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Abstract—The calculation of surface depth based on multiview
stereo (MVS) satellite imagery is of significant importance in fields
such as military and surveying. The challenge in extracting depth
information from satellite imagery lies in the fact that these im-
ages often exhibit similar colors, necessitating the development
of algorithms that can integrate shape and texture information.
Moreover, the application of classical convolutional neural network
(CNN) MVS is limited by its inability to capture long-range terrain
relationships, which presents a bottleneck in existing surface depth
estimation algorithms. To address the above problems, we propose
the Distribution Contrast Network for Surface Depth Estimation
from Satellite MultiView Stereo Images (DC-SatMVS), a novel
satellite MVS network. In order to learn short-range and long-
range features, we designed separate CNN and ViT branches. To
emphasize the importance of shape and texture, we propose the
Distribution Contrast Loss mechanism. This mechanism supervises
the model training based on the similarity between the predicted
depth and the ground truth depth distribution. Experimental re-
sults demonstrate that our method achieves state-of-the-art (SOTA)
performance. We produce a remarkable 18.14% reduction in root
mean square error compared to the Sat-MVSF on the WHU-TLC
dataset. To validate the generalization performance of our frame-
work, we trained and tested it on the DTU dataset, a common MVS
dataset, and achieve SOTA results in this dataset as well.

Index Terms—Multiview stereo (MVS), satellite stereo reconst-
ruction, surface depth estimation.

I. INTRODUCTION

W ITHIN computer vision and remote sensing, the field of
surface depth estimation [1] from multiview [2] optical

pictures is an important and rapidly developing field [3]. Accord-
ing to [4], existing techniques for estimating surface depth from
satellite imagery [5] can be divided into two main classes: One
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Fig. 1. Motivations: First, The local geometry of satellite imagery is more
similar. Incorporating information from longer distances to discern the semantic
patterns of the terrain proves to be a superior choice for depth estimation.
The pink circles in this figure simulate the interaction of longrange sensory
fields. Second, Scenes with similar colors may have different depths. As can
be seen from the contents of the green box, satellite imagery has little color
differentiation. Therefore, remote sensing MVS should pay more attention to
features that are not related to color. The left half of Fig. 1 is the original image,
and the right half is the ground truth.

based on manual matching approaches using commercial soft-
ware, i.e., ArcGIS, Catalyst, or open-source solutions [6], and
the other based on deep learning-based multiview stereo (MVS)
methods [3], [4], [7]. Traditional manual matching approaches
require the human imposition of prior conditions, making the
cost of matching prohibitive for complex scenes. In contrast,
deep learning-based solutions [7], [8], [9] have demonstrated su-
perior results in both remote sensing and general image contexts,
making these approaches more widely applicable to research.

As a representative work in satellite MVS, RED-Net [10]
employs a recurrent convolutional neural network (CNN) [11]
architecture and represents a pivotal contribution specifically
designed for satellite MVS. CasMVSNet [7] decomposed the
single-cost volume into a cascaded structure of multiple stages.
It leveraged the depth map from the preceding stage to re-
fine the depth range for each subsequent stage. UCS-Net [9]
presented a MVS reconstruction method based on adaptive
volume representation and uncertainty perception. The afore-
mentioned algorithm has achieved promising results in diverse
MVS scenarios [12]. Gao et al. [3] extended the applicability
of CasMVSNet [7] and UCS-Net [9] to remote sensing imagery
scenarios, demonstrating the effectiveness of them in satellite
MVS applications. In order to better adapt to large-scale earth
surface reconstruction, Gao et al. [3] proposed the Rational Poly-
nomial Camera (RPC) Distortion Module to enhance existing
satellite MVS methods. Furthermore, Gao et al. [4] introduced,
Sat-MVSF, a more refined workflow [4] aimed at reducing the
mean absolute error (MAE) and root mean square error (RMSE).
Despite the significant progress achieved by satellite MVS,
they still face bottlenecks in accurately computing depth. As
shown in Fig. 1, the existence of these bottlenecks primarily
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arises from two aspects: 1) misjudgment of depth resulting from
a focus solely on local representations. Convolutional-based
MVS architectures struggle to capture long-range information,
which is crucial for satellite MVS. In contrast to general MVS
scenes [12], satellite images exhibit locally similar textures,
and the limited receptive field makes it challenging for existing
algorithms to accurately estimate depth by incorporating the
similarity of long-range information; 2) semantic confusion due
to overconsideration of color characteristics. The loss functions
commonly used in general MVS have limited efficacy in satellite
MVS scenarios. Remote sensing images often share similar
color information, rendering the supervision of satellite MVS
training based solely on RGB values inefficient. Training satel-
lite MVS with information unrelated to color, such as feature
distribution [13], [14], is a more reasonable approach.

