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RANSAC Back to SOTA: A Two-Stage Consensus
Filtering for Real-Time 3D Registration

Pengcheng Shi , Shaocheng Yan , Yilin Xiao , Xinyi Liu , Yongjun Zhang , Member, IEEE, and Jiayuan Li

Abstract—Correspondence-based point cloud registration
(PCR) plays a key role in robotics and computer vision. However,
challenges like sensor noises, object occlusions, and descriptor
limitations inevitably result in numerous outliers. RANSAC family
is the most popular outlier removal solution. However, the requisite
iterations escalate exponentially with the outlier ratio, rendering
it far inferior to existing methods (SC2PCR [Chen et al., 2022],
MAC [Zhang et al., 2023], etc.) in terms of accuracy or speed.
Thus, we propose a two-stage consensus filtering (TCF) that
elevates RANSAC to state-of-the-art (SOTA) speed and accuracy.
Firstly, one-point RANSAC obtains a consensus set based on length
consistency. Subsequently, two-point RANSAC refines the set via
angle consistency. Then, three-point RANSAC computes a coarse
pose and removes outliers based on transformed correspondence’s
distances. Drawing on optimizations from one-point and two-point
RANSAC, three-point RANSAC requires only a few iterations.
Eventually, an iterative reweighted least squares (IRLS) is
applied to yield the optimal pose. Experiments on the large-scale
KITTI and ETH datasets demonstrate our method achieves up
to three-orders-of-magnitude speedup compared to MAC while
maintaining registration accuracy and recall.

Index Terms—Point cloud registration, correspondence,
consensus filtering, RANSAC, iteratively reweighted least squares.

I. INTRODUCTION

POINT cloud registration (PCR) seeks to estimate a six-
degree-of-freedom (6-DOF) pose to align point clouds,

which is crucial for 3D reconstruction [3], [4], [5], [6], robotic
navigation [7], [8], [9], [10], and aerial photogrammetry [11],
[12], [13]. Iterative closest point (ICP) [14] pioneers a local
registration pipeline that iteratively searches correspondences
and minimizes their distances. Unfortunately, it often converges
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Fig. 1. Average registration recall and runtime for ETH’s tree sequence. The
runtime denotes the average time for a single registration. Both our method and
MAC achieve a 100% recall. Remarkably, ours accomplishes this in just 59 ms,
leading to a three-orders-of-magnitude improvement over MAC’s 331587 ms.

to erroneous local optima under notable viewpoint changes [15],
[16]. To overcome this, researchers derive coarse poses from
feature correspondences [17], [18], known as correspondence-
based PCR. However, sensor noises, object occlusions, and
descriptor limitations inevitably lead to outliers, presenting great
challenges for registration [19], [20].

Random sample consensus (RANSAC) [21], [22], [23] is the
most popular solution to handle correspondences with outliers.
It follows a generation-and-selection strategy that iteratively
samples correspondences to generate and verify hypotheses.
However, the requisite iterations escalate exponentially with the
outlier ratio, which renders them far inferior to existing methods
in accuracy and efficiency.

Thus, we propose a two-stage consensus filtering (TCF) in-
corporating one-point and two-point RANSAC steps before the
three-point RANSAC to ensure accuracy and significantly boost
efficiency. It begins with a one-point RANSAC to remove corre-
spondence outliers via length constraints. Afterward, a two-point
RANSAC evaluates the angle consistency to get a more reli-
able consensus. This design significantly reduces the iteration
number by lowering the sampling dimension and also decreases
the outlier ratio. As a result, the three-point RANSAC requires
only a few iterations, enhancing registration performance. Fol-
lowing this, three-point RANSAC computes a coarse pose and
removes outliers based on transformed correspondence’s dis-
tances. Finally, a scale-adaptive Cauchy iteratively reweighted
least squares (IRLS) is applied to calculate the optimal pose. As
depicted in Fig. 1, our method demonstrates SOTA performance
and achieves a speedup of up to three orders of magnitude. Our
contributions are as follows:

