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A B S T R A C T   

Registration of multi-modal remote sensing images (MRSI) is crucial for unlocking the full potential of hetero
geneous remote sensing imagery. However, achieving accurate registration among MRSI is challenging due to the 
trade-off between geometric invariance and matching accuracy, caused by differences in signal-to-noise ratio and 
nonlinear radiometric distortion (NRD) arising from varying imaging mechanisms. To tackle the challenge, this 
paper proposes a lightweight and hybrid feature-guided registration algorithm for MRSI called the hybrid 
registration algorithm based on multi-dimensional oriented self-similarity features (MOSS). MOSS leverages the 
advantages of multi-dimensional oriented self-similarity features to progressively enhance registration perfor
mance. In the hybrid feature coarse matching stage, oriented self-similarity features are extracted from MRSI, 
and their directional information is utilized for feature description to estimate the initial affine transformation. 
The fine matching under multi-dimensional oriented self-similarity features stage takes the outputs of the coarse 
matching stage to perform a template-like matching process. To evaluate the performance of MOSS, compre
hensive experiments are conducted using six different combinations of MRSI, and seven state-of-the-art regis
tration algorithms are selected for comparison. The experimental results demonstrate that MOSS outperforms the 
compared methods, with the number of correct matches being at least about 1.6 times higher than the com
parison methods. Moreover, MOSS exhibits the lowest root mean square error across all experiments, with an 
average RMSE of 1.86 pixels, achieving an RMSE within 2 pixels. This highlights its effectiveness in achieving 
precise alignment and robust registration of MRSI.   

1. Introduction 

Geometrical registration is an image-processing technique that 
aligns different images of the same scene acquired at various times and 
viewing angles and with multiple sensors (Feng et al., 2021). Registra
tion of multi-modal remote sensing images (MRSI) is crucial for 
achieving geometric alignment and consistent spatial reference across 
different sensors and modalities. It plays a vital role in applications such 
as map correction, precise positioning, feature extraction, target 
recognition, land surface change monitoring, Three-Dimensional (3D) 
reconstruction, and stereo vision (Zhang et al., 2021a; Zhang et al., 
2021b). However, MRSI registration still faces challenges due to varia
tions in imaging conditions, including sensor differences, modality 

differences, and geometric disparities. One of the challenges is the 
limited accuracy of feature matching due to significant differences in 
signal-to-noise ratios in MRSI. Feature extraction may fail for pixels with 
high signal-to-noise ratios, resulting in matching failures or misalign
ment. Another challenge lies in the template matching strategy 
commonly used for feature points correspondence, which requires pixel- 
level pre-registration of the images. This approach necessitates precise 
initial localization and often results in high computational complexity 
and poor resistance to geometric transformations. 

To address these challenges, researchers have proposed many inno
vative methods to address signal-to-noise interference, nonlinear 
radiometric distortion (NRD), and geometric differences in MRSI. For 
example, SIFT (Lowe, 1999) and RIFT (Li et al., 2020) proposed feature- 

* Corresponding authors at: School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, HB 430079, China (Y. Wan). 
E-mail addresses: zhizheng@cuhk.edu.hk (Z. Zheng), yi.wan@whu.edu.cn (Y. Wan).  

Contents lists available at ScienceDirect 

International Journal of Applied Earth  
Observation and Geoinformation 

journal homepage: www.elsevier.com/locate/jag 

https://doi.org/10.1016/j.jag.2023.103639 
Received 19 August 2023; Received in revised form 22 November 2023; Accepted 23 December 2023   

mailto:zhizheng@cuhk.edu.hk
mailto:yi.wan@whu.edu.cn
www.sciencedirect.com/science/journal/15698432
https://www.elsevier.com/locate/jag
https://doi.org/10.1016/j.jag.2023.103639
https://doi.org/10.1016/j.jag.2023.103639
https://doi.org/10.1016/j.jag.2023.103639
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jag.2023.103639&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


International Journal of Applied Earth Observation and Geoinformation 127 (2024) 103639

2

based methods focusing on geometric variations between MRSI. By 
employing flexible feature descriptors, these methods handle geometric 
transformations effectively. LoFTR (Sun et al., 2021) and based on 
Convolutional Neural Networks (CNN) proposed learning-based 
methods. While significant progresses have been made in enhancing 
the performance of MRSI registration, there is still room for improve
ment, particularly in balancing geometric invariance and achieving 
prompt registration. 

This paper introduces a lightweight and hybrid feature-guided 
registration algorithm called the hybrid registration algorithm based 
on multi-dimensional oriented self-similarity features (MOSS), which 
leverages the advantages of multi-dimensional oriented self-similarity 
features. MOSS adopts a coarse-to-fine matching strategy to achieve 
high-precision and prompt feature point correspondence. The key con
tributions of this research are as follows:  

(1) A lightweight framework for the registration of MRSI with hybrid 
feature guidance was proposed. The framework adopts a coarse- 
to-fine matching strategy, maintaining geometric invariance in 
matching while achieving high-precision identification of feature 
point correspondence.  

(2) A representation method based on multi-dimensional oriented 
self-similarity features was introduced. It fully utilizes the multi- 
channel self-similarity maps constructed in the hybrid feature 
coarse matching stage to build multi-dimensional oriented self- 
similarity template features, improving feature utilization and 
promoting registration efficiency. 

This article is structured as follows. Section 1 outlines the back
ground and challenges of MRSI registration. Section 2 offers a concise 
overview of relevant studies. Section 3 details the proposed MOSS al
gorithm. Section 4 establishes the optimal parameters for the MOSS 
algorithm and presents the experimental results. Section 5 analyzes the 
performance of MOSS in handling rotation and scaling transformations.. 
Finally, Section 6 summarizes the paper. 