In response to the above challenges, we propose the Distribu-
tion Contrast Network for Satellite MVS (DC-SatMVS), a novel
satellite stereo matching network. Specifically, we designed
separate CNN and ViT branches for the learning of near-field
and far-field features, respectively. In addition, we introduce the
Distribution Contrast Loss (DCL), a contrastive loss calculated
based on feature distributions. This loss function facilitates more
rational supervision by considering network representations un-
related to color.

Overall, our contributions can be summarized as follows.
1) A new paradigm for satellite MVS that incorporates global

information and feature distribution considerations is in-
troduced.

2) We propose a dual-branch feature extractor that allows the
network to capture local and global information simulta-
neously.

3) In order to strengthen the supervisory role of noncolor
features on the network, we designed the DCL.

4) Our method achieves state-of-the-art (SOTA) results in
WHU-TLC dataset, exhibits a 18.14% reduction in RMSE
compared to Sat-MVSF.

5) Our design is also applicable to general MVS scenarios.
In comparison to CasMVSNet, we achieves a notable
26.35% reduction in completeness errors.

II. RELATED WORK

A. Manual Methods for Surface Depth Estimation

In the past few years, surface depth estimation of the Earth
has mainly been achieved through manual geometric methods.
Traditional manual methods can be broadly categorized into two
main types.

The first type is based on the epipolar geometry of satellite
images. An example of this approach is the RPC Stereo Pro-
cessor (RSP) [15]. In this type, stereo images are first rectified
according to the RPC [16] model, and then manual stereo
matching algorithms such as Semiglobal Matching [17] are used
to estimate disparities. Finally, the disparity map is converted
into 3-D points in the world coordinate system.

The second type involves fitting a complex RPC model into a
pinhole model for a small area and then, using stereo-matched

pipelines for reconstruction. An example of this type is the
Satellite Stereo Pipeline [18], which adjusts such stereo match-
ing algorithms into the COLMAP framework for surface depth
estimation of the Earth [6].

B. Learning-Based MVS

With the development of deep learning, learning-based MVS
methods [8], [19] have demonstrated outstanding performance.
As representative works of learning-based MVS, MVSNet [8],
MVSNet++ [20], and P-MVSNet [21] employ a series of
3-D convolutions to regularize the cost volume. This approach
requires a significant amount of GPU memory.

To address this limitation, a mainstream approach is to use
recursive regularization methods to update depth estimations it-
eratively. For example, R-MVSNet [22] processed cost volumes
at different depths using recursive regularization. All these meth-
ods were originally developed for natural images. RED-Net [10]
extended the regularization method based on Convolutional
Gated Recurrent Units. Recently, SOTA methods have intro-
duced multistage cost volume construction approaches, such as
CasMVSNet [7] and UCS-Net [9]. These methods have achieved
outstanding performance, even when extended to depth estima-
tion from satellite images, demonstrating strong generalization
capabilities.

C. Learning-Based MVS for Surface Depth Estimation

To enhance the performance of MVS methods in satellite
image depth estimation, Sat-MVS [3] introduces a rigorous
RPC warping module as a plugin to existing MVS methods.
Experiments demonstrate that this plug-in exhibits outstanding
performance within various MVS frameworks [7], [9], [10].

Building upon this, a universal deep learning-based frame-
work, named Sat-MVSF [4], is proposed for depth estimation
from multiview optical satellite images of the Earth’s surface.
The framework consists of a complete processing pipeline,
including preprocessing, a MVS network specialized for satel-
lite images (Sat-MVSNet), and postprocessing. Preprocessing
involves the geometric and radiometric configuration of the
multiview images, as well as their cropping. The cropped mul-
tiview patches are then input into Sat-MVSNet, which performs
depth feature extraction, RPC distortion, pyramid cost volume
construction, regularization, and regression to obtain the height
map. Error-prone matches are subsequently filtered out, and
a Digital Surface Model is generated in the postprocessing
stage. This approach achieves SOTA performance on the remote
sensing image dataset WHU-TLC [3].