2377-3766 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Wuhan University. Downloaded on January 04,2025 at 07:50:20 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-2504-9890
https://orcid.org/0009-0008-9749-8920
https://orcid.org/0000-0002-9827-6149
https://orcid.org/0000-0001-5333-8054
https://orcid.org/0000-0001-9845-4251
https://orcid.org/0000-0002-9850-1668
mailto:shipc_2021@whu.edu.cn
mailto:shaochengyan@whu.edu.cn
mailto:liuxy0319@whu.edu.cn
mailto:zhangyj@whu.edu.cn
mailto:ljy_whu_2012@whu.edu.cn
mailto:yilin.xiao@connect.polyu.hk
https://github.com/ShiPC-AI/TCF


11882 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 12, DECEMBER 2024

� We devise a two-stage filtering method that swiftly elimi-
nates the majority of correspondence outliers, facilitating
RANSAC to reach SOTA levels.

� Based on our filtering method, we formulate a complete
PCR pipeline. On large-scale outdoor datasets, it markedly
enhances efficiency while ensuring accuracy.

II. RELATED WORK

A. Classical PCR

RANSAC Family: This type of method follows a generation-
and-selection strategy. GC-RANSAC [23] devises a locally
optimized pipeline alternating between graph cut and model
re-fitting. CG-SAC [18] evaluates correspondence compatibility
by calculating distances between salient points and employs a
compatibility-guided strategy to reduce sampling randomness.
SC2-PCR [1] evaluates correspondence similarity using second-
order spatial compatibility, applies a global spectral technique
to identify reliable seeds, and uses a two-stage approach to
expand each seed into a consensus set. To expedite processing,
PCR-99 [24] devises an improved sample ordering guided by
pairwise scale consistency and a triplet scale consistency-based
outlier rejection scheme. Their performance depends on model
parameter selection and requires tuning for specific problems.
Runtime increases exponentially with large-scale data, espe-
cially when the outliers prevail.

Graph Theory: These methods model the correspondence set
as a graph and use graph theories to achieve robust registration.
MAC [2] loosens the maximum clique constraint to mine more
local consensus information from a graph. It identifies maximal
cliques and performs node-guided selection based on the clique
with the highest graph weight. CLIPPER [25] ensures dense
subgraph solutions with continuous relaxation and achieves
efficiency using projected gradient ascent and backtracking line
search. ROBIN [26] checks the compatibility of measurement
subsets using invariants and prunes outliers by finding the max-
imum clique or k-core in the graph induced. TEASER [17]
reformulates the registration problem using a truncated least
squares (TLS) cost and introduces a graph-theoretic framework
to decouple and sequentially solve scale, rotation, and translation
estimation. Graph-based methods effectively leverage topology
information and handle complex scenes but struggle with high
algorithmic complexity.

Optimization-based: This category of methods progressively
optimizes error functions to refine the pose. Iterative closest
point (ICP) [14] pioneers a local registration pipeline that iter-
atively searches correspondences and minimizes Euclidean dis-
tances. Following this, several works seek to advance ICP from
diverse perspectives, such as incorporating the point-to-plane
metric [27], probabilistic models [28], and branch-and-bound
(BnB) theories [29]. Despite robust results, poor initial guess
tends to yield wrong results. Fast global registration (FGR) [4]
formulates a dense objective featuring a scaled Geman-McClure
estimator as the penalty function and alleviates the impact of
local minima via graduated non-convexity. Yang et al. [30]
propose a versatile approach for robust estimation that uti-
lizes modern non-minimal solvers, extending the applicability

Fig. 2. Registration recall of RANSAC at different iterations. We create 200
pairs of point clouds containing 2% inliers to evaluate the registration recall.

of Black-Rangarajan duality and graduated non-convexity to
various spatial perception tasks.

B. Learning-Based PCR

End-to-end Direct Registration: End-to-end methods opti-
mize all steps within a unified framework, directly producing
registration results through the network. Deep Closest Point
(DCP) [19] employs DGCNN [31] for correspondence iden-
tification and a pointer network [32] for soft matching, es-
timates the rigid transformation with a differentiable single
value decomposition (SVD) layer. However, it struggles with
partially overlapping point clouds. REGTR [11] employs a
transformer network to estimate the probability of each point
residing in the overlapping region, thereby supplanting explicit
feature matching and RANSAC [21]. CCAG [5] employs cross-
attention mechanisms and depth-wise separable convolutions
to capture point cloud relationships. Additionally, it introduces
an adaptive graph convolution multi-layer perceptron (MLP) to
augment node expressiveness. Although proficient with syn-
thetic datasets, these methods may falter on real-world data,
limiting their accuracy and practical utility.