2. Related works 

Currently, the registration methods for MRSI can be broadly cate
gorized into area-based, feature-based, deep learning-based, and joint 
multi-feature-based registration methods. 

The key to area-based methods lies in similarity measurement, 
including techniques such as normalized cross-correlation (NCC) (Yoo 
and Han, 2009), mutual information (Suri and Reinartz, 2010) and 
phase correlation (Foroosh et al., 2002). The dense local self-similarity 
descriptor utilized NCC for similarity measurement (Ye et al., 2017a). 
The histogram of orientated phase congruency facilitated rapid match
ing (Ye et al., 2017b). The PCSD (Fan et al., 2018) combined nonlinear 
diffusion and phase consistency for image registration. Channel features 
of orientated gradient extended HOG using FFT for similarity mea
surement (Ye et al., 2019). MoTIF employed a diffusion tensor model 
and polar coordinates for feature vector descriptors (Yao et al., 2022a). 
Area-based methods were sensitive to geometric distortions, necessi
tating georeferencing to enhance registration accuracy and reliability. 

Feature-based methods extract local features from images to achieve 
faster registration. Since the introduction of SIFT (Lowe, 1999), several 
variations of SIFT were developed (Dellinger et al., 2015; Ma et al., 
2017; Sedaghat et al., 2011; Sedaghat and Ebadi, 2015a; Xiang et al., 
2018; Yi et al., 2008). Ji et al. (2013) proposed a nonlinear intensity 
difference correlation matching method. LGHD (Aguilera et al., 2015) 
utilized phase information in the frequency domain. The histogram of 
oriented self-similarity (Sedaghat and Ebadi, 2015b) incorporated 
orientation information. RIFT (Li et al., 2020) adopted phase consis
tency and maximum index map descriptor. Xiang et al. (2020) improved 
the PC model. Yao et al. (2022) proposed a method using co-occurrence 
filter space and feature displacement optimization. Fan et al., (2022a) 

designed a multi-scale PC descriptor. Zhang et al. (2023) introduced the 
histogram of the orientation of weighted phase (HOWP) for feature 
aggregation. R2FD2 (Zhu et al., 2023) consisted of repeatable feature 
detectors and descriptors. Huang et al. (2023) constructed the descriptor 
HOSC with spectrum congruency features. Chen et al. (2023) proposed a 
method based on adaptive line segment features. 

Compared to gradient information and phase consistency, local self- 
similarity (LSS) (Suetake et al., 2008) features capture the structural 
information of an image. Xiong et al. (2021) introduced a descriptor 
based on oriented self-similarity (OSS) features. This approach enhances 
the computational efficiency of the original LSS features while sup
pressing image noise. However, the utilization of OSS features is rela
tively limited, resulting in lower registration accuracy. 

Deep learning models can automatically learn image feature repre
sentations. Therefore, many researchers have proposed deep learning- 
based approaches to address challenges in MRSI registration. Zhang 
et al. (2019) introduced a framework for MRSI image registration based 
on convolutional Siamese networks. D2-net (Dusmanu et al., 2019) 
combined feature description and detection using convolutional neural 
networks. Ji et al. (2022) proposed a feature fusion-based registration 
method using deep convolutional neural networks. R2D2 (Revaud et al., 
2019) performed keypoint detection and description through learning 
feature detectors, descriptors, and local descriptor predictors. LoFTR 
(Sun et al., 2021) employed self-attention and cross-attention layers to 
obtain feature descriptors of two images. SIFNet (Liu et al., 2023) was an 
algorithm that utilized a self-attention interactive fusion network. Zhang 
et al. (2022) proposed a self-supervised training network for detecting 
optimal keypoints. Li et al. (2022) introduced the cross-modal Matching 
Network (CM-Net). Meng et al. (2021) introduced an end-to-end regis
tration network named DSIM. Li et al., (2023a) presented an end-to-end 
framework with self-attention and dual-supervision loss. Xu et al. (2023) 
proposed the local descriptor SODescNet. Ji et al. (2023) evaluated 
traditional and deep learning-based methods, finding room for 
improvement in deep learning approaches. Deep learning methods face 
challenges in obtaining large-scale annotated data, particularly in spe
cific scenarios or with sparse data. Moreover, these methods require 
substantial computational resources, and their transferability and 
generalization capabilities still need improvement. 

Researchers have been exploring methods that combine multiple 
features for image registration to leverage the advantages of both area- 
based and feature-based approaches. For instance, Gong et al. (2014) 
combined SIFT with mutual information. Xiong et al. (2016) integrated 
line features and mutual information. Zhang et al. (2020) combined 
SAR-SIFT with the area-based ROEWA-HOG method. The 3MRS algo
rithm (Fan et al., 2022b) employed phase consistency and Log-Gabor 
filters to achieve a combination of feature matching and template 
matching. 

However, these methods still have limitations. They lack robustness 
in multi-modal registration scenarios. Furthermore, some feature de
scriptors fail to fully utilize shape or structural information in images, 
leading to performance degradation. Moreover, many methods struggle 
with handling significant geometric transformations, limiting their 
robustness. Therefore, a lightweight MRSI hybrid registration algorithm 
based on MOSS was proposed. The MOSS algorithm is designed to be 
robust, adaptable to multi-modal matching scenarios, handle different 
image types, and accommodate large geometric transformations. 

