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Abstract— Building individual segmentation plays a crucial
role in building querying, management, analysis, and attribute
addition. Previous research on this topic has primarily concen-
trated on small-scale scenes and single-type buildings. However,
when dealing with complex scenes that contain diverse buildings,
existing methods for building individual segmentation often
encounter challenges, such as excessive undersegmentation and
oversegmentation. To tackle this issue, we propose a scene
adaptive building individual segmentation (SABIS) based on
large-scale airborne LiDAR point clouds. The method first seg-
ments the roof object and then extract elevation feature and area
feature of the roof object. Based on these features, the building
point cloud is classified into two categories: urban scene buildings
and rural residential scene buildings. Finally, for urban scene
buildings, the building individual segmentation method based on
the cylinder model consistency is used. For rural residential scene
buildings, the building individual segmentation method based
on bidirectional saliency features is employed. In this article,
the proposed SABIS algorithm is quantitatively evaluated by
using three large scene datasets at home and abroad and four
benchmark methods. All kinds of accuracy are significantly better
than the most advanced algorithms.

Index Terms— Airborne LiDAR point clouds, building individ-
ual segmentation, building type classification, feature extraction,
object segmentation.

I. INTRODUCTION

THE 2019 Geomatics Developers Conference highlighted
the need to shift from the traditional mapping approach

based on scale classification to entity-based mapping. The
concept of scale needs to be transformed from a multiscale
database to a nonscale geospatial entity holographic database.
During the 2020 Geomatics Technology Innovation Confer-
ence, Academician Liu Xianlin emphasized that the results
of new mapping are structured, and the characteristic of new
mapping is focused on entity level rather than map sheet-based
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mapping. The structured steps include hierarchical classifi-
cation (semantic segmentation), object-oriented management
(individual segmentation), and the generation of 3-D vector
structures. The key aspect of knowledge production is to
attach attributes to individual objects. Prof. Zhang Yongjun
from Wuhan University highlighted in the 2022 Aerospace
Vision Wisdom Lecture Hall and Geospatial Information
Industry Conference that real-world 3-D is constructed by
applying structured and semantic information to geospatial
entities, enabling human–computer compatible understanding
and real-time physical perception. The hierarchical division
of real-world 3-D construction includes terrain-level models,
urban-level models, and component-level models. Urban-level
models mainly represent urban styles and terrain features
within a specific area, with oblique photography models and
individualized models being the mainstream forms. Individu-
alization refers to the segmentation of classified data to obtain
individualized 3-D model data.

In recent years, the rapid advancement of photogrammetry
technology has made it possible to quickly acquire 3-D models
of the Earth’s surface. However, the current 3-D models
represent the surface of the terrain as a whole, lacking the
capability for individual querying, processing, and analysis
of each object. This limitation hampers the wide-ranging
application of 3-D models. To address this issue, a building
segmentation method is employed to segment building point
clouds into individual buildings. This segmentation allows for
independent selection and assignment of attributes to each
building, enabling building management, querying, analysis,
and parallel reconstruction. Building individual segmentation
plays a crucial role in point cloud-based building modeling.
Presently, research on building individual segmentation pri-
marily focuses on building scenes where the distance between
buildings is significantly larger than the point cloud point
spacing [1], as shown in Fig. 1(a). Only a limited number
of studies have addressed cases where the spacing between
buildings is comparable to the point cloud point spacing [2],
as shown in Fig. 1(b). For complex building scenes and
building point clouds with spatial arrangements similar to
the point spacing, the task of separating adjacent buildings
into individual building becomes challenging, as illustrated
in Fig. 1(c) and (d). Failure to segment these buildings
into individual building can have adverse effects on attribute
addition, statistical queries, and building analysis. To ful-
fill the requirements of thematic querying, the reconstructed
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Fig. 1. Building scenes. (a) Distance between buildings is much larger than
the point cloud point spacing. (b) Some building spacing is close to the point
cloud point spacing. (c) and (d) Multiple buildings are connected in some
way.

3-D building models must possess physical distinguishability.
An individual building is defined as the prominent ground
portion that lacks any common set (common connection) with
other buildings and cannot be distinguished through computer
vision techniques [3], [4].

Currently, there exist numerous traditional and state-of-
the-art deep learning methods for point cloud classification,
building point cloud extraction, and other related tasks.
However, the research on building individual segmenta-
tion remains relatively limited and predominantly relies on
traditional approaches. Despite the satisfactory outcomes
achieved by existing building individual segmentation meth-
ods, they still exhibit certain limitations. The majority of
these methods, including Euclidean distance clustering seg-
mentation [5], voxel-based segmentation algorithms [6], move
window algorithms [7], and density-based spatial clustering
algorithms [8], demonstrate satisfactory performance when the
distance between buildings is significantly larger than the point
cloud point spacing. However, in the case of buildings situated
in complex scenes, existing building individual segmentation
methods often encounter challenges related to high rates of
undersegmentation and oversegmentation. In such complex
scenes, most buildings are interconnected, with certain build-
ing distances surpassing the point spacing, while others are
closer to it. The roof of each building is typically com-
posed of one or more planes, with complex topological and
convex–concave relationships. When roof planes are extracted
and their topological and convex–concave relationships are
analyzed, it becomes challenging to ascertain which planes
belong to the same building solely based on these rela-
tionships. To enhance the accuracy of building individual
segmentation in complex scenes, this article proposes a scene
adaptive approach for building individual segmentation using
large-scale airborne LiDAR point clouds. The main contribu-
tions of this study are given as follows.

1) We quantify the complexity of building groups by estab-
lishing a cylindrical neighborhood graph among objects.

2) Utilizing the graph-cut algorithm, we classify the build-
ings based on the cylindrical neighborhood graph
derived from the objects.

3) We propose a scene adaptive building individual seg-
mentation (SABIS) based on large-scale airborne LiDAR
point clouds. The algorithm classifies buildings into
urban scene buildings and rural residential area build-
ings based on their characteristics. Appropriate methods
of building individual segmentation are employed for
different types of buildings.

We propose an SABIS based on large-scale airborne
LiDAR point clouds. The method first uses the moving
window (MW) algorithm to segment building point clouds
into groups of building point clouds. Following this, these
group point clouds are further segmented into roof point
clouds and facade point clouds. The roof point clouds are
then segmented into roof objects using an object segmenta-
tion method. Next, we extract the area feature and elevation
feature of each roof object. Using these features—specifically,
the elevation feature and projected area feature of the roof
object—we classify the building point clouds into two cat-
egories: urban scene buildings and rural residential scene
buildings. For urban scene buildings, we apply a building
individual segmentation method based on the cylinder model
consistency. Conversely, for rural residential scene buildings,
the building individual segmentation method based on bidi-
rectional saliency features is employed. Finally, an SABIS
method based on large-scale airborne LiDAR point clouds is
realized.