However, the aforementioned method still employs the com-
mon loss functions used in MVS, which exhibit limitations in
performance on remote sensing datasets. This is because remote
sensing images often have low color contrast, and the loss func-
tions designed for remote sensing images should attenuate the
influence of color factors on matching judgments. In addition,
existing MVS methods still utilize CNN architectures, which
restrict the ability of MVS to learn global information.
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Fig. 2. Illustration of our method. We propose the ViT branch and CNN branch for feature extraction. The details of this feature extractor are illustrated in the
second row. The obtained features follow the workflow of Sat-MVS (RED-Net) [3] to produce an estimated depth. Additionally, addressing the characteristic of
minor color variations in remote sensing images, we introduce the Distribution Contrast Loss (DCL). The star means our major contributions.

III. METHOD

In this section, we first describe the overall architecture of
our DC-SatMVS (Section III-A). Then, in Section III-B.B we
present details of Dual-branch Extractor in DC-SatMVS. Fi-
nally, in Section III-D, we explain the DCL proposed by us.

A. General Architecture Overview

We proposed a novel satellite MVS Network (DC-SatMVS).
Inspired by Sat-MVS [3], we construct a cost volume based on
RPC warping and incorporate SOTA methods [3], [7], [10] from
the MVS domain for cost map regularization and regression
module design. Departing from the commonly used Feature
Pyramid Network (FPN) [23] and U-Net [24] architectures in
existing satellite MVS methods [3], [4], [10], we propose a
paradigm that fuses ViT and CNN to enhance long-range in-
formation while preserving local semantics. In addition, consid-
ering the minimal color variation in remote sensing images, we
introduce a Loss function, i.e., DCL, that focuses on frequency
domain feature distribution. The overall workflow is illustrated
in Fig. 2.

B. Dual-Branch Extractor

Existing satellite MVS methods [3], [4], [10] commonly adopt
the CNN paradigm [11] for feature extraction. However, the
limited receptive field of the convolutional structure hinders the
acquisition of long-range features. Moreover, the minimal local
content variation in remote sensing images poses a bottleneck
for CNNs in extracting features from such imagery. We con-
tend that, for remote sensing images, long-range information is
equally crucial. This is because long-range interactions allow
the network to recognise terrain relationships in the images,
helping the network to achieve more accurate depth estimation
by discovering general terrain patterns. Overall, CNN-based
satellite MVS can only rely on local information for estimation,
resulting in limited knowledge acquisition.

To complement the limited knowledge of CNNs, we pro-
pose a novel dual-branch Extractor. It captures both long-range
semantics and short-range semantics through ViT and CNN
branches, respectively. As illustrated in Fig. 2, our feature ex-
tractor presents a paradigm distinct from previous parallel CNN
and ViT approaches. Specifically, the ViT branch encodes the
input image into an eight-channel feature through Patch Em-
bedding, mapping the feature to a higher-dimensional space via
pixel unshuffle and convolution. To further capture long-range
relationships, we construct the Transformer Block as depicted
in Fig. 3. Let n = H ×W , due to the standard ViT design
leading to O(n2) computational complexity, which is expensive
for MVS tasks, we draw inspiration from Restormer [25] and
design a matrix multiplication along the channel dimension. We
are the first to apply this design to satellite MVS, leveraging it
for long-range information interaction. However, this does not
imply the abandonment of local information; we also design
the CNN branch. The CNN branch acquires multiscale features
related to local details through FPN and the Hourglass Model,
inspired by [3] and [10]. Finally, we concatenate long-range
features from the ViT branch and local features from the CNN
branch to get the feature map.

It must be acknowledged that combining ViT [26] and
CNN [11] is a strategy widely employed in various applica-
tions. Incorporating the CNN component into the Multihead
Self-attention module and the feed forward propagation module
is a common practice [27], [28], [29]. Our ViT branch similarly
adopts this design strategy. However, the similarity of ideas does
not mean that dual-branch extractors are exactly the same as the
methods used in this type of strategy. These strategies still have
the following problems: 1) combined with ViT is expensive.
Attention has a square-level complexity. Let n = H ×W , the
computational complexity of the attention matrix will reach
O(n2) level. This means that the combination of ViT will signif-
icantly increase the cost of computing; 2) Weak local learning
ability of feedforward networks. The vast majority of studies
retain the use of MLP for forward propagation [27], [28], [29].
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Fig. 3. Details of Transformer Block in our Dual-branch Extractor. The symbol R means reshape. 1× 1 denotes CNN layers with kernel size set to 1.