Descriptor Learning: Descriptor learning mainly aims to
create sparse descriptions for local 3D patches using a weight-
sharing network or produce dense descriptions for the entire
point cloud in a single forward pass. The pioneering work
3DMatch [3] converts local 3D patches into volumetric represen-
tations and then derives descriptors via a siamese convolutional
network. FCGF [33] adopts sparse tensor representation and
employs Minkowski convolutional neural networks as the back-
bone to learn dense features. Several works successively boost
the feature descriptiveness via N-tuple loss [34], folding-based
encoder [35], and spherical CNNs [36]. While they eliminate
manual feature design and bolster robustness, substantial label-
ing, training, and optimization remain time-consuming, partic-
ularly for low-cost robot platforms.

III. METHOD

A. Motivation

The minimum iteration, Nransac, required by RANSAC is
computed as:

Nransac =

⌈
log(1− λ)

log (1− (1− ϑ)s)

⌉
(1)
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Fig. 3. Overall framework and outlier removal illustration. (a): Our method
cascades one-point, two-point, and three-point RANSAC, followed by scale-
adaptive Cauchy IRLS, each involving an iterative process. The raw corre-
spondence C is progressively refined into subsets I′, I′′, and I′′′, satisfying
I′′′ ⊆ I′′ ⊆ I′ ⊆ C. The scale-adaptive Cauchy IRLS computes the final 6-DoF
pose from I′′′. (b): The blue and black points represent the 3D correspondences.
The green lines indicate inliers and red lines represent outliers. IR stands for the
inlier ratio.

where ϑ is the outlier ratio. s denotes the sample size. �·� is
a ceiling function. λ represents the probability of at least one
perfect minimal subset, preset to a default value of 0.99. As
shown in Fig. 2, we evaluate the registration recall of 200 pairs
of point clouds at different iterations. As iterations increase from
103 to 105 and 106, registration recall improves from 2% to
5% and eventually reaches 100%. However, the outlier ratio in
3D correspondence is notably high, which leads to a substantial
increase in RANSAC iterations based on (1). Carrying excessive
iterations is impractical for real-world applications, necessitat-
ing a limit to balance efficiency and accuracy. Revisiting (1)
reveals that the sample size impacts the iteration number besides
the outlier ratio. Specifically, reducing the sample size can
also exponentially decrease the required iterations. Therefore,
we propose a two-stage consensus filtering (TCF) comprising
one-point and two-point RANSAC. One-point RANSAC applies
length constraints to eliminate outliers, followed by two-point
RANSAC to enhance consensus reliability via angular consis-
tency. This approach demands fewer samples than three-point
RANSAC and reduces the outlier ratio. We then feed the refined
correspondence to the three-point RANSAC. With a notably
decreased outlier ratio, the required iterations decrease, thus
leading to enhanced performance.

B. Problem Formulation

Given two point clouds P = {pi ∈ R
3, i = 1, . . ., Np} and

Q = {qi ∈ R
3, i = 1, . . ., Nq} to be aligned, we begin by ex-

tracting local features to establish initial correspondences C =
{ck = (pk, qk), k = 1, . . ., Nc}. We employ a two-stage filter-
ing process, i.e., one-point and two-point RANSAC, to obtain
the maximum consensus set. Eventually, we employ three-point
RANSAC and IRLS to estimate the rigid transformation: a
rotation matrixR ∈ R

3×3 and a translation vector t ∈ R
3. Fig. 3

illustrates our registration pipeline.