II. RELATED WORK

In the field of building point clouds research, the primary
focus has been on building extraction, building modeling, roof
segmentation, and facade or plane segmentation. Traditional
methods and deep learning methods have been widely used
for these tasks. However, when it comes to building indi-
vidual segmentation in point clouds, most existing methods
still rely on traditional approaches. These approaches include
Euclidean clustering algorithms, move window algorithms,
density-based spatial clustering of applications with noise
(DBSCAN) algorithms, and traditional connected component
labeling (TCCL) algorithms. In recent years, many researchers
have utilized the Euclidean clustering algorithm to segment
building point clouds into separate clusters [5]. This method
demonstrates good performance in building scenes where the
distances between buildings are significantly larger than the
point spacing, enabling effective building individual segmen-
tation. However, in scenes with multiple connected buildings,
it may encounter challenges such as undersegmentation or
oversegmentation of building individuals. To address this, the
move window algorithm is employed to segment the filtered
LiDAR point cloud into clusters, with each cluster representing
an individual building or tree [7]. Following this, a step is
taken to remove trees from the point cloud clusters, refining
the segmentation process. Cao et al. utilized the DBSCAN
algorithm to achieve individual building segmentation [8],
[9]. Du et al. [2] proposed an enhanced version of the
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DBSCAN algorithm specifically designed for building indi-
vidual segmentation, which performs well in scenarios where
the distances between buildings are significant or for small
buildings. Yan and Wei [10] proposed a building individual
segmentation method based on dense matching point clouds.
This method extracts roof point clouds and projects them onto
a 2-D grid. By utilizing the topological relationships between
grid cells, individual building point clouds are obtained.
The traditionally connected component labeling algorithm
can effectively achieve roof individual segmentation by the
open-source software CloudCompare [2]. Matei et al. [6]
utilized a 3-D voxel algorithm to segregate point clouds into
ground and nonground points, followed by a smaller 3-D
voxel algorithm applied to segment nonground points and
eliminate vegetation from point cloud clusters, thus realizing
building individual segmentation. Gao and Yang [11] proposed
a building individual segmentation method for mobile laser
scanning (MLS) point clouds that utilize gaps in the point
cloud histogram to segment individual buildings. However, the
assumption of buildings being parallel to the MLS trajectory
may not always be valid. Xia and Wang [12] proposed a
method for building individual segmentation of MLS point
clouds, which uses a building facade for building location.
Then, the original point cloud is divided into clusters, each
containing a potential building. Finally, bearing similarity to
the method outlined in [11], a point-counting contour follow-
ing the rectangle is constructed. The building cluster contours
are segmented at the lowest bin, hence accomplishing building
individual segmentation. Wang et al. [13] proposed a building
individual segmentation method that combines the random
sample consensus (RANSAC) algorithm and the DBSCAN
algorithm. Zeng et al. [14] presented a method for extracting
individual building facades from data collected by mobile
mapping systems, significantly improving efficiency of the
algorithm. Ural and Shan [15] proposed a method where the
roof point clouds are obtained by calculating the normal of
points within the neighborhood of each point and using the
angle between each point’s normal vector and the horizon-
tal direction as a threshold. Following this, the DBSCAN
clustering algorithm is then applied to label the individual
building.

III. METHODOLOGY

In this article, we propose an SABIS based on large-scale
airborne LiDAR point clouds. First, the method uses the MW
algorithm to segment building point clouds into building group
point clouds, which are subsequently segmented into roof
point clouds and facade point clouds. Second, the roof point
clouds are segmented into roof objects. Then, area feature
and elevation feature of the roof object are extracted, and the
building groups are classified into urban scene buildings and
rural residential scene buildings based on these features of the
roof object. Finally, for urban scene buildings, the building
individual segmentation method based on the cylinder model
consistency is used. For rural residential scene buildings, the
building individual segmentation method based on bidirec-
tional saliency features is employed. The workflow of the
SABIS algorithm is shown in Fig. 2.

Fig. 2. Workflow of the SABIS algorithm.

A. Building Group Segmentation

During the design of buildings, it is crucial to consider
factors such as lighting and ventilation, as well as maintaining
an appropriate distance between buildings. In this section,
based on the characteristics of the spacing between buildings,
we introduce the MW algorithm [7] to segment the building
point cloud into clusters and identify and merge isolated
point cloud clusters, thereby achieving building grouping
segmentation.

1) Building Point Cloud Cluster Segmentation: Sampath
and Shan (2007) proposed an MW clustering algorithm used
for individual building segmentation. In subsequent studies,
Awrangjeb and Fraser [16] and Mohammad and Clive [7] also
applied the algorithm to achieve individual building segmen-
tation. This algorithm segments the building point cloud into
individual buildings based on the connectivity characteristics
of point cloud in 2-D space. In this article, considering
the efficiency and segmentation accuracy of the algorithm,
we apply the MW algorithm to segment the building point
cloud into clusters and then merge isolated point cloud clusters
to achieve the segmentation of building groups. For the Ningbo
and AHN3 datasets, the thresholds are set to 1.5 and 0.2,
respectively.

2) Recognition of Isolated Point Cloud Clusters: After
using the MW clustering algorithm for building point cloud
segmentation, sparse local point clouds might emerge due to
factors, such as reflections from building materials. The MW
clustering algorithm may segment some sparse point clouds
into isolated point cloud clusters. To address this issue, this
study determines whether a point cloud cluster is isolated
based on the calculation of its area. For isolated point cloud
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Fig. 3. Isolated point cloud cluster.

clusters, the nearest building cluster is identified, and the
isolated point cloud cluster is merged into the closest building
cluster, accomplishing in the merging of isolated point cloud
clusters.

Guo et al. [17] investigated the technique of projecting
point clouds from neighborhood areas onto variously oriented
planes, thereby capturing side views or profiles of the clouds.
Building upon this technique, our study calculates the hor-
izontal projected area of point cloud clusters. This involves
projecting the clusters onto a horizontal grid (xoy plane) and
estimating the cluster area based on the cells occupied by
the grid. The pseudocode for this calculation is given as
follows.

Notation:
Pc: point cloud cluster;
dc: grid size;
area: point cloud cluster area;
Input: pc, dc, area;
Output: area;
For i = 1, 2, . . . , m, do

Starting from the ith point cloud cluster, the maximum
(maxx , maxy , maxz) and minimum (minx , miny , minz) of
this point cloud cluster are calculated.

According to the point spacing dc and the maximum
and minimum values of the point cloud cluster, the num-
ber of rows nx(nx = (int)((maxx −minx )/dc)+1) and the
number of columns ny(ny = (int)((maxy −miny)/dc)+1)

of the grid are calculated.
The point cloud is filled into the grid, marking the grid

with the point as true. The number of the grid is counted
and the area of the point cloud cluster is calculated
according to the number of grid and grid size.
Output: point cloud cluster area.

For each point cloud cluster, compute its area and determine
whether it is isolated based on the computed area. Fig. 3
illustrates local isolated clusters around buildings, with blue
points indicating segmented building clusters and white points
marking the isolated clusters. These isolated clusters are then
merged with the nearest building clusters.

3) Merging of Isolated Point Cloud Clusters: Isolated clus-
ters are typically homogeneous. Occasionally, some may be
surrounded by others, making it crucial to calculate their
distance to the nearest building group and merge them accord-
ingly. This prevents oversegmentation of building groups.

This study employs a Kd-tree structure from the Point Cloud
Library (PCL) to compute the shortest distance between each
point in the isolated clusters and their nearest building groups.
The pseudocode for this process is given as follows.

Notation:
Input:
IPcc: Isolated point cloud cluster;
BPcc: building point cloud cluster;
Output:
MPcc: Merged building point cloud cluster;

Construct a Kd-tree for all building point cloud cluster
using PCL.

For each point in an isolated point cloud cluster,
identify the nearest neighbor within a building group,
noting the group label and the distance dis.
For i = 1, 2, . . . , m, do

Find the minimum distance dis between all points of
isolated cluster and building groups.