3. Method 

In this study, a coarse-to-fine registration strategy was proposed to 
progressively enhance the matching performance of MRSI. The hybrid 
feature coarse matching stage extracts self-similarity features and 
matching them in a unified feature space. The OSS algorithm (Xiong 
et al., 2021) is employed in this stage for the description of feature 
points, leveraging the advantages of the directional information of self- 
similarity features. This stage eliminates the geometric differences 
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between MRSI and then estimates the initial affine transformation 
model. The fine matching under multi-dimensional oriented self- 
similarity features stage takes multi-channel self-similarity maps as 
input, constructs multi-dimensional oriented self-similarity features, 
and develops a template-like matching method to refine the results from 
the coarse matching stage. In this stage, for more efficient template 
matching, a feature sparsification strategy was designed, and 3D 
Gaussian kernel convolution was applied to enhance the feature repre
sentation capability. Subsequently, a 3D phase correlation matching 
strategy was used to establish more accurate registration relationships. 
Lastly, the Fast Sample Consensus (FSC) algorithm(Wu et al., 2015) was 
utilized to remove misalignments. Fig. 1 illustrates the workflow of the 
MOSS algorithm. 

3.1. Hybrid feature coarse matching 

In hybrid feature registration, the first step is to perform hybrid 
feature coarse matching, primarily using the OSS algorithm. This algo
rithm utilizes the directional information of self-similarity features to 
describe the feature points and employs the nearest neighbor distance 
ratio matching strategy to determine the initial correspondences. 
Additionally, the FSC is applied to effectively remove incorrect matches. 
In this section, the process of extracting and describing the OSS features 
is elaborated upon. 

3.1.1. Extraction of oriented self-similarity features 
In the hybrid feature coarse matching stage, the self-similarity fea

tures of the image are first rapidly extracted using the offset mean 
filtering method to generate a multi-channel self-similarity feature map. 
This part will be highlighted in the fine matching under multi- 
dimensional oriented self-similarity features stage. The oriented self- 
similarity feature detector considers pixels that are highly dissimilar to 
their surrounding pixels as keypoints. Hence, for each pixel in the image, 
its self-similarity feature values are extracted, and the n smallest values 
among them are computed. The feature response λ for a point q is 
calculated as shown in Equation (1). By assembling the feature responses 
λ of all pixels, a feature response map is obtained, which is then sub
jected to local non-maximum suppression to obtain the feature points. 

λ(q) =
1
n
∑n

i=1
Sq

i (1) 

The above equation λ(q) represents the feature response of point q 
and 

{
Sq

i |i = 1,2,…, n
}

represents the n smallest self-similarity values, 
where n is set to 4 in this paper. 

To address the potential scale differences in MRSI registration, this 
paper adopts a multi-scale Gaussian pyramid approach to feature 
extraction. Features are extracted from images at different scales by 
detecting feature points layer by layer. Additionally, an image blocking 
strategy is employed to obtain uniformly distributed feature points. 

3.1.2. Description of oriented self-similarity features 
The oriented self-similarity feature description consists of two key 

steps: calculation of the primary orientation of the keypoint and statis
tics of the descriptor feature vectors.  

(1) Calculation of the primary orientation of the keypoint: This step 
aims to ensure the rotation invariance of the descriptor. A fixed 
circular neighborhood is selected around the keypoint, and the 
main direction is determined based on the orientation histogram 
generated from the self-similarity feature values. First, the his
togram is divided into 36 equal bins, each representing a 10◦

interval. Then, for the feature point P whose main direction is to 
be determined, 36 points are uniformly sampled on the boundary 
of a circular neighborhood with a radius of r around P. For these 
36 points, their self-similarity feature sequences are computed 
and denoted as S1, S2…S36. Next, the self-similarity feature se
quences are normalized, and the peak directions that account for 
more than 80 % of the histogram are selected as the primary 
orientation of the keypoints. 

(2) Statistics of the descriptor feature vectors: To improve the effi
ciency of feature matching and reduce the dimensionality of 
feature descriptors, this study utilizes a logarithmic polar grid to 
statistically analyze the feature vectors. The descriptor neigh
borhood of a feature point is a circular region extracted from the 
multi-channel self-similarity map. At each pixel within the 

Fig. 1. MOSS algorithm registration workflow.  
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descriptor neighborhood, the index value of the minimum self- 
similarity direction is calculated, resulting in an orientation 
index map. Finally, the orientation index map is transformed into 
a logarithmic polar grid, and a histogram is computed within 
each grid interval to generate the feature descriptor vector. 

3.2. Fine matching under multi-dimensional oriented self-similarity 
features 

In the hybrid feature coarse matching stage, the geometric differ
ences between multi-modal images are addressed by the oriented self- 
similarity feature description. However, due to the limitations of 
feature point detection accuracy, the registration accuracy is not high. 
To improve registration accuracy, this paper combines the advantages of 
template matching and proposes a registration method based on multi- 
dimensional oriented self-similarity template features. In the fine 
matching under multi-dimensional oriented self-similarity features 
stage, the following steps are performed. First, a multi-channel self- 
similarity map is constructed. Then, the multi-dimensional oriented self- 
similarity template features are computed, and a sparsity strategy is 
employed. Next, the template feature channels are enhanced using 
normalized 3D Gaussian convolution kernels. Simultaneously, an 
adaptive non-maximal suppression (ANMS) feature detector (Brown 
et al., 2005) is used to detect keypoints in MRSI. Considering that the 
template features are three-dimensional, the Fourier transform is 
applied to transform the feature template from the spatial domain to the 
frequency domain, and 3D phase correlation is used as the similarity 
measure to accelerate the matching of template-like features. Finally, 
the erroneous matches are eliminated through the employment of the 
FSC algorithm. 

In this section, the focus is on describing the construction process of 
multi-dimensional oriented self-similarity features, which includes three 
steps: construction of the multi-channel self-similarity map, computa
tion of the multi-dimensional oriented self-similarity features, and 
normalized 3D Gaussian convolution. The entire process is illustrated in 
Fig. 2. 

