 0.00 3.94 3.77 1.45
MonoScene[3] - 11.50 57.47 27.05 15.72 0.87 14.24 23.55 7.83 0.20 0.77 3.59 18.12 2.57 30.76 1.79 1.03 0.00 6.39 4.11 2.48
TPVFormer[17] R101-DCN 11.36 56.50 25.87 20.60 0.85 13.88 23.81 8.08 0.36 0.05 4.35 16.92 2.26 30.38 0.51 0.89 0.00 5.94 3.14 1.52
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SurfOcc(ours) R50 13.75 59.43 28.59 19.78 2.15 16.51 26.16 22.77 0.85 0.88 9.64 19.09 3.74 33.73 1.82 2.90 0.00 5.86 4.75 2.67

Table 2: 3D occupancy prediction results on Occ3D-nuScenes[41] vali-
dation set. The symbol † indicates that the result is reported with utilization
of camera mask during training. The top two performances are marked by red
and green respectively.
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BEVDet[16] R101-DCN

√
19.38 4.39 30.31 0.23 32.26 34.47 12.97 10.34 10.36 6.26 8.93 23.65 52.27 24.61 26.06 22.31 15.04 15.10

OccFormer[55] R101-DCN ✕ 21.93 5.94 30.29 12.32 34.40 39.17 14.44 16.45 17.22 9.27 13.90 26.36 50.99 30.96 34.66 22.73 6.76 6.97
BEVDet4D†[14] Swin-B

√
42.02 12.15 49.63 25.10 52.02 54.46 27.87 27.99 28.94 27.23 36.43 42.44 82.31 43.29 54.62 57.90 48.61 43.55

Attention-based feature lifting
BEVFormer[27] R101-DCN

√
26.88 5.85 37.83 17.87 40.44 42.43 7.36 23.88 21.81 20.98 22.38 30.70 55.35 28.36 36.0 28.06 20.04 17.69

TPVFormer[17] R101-DCN ✕ 27.83 7.22 38.90 13.67 40.78 45.90 17.23 19.99 18.85 14.30 26.69 34.17 55.65 35.47 37.55 30.70 19.40 16.78
CTF-Occ[41] R101-DCN - 28.53 8.09 39.33 20.56 38.29 42.24 16.93 24.52 22.72 21.05 22.98 31.11 53.33 33.84 37.98 33.23 20.79 18.00
SurroundOcc†[48] InternImage-B ✕ 40.70 - - - - - - - - - - - - - - - - -
PanoOcc†[47] R101-DCN

√
42.13 11.67 50.48 29.64 49.44 55.52 23.29 33.26 30.55 30.99 34.43 42.57 83.31 44.23 54.40 56.04 45.94 40.40

Surface-based feature lifting
SurfOcc†(ours) R101-DCN ✕ 42.38 11.06 49.95 27.71 51.12 55.96 28.54 30.07 28.67 27.44 35.28 44.42 82.99 46.35 56.09 59.70 47.26 37.88

Occ3D-nuScenes is a newly proposed 3D occupancy prediction benchmark
derived from the nuScenes dataset[2], which comprises 700 scenes for training
and 150 scenes for validation. The dataset provides semantic annotations for each
key frame represented as 200×200×16 grids of 0.4m voxels. The dataset covers
a spatial range of −40m to 40m along the X and Y axis, and −1m to 5.4m
along the Z axis. The semantic labels contain 17 classes (including "others").
To further enhance the 3D occupancy prediction benchmark, the dataset also
provides visibility masks for both LiDAR and camera modality.

4.2 Implementation Details

Network Structures. For SemanticKITTI, we adopt ResNet50[12] to ex-
tract image features following VoxFormer[24]. For Occ3D-nuScenes, we adopt
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Input OccFormer Ours Ground Truth

road sidewalk parking other-ground building vegetation trunk terrain pole

car person bicyclist motorcyclist fence truck bicycle motorcycle other-vehicle

traffic sign

Fig. 5: Qualitative results on SemanticKITTI validation set. Our model
exhibits superior performance when dealing with occlusion scenarios (red circles).