Calculate the minimum value dismin of dis, and the
corresponding group label.

Point cloud cluster is merged into the corresponding
building group of dismin.

Continue until all isolated clusters have been merged
with the nearest building group.
Output: Merged building point cloud cluster.

B. Roof Point Cloud Extraction

Roof structures of buildings can be complex, with both
regular and irregular features. Plane segmentation algorithms
attempting to identify roof points can sometimes misclassify
them. In this article, we compute covariance matrices, eigen-
values, and eigenvectors for k-nearest neighbor point sets,
using these to assess linear, planar, and spherical character-
istics through eigenvector analysis. The roof point clouds that
are extracted from merged building point cloud cluster roof
point clouds are extracted from merged building point cloud
cluster. The steps are given as follows.

Assume that A = {Pj i = 1, 2, . . . , N } represents building
point cloud, where Pj = (xi , yi , zi ) represents the 3-D
coordinates of the point cloud and N represents the number
of points in the point cloud. A Kd-tree is created for this
point cloud, and the k-nearest neighbors of point Pj are found.
The centroid is calculated for the k points according to the
following equation:

X̄ =

∑N
i=1 xi

N
, Ȳ =

∑N
i=1 yi

N
, Z̄ =

∑N
i=1 zi

N
(1)

where ¯P(X , Ȳ , Z̄) represents the centroid of the point cloud.
The covariance matrix C of the k neighboring points is
calculated based on the centroid, as shown in the following
equation:

C =

 cov(x, x) cov(x, y) cov(x, z)
cov(y, x) cov(y, y) cov(z, y)

cov(z, x) cov(z, y) cov(z, z)

 (2)

where cov(x, y), cov(x, z), cov(y, x), cov(y, z), cov(z, x),
and cov(z, y) represent covariance; and cov(x, x), cov(y, y),

Authorized licensed use limited to: Wuhan University. Downloaded on January 02,2025 at 09:46:53 UTC from IEEE Xplore.  Restrictions apply. 



YANG et al.: SABIS BASED ON LARGE-SCALE AIRBORNE LiDAR POINT CLOUDS 5706015

Fig. 4. Local linear, planar, and spherical point clouds of buildings. (a) Linear
point clouds, (b) planar point clouds, (c) spherical point clouds, and (d) overall
effect of linear, planar, and spherical point clouds.

and cov(z, z) represent variance. Assuming that λ j is the j th
eigenvalue of the covariance matrix [ j ∈ (1, 2, 3)] and ⇀

v j is
the j th eigenvector, the calculation of the eigenvalue is shown
in the following equation:

C ·
⇀
v j = λ j ·

⇀
v j , (λ1 ≥ λ2 ≥ λ3). (3)

Among them, the three eigenvalues (λ1 ≥ λ2 ≥ λ3) of the
covariance matrix represent the fitting residuals along three
directions. By utilizing the three eigenvalues of the covariance
matrix, linear, planar, and spherical point clouds are computed.
The local linear, planar, and spherical point clouds of buildings
are illustrated in Fig. 4, with different colors assigned based on
their elevation. Fig. 4(d) displays the collective effect of linear,
planar, and spherical point clouds, with the colors yellow, blue,
and red representing them, respectively. Based on the three
eigenvalues of the covariance matrix, the calculation formulas
for linear, planar, and spherical point clouds are shown in the
following equations:

α1d =

√
λ 1 −

√
λ 2

√
λ 1

, α2d =

√
λ 2 −

√
λ 3

√
λ 1

, α3d =

√
λ 3

√
λ 1

(4)
Vl = arg

x∈[1,3]
max(αxd). (5)

Among them, λ1, λ2, λ3(λ1 ≥ λ2 ≥ λ3) are the eigenvalues
of the covariance matrix for each point’s k-nearest neighbor
point set. Based on the linear feature (Vl = 1 indicating that
the k-nearest neighbor point set of the point is linear), planar
feature (Vl = 2 indicating that the k-nearest neighbor point set
of the point is planar), and spherical feature (Vl = 3 indicating
that the k-nearest neighbor point set of the point is spherical),
building point clouds is segmentation. If the k-nearest neighbor
point set of a point forms a plane, the angle θ1 between the
plane normal vector and the vertical direction is calculated.
This angle θ1 is used to determine whether the point belongs

Fig. 5. Local roof point clouds.

to the facade point cloud, as shown in the following equations:

θ1 − 90◦
≤ θ2, (90◦

≤ θ1 ≤ 180◦) (6)
90◦

− θ1 ≤ θ2, (0◦
≤ θ1 ≤ 90◦) (7)

where θ2 is the angle threshold between normal vector of
facade point clouds and horizontal plane, and the threshold
for θ is set to 30◦. If (6) or (7) holds, the point is categorized
as a facade point cloud. Otherwise, it is categorized as a roof
point cloud. If the k-nearest neighbor point set of a point is
linear or spherical, it is classified as a roof point. The local
schematic of the roof point cloud is shown in Fig. 5.

C. Roof Object Segmentation

Commonly used object segmentation methods include the
mean shift clustering algorithm and the density-based cluster-
ing algorithm (DBSCAN). The mean shift clustering algorithm
does not require specifying the number of clusters and can
handle clusters of arbitrary shapes, but it is sensitive to the
bandwidth parameter [18]. On the other hand, the DBSCAN
algorithm is versatile in handling clusters of arbitrary shapes
and sizes, but it requires relatively uniform point cloud den-
sity [19]. Due to the uniform density of the airborne LiDAR
building roof point clouds and the sparse density of the
building facade point clouds, there exists a significant variation
in point cloud density across different parts of the building.
In this article, we apply a density-based object segmentation
method [4]. This method does not consider core points,
border points, and noise points, instead clustering points based
on density features. This approach prevents distant points
from being erroneously segmented into the same object and
facilitates disconnection between points belonging to different
objects. The roof point cloud is segmented into individual roof
objects using the aforementioned object segmentation method.
The local schematic illustrating the roof objects is shown in
Fig. 6, with each color representing a distinct object. For the
Ningbo and AHN3 datasets, the thresholds are set to 1.2 and
0.8, respectively.

D. Feature Extraction

In 3-D space, point clouds are scattered, and features and
local neighborhood features of each point are limited. To effec-
tively classify building groups, it is essential to compute the
features of each roof object. This study selects two key features
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Fig. 6. Locally classified roof objects.

of roof objects: the area feature and the elevation feature.
The elevation feature of the roof object is calculated by using
the building point cloud cluster, and the elevation value of
building point cloud cluster is assigned to the elevation of
roof object (referred to as heightC). Given that airborne LiDAR
point cloud data are typically normalized before classification,
with the lowest point of the building being normalized to the
same plane, the classification of whether a building belongs to
an urban or a rural area is based on the maximum elevation
of each object. Generally, a higher roof object of a building
indicates a higher possibility of it being an urban scene
building. For building point cloud clusters, a roof point cloud
extraction method and a roof point cloud object segmentation
method are used to obtain roof objects. The roof object area
feature is a crucial feature. For the calculation of the roof
object area feature (denoted as areaC for the current roof
object), the projected area method is employed.