3.2.1. Construction of multi-channel self-similarity maps 
The multi-channel self-similarity maps are obtained using the offset 

mean filtering technique, which involves: image cropping and mean 
filtering. Firstly, the original image is cropped to create the center image 
block Ic

crop, representing the region around the point q(ρ,θ)(ρ represents 
the distance from a pixel point to its neighboring pixels in the feature 
neighborhood, and θ represents the angle, θ ∈ [0, π]). Then, the offset 
image block Io

crop is obtained by shifting the center block in different 
directions. Once the image blocks are obtained, the self-similarity map 
Sq in the direction of the point q(ρ, θ) can be computed using the 
following equation: 

Sq = meanFilter
(⃒
⃒
⃒Ic

crop − Io
crop

⃒
⃒
⃒

)
(2) 

Where meanFilter( • ) represents the process of applying mean 

filtering to image blocks. The filtering window is set as a circular shape 
with a radius of 2 pixels, as it enhances the rotational invariance of the 
self-similarity features. 

A multi-channel self-similarity map named {Sq}
1
C can be obtained by 

C = N/2 offset mean filtering operations, where C represents the num
ber of channels and N represents the number of pixels in the feature 
neighborhood. Due to the symmetry of self-similarity features, the multi- 
channel self-similarity map {Sq}

1
C can capture the self-similarity char

acteristics of the entire image. 

3.2.2. Solving multi-dimensional oriented self-similarity features 
This paper proposes an angle-weighting strategy. Firstly, for the 

obtained multi-channel self-similarity map {Sq}
1
C , gx and gy are calcu

lated for each channel using the Sobel operator h = [1, 2,1; 000; − 1, − 2,
− 1] , as shown in equation (3): 
{

gx(x, y) = Sq ⊗ h
gy(x, y) = Sq ⊗ hT (3) 

Where Sq represents the input single-channel self-similarity map, and 
⊗ represents the convolution operation. 

Then, the gradient direction is calculated using equation (4). For 
each channel, an angle-weighting strategy is applied to the multi- 
channel self-similarity map, resulting in a single-channel multi-dimen
sional oriented self-similarity feature Sq

o. This strategy effectively en
hances the rotational invariance of the self-similarity template feature. It 
is worth noting that if the gradient direction is less than 0,π should be 
added to ensure that the gradient direction value is always greater than 
0. 

Sq
o = tan− 1

(
− gy(x, y)
gx(x, y)

)

(4)  

Sq
o =

{
Sq

o, Sq
o⩾0

Sq
o + π, Sq

o < 0
(5) 

Where Sq
o represents the single-channel multi-dimensional oriented 

self-similarity feature. 
Finally, an angle-weighting strategy is applied to the multi-channel 

self-similarity features, channel by channel, to construct the multi- 
channel multi-dimensional oriented self-similarity features 

{
Sq

o
}1

C . In 
the construction of the multi-channel self-similarity map, a circular 
feature neighborhood with a radius of R and N pixels, and C = N/2 
channels are used. Therefore, the dimension of the multi-channel multi- 
dimensional oriented self-similarity features 

{
Sq

o
}1

C is C. To enhance the 
computational efficiency of template feature matching, a sparsification 
strategy is applied to the feature channels by setting the sparsification 
interval as St. Equation (6) is used for sparsification, resulting in a w- 
dimensional template feature map 

{
Sq

o
}1

w. 

w = ⌈C/St⌉ (6) 

where w represents the dimension of the sparsified multi- 

Fig. 2. Construction process of multi-dimensional oriented self-similarity features.  
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dimensional oriented self-similarity features, C represents the dimension 
of the original multi-dimensional oriented self-similarity features, St is 
the sparsification interval, and the operator indicates rounding up to the 
nearest integer in the direction of increasing absolute value. 

3.2.3. Normalized 3D Gaussian convolution 
After forming the multi-dimensional oriented self-similarity feature 

channels, a three-dimensional Gaussian convolution is applied to 
enhance the feature channels and mitigate the impact of local distortions 
resulting from geometric deformations and variations in intensity in the 
three-dimensional images. This Gaussian convolution kernel comprises 
a two-dimensional Gaussian kernel on the plane (with a standard devi
ation of 0.8) and dz = [1, 3,1]T. The 3D Gaussian convolution is repre
sented by the equation: 

Sσ
o(x, y) = gσ

xy ⊗ Sq
o (7)  

Mσ(x, y) = dz ⊗ Sσ
o(x, y) (8) 

Where Sσ
o(x, y) represents the feature after the two-dimensional 

Gaussian filtering, gσ
xy represents the Gaussian kernel in the xy plane,Sq

o 

represents the single-channel multi-dimensional oriented self-similarity 
feature, Mσ(x, y) represents the template feature after the three- 
dimensional Gaussian filtering,dz represents the Gaussian kernel in the 
z-direction,⊗ represents the convolution operation, and σ is the standard 
deviation of the Gaussian convolution kernel. 

Next, normalization is applied to scale the feature vector Mσ(x, y) to 
the same scale, enhancing its robustness. It can be represented by 
equation (9): 

Mσ
i (x, y) =

Mσ
i (x, y)̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑w

i=1

⃒
⃒Mσ

i (x, y)
⃒
⃒2 + ε

√ (9) 

To prevent division by zero, the value of ε is set to a non-zero 
extremely small constant. 

Finally, the features of Mσ
i (x, y) are combined to form the multi- 

dimensional oriented self-similarity feature map MOSS(x, y). It can be 
expressed using the equation (10): 

MOSS(x, y) =
{

Mσ
i (x, y)

}
, i = [1, 2, 3⋅⋅⋅,w] (10) 

where w represents the dimension of the sparsified multi- 
dimensional oriented self-similarity features. 