Algorithm 1: One-Point RANSAC.
Input: Correspondences C
Initialize: λ = 0.99, |I′| = 0, i = 0, N (1)

ransac = 1.
1: while i ≤ N

(1)
ransac do

2: Randomly select a point correspondence ck from C
3: Find a consensus set Ii including ck via (2) and (3)
4: if |Ii| ≥ |I′| then
5: |I′| = |Ii|, I′ = Ii
6: Update N

(1)
ransac using (4)

7: end if
8: i = i+ 1
9: end while
Output: Correspondences I′

Fig. 4. One-point consensus generation. Same-colored points indicate a point
correspondence. Dotted black lines show correct edge correspondences, while
red indicates erroneous ones. An edge correspondence is correct if their length
discrepancy < 2τ . For (pk, qk), applying length consistency identifies a maxi-
mal consensus comprising four inliers and one outlier marked in yellow.

C. One-Point RANSAC

As described in Algorithm 1, one-point RANSAC takes the
initial correspondence C as input and outputs a consensus set I′
based on length consistency. The main steps are as follows:

One-point Consensus Generation: As depicted in Fig. 4, for
a random point correspondence ck = (pk, qk), we compare it
with others to gather a maximal consensus set Ii.

Ii = {cj | cj ∈ C, ∀j, d(cj , ck) < 2τ} (2)

d(cj , ck) =
∣∣||pj − pk||2 − ||qj − qk||2

∣∣ (3)

where Ii ⊆ C is a correspondence subset including ck. i denotes
the current iteration number. || · ||2 means the L2 norm. k and
j are two indices of point correspondences. If cj and ck are
inliers, they should satisfy d(cj , ck) < 2τ . τ is a noise bound.
Our method automatically adjusts the noise bounds as the noise
level increases, ensuring the inliers continue to meet the criteria.
Thus, it remains effective despite higher noise.

Consensus Verification: Upon identifying a larger consensus
during the iteration, we update the minimal iteration requirement
N

(1)
ransac.

N (1)
ransac =

⎡
⎢⎢⎢

log(1− λ)

log
(
1− |I′||C|

)
⎤
⎥⎥⎥ (4)
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Algorithm 2: Two-Point RANSAC.

Input: Correspondences I′
Initialize: λ = 0.99, |I′′| = 0, i′ = 0, N (2)

ransac = 1.
1: while i′ ≤ N

(2)
ransac do

2: Randomly select two point correspondences
ci, cj ∈ I′

3: Find a subset Sij ⊆ I′ using (5)
4: Find a consensus set Ii′ ⊆ Sij using (6)–(8)
5: if |Ii′ | ≥ |I′′| then
6: |I′′| = |Ii′ |, I′′ = Ii′
7: Update N

(2)
ransac based on (9)

8: end if
9: i′ = i′ + 1

10: end while
Output: Correspondences I′′

Fig. 5. Angular discrepancy. The circled letter signifies a point, and the same
color denotes a point correspondence. Black dotted lines represent correct
edge correspondences, i.e., |p1p2 − q1q2| < 2τ and |p3p2 − q3q2| < 2τ . The
yellow outlier produces triangles with two similar edge lengths but different
shapes due to angle discrepancies.

where superscript (1) indicates one-point sampling. I′ denotes
the current optimal consensus set. When the iteration number i
surpasses N (1)

ransac, the algorithm terminates and outputs I′.

D. Two-Point RANSAC

While the consensus set meets length requirements, outliers
like the yellow correspondence still exist. Thus, we propose a
two-point RANSAC to refine the consensus. As summarized in
Algorithm 2, two-point RANSAC takes the result I′ of one-
point RANSAC as input and excludes outliers based on angle
consistency. The main steps are as follows:

Two-point Subset Sampling: We begin by randomly select-
ing two different point correspondences, ci = (pi, qi) and cj =
(pj , qj) from I′. Then, we compare them with others to collect a
subsetSij that simultaneously satisfies two length consistencies:

Sij = {ck | ck ∈ I′, ∀k, d(ck, ci) < 2τ, d(ck, cj) < 2τ} (5)

where ci, cj ∈ Sij is a correspondence subset of I′. d(·) is the
length discrepancy in (3).