E. Building Group-Type Classification
1) Initial Classification of Building Group Types: Existing

methods for building group-type classification are based on
the functionality and application requirements of buildings.
Traditional and deep learning methods are utilized to classify
buildings using point cloud data and remote sensing images,
focusing on the features of their roofs. However, buildings
segmented as a building group often consist of multiple roofs,
and the relationships between these roofs significantly impact
building group-type classification. To adapt to the segmenta-
tion of individual buildings, this article proposes a building
group-type classification method based on an object cylinder
neighborhood graph. Subsequently, the building groups are
categorized into urban scene buildings and rural residential
scene buildings. The specific steps of this method are given
as follows. First, the building point cloud is divided into
building groups according to the building group segmentation.
Second, the roof point cloud cluster extraction method and
object segmentation method are used to obtain the roof objects.
Finally, the elevation features and area features are calcu-
lated, and the buildings are initially classified based on these
features.

2) Building Type Classification by Graph Cut Optimiza-
tion Algorithm: Graph cut is a classical image segmentation
method, which is widely used in computer vision, image
segmentation, medical image analysis, and so on [20]. The
principle is to map an image into a graph and then achieve

image segmentation according to the maximum flow and min-
imum cut algorithm. Graph cut has received much attention as
an energy minimization method, and its first appearance in the
field of computer vision was described in 1999 [21]. It was
later explained and extended in detail [22], [23]. Graph cut
aims to transform low-level computer vision problems, such
as image restoration [24], image segmentation [25], and point
cloud segmentation [26], which were transformed into labeling
problems. In point cloud segmentation, each point p ∈ P is
assigned a label l from L . The meaning of the label l varies
with different problems, and it can be image restoration [24],
image segmentation [25], building roof segmentation [26],
[27], and building extraction [28], [29].

A building is generally composed of one or multiple roof
objects, and multiple objects that form a building are typically
connected by building facades. The greater the elevation of
each roof object, the higher the likelihood that the building has
a greater elevation complexity, indicating that it is an urban
scene building. The smaller the ratio of the sum of neighboring
objects’ areas to the product of their areas and the roof object,
the more likely it is that adjacent objects belong to separate
individual buildings. Consequently, the area complexity of the
building is higher. In the following, we optimize the initial
classification results of building types by constructing the
elevation complexity and area complexity of the buildings and
applying a graph cut optimization algorithm.

For each point p ∈ P in the building point cloud, a label
lϵL is assigned to solve the labeling problem, which can be
defined by an energy function. The label assignment for point p
is obtained by minimizing the energy function, which typically
includes two parts, as shown in the following formula:

E( f ) = Edata( f p) + δEsmooth( f pq) (8)

where p, q ∈ N , and p ̸= q, in which p represents the
center object and q represents an object within the cylindrical
neighborhood radius of the central object p. N denotes the
object set, and p ̸= q indicates that objects p and object q
are different objects. In this expression, δ is a constant factor
used to adjust the weight between the data cost and the smooth
cost. The δ threshold is set to 3 by experimenting with the
dataset. The data cost [the first term in (8)] determines the
likelihood of a building group being an urban scene building
based on maximum elevation of object elevation. A larger
object elevation results in a smaller data cost value, indicating
a greater possibility that the building group is an urban scene
building. The smooth cost [the second term in (8)] measures
the consistency of object areas. A smaller difference in area
between the central object and its neighboring objects leads
to a smaller smooth cost value, indicating a higher possibility
that the building group is an urban scene building.

The data cost penalizes the elevation of each roof object
in the building group. The data cost is constructed based on
the relationship between the elevation of objects within the
building group and a height threshold, reflecting the elevation
complexity of the building group. The formulation of the data
cost term is shown in the following equation:

Edata( f ) = exp
heightT
heightC (9)
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where heightT represents the height threshold of urban scene
building group and heightC represents the height value of the
building roof object.

The smoothness cost penalizes the consistency of areas
between neighboring objects within the same building group.
According to the object cylinder neighborhood graph, the
relationship between the roof objects is established to find
the neighboring objects of the center roof. The method for
constructing the object cylinder neighborhood graph between
roof objects is used [4]. The smoothness term is constructed
based on the ratio of the sum of the roof object areas within the
neighborhood radius of the central roof object to the product
of the roof object areas within the same neighborhood radius.
This ratio represents the relationship between the areas of the
roof objects within the building group. The formulation of the
smoothness term is shown in the following equation:

Esmooth( f ) = exp
(areaC +areaN )∗areaT

areaC ∗areaN (10)

where areaT represents the area threshold of urban scene
building group roof object, areaC represents the area of current
building roof object, and areaN represents the area of cylinder
neighborhood object of current building roof object.

The energy function is constructed according to formula (8),
and the graph cut algorithm is used to optimize the initial
classification results of building types, classifying the build-
ings into urban scene buildings and rural residential scene
buildings.

F. Building Individual Segmentation

According to the method of building type classification, the
airborne LiDAR building point cloud is classified into urban
scene buildings and rural residential area buildings. Then, for
urban scene buildings, the building individual segmentation
method based on the cylinder model consistency is applied.
For rural residential area buildings, the building individual
segmentation method based on bidirectional visual saliency
features is utilized. Ultimately, SABIS based on large-scale
airborne LiDAR point clouds is achieved.

1) Building Individual Segmentation Method Based on the
Cylinder Model Consistency: Urban buildings are important
places for human life, entertainment, and work, and it is of
great significance to perform individual segmentation on these
large-scale buildings. Urban buildings are generally composed
of one or more individual buildings, each with complex
structures and a relatively large footprint. It is necessary to
merge the segmented small point cloud clusters. In response
to urban scene building, this article uses building individual
segmentation method based on cylinder model consistency [3].
The flowchart of the building individual segmentation method
based on cylinder model consistency is shown in Fig. 7.
First, Fig. 7(a) and (b) represents the aerial images cor-
responding to inputted building point clouds and inputted
building point clouds, respectively. Second, based on the
Ikd-2DSNN algorithm, the building point clouds are divided
into individual building (individual building means that a
point clouds cluster only contains one building) and podium
building (podium building means that a point clouds cluster

Fig. 7. Illustration of the UBIS method. (a) Aerial images corresponding to
inputted building point clouds, (b) inputted building point clouds, (c) toutput
of single-building instance, (d) output of multibuilding instances, (e) output
of multibuilding roof planes, (f) output of single-building roof instance,
(g) output of merging of building façade point clouds, (h) recognition and
merging of roof detail cluster, and (i) output of isolated point cloud cluster
merged into building instance.

contains multiple buildings), as shown in Fig. 7(c) and (d).
Third, the octree-based regional growing is used to remove
façade point clouds from the podium building, as shown in
Fig. 7(e). Fourth, based on the Ikd-3DSNN algorithm, podium
building roof planes from the podium building are divided
into individual building roof, as shown in Fig. 7(f). Fifth,
according to the characteristics of building facade directly
below the building roof, building façade point cloud is merged
into individual building roof, as shown in Fig. 7(g). Sixth,
according to the characteristics of roof detail above the roof
and individual building roof MBR size, the roof detail cluster
is recognized and merged into individual building, as shown
in Fig. 7(h). Finally, isolated point cloud cluster is merged
into the nearest neighbor individual building, as shown in
Fig. 7(i).

2) Building Individual Segmentation Method Based on Bidi-
rectional Saliency Features: In rural residential areas, the
buildings generally have low floors, small footprints, simple
structures for each individual building, independent char-
acteristics, and relatively small height differences between
buildings, and most buildings are connected in some way.
The distance between some buildings may be greater than the
point spacing, while others are close to the point spacing.
The roofs of each rural residential area building are typically
composed of one or more planes, with complex topological
and concave–convex relationships. It is difficult to determine
which planes belong to the same individual building based
solely on the topological and concave–convex relationships
between the planes if the roof planes are extracted, and
then, their topological and concave–convex relationships are
evaluated. In response to these rural residential area buildings,
this article uses a building individual segmentation based on
bidirectional saliency features [4]. In this method, the building
point cloud is divided into building facade point cloud and
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Fig. 8. Illustration of the building individual segmentation method based on
bidirectional saliency features.