The patch-wise learning paradigm is unfavorable for intrablock
feature learning. It is difficult to adapt to the complex features
of remotely sensed imagery.

To solve the above limitation, our transformer module has the
following improvements: 1) transpose the Q and K matrices,
and then perform matrix multiplication. In this way, we control
the time complexity of the attention matrix computation to
O(C2). Since the number of feature channels C << n, this
approach actually achieves O(n) linear complexity. A powerful
attention head is achieved by interacting only the attention of
the channels; 2) pixel-wise feature propagation with convolution
and gating. We eliminate the linear layer + activation function
paradigm and use convolution and gating for pixel-by-pixel fea-
ture updating. In addition, objects in remote sensing images vary
significantly in scale. A CNN branch is still designed to capture
multiscale local semantics and help the ViT branch achieve
better performance.

C. Cost Volume Construction

Cost metrics of DC-SatMVS follows [8], [30]. We calculate
the variance of the element values at corresponding positions in
the feature volumes to form a single cost volume. A three-stage
cost volume is built in a cascaded manner [3], [7] based on this
single volume, allowing features to be matched from coarse to
fine. Regularization and regression of probability volumes also
follows [3].

D. Distribution Contrast Loss (DCL)

Existing satellite MVS methods [3], [4] commonly align with
conventional MVS approaches [7], [8], employing LossL1 or

LossSmooth˜L1 for loss computation. However, this type of loss
calculation may not be the most rational choice. The standard
MVS computation inherently involves the contrast of color
information, which is not applicable to remote sensing images
with minimal color variation. To emphasize features unrelated to
color, we propose a DCL that focuses on the frequency domain
distribution.

Following the workflow outlined in Fig. 2, we can obtain
the estimated depth d at each stage. Next, the result obtained is
shifted by a two-dimensional discrete fourier transform f and the
operation fftshift. fftshift moves the zero-frequency com-
ponent to the center of the array. This increases the symmetry of
the spectrum. In this way, we learn about the distribution of depth
information in the frequency domain. Furthermore, we employ a
normalization strategy to stabilize the training process. Both the
estimated depth and ground truth undergo this transformation
into the frequency domain, a process expressed by

df = fftshift(f(d))

dfnorm =
df −min(df )

max(df )−min(df )
(1)

where min and max refer to taking the minimum and maxi-
mum values, respectively. In frequency space, a more intuitive
comparison of high and low frequency information allows us to
divide this information intok groups, ensuring that the frequency
distribution within each group approximates the frequency dis-
tribution of the ground truth. We quantify this approximation
using (4), employing the Kullback–Leibler (KL) divergence.
The KL divergence measures the closeness of two distributions:
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the smaller the KL divergence, the closer the distributions; con-
versely, a larger KL divergence indicates greater dissimilarity.
This characteristic allows us to incorporate it as part of the loss
function. Finally, we utilize a piecewise function, as depicted
in (5), to compress the scale of this relationship, promoting
smoother training and obtaining the value of the DCL.

df ′ = log
(
SoftMax

(
dfnorm

))
(2)

dfgt′ = SoftMax
(
dfgt_norm

)
(3)

kl(df , dfgt) =

k∑
j=1

(
KL

(
df ′, dfgt′

))
(4)

LossDCL(d
f , dfgt) =

{
log

(
kl

(
df , dfgt

))
, kl > 1,

0, kl ≤ 1.
(5)

The final loss function for the DCL is obtained according to
Formula 6, where we integrate considerations for both the dif-
ferences in frequency domain distribution and specific numerical
disparities.

Loss = γ1 × LossSmoothL1 (d, dgt)

+ γ2 × LossDCL

(
df , dfgt

)
(6)

where γ1 and γ2 are factors of loss. We set γ1 = 0.8 and γ2 =
0.2, respectively.