4. Experimental results 

To evaluate the performance of the MOSS algorithm, this study 
compared it with seven advanced algorithms, including SIFT (Lowe, 
1999), PSO-SIFT (Ma et al., 2017), RIFT (Li et al., 2020), OSS (Xiong 
et al., 2021), MS-HLMO (Gao et al., 2022), HOWP (Zhang et al., 2023), 
and SRIF (Li et al., 2023b). To ensure a fair comparison, the provided 
codes from the respective authors were utilized, and optimal parameters 
were set. The image scale difference was set to 1.2, the number of pyr
amid layers was set to 6, and the threshold for coarse outlier rejection 
was set to 3 pixels, with a minimum of 4 matched point pairs required 
(Yao et al., 2022). The parameters were fine-tuned for optimal perfor
mance, with a neighborhood radius (R) of 4 in the hybrid feature coarse 
matching stage, a template window size of 96 in the fine matching under 
multi-dimensional oriented self-similarity features stage, and a sparsi
fication interval (St) of 2 for generating the multi-dimensional oriented 
self-similarity template features. In the MOSS algorithm, the calculation 
of the number of extracted feature points is given by: 

PTnums = round(M*N*K) (11) 

PTnums represents the number of extracted feature points, where M 
and N represent the length and width of the image, and K is a propor
tionality factor for determining the number of extracted feature points. 

A parameter analysis was conducted for K, with its values ranging from 
0.001 to 0.009. In the text, it was set to 0.003. Further details are dis
cussed in Section 4.3. 

The experiments were conducted using Matlab R2018a and per
formed on the following experimental platform: AMD Ryzen 9 5900HX 
with Radeon Graphics processor running at a frequency of 3.30 GHz, 64 
GB of memory, and Windows 10 x64 operating system. 

4.1. Experimental dataset 

This study utilized an experimental dataset comprising six categories 
of MRSI pairs, including multi-temporal optical images, infrared and 
optical images, day and night images, SAR and optical images, map and 
optical images, and optical and depth images. The dataset consists of a 
total of 48 pairs of MRSI, with 8 pairs of images for each data type. For 
demonstration purposes, one image pair from each data type was 
selected as shown in Fig. 3. This dataset of MRSI encompasses nearly all 
application scenarios of MRSI matching. Due to differences in time, 
lighting conditions, and sensors, significant challenges exist in terms of 
noise interference, NRD, and geometric transformation differences be
tween image pairs. Over 10 well-distributed ground control points were 
manually collected for each image pair to evaluate the accuracy of 
matched correspondences using the MOSS algorithm. Therefore, this 
dataset can be used to test the performance of the MRSI registration 
algorithms. 

4.2. Evaluation metrics 

The MOSS algorithm in this study was qualitatively and quantita
tively evaluated to comprehensively validate its performance. Five 
metrics: success rate (SR), number of correct matches (NCM), matching 
time (MT), standard deviation (SD) and root mean square error (RMSE). 

SR denotes the rate of successful matches. This measure indicates the 
resilience of the matching technique when employed on particular cat
egories of MRSI pairs. NCM refers to the number of image pairs with 
more than 20 matched corresponding points while excluding image 
pairs with RMSE greater than 7 pixels. The count of matched pairs with 
RMSE within 7 pixels is considered the NCM. MT refers to the execution 
time of the matching algorithm, used to measure the efficiency of the 
matching algorithm. SD is an indicator to evaluate the uniformity of 
feature point extraction (Yao et al., 2022). It measures the distribution of 
feature points within a defined standard deviation box, which is a fixed 
area used to determine the neighborhood of feature points. For each 
standard deviation box, the standard deviation of feature points within 
the box is calculated. The standard deviation measures the dispersion of 
the data, and smaller the standard deviation, the more evenly distrib
uted the points are within the box. RMSE indicates the accuracy of the 
match. The mathematical representation of RMSE is presented in 
Equation (12). 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

(
∑N

i=1

[
(x′

i − x″
i)

2
+ (y′

i − y″
i)

2 ]
)√

√
√
√ (12) 

where N is the number of ground truth points, and 
(
x″

i, y″
i
)

is the 
coordinate of the i-th ground truth point 

(
x′

i, y′
i
)

converted by corre
spondence matching. 

4.3. Parameter sensitivity analysis 

To comprehensively evaluate the performance of the MOSS algo
rithm, an analysis of its four core parameters was conducted. The pa
rameters are the neighborhood radius (R), the template window size 
(Tw), the sparsification interval (St) and the proportionality factor (K) for 
extracting feature points. The RMSE, NCM, and MT were used as eval
uation metrics to measure the impact of these parameters. The specific 
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parameter settings are shown in Table 1. In Fig. 4(b), R and St jointly 
determine the dimensions of the multi-dimensional oriented self- 
similarity features. Therefore, a comprehensive analysis of these two 
factors can reveal their impact on the matching results. By adjusting and 
evaluating these parameters, the optimal parameter configuration was 
obtained to achieve the best matching performance. This parameter 
selection not only achieved desirable results in terms of RMSE and NCM 
but also completed the matching task within an acceptable time range. 
The units for RMSE are pixels, for NCM are the number of points, and for 
MT are seconds. 

Then, we tested the performance of MOSS with different parameter 
settings using 48 sets of MRSI data. Fig. 4(a) illustrates the matching 
results at different values of Tw. As Tw increases from 56 to 96, the NCM 
results show a steady upward trend, reaching 420. However, when Tw 
exceeds 96, NCM starts to slightly decrease, then slightly increases again 
until reaching Tw = 136, where NCM stabilizes at around 430. For 
RMSE, the lowest value is achieved at Tw = 96, which is 1.86 pixels. At 
this point, the MT is maintained at a relatively low level. Considering 
both NCM, MT and RMSE, setting Tw to 96 can achieve the highest ac
curacy and abundant matching correspondences, thus it is recom
mended to set Tw as 96. 