Pred

barrier bicycle bus car c. v. motor. ped. t. c. trailer truck d. s. other flat sidewalk terrain manmade veg.

Ground

Truth

CAM_FRONT_LEFT CAM_FRONT CAM_FRONT_RIGHT CAM_BACK_RIGHT CAM_BACK CAM_BACK_LEFT

Ground

Truth

Pred

Surround-view

Images

Surround-view

Images

Fig. 6: Qualitative results on Occ3D-nuScenes validation set. We present
the occupancy grids from different camera angles for better observation.

ResNet101-DCN[12,9] that initialized from FCOS3D[44] checkpoint. By default,
we take the output multi-scale features from FPN[29] with size of 1/8, 1/16 and
1/32. The feature dimension is set as C = 128. In feature lifting phase, the
shape of voxel features is 128× 128× 16 for SemanticKITTI and 100× 100× 8
for Occ3D-nuScenes, with 128 channels. For both datasets, 3 deformable cross-
attention layers and 8 sampling points are used around each reference points.
In feature diffusion phase, the maximum resolution for PVConv[33] is 32 for Se-
manticKITTI and 50 for Occ3D-nuScenes. The occupancy head only contains a
shallow ResNet3D, which upscales the voxel features to the same shape as the
ground truth for full-scale evaluation.

Training Setup. We crop RGB images of cam2 (left camera) in SemanticKITTI
to size 1220 × 370 and images from all 6 perspectives in Occ3D-nuScenes to
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Table 3: Ablation study for architecture.
Surface-based Feature Lifting Feature Diffuser mIoU↑Surface Locator Voxel Enhancement

1)
√ √ √

13.75
2)

√ √
12.69(-1.06)

3)
√ √

12.07(-1.68)
4)

√ √
11.90(-1.85)

size 704 × 256. For data augmentation, we apply random scaling, flipping, and
rotation following BEVDet[16]. We train the model end-to-end for 30 epoches
on SemanticKITTI and 24 epoches on Occ3D-nuScenes. During training, the
AdamW optimizer with an initial learning rate of 1e-4 and a weight decay of
0.01 is used. All experiments are conducted with a batch size of 4 on 4 NVIDIA
A100 GPUs with 40G memory.

4.3 Metrics

For both datasets, we report the mean Intersection over Union (mIoU) for 3D
occupancy prediction. For Occ3D-nuScenes, the benchmark calculates the mIoU
for 17 semantic categories in the visible region of the camera.

4.4 3D Occupancy Prediction Results

As is shown in table 1, we first conduct monocular 3D occupancy prediction on
SemanticKITTI[1] and compare with existing state-of-the-art methods. SurfOcc
outperforms all competitors and achieves state-of-the-art performance. We can
observe that SurfOcc shows especially good performance in differentiating ob-
jects with significant volume and appreciable thickness (car, truck). We surpass
the two-stage VoxFormer[24] with a margin of 1.4 mIoU through an end-to-end
training approach, seamlessly integrating depth estimation into the process. Re-
sults have demonstrated the effectiveness of this enhancement, particularly in
categories that rely on accurate depth measurements, such as various grounds.
Qualitative results can be seen in fig. 5.

We also conduct experiments on Occ3D-nuScenes[41], as is shown in table 2.
Despite the omission of temporal information in our approach, our work still
outperforms recent state-of-the-art methods, including Lift-Splat-based methods
and attention-based methods. The results demonstrate SurfOcc’s remarkable
ability to identify objects with significant volume and prominent thickness, as
well as those objects with clear depth information. Qualitative results can be
seen in fig. 6.

4.5 Ablation Studies

Ablation on the Architecture. We conduct architecture ablation as shown in
table 3. Line 1) shows the performance of complete SurfOcc model. 2) When the
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Table 4: Ablation study for
feature scales.