In other fields of study, both Zheng et al. [31] and Zhang
et al. [32] have proposed methods for calculating loss based on
distribution. Zheng et al.’s [31] approach involves using a larger
number of samples as anchors and obtaining feature contrasts
through a VGG network [33]. However, this loss has relatively
poor interpretability and is computationally expensive. On the
other hand, the approach of Zhang et al. [32] can lead to negative
results when the distributions are close together, which can
affect the robustness of the training. Our DCL provides a novel
perspective for this type of distribution-based loss calculation.

IV. EXPERIMENTS

This section presents the efficacy of the DC-SatMVS.
Section IV-A outlines the experimental setup, while Sec-
tion IV-B showcases the outcomes of the experiments. Sec-
tion IV-C illustrates the contribution of each module through
ablation experiments. In addition, the approach can be applied
to generic MVS scenarios, with the corresponding evidence
presented in Section IV-D.

A. Experimental Setup

Due to the challenging nature of collecting MVS datasets,
the availability of existing remote sensing MVS datasets is
relatively limited. We chose to validate our approach using
the WHU-TLC [3] dataset due to its novelty. In addition, this
dataset has a higher level of parameter openness, and numerous
approaches have been validated on it. This facilitates compar-
isons with a broader range of algorithms. The framework was
implemented in PyTorch and trained on single NVIDIA A6000.

The hyperparameters follow [3], in the training phase the batch
size was set to 1 and RMSprop was chosen as the optimizer. Our
network is trained for 15 epochs with an initial learning rate of
0.001, and are downscaled by a factor of 2 after the 10th epoch.

In order to thoroughly assess the efficacy of our proposed
method, we expand our evaluation to encompass traditional
MVS scene datasets. Specifically, we choose the widely rec-
ognized DTU dataset [12] for training and testing purposes.
Following the common practice, we train our network on the
DTU training set and evaluate it on the DTU evaluation set while
adopting the same data split and view selection as defined in [7]
for a fair comparison. The number of input images is set to
N = 5 with a resolution of 640 × 512 for the DTU. We trained
on the DTU with the Adam optimizer for 16 epochs from a start
learning rate of 0.001 on 4 NVIDIA Tesla T4 GPUs.

B. Experimental Results

To assess the effectiveness of our method in satellite MVS sce-
narios, we compare our results against both manual methods and
learning-based approaches. Quantitative results are presented in
Table I. The MAE, RMSE, and L1 distance error metrics were
employed. They are commonly utilized [3], [4], [10] for the es-
timation of depth in remote sensing images. MAE represents the
mean absolute error between the predicted value and the ground
truth (GT), RMSE represents the sample standard deviation of
the difference between the predicted value and the GT, and L1
distance error represents the error between the predicted value
and the GT under the permissible deviation threshold.

Compared to the best-performing Sat-MVSF [4] in terms of
MAE and RMSE metrics, we achieve a reduction of 5.17%
and 18.14%, respectively. Moreover, in comparison to SatMVS
(RED-Net) [3], [10], which exhibits the best accuracy within
2.5 meters, our method elevates the SOTA level of accuracy
by 6.22%. Visual comparisons are depicted in Fig. 4. The
red-framed areas in the figure illustrate that existing methods
tend to incorrectly estimate the depth of an entire area as a
uniform value. Moreover, these methods tend to estimate the
depth distance as being closer than the true value. From the
visualizations, it is evident that SOTA methods still exhibit no-
ticeable estimation errors, while our method consistently ensures
a reasonable estimation outcome.

We also perform qualitative analyses in different types of
regions. The visualization results, as shown in Fig. 5, illustrate
the ability of DC-SatMVS to achieve clear results. DC-SatMVS
works effectively under conditions of degradation and various
land cover types.

C. Ablation Study

To validate the effectiveness of each design, we conducted
ablation experiments on the WHU-TLC dataset [3], and the role
of each module is outlined in Table II. No. 1 refers to the valida-
tion results of our baseline method. In the No.2 experiment, we
replaced the LossSmoothL1 used in SatMVS (RED-Net) [3] with
our proposed DCL Loss, resulting in a 7.38% improvement in
accuracy within 2.5 m. In the No. 4 experiment, we replaced
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TABLE I
QUANTITATIVE RESULTS OF THE DIFFERENT METHODS ON THE WHU-TLC DATASET

Fig. 4. Visual comparisons on the WHU-TLC dataset. Existing methods have a tendency to incorrectly estimate the depth of an entire area as a similar value when
determining depth. In addition, they also tend to estimate the distance of the depth closer than the true value. We solve the above problems by adding knowledge
of long distances and improving the training of noncolor features.