Fig. 4(b) displays the results at different values of R and St. From the 
graph, it can be observed that as R increases, the NCM count also in
creases, but at the same time, the time consumption increases, resulting 
in decreased matching efficiency. Under the same R value, when St 
varies between 1 and 6, NCM shows a decreasing trend. Considering the 
RMSE factor, the optimal parameter settings are R = 4 and either St = 1 
or St = 2. However, it was found that only when R = 4 and St = 2 ensured 
a good accuracy-efficiency trade-off, that is, with higher RMSE and NCM 
values and the highest matching efficiency. As R increases, although 
more matching points can be obtained, the matching efficiency de
creases as the increase in the number of matching points cannot 
compensate for the decrease in matching accuracy and the increase in 
time consumption. Therefore, this study selects R = 4 and St = 2 as the 
parameter settings with high matching efficiency and optimal accuracy. 

Fig. 4(c) illustrates the results under different settings of the feature 
point extraction proportionality factor K. From the graph, it can be 
observed that as K increases, the number of NCMs gradually rises. 
However, simultaneously, there is an increase in time consumption, 

leading to a decline in matching efficiency. Taking into account the 
RMSE factor, for K values greater than 0.003, some images experience 
matching failures due to unsuccessful feature point extraction, resulting 
in an increase in RMSE but still maintaining around 2 pixels. Therefore, 
considering K = 0.003 achieves a good balance between RMSE and NCM 
values while minimizing time consumption, achieving the highest 
matching efficiency. 

4.4. Experimental results 

4.4.1. Quantitative evaluation 
Table 2 shows the average results for the five indicators. Since the 

SIFT, PSO-SIFT and MS-HLMO algorithms performed poorly on this 
MRSI dataset and extracted very few feature points, the SD metric is not 
evaluated for these three algorithms. In Fig. 5(a), “Image Type 1″ rep
resents multi-temporal optical–optical, ”Image Type 2″ represents 
infrared-optical, “Image Type 3″ represents night-day, ”Image Type 4″ 
represents SAR-optical, “Image Type 5″ represents map-optical, and 
”Image Type 6″ represents depth-optical. In Fig. 5(b), the symbol +∞ 
indicates matching failure or RMSE > 7 pixels. SR is in %, NCM is in 
points, RMSE is in pixels and the unit of MT is seconds. 

Fig. 5 presents a comparison of matching results between the MOSS 
algorithm and seven other methods using two metrics, NCM and RMSE. 
As shown in Table 1, the SR of the SIFT method is only 41.7 %, with an 
average NCM of 27.90, which is the lowest among the six algorithms. 
The RMSE is 4.88 pixels, indicating the lowest matching accuracy. The 
PSO-SIFT algorithm’s matching performance is slightly better than the 
SIFT algorithm, with an SR of 62.5 % and an average NCM of 75.69. The 
RMSE is 4.57 pixels. However, the PSO-SIFT algorithm is more sensitive 
to signal-to-noise interference. Thus, the applicability of both the SIFT 
and PSO-SIFT algorithms is limited in MRSI matching scenarios. 

The results of the RIFT algorithm are represented by a green dashed 
line. This algorithm uses image frequency domain features for matching 
and significantly improves matching performance through the 
maximum index map descriptor. The SR is improved to 75.0 %, and the 
average NCM is 136.13. With an SD of 1.02, it indicates a relatively 
uniform distribution of extracted feature points. The average RMSE is 
3.82 pixels, and the RMSE results fluctuate due to the algorithm’s lack of 
support for scale differences. 

Fig. 3. Partial display of the MRSI dataset.  

Table 1 
Recommended parameter settings for the MOSS algorithm.  

Parameter Value Fixed Parameter 

Tw Tw = [56,64,72,80,88,96,104,112,120,128,136] R = 4, St = 2, K = 0.003 
St St = [1,2,3,4,5,6] Tw = 96, K = 0.003 
R R = [3,4,5] Tw = 96, K = 0.003 
K K = [0.001,0.002,0.003,0.004,0.005,0.006,0.007,0.008,0.009] Tw = 96, R = 4, St = 2  
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The results of the OSS algorithm are represented by a purple dashed 
line. This algorithm utilizes offset mean filtering for fast computation of 
self-similarity features. It shows good SR results, reaching 91.7 %, with 
an SD of 1.12, indicating a moderate level. However, the NCM is rela
tively low, with an average NCM of 106.04, lower than RIFT, HOWP, 
SRIF and MOSS algorithms. This is because the LSS descriptor has low 
discriminative power and cannot capture rich NCM. The RMSE of this 
algorithm is relatively low among the eight methods, with an average 
RMSE of 2.45 pixels. 

The results of the HOWP algorithm are represented by a yellow 
dashed line. This algorithm achieves successful matches in most of the 
data, with an SR of 95.8 %, an average NCM of 261.19, and an average 
RMSE of 2.09 pixels, second only to the MOSS algorithm. However, the 
SD is 1.48, indicating uneven distribution of extracted feature points, 
and the algorithm lacks robust rotation invariance for MRSI matching 
with large rotation angles. 

The results of the MS-HLMO algorithm are represented by the brown 
dashed line. This algorithm utilizes Generalized Gradient Location and (a) Matching results of different Tw.

(b)  Matching results of different R and St.

(c) Matching results of different K.

Fig. 4. Evaluation results of the four parameters.  

Table 2 
Evaluation results of the eight methods on five evaluation indicators.   