Fig. 9. Dataset1 building point clouds.

unclassified point cloud. For building facade point cloud and
unclassified point cloud, the object segmentation method and
the object classification method are used to divide the small
building group into the homogeneous roof object, facade
object, and roof auxiliary structure object. The cylinder model
consistency, cylinder model consistency difference features of
the roof object facade objects and roof accessory objects, and
2-D Euclidean distance features between adjacent objects of
roof objects, facade objects, and roof accessory objects are
extracted; then, the objects are merged and updated according
to the features to realize the building individual segmentation.
Fig. 8 illustrates the pipeline of the building individ-
ual segmentation method based on bidirectional saliency
features.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Data Introduction

Dataset1 and dataset2 refer to the Ningbo datasets,
as depicted in Figs. 9 and 10, respectively. The value of the
verticality is represented with a color map going from blue to
green to red. In the Ningbo dataset, the average LiDAR point
cloud has a point spacing of approximately 0.35 m, while the
median point density of building point clouds is 8 points/m2,
which includes classification information. Dataset1 comprises

Fig. 10. Dataset2 building point clouds.

Fig. 11. Dataset3 building point clouds.

6 588 490 points, which include 831 678 points corresponding
to buildings and a total of 182 buildings. The entire dataset
covers an area of approximately 0.53 km2. Dataset2 consists of
3 098 649 points, encompassing 309 864 points corresponding
to buildings, with a total of 392 buildings. The entire dataset
covers an area of approximately 1.3 km2. The entire Ningbo
dataset comprises an airborne LiDAR point cloud predomi-
nantly capturing urban scene buildings, including both low-
and high-rise structures, with a relatively large area dedicated
to high-rise buildings.

Dataset3 refers to the Dutch AHN3 dataset, as repre-
sented in Fig. 11. The LiDAR dataset used in this article
was a published benchmark dataset, which was classified as
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Fig. 12. Result of the dataset1 building individual segmentation.

Fig. 13. Result of the dataset1 local building individual segmentation
result. (a) Results of urban scene buildings individual segmentation in the
blue rectangle. (b) Results of rural residential scene buildings individual
segmentation in the red rectangle.

buildings. The AHN3 dataset is freely available to the public.1

The dataset primarily comprises an airborne LiDAR point
cloud capturing rural residential scene buildings. It includes
both low- and high-rise buildings, with a significant presence
of complex interconnected rural residential scene buildings.
The dataset includes a total of 34 395 134 points, with
5 935 964 points corresponding to buildings and consists of
2239 buildings. Classification information is provided within
the dataset. The entire building scene covers an area of
approximately 2.2 km2.

The airborne LiDAR point cloud dataset used in this
experiment includes reflection intensity, echo times, and clas-
sification information. The classification information primarily
includes ground, trees, buildings, bridges, and other objects.
This experiment will utilize the building point clouds from
both the Ningbo dataset and the Netherlands AHN3 dataset to
validate the performance of the SABIS algorithm as proposed
in this article.

B. Result of Building Individual Segmentation

The SABIS algorithm in this article is used for building
individual segmentation in dataset1, and the individual seg-
mentation results are shown in Fig. 12, in which the blue
rectangle and red rectangle are shown in Fig. 13(a) and (b),
respectively. Fig. 13(a) shows the individual segmentation
result of an urban scene building. The building scene includes
a podium building connected by multiple buildings and build-
ings whose distance between buildings is much larger than
the distance between points in point clouds. Fig. 13(b) shows
the individual segmentation result of a rural residential scene

1https://www.pdok.nl/nl/ahn3-downloads

Fig. 14. Result of the dataset2 building individual segmentation.

Fig. 15. Result of the dataset2 urban scene building individual segmentation
in the blue rectangle. (a) Building point clouds and (b) result of building
individual segmentation.

building. The building scene contains multiple connected
buildings. The SABIS algorithm proposed in this article
demonstrates good applicability for both urban scene buildings
as shown in Fig. 13 and rural residential scene buildings as
shown in Fig. 13(b). The total building scene coverage area
of dataset1 is about 0.53 km2, and the building types in the
scene range are complex. However, dataset1 is segmented by
the SABIS algorithm in this article, and satisfactory results are
obtained.

Building individual segmentation of dataset2 was performed
using the SABIS algorithm proposed in this article, and
the results are depicted in Fig. 14. The segmentation out-
comes highlighted in the blue rectangle, red rectangle, and
yellow rectangle are displayed in Figs. 15–17, respectively.
Figs. 15 and 16 illustrate the segmentation results of buildings
in an urban scene. The building scene includes the podium
buildings connected by multiple buildings, buildings whose
distance between buildings is much larger than the distance
between points in point clouds. Fig. 17 shows the segmentation
result of a rural residential scene building. The building scene
contains multiple connected buildings. The SABIS algorithm
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Fig. 16. Result of the dataset2 urban scene building individual segmentation
in the red rectangle. (a) Building point clouds and (b) result of building
individual segmentation.

Fig. 17. Result of the dataset2 rural residential scene building individual
segmentation in the yellow rectangle. (a) Building point clouds and (b) result
of building individual segmentation.

Fig. 18. Result of the dataset3 building individual segmentation.

in this article has good applicability for both urban scene
buildings as shown in Figs. 15 and 16 and rural residential
scene buildings as shown in Fig. 17. The dataset2 is mainly
urban scene buildings, and the whole building scene covers an
area of about 1.3 km2. The buildings in the scene range have
different types. However, the SABIS algorithm in this study
performs building individual segmentation on the dataset,
resulting in a satisfactory segmentation result.

The SABIS algorithm in this article is used for building
individual segmentation on dataset3, and the individual seg-
mentation results are shown in Fig. 18, where the areas within
the purple, red, green, and blue rectangles are locally scaled
for display purposes, as demonstrated in Fig. 19. Fig. 19(a)
corresponds to the buildings in the purple rectangle, as shown
in Fig. 18. The buildings in this area are composed of urban
scene building and rural residential scene buildings. The roof
structure of urban scene building is extremely complex, which

Fig. 19. Result of the dataset3 local building individual segmentation.
(a) Result of building individual segmentation in the purple rectangle,
(b) result of building individual segmentation in the red rectangle, (c) result
of building individual segmentation in the green rectangle, and (d) result of
building individual segmentation in the blue rectangle.

is composed of multiple roofs with different heights, and the
roof point cloud density is extremely uneven. However, the
SABIS algorithm in this article provides satisfactory building
individual segmentation results. Despite the close proxim-
ity and significant variations in size among rural residential
scene buildings, the segmentation results remain satisfactory.
Fig. 19(b) corresponds to the buildings within the red rectangle
depicted in Fig. 18. This area encompasses a mixture of both
urban scene buildings and rural residential scene buildings.
The height differences among the rural residential scene
buildings are substantial, and the roof point cloud density of
some buildings appears sparse. However, these factors have
minimal impact on the accuracy of individual segmentation.
Fig. 19(c) corresponds to the buildings within the green
rectangle depicted in Fig. 18. All the buildings in this area
are small and closely interconnected, with multiple buildings
connected to each other. However, the SABIS algorithm uti-
lized in this article delivers satisfactory results for individual
building segmentation. Fig. 19(d) corresponds to the buildings
within the blue rectangle, as shown in Fig. 18. The buildings
within this area are all rural residential scene buildings with
simple roof structures. The distance between buildings is
significantly larger than the point cloud’s point spacing, and
the segmentation effect is very good. Dataset3 comprises
a large scene, with the entire building scene covering an
approximate area of 2.2 km2. The building types in the scene
range are complex. However, the SABIS algorithm in this
article provides satisfactory building individual segmentation
results on dataset3.