TABLE II
ABLATION RESULTS ON THE WHU-TLC TEST DATASET

the FPN used in SatMVS (RED-Net) with our proposed Dual-
branch Extractor, achieving a 7.04% reduction in MAE. Exper-
iment No. 6 simultaneously improved the feature extraction and
loss calculation methods of the baseline method [3], producing
SOTA results.

Sensitivity analysis of hyperparameters in the weighted loss
function is presented in Table III. γ1 = 0.8 and γ2 = 0.2 are set
for DCL, this set of parameters gives the best results. Possibly
due to device differences, we did not achieve similar inference
times to SatMVS [3] in its origin paper. This indicates that
there is still room for optimization in terms of inference time

TABLE III
PARAMETER SENSITIVE ANALYSIS IN THE WEIGHT OF THE DISTRIBUTION

CONTRAST LOSS

for our method. In addition, it is acknowledged that the feature
extractor may slow down inference time, but given the relatively
low real-time inference demand for depth estimation in satellite
imagery, the acceptable tradeoff for improved accuracy is justi-
fied. DCL appears only as a loss function and theoretically does
not impact inference time. The observed runtime differences
are likely due to variations in device usage, resulting in some
degree of error. We also try to replace the feature extractor
with the Swin Transformer [34] architecture, because it is a
commonly used transformer architecture that serves as a strong
baseline for improved ViT. The experiments in No. 3 and No.
5 show that Swin Transformer can achieve better performance
than FPN. However, this classical transformer architecture is not
as effective as our DBE. In addition, using Swin Transformer
to extract features significantly increases the computation time
due to the existence of attention-squared level computational
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Fig. 5. Visualization of the results achieved by DC-SatMVS under different scenarios.

complexity. In summary, we can conclude that each of our
designs proves effective for satellite Multi-view Stereo.

D. Cross-Dataset Generalization

To validate the effectiveness of our design, we transferred our
approach to commonly used MVS scenes and achieved SOTA

results. The numerical results and visualizations of the method
are presented in Table IV and Fig. 6. Compared to CasMVS-
Net [7], we, respectively, achieved reductions of 10.42% and
26.35% in the Overall performance and Completeness metrics,
which are both error-related indicators. In comparison to the
advanced IGEV-MVS [38], our method lowered these met-
rics by 1.85% and 5.38%. Even when compared to the latest



17844 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

TABLE IV
PERFORMANCE ON THE DTU DATASET

Fig. 6. Visualization of partial scenes on the DTU dataset. We reconstructed these scenes based on the estimated depth of the point clouds.

algorithm MoCha-MVS [30], our DC-MVS still demonstrates
superior performance. We have to acknowledge that our method
does not exhibit superior performance in terms of accuracy
metrics compared to SOTA methods. This phenomenon might
be attributed to differences in features between remote sensing
images and conventional images, resulting in a certain level of
absolute position estimation offset in point clouds. However, this
does not imply that our design is unsuitable for MVS scenes.
According to the quantitative assessments in Table IV, our
design significantly enhances the completeness of reconstruc-
tion. The incorporation of neighboring points compensates for
absolute point cloud deviations, achieving a lower overall error
compared to MVS reconstruction methods specialized for con-
ventional scenes. This phenomenon highlights the importance
of long-range capabilities and noncolor features in modeling
completeness, even though they may compromise the absolute
accuracy of the point cloud to some extent.

V. CONCLUSION

In this article, we propose the Dual-branch Extractor with
DCL, a novel method for depth estimation in satellite MVS. The
Dual-branch Extractor, introduced as a novel feature extractor
for satellite MVS, overcomes the limitations of existing MVS
methods in capturing long-range relationships. In addition, we
introduce the DCL, a loss function focused on frequency domain
distribution, reducing the emphasis on color in conventional
MVS methods and enhancing training efficiency.

The objective of this process is to develop a more efficient
depth estimation scheme for purely visual remote sensing.
Experimental results demonstrate that our approach can be

effectively applied to the task of depth estimation in multiview
remote sensing images, achieving SOTA results on multiview
remote sensing datasets. Furthermore, the framework exhibits
exemplary generalization performance in generic MVS scenar-
ios. In the future, we plan to extend these designs to other remote
sensing image processing tasks.
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