SIFT PSO-SIFT RIFT OSS HOWP MS-HLMO SRIF MOSS 

SR 41.7 % 62.5 % 75 %  91.7 %  95.8 % 60.42 % 75 % 100 % 
NCM 27.90 75.69 136.13  106.04  261.19 78.83 229.75 420.52 
RMSE 4.88 4.57 3.82  2.45  2.09 4.51 3.94 1.86 
MT 4.23 15.62 6.23  18.65  9.32 53.20 5.89 15.56 
SD / / 1.02  1.12  1.48 / 1.47 0.87  

(a) NCM results for eight methods

(b) RMSE results for the eight methods

Fig. 5. Test results of the eight methods.  
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Orientation Histogram (GGLOH) to construct feature descriptors, 
providing rotation and scale invariance. The algorithm exhibits poor 
applicability for SAR image matching, with an overall SR result of only 
60.42 %. This is attributed to the limited number of successfully 
matched points, making it challenging to assess the uniformity of the 
extracted feature points. Consequently, standard deviation is not sta
tistically analyzed. The NCM is relatively low, with an average NCM of 
78.83, only slightly higher than the SIFT and PSO-SIFT algorithms. The 
RMSE of this algorithm is relatively high among the eight methods, with 
an average RMSE of 4.51 pixels. 

The results of the SRIF algorithm are represented by the blue dashed 
line. The algorithm introduces a Local Intensity Binary Transformation 
(LIBT) for feature description, achieving successful matches in most data 
with an SR of 75 %. However, it is susceptible to MRSI signal-to-noise 
interference, resulting in failures in matching certain SAR and day- 
night images. The average NCM is 229.75, and the average RMSE is 
3.94 pixels, with an SD of 1.47. The algorithm exhibits a relatively 
uniform distribution of extracted feature points. The algorithm dem
onstrates fast processing speed but lacks high matching accuracy, oc
casionally failing to register certain images, indicating a lack of robust 
registration performance. 

The results of the MOSS algorithm are represented by a red solid line, 
showing the most robust matching results. The MOSS algorithm suc
cessfully matches all 48 pairs of MRSI, with an SR of 100 % and the 
highest average NCM of 420.52. The SD is the lowest at 0.87, indicating 
a uniform distribution of extracted feature points. The lowest average 
RMSE is 1.86 pixels. The MOSS algorithm can handle geometric trans
formation differences, nonlinear radiometric differences, illumination 
differences, and contrast differences in MRSI, exhibiting scale invariance 
and rotation invariance. It achieves high-precision identification of 
corresponding points while maintaining geometric invariance in multi- 
modal matching. 

After fair testing, as shown in Table 2, the MOSS algorithm exhibits 
an average matching time of 15.56 s, performing better than OSS, PSO- 
SIFT and MS-HLMO algorithms but slightly inferior to SIFT, RIFT, 
HOWP, and SRIF algorithms. It is noteworthy that SIFT performs poorly 
in the majority of matches, making it less suitable for multi-modal 
matching. In comparison, RIFT, HOWP, and SRIF algorithms belong to 
the field of feature matching, showing slightly superior efficiency to the 
algorithm presented in this paper. However, RIFT does not support scale 
differences in images, HOWP is not applicable to large rotation differ
ences, and the SRIF algorithm is significantly affected by MRSI signal-to- 

Fig. 6. Matching results of the MOSS algorithm compared with seven other algorithms.  
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noise ratio interference, with some shortcomings in modality adapt
ability. Simultaneously, our proposed MOSS algorithm employs a hybrid 
matching framework, encompassing both feature matching and class 
template matching. We further calculated the average matching times 
for its feature matching and template-like matching components, which 
are 9.3 s and 6.26 s, respectively, demonstrating a notably significant 
computational efficiency. Therefore, despite the slightly higher time 
consumption of the MOSS algorithm compared to the latest feature 
matching algorithms, it excels overall in terms of matching the quantity 
of corresponding points and matching accuracy compared to other 
algorithms. 

In conclusion, the MOSS algorithm generates more robust matching 
results in MRSI matching tasks and demonstrates superior overall per
formance compared to the other seven algorithms. 

4.4.2. Qualitative evaluation 
In order to further demonstrate the performance of the MOSS algo

rithm, this study also conducted a qualitative evaluation based on the 
matching results. The matching outcomes of the MOSS algorithm and 
the seven comparative methods are depicted in Fig. 6. 

Based on Fig. 6, it can be observed that the SIFT algorithm performs 
the worst in terms of matching performance. The PSO-SIFT algorithm 
has fewer corresponding points or even matching failures in optical and 
SAR images with significant nonlinear radiometric differences. The RIFT 
method, which extracts features based on the phase-consistent 
maximum and minimum moment images, balances the number and 
repeatability of features. Its proposed maximum index map descriptor 
has more robust matching performance but lacks scale invariance. As 
shown in the figure, its performance is poor in datasets with scale dif
ferences. The OSS algorithm, which utilizes offset mean filtering to 
rapidly compute self-similarity features, exhibits geometric invariance 
but has fewer and unevenly distributed corresponding points. The 
HOWP method shows excellent performance in handling small-angle 

rotational differences, but cannot handle large-angle rotational im
ages. The MS-HLMO algorithm matches a relatively small number of 
corresponding points, leading to a large registration error and poor 
applicability in matching SAR images. Although the SRIF algorithm is 
efficient, its matching results lack robustness. Matches failure may occur 
in certain modalities. The MOSS algorithm achieves robust matching of 
images with geometric differences and NRD while achieving high- 
precision identification of corresponding points. The experimental re
sults further validate the effectiveness and robustness of the MOSS 
algorithm. 

Fig. 7 showcases the matching results of the MOSS algorithm for the 
remaining 42 images, revealing its excellent performance in MRSI 
matching. As depicted in Fig. 7, the proposed MOSS algorithm exhibits 
robustness in MRSI matching. It effectively mitigates the noise inter
ference in multi-modal images and overcomes geometric trans
formations between different modalities, achieving scale and rotation 
invariance and yielding abundant NCM. Consequently, the MOSS algo
rithm holds great potential for applications in MRSI matching. 