In this article, the proposed SABIS algorithm is verified
by selecting three building point cloud datasets, which are
about 4 km2 and include a variety of complex urban scene
buildings and rural residential scene buildings. Due to the
large scene size and complex building types, the algorithm
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faces significant challenges. To address this, the SABIS
algorithm introduced in this article classifies buildings into
two categories: urban scene buildings and rural residential
scene buildings, based on their distinguishing characteristics.
Specifically, for urban scene buildings, a building individual
segmentation method based on cylinder model consistency is
utilized. For classified as rural residential scene buildings, the
building individual segmentation method based on bidirec-
tional saliency features is used, realizing the SABIS algorithm
in this article. The experimental results demonstrate that the
SABIS algorithm achieves a favorable segmentation effect for
diverse complex building scenes.

C. Comparative Analysis of Experiments
1) Quantitative Analysis of Building Individual Segmenta-

tion Results: In the result of building individual segmentation
section, the experimental results were analyzed visually, and in
the following, quantitative evaluation indicators will be used to
objectively and quantitatively analyze the experimental results
by the SABIS algorithm in this article. There are two primary
methods for quantitative analysis: the object-based quantitative
evaluation method and the point-based quantitative evaluation
method. The object-based quantitative evaluation method is
used to evaluate the accuracy of building individual segmen-
tation by comparing the number of undersegmented individual
buildings, the number of oversegmented individual buildings,
the number of correctly segmented individual buildings with
the number of automatically segmented individual buildings,
and the number of ground truth individual buildings. The
point-based quantitative evaluation method evaluates the accu-
racy of building individual segmentation according to the ratio
of the number of undersegmented individual building points,
the number of oversegmented individual building points, the
number of correctly segmented individual building points,
the number of automatically segmented individual building
points and the number of ground truth individual building
points. When the minimum overlap ratio of the intersection
over union (IoU) between an automatically segmented indi-
vidual building and the corresponding ground truth individual
building is greater than or equal to 0.8, the automatically
segmented individual building is considered as a correctly
segmented individual building. When IoU is less than the
minimum overlap threshold of 0.8, if the individual build-
ing automatically segmented corresponds to multiple ground
truth labeled individual buildings, the individual building
automatically segmented is undersegmented. Otherwise, the
individual building is oversegmented. The completeness, cor-
rectness, undersegmentation rate, and oversegmentation rate
of building individual segmentation are evaluated by the
object-based quantitative evaluation method and point-based
quantitative evaluation method. The object-based quantitative
evaluation method and the point-based quantitative evalua-
tion method were applied to assess various metrics of the
SABIS algorithm. The metrics for the three datasets are
shown in Tables I and II, where datasets1 and 2 are urban
scene buildings and datasets3 is residential buildings. The
various metrics presented in Tables I and II demonstrate that
the SABIS algorithm proposed in this article achieves high

TABLE I
SABIS METHODS’ THREE DATASETS BUILDING INDIVIDUAL

SEGMENTATION RESULT OF OBJECT-BASED
QUANTITATIVE EVALUATION METHOD

TABLE II
SABIS METHODS’ THREE DATASETS BUILDING INDIVIDUAL

SEGMENTATION RESULT OF THE POINT-BASED
QUANTITATIVE EVALUATION METHOD

accuracy in individual segmentation of buildings within large-
scale scenes. comobj, compoint, corobj, and corpoint are all
above 86%, undobj, undobj, undpoint, and overpoint are all below
10%. The results of the object-based quantitative evaluation
method and the point-based quantitative evaluation method are
basically consistent. The experimental results show that the
SABIS algorithm in this article has good results in building
segmentation on the selected dataset.

2) Quantitative Comparative Analysis Results: The pro-
posed SABIS method is compared with four state-of-the-art
benchmark methods. The four benchmark methods include
the MW method [7], the 2-D DBSCAN segmentation
method (DBSCAN2D) [19], the TCCL algorithm [2], and the
Euclidean clustering method (EC) [5]. The selected datasets,
namely, dataset1, dataset2, and dataset3, will be utilized to
conduct a quantitative analysis of the building individual
segmentation results for both the four benchmark methods
and the SABIS method. The minimum overlap degree used to
evaluate the segmentation performance of individual building
is IoU0.8, which means that there should be a minimum
overlap of 80% between the automatically segmented indi-
vidual building and the corresponding ground truth individual
building (Dong et al., 2018). The object-based quantitative
evaluation method and the point-based quantitative evaluation
method are employed to assess the performance indicators
of the five building individual segmentation methods. The
performance indicators for the three datasets are presented in
Tables III–VIII. It can be seen from Tables III, V, and VII
that undobj(%) and undpoint(%) of the TCCL method, the MW
method, and the DBSCAN2D method are all relatively high,
indicating that these three methods have more undersegmented
individual buildings in the three scenes. It can be seen from
Tables III–VIII that corobj(%), comobj(%), compoint(%), and
corpoint(%) of the proposed SABIS method are all the high-
est, and the values of undobj(%), undpoint(%), overobj%, and
overpoint% are close to the lowest. Then, the sum of undobj(%)

and overobj%, undpoint(%), and overpoint% are both the lowest.
In this article, the feasibility and effectiveness of five methods
are analyzed by using three sets of large scene datasets at
home and abroad and four benchmark methods for quantitative
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TABLE III
FIVE-METHOD BUILDING INDIVIDUAL SEGMENTATION RESULT OF THE

OBJECT-BASED QUANTITATIVE EVALUATION METHOD ON URBAN
SCENE BUILDINGS DATASET1

TABLE IV
FIVE-METHOD BUILDING INDIVIDUAL SEGMENTATION RESULT OF THE

POINT-BASED QUANTITATIVE EVALUATION METHOD ON URBAN
SCENE BUILDINGS DATASET1

TABLE V
FIVE-METHOD BUILDING INDIVIDUAL SEGMENTATION RESULT OF

THE OBJECT-BASED QUANTITATIVE EVALUATION METHOD ON THE
URBAN SCENE BUILDINGS DATASET2

TABLE VI
FIVE-METHOD BUILDING INDIVIDUAL SEGMENTATION RESULT OF THE E

POINT-BASED QUANTITATIVE EVALUATION METHOD ON THE URBAN
SCENE BUILDINGS DATASET2

TABLE VII
FIVE-METHOD BUILDING INDIVIDUAL SEGMENTATION RESULT OF

THE OBJECT-BASED QUANTITATIVE EVALUATION METHOD ON THE
RURAL RESIDENTIAL SCENE BUILDING DATASET3

evaluation effect. The results show that the SABIS method in
this article is obviously better than the most advanced methods.