Feature Scale mIoU↑
1/4 1/8 1/16 1/32

1)
√

12.26
2)

√ √
12.84

3)
√ √ √

13.75
4)

√ √ √ √
13.87

Table 5: Ablation study for feature dif-
fuser. Resolution means the max-resolution of
voxelization when applying PVConv. Memory
means the consumption of this module.

Resolution mIoU↑ Memory(G)

1) 16 12.88 7.9
2) 32 13.75(+0.87) 8.2(+0.3)
3) 64 13.96(+1.08) 9.6(+1.7)

Table 6: Model size comparison.
Method Backbone Dataset mIoU↑ Params↓

OccFormer[55] R50 SemanticKITTI 13.03 200M
SurfOcc(ours) R50 SemanticKITTI 13.75 94M
SurfOcc(ours) R101-DCN Occ3D-nuScenes 42.38 110M
PanoOcc[47] R101-DCN Occ3D-nuScenes 42.13 115M

feature diffuser is removed, mIoU drops to 12.69. As the diffuser helps the model
understand the environment, particularly occluded regions, inferring without it
leads to a lack of information. 3)-4) Removing either module in surface-based
feature lifting results in a varying degree of performance degradation.

Ablation on Surface-based Feature Lifting. Line 3)-4) in table 3 show how
surface-based feature lifting affects the performance of the model and show the
comparison of different feature lifting methods. We first remove voxel enhance-
ment during feature lifting to imitate Lift-Splat-based feature lifting method.
Feature volume is generated with no surface voxels and without refinement, re-
sulting in mIoU drops to 12.07. We then remove surface locator and generate
feature volume via cross-attention between predefined embeddings and image
features to imitate attention-based feature lifting method. The mIoU drops even
more severely to 11.90. We tried to use a depth network instead of the depth dis-
tribution network, but it drastically reduced the accuracy and made the fitting
process very slow. These experiments confirm that surface-based feature lifting
is effective and superior to other feature lifting methods.

We also conduct abaltion study for feature scales of cross-attention in table 4.
Feature scale is relative to the input image size. The performance improves as
the number of scales increases but the gains become marginal when four scales
are used. Given the model’s size, we opt for a three-scale approach, which strikes
a balance between performance and efficiency.

Ablation on Feature Diffuser. The primary influencing factor is the max-
imum resolution of voxelization in PVConv[33]. As is shown in table 5, higher
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resolution leads to better model performance. When the resolution is too low,
the model exhibits poorer performance due to the scarcity and coarseness of
local information. While increasing the resolution from 32 to 64 will enhance
performance, it concurrently incurs a computational cost that does not align
proportionally with the observed improvement in the experiment. In our final
implementation, we set the resolution to 32, yielding excellent performance and
avoiding excessive computational costs.

4.6 Model Size

Our approach is geometrically intuitive and optimized for complexity, ensuring
a lightweight design that maximizes performance while minimizing complexity.
As shown in table 6, our model achieves better performance on both datasets
while using fewer parameters.

5 Conclusion

In this paper, we present SurfOcc, a robust vision-centric 3D occupancy predic-
tion framework. SurfOcc locates observed surfaces during feature lifting phase
and propagates features to occluded regions during feature diffusion phase. To ef-
fectively refine lifted features and mitigate feature ambiguity, we propose surface-
based feature lifting to extract and enhance voxel features. Additionally, we de-
sign a feature diffuser to support our model’s inference of occluded parts, and the
end-to-end two-phase scheme enhances the model’s holistic understanding of 3D
scenes. The comparison on SemanticKITTI and Occ3D-nuScenes demonstrates
the superiority of SurfOcc in both monocular and multi-view settings.

Limitation. SurfOcc performs less effectively in identifying small objects, which
we attribute to the adoption of a smaller feature scale during the training pro-
cess for efficiency. In future work, we will attempt to address this limitation by
incorporating larger-scale and sparse representation.
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