Fig. 8 demonstrates the registration results of the MOSS algorithm 
using the chessboard pattern visualization method. In the displayed 
image chessboard patterns, the well-aligned overlapping regions be
tween the images can be clearly observed. Through quantitative calcu
lations based on ground truth points, registration errors within two 
pixels are achieved, enabling high-precision identification of matching 
points in MRSI registration. In general, the evaluation and analysis re
sults confirm the robustness of the proposed MOSS algorithm in dealing 
with noise interference, NRD, and geometric transformation differences 
between multi-modal images. The exceptional matching performance of 
the MOSS algorithm can be attributed to two primary factors. Firstly, the 
MOSS algorithm employs a hybrid feature matching framework that 
combines hybrid feature coarse matching with fine matching under 
multi-dimensional oriented self-similarity features. This approach 
effectively leverages the advantages of both feature matching and 

Fig. 7. Matching results of the MOSS algorithm.  
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template matching, enhancing the geometric invariance of features and 
the accuracy of matching. Secondly, the multi-dimensional oriented self- 
similarity template features constructed in the fine matching stage 
possess excellent feature representation capabilities, significantly 
improving matching accuracy. 

5. Discussion and analysis 

5.1. Scale invariance analysis 

Using a set of map-optical image pairs to assess the scale invariance 
performance of the MOSS algorithm. Firstly, the reference image was 
processed to generate 12 simulated images with scale intervals of 0.2, 
ranging from 0.6 to 3 times the original scale. Fig. 9 shows the matching 
results. It can be observed that as the scale difference increases, the 
number of NCM decreases gradually, but it is still sufficient for the 
registration requirements. In the hybrid feature coarse matching stage, a 
strategy of constructing a multi-scale Gaussian pyramid is adopted to 
ensure the uniform extraction of feature points from different scales. 
Therefore, the MOSS algorithm exhibits scale invariance. 

5.2. Rotation invariance analysis 

To validate the performance of MOSS in terms of rotation invariance, 
we further conducted matching tests using multiple sets of MRSI. Firstly, 
for each modality, a set of images was chosen, and the reference image 
was rotated in both clockwise and counterclockwise directions at in
tervals of 30 degrees, resulting in the generation of 6 directions (30◦, 
60◦, 90◦, 120◦, 150◦, and 180◦), resulting in 12 simulated images for 
each modality. Then, these 12 simulated images were used for matching 
tests, and the matching results were visualized. As shown in Fig. 10 (“-” 
denotes counterclockwise rotation), the MOSS algorithm consistently 
achieved successful matches and obtained abundant NCM even with 
rotation differences ranging from − 180◦ to 180◦. This is because, in the 
hybrid feature coarse matching stage, the algorithm incorporates ori
ented self-similarity descriptors that exhibit rotation invariance. These 
descriptors assign a dominant orientation to each feature point and 
generate orientation histograms based on self-similarity feature values 
to specify the dominant orientation. In the fine matching under multi- 
dimensional oriented self-similarity features stage, an angle weighting 
strategy is applied to the multi-channel self-similarity maps to construct 

Fig. 8. Partial registration results of the MOSS algorithm.  
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multi-dimensional oriented self-similarity features, which greatly en
hances the rotation invariance of self-similarity template features. 

In conclusion, the MOSS algorithm demonstrates rotation invari
ance. Compared to other methods, the proposed MOSS algorithm ex
hibits the most robust MRSI matching performance in handling 
challenges such as noise interference, NRD, scale and rotation invari
ance, and matching accuracy. 

6. Conclusion 

This study proposes a lightweight and hybrid feature-guided 

registration algorithm for MRSI called MOSS, which addresses the trade- 
off between geometric invariance and matching accuracy in MRSI 
registration effectively. In the hybrid feature coarse matching stage, the 
geometric transformation differences in multi-modal images were 
overcome by using oriented self-similarity descriptors. In the fine 
matching under multi-dimensional oriented self-similarity features 
stage, a template-like matching algorithm based on multi-dimensional 
oriented self-similarity features was proposed, with a focus on the 
construction process of multi-dimensional oriented self-similarity fea
tures. Experimental results on various multi-modal image pairs with 
differences in illumination, contrast, scale, and rotation were compared 

Fig. 9. Matching results of the MOSS algorithm under different scale differences.  

Fig. 10. Matching results of the MOSS algorithm under different rotation differences.  
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with several registration algorithms (SIFT, PSO-SIFT, RIFT, OSS, HOWP, 
MS-HLMO and SRIF). The quantitative analysis shows that the MOSS 
algorithm outperforms the SIFT algorithm by 15.1 times, the PSO-SIFT 
algorithm by 5.6 times, the MS-HLMO algorithm by 5.3 times, the OSS 
algorithm by 4 times, the RIFT algorithm by 3.09 times, the SRIF algo
rithm by 1.8 times and the HOWP algorithm by 1.6 times in terms of the 
NCM. The RMSE achieved the lowest value among all the registration 
methods, within 2 pixels. The MOSS algorithm exhibits better perfor
mance in matching scale, rotation, and translation differences, demon
strating scale invariance and rotation invariance. In the chessboard 
pattern visualization, it can be observed that the object edges are 
consistently connected without any crossing patterns, providing quali
tative evidence for the effectiveness of the proposed method. To fully 
evaluate the performance of this method, the four core parameters were 
also analyzed, and the optimal parameter configuration was 
determined. 

Through MOSS shows high-precision and robust registration per
formance for MRSI registration, it still has certain limitations. MOSS 
relies on texture structure features in the images, which may result in 
suboptimal registration performance in mountainous or complex scenes 
where distinct texture structures are lacking. Future work will optimize 
MOSS’s matching ability to images with weak texture, and its general
izability to other modalities will also be enhanced. 
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