In order to analyze the performance of various building
individual segmentation methods, including the selected three
sets of building point cloud datasets, four currently most clas-
sic building individual segmentation methods, and the SABIS

TABLE VIII
FIVE-METHOD BUILDING INDIVIDUAL SEGMENTATION RESULT OF THE

POINT-BASED QUANTITATIVE EVALUATION METHOD ON THE RURAL
RESIDENTIAL SCENE BUILDING DATASET3

Fig. 20. Five-method segmentation dataset2 accuracy variation curves of the
evaluation method based on single object and the evaluation method based
on point with the increase of overlap degree. (a) Result of five-method corobj
curve, (b) result of five-method corpoint curve, (c) result of five-method comobj
curve, (d) result of five-method compoint curve, (e) result of five-method
undobj curve, (f) result of five-method undpoint curve, (g) result of five-method
overobj curve, and (h) result of five-method overpoint curve.

method proposed in this section, the evaluation methods based
on individual object and point are applied. The changes
in various accuracy indicators are examined with increasing
overlap degrees to assess the performance of these building
individual segmentation methods, as shown in Figs. 20–22.
From Figs. 20(a), 21(a), and 22(a), it can be observed that
at an overlap degree of 50%, the corobj(%) value of the EC
method is similar to that of the proposed SABIS method.
However, as the overlap increases, the corobj(%) value of the
EC method rapidly decreases, indicating that both methods
are significantly influenced by the overlap degree (i.e., most
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Fig. 21. Five-method segmentation dataset2 accuracy variation curves of the
evaluation method based on single object and the evaluation method based
on point with the increase of overlap degree. (a) Result of five-method corobj
curve, (b) result of five-method corpoint curve, (c) result of five-method comobj
curve, (d) result of five-method compoint curve, (e) result of five-method
undobj curve, (f) result of five-method undpoint curve, (g) result of five-method
overobj curve, and (h) result of five-method overpoint curve.

segmented individual buildings have lower completeness). The
TCCL method tends to have lower completeness of buildings
individual segmentation. However, the MW method and the
DBSCAN2D method are less affected by the overlap degree,
but their overall completeness is lower compared to the
proposed method. It can be seen from Figs. 20(b) and (d),
21(b) and (d), and 22(b) and (d) that the EC method is greatly
affected by the overlap degree. The TCCL method, the MW
method, and the DBSCAN2D method are less affected by the
overlap degree, but the values of corpoint(%) and compoint(%)
of these four methods are lower than that of the SABIS
method. It can be seen from Figs. 20(a) and (c), 21(a) and (c),
and 22(a) and (c) that the EC method and TCCL method
are more affected by overlapping images, and comobj(%)
decreases rapidly with the increase of overlap degree. The
comobj(%) value of the MW method and the DBSCAN2D
method is less affected by the overlap degree, but lower than
that of the proposed SABIS method. As can be seen from
Figs. 20(g) and (h), 21(g) and (h), and 22(g) and (h), the
EC method is greatly affected by the overlap degree, and
its overobj(%) value and overpoint(%) value increase rapidly
with the increase of overlap degree. As can be seen from

Fig. 22. Five-method segmentation dataset3 accuracy variation curves of the
evaluation method based on single object and the evaluation method based
on point with the increase of overlap degree. (a) Result of five-method corobj
curve, (b) result of five-method corpoint curve, (c) result of five-method comobj
curve, (d) result of five-method compoint curve. (e) result of five-method
undobj curve, (f) result of five-method undpoint curve, (g) result of five-method
overobj curve, and (h) result of five-method overpoint curve.

Figs. 20(e)–(h), 21(e)–(h), and 22(e)–(h). The values of
undobj(%) and undpoint(%) and overobj(%) and overpoint(%)
of the EC method, the TCCL method, the MW method, and
the DBSCAN2D method are basically larger than those of
the proposed SABIS method. Furthermore, for each dataset,
both the undersegmentation and oversegmentation accuracy
based on object and point-based evaluation methods are higher
than those achieved by the SABIS method proposed in this
article. The ten indicator curves generated by five different
building instance segmentation methods on three datasets
reveal that the EC method is greatly influenced by the degree
of overlap, resulting in a large number of oversegmented
individual buildings. The TCCL method, the MW method, and
the DBSCAN2D method are less affected by the degree of
overlap in terms of accuracy evaluation, but they also produce
a significant number of undersegmented individual building.
Through the comparative analysis of experimental results on
multiple large-scale datasets and the curves depicting the
variation of accuracy evaluation results with overlap using
multiple evaluation methods, it can be observed that the
performance of the proposed SABIS method in this section
is significantly better than those of the four currently most
classic algorithms.
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V. CONCLUSION

In this article, we propose an SABIS based on large-scale
airborne LiDAR point clouds. This method classifies buildings
into urban scene buildings and rural residential area buildings
by utilizing techniques, such as roof point cloud segmentation,
facade point cloud segmentation, object segmentation, feature
extraction, and construction of object cylinder neighborhood
graphs. Different building individual segmentation methods
are used for different types of buildings, enabling SABIS based
on large-scale airborne LiDAR point clouds. The feasibility
of the proposed SABIS algorithm has been validated by using
three large scene datasets at home and abroad. A comparison
has been made with four benchmark methods and eight
metrics to analyze the robustness of the proposed SABIS
algorithm. The proposed algorithm in this article achieves
accuracy indicators of over 86% in all aspects, outperforming
the existing state-of-the-art algorithms. However, there are
certain limitations to the proposed algorithm. For example,
in regions with significant variations in point cloud density
due to material reflections, some buildings may have missing
points or be excessively complex building, leading to instances
of oversegmentation or undersegmentation of individual build-
ings. In future work, we aim to further optimize the algorithm
by incorporating additional data sources, such as imagery to
enhance the accuracy of building individual segmentation.

ACKNOWLEDGMENT

The authors are grateful to the Dutch for AHN3 (Actueel
Hoogtebestand Nederland) dataset.

REFERENCES

[1] N. Yang, Z. Qin, and Z. Li, “Laser footprint detection and separation
method of one single building based on the airborne LiDAR point
clouds,” Geomatics Sci. Eng., vol. 33, no. 6, p. 4. 2013.

[2] J. Du et al., “A novel framework for 2.5-D building contouring from
large-scale residential scenes,” IEEE Trans. Geosci. Remote Sens.,
vol. 57, no. 6, pp. 4121–4145, Jun. 2019.

[3] Y. Zhang, W. Yang, X. Liu, Y. Wan, X. Zhu, and Y. Tan, “Unsupervised
building instance segmentation of airborne LiDAR point clouds for
parallel reconstruction analysis,” Remote Sens., vol. 13, no. 6, p. 1136,
Mar. 2021.

[4] W. Yang, X. Liu, Y. Zhang, Y. Wan, and Z. Ji, “Object-based build-
ing instance segmentation from airborne LiDAR point clouds,” Int.
J. Remote Sens., vol. 43, no. 18, pp. 6783–6808, Sep. 2022.

[5] A. Gamal et al., “Automatic LiDAR building segmentation based
on DGCNN and Euclidean clustering,” J. Big Data, vol. 7, p. 102,
Nov. 2020.

[6] B. C. Matei et al., “Building segmentation for densely built urban regions
using aerial LiDAR data,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2008, pp. 1–8.

[7] M. Awrangjeb and C. S. Fraser, “Automatic segmentation of raw LiDAR
data for extraction of building roofs,” Remote Sens., vol. 6, no. 5,
pp. 3716–3751, 2014.

[8] R. Cao, Y. Zhang, X. Liu, and Z. Zhao, “3D building roof recon-
struction from airborne LiDAR point clouds: A framework based on
a spatial database,” Int. J. Geographical Inf. Sci., vol. 31, nos. 7–8,
pp. 1359–1380, 2017.

[9] F. Tarsha Kurdi and M. Awrangjeb, “Automatic evaluation and improve-
ment of roof segments for modelling missing details using LiDAR data,”
Int. J. Remote Sens., vol. 41, no. 12, pp. 4702–4725, Jun. 2020.

[10] L. Yan and F. Wei, “Single part of building extraction from dense match-
ing point cloud,” Chin. J. Lasers, vol. 45, no. 7, 2018, Art. no. 0710004.

[11] J. Gao and R. Yang, “Online building segmentation from ground-based
LiDAR data in urban scenes,” in Proc. Int. Conf. 3D Vis. (3DV),
Jun. 2013, pp. 49–55.

[12] S. Xia and R. Wang, “Façade separation in ground-based LiDAR point
clouds based on edges and windows,” IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens., vol. 12, no. 3, pp. 1041–1052, Mar. 2019.

[13] X. Wang et al., “A robust segmentation framework for closely packed
buildings from airborne LiDAR point clouds,” Int. J. Remote Sens.,
vol. 41, no. 14, pp. 5147–5165, Jul. 2020.

[14] X. Zeng, S. Araki, and K. Kakizaki, “An improved extraction method
of individual building wall points from mobile mapping system data,”
in Proc. 6th Int. Conf. Innov. Comput. Technol. (INTECH), Aug. 2016,
pp. 365–370.

[15] S. Ural and J. Shan, “Min-cut based semantic building labeling for
airborne LiDAR data,” ISPRS Ann. Photogramm., Remote Sens. Spatial
Inf. Sci., vol. 5, no. 2, pp. 305–312, Aug. 2020.

[16] M. Awrangjeb and C. S. Fraser, “Rule-based segmentation of LiDAR
point cloud for automatic extraction of building roof planes,” ISPRS Ann.
Photogramm., Remote Sens. Spatial Inf. Sci., vol. 2, pp. 1–6, Oct. 2013.

[17] B. Guo, X. Huang, F. Zhang, and G. Sohn, “Classification of airborne
laser scanning data using jointboost,” ISPRS J. Photogramm. Remote
Sens., vol. 100, pp. 71–83, Feb. 2015.

[18] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward
feature space analysis,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24,
no. 5, pp. 603–619, May 2002.

[19] X. Huang, R. Cao, and Y. Cao, “A density-based clustering method for
the segmentation of individual buildings from filtered airborne LiDAR
point clouds,” J. Indian Soc. Remote Sens., vol. 47, no. 6, pp. 907–921,
Jun. 2019.

[20] Q. Lin, P. Dong, and J. Y. Lin, “A survey on graph cut techniques,”
Microprocessors, vol. 36, no. 1, p. 5, 2015.

[21] Y. Boykov, O. Veksler, and R. Zabih, “A new algorithm for energy
minimization with discontinuities,” in Energy Minimization Methods
in Computer Vision and Pattern Recognition: Second International
Workshop, EMMCVPR’99 York, UK, July 26–29, 1999 Proceedings 2.
Berlin, Germany: Springer, 1999, pp. 205–220.

[22] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy mini-
mization via graph cuts,” in Proc. Int. Conf. Comput. Vis., vol. 1, 1999.

[23] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy min-
imization via graph cuts,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 23, no. 11, pp. 1222–1239, Nov. 2001.

[24] V. Kolmogorov, R. Zabih, and S. Gortler, “Generalized multi-camera
scene reconstruction using graph cuts,” in Proc. Int. Workshop
Energy Minimization Methods Comput. Vis. Pattern Recognit., 2003,
pp. 501–516.

[25] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient graph-based image
segmentation,” Int. J. Comput. Vis., vol. 59, no. 2, pp. 167–181, 2004.

[26] J. Yan, J. Shan, and W. Jiang, “A global optimization approach to
roof segmentation from airborne LiDAR point clouds,” ISPRS J. Pho-
togramm. Remote Sens., vol. 94, pp. 183–193, Aug. 2014.

[27] Y. Gu, Z. Cao, and L. Dong, “A hierarchical energy minimization method
for building roof segmentation from airborne LiDAR data,” Multimedia
Tools Appl., vol. 76, no. 3, pp. 4197–4210, Feb. 2017.

[28] Z. Hui, Z. Li, P. Cheng, Y. Y. Ziggah, and J. Fan, “Building extraction
from airborne LiDAR data based on multi-constraints graph segmenta-
tion,” Remote Sens., vol. 13, no. 18, p. 3766, Sep. 2021.

[29] S. Du, Z. Zou, Y. Zhang, X. He, and J. Wang, “A building extraction
method via graph cuts algorithm by fusion of LiDAR point cloud and
orthoimage,” Acta Geodaetica et Cartographica Sinica, vol. 47, no. 4,
p. 519, 2018.

Wangshan Yang received the Ph.D. degree in pho-
togrammetry and remote sensing from the School
of Remote Sensing and Information Engineering,
Wuhan University, Wuhan, China, in 2022.

He is currently a Lecturer with China Jiliang
University, Hangzhou, China. His research interests
include point cloud processing, 3-D reconstruction,
and computer vision.

Authorized licensed use limited to: Wuhan University. Downloaded on January 02,2025 at 09:46:53 UTC from IEEE Xplore.  Restrictions apply. 



YANG et al.: SABIS BASED ON LARGE-SCALE AIRBORNE LiDAR POINT CLOUDS 5706015

Yongjun Zhang (Member, IEEE) received the B.S.
degree in geodesy, the M.S. degree in geodesy
and surveying engineering, and the Ph.D. degree in
geodesy and photography from Wuhan University,
Wuhan, China, in 1997, 2000, and 2002, respec-
tively.

He is currently a Dean of the School of Remote
Sensing and Information Engineering, Wuhan Uni-
versity, where he has been a Full Professor with the
School of Remote Sensing and Information Engi-
neering since 2006. He has authored or co-authored

more than 150 research articles and one book. He holds 25 Chinese patents
and 26 copyright-registered computer software. His research interests include
aerospace and low-attitude photogrammetry, image matching, combined block
adjustment with multisource datasets, object information extraction and mod-
eling with artificial intelligence, integration of LiDAR point clouds and
images, and 3-D city model reconstruction.

Xinyi Liu received the B.S. and Ph.D. degrees
in photogrammetry and remote sensing from the
School of Remote Sensing and Information Engi-
neering, Wuhan University, Wuhan, China, in
2014 and 2020, respectively.

She currently holds a post-doctoral position with
Wuhan University. Her research interests include
3-D reconstruction, LiDAR and image integration,
and texture mapping.

Boyong Gao received the B.S. degree in forg-
ing from the Northeast Heavy Machinery Institute,
Qiqihaer, China, in 1994, the M.S. degree in metal
plastic processing from the Huazhong University of
Science and Technology, Wuhan, China in 1997,
and the Ph.D. degree in computer science and tech-
nology from Zhejiang University, Hangzhou, China,
in 2011.

He is currently an Associate Professor with the
College of Information Engineering, China Jiliang
University, Hangzhou. His research interests include

machine learning in time series and multimedia analysis.

Authorized licensed use limited to: Wuhan University. Downloaded on January 02,2025 at 09:46:53 UTC from IEEE Xplore.  Restrictions apply. 