Consensus Generation As illustrated in Fig. 5, despite two
edge correspondences maintaining length consistency, two tri-
angles still exhibit distinct shapes due to angle discrepancy.
Therefore, we propose angle consistency to encourage point
correspondences to form roughly congruent triangles, yielding

Fig. 6. β and two cases of correspondence distribution. We overlap the corre-
spondence cm = (pm, qm) for clarity. Given that ci and cj are two inliers, they
satisfy ||pipj | − |qiqj || ≤ 2τ . If cm is also an inlier, then ||pmpi| − |qmqi|| <
2τ and ||pmpj | − |qmqj || < 2τ . To ensure robust consensus, we further con-
strain the angle discrepancy α(cm, ci, cj) = (∠pipmqi + ∠pjpmqj) < β,
where ∠pipmqi ≈ arcsin a

|pmpi| , ∠pjpmqj ≈ arcsin c
|pmpj | , and a, c <

2τ . We set β to | arcsin τ
|pmpi| + arcsin τ

|pmpj | |.

a more robust consensus set Ii′ .
Ii′ = argmax

I⊆Sij
|I|, ∀ cm ∈ I, α(cm, ci, cj) < β (6)

α(cm, ci, cj) = ∠pipmqi + ∠pjpmqj (7)

β =

∣∣∣∣arcsin τ

|pmpi| + arcsin
τ

|pmpj |
∣∣∣∣ (8)

where i′ means the current iteration number. α(cm, ci, cj) de-
notes the angle disparity. Fig. 6 depicts the computation of β
and two cases of correspondence distribution.

Consensus Verification: This step is similar to that of the
one-point RANSAC. Upon identifying a larger inlier set during
the iteration, we immediately update the iteration’s termination
condition N

(2)
ransac.

N (2)
ransac =

⎡
⎢⎢⎢⎢⎢

log(1− λ)

log

(
1−

(
|I′′|
|I′|

)2
)
⎤
⎥⎥⎥⎥⎥

(9)

This step is similar to that of the one-point RANSAC. Upon iden-
tifying a larger inlier set during the iteration, we immediately
update the iteration’s termination condition N

(2)
ransac.

E. Three-Point RANSAC

After one-point and two-point RANSAC, we obtain a corre-
spondence subset satisfying length and angle constraints. De-
spite a notable increase in the inlier ratio, outliers may remain.
Hence, we use three-point RANSAC to identify a consensus set
I′′′ based on the distances of transformed correspondences.

I′′′ = argmax
Rk,tk

|I|, I ⊆ I′′

s.t., ∀(pi, qi) ∈ I, |Rkpi + tk − qi| < τ. (10)

where k means the iteration number. I represents a corre-
spondence subset, and (pi, qi) denotes a point correspondence.
We employ singular value decomposition (SVD) to compute
the rotation matrix Rk and translation vector tk from three
non-collinear correspondences.

Authorized licensed use limited to: Wuhan University. Downloaded on January 04,2025 at 07:50:20 UTC from IEEE Xplore.  Restrictions apply. 



SHI et al.: RANSAC BACK TO SOTA: A TWO-STAGE CONSENSUS FILTERING FOR REAL-TIME 3D REGISTRATION 11885

Algorithm 3: Scale-Adaptive Cauchy IRLS.

Input: Correspondences I′′′
Initialize: j = 1, Nj = 100, w1 = {1}1:|I′′′|,
|I1| = |I′′′|, μ = 1.3, emin = 0.01, γmin = 1.0

1: γ1
max←−− residuals e

R,t←−− SVD(Î ′1)
2: while j ≤ Nj do

3: Estimate residuals ej
Rj ,tj←−−− IRLS(wj , Ij)

4: Update inlier set Ij+1 by ej < 3γj
5: Update inlier residuals e′j+1 = ej [Ij+1] ⊆ ej

6: Update inlier weights wj+1 =
γ2
j

γ2
j+e′j+1

7: Update scale factor γj+1 = γj/μ

8: if |wj+1 ∗ e′j+1
2 − wj ∗ e′j2| < emin or γj+1 < γmin

then
9: R∗ = Rj , t

∗ = tj
10: break
11: end if
12: j = j + 1
13: end while

Output: Transformation (R∗, t∗)

F. Scale-Adaptive Cauchy IRLS

Traditional Cauchy estimation exhibits considerable devia-
tion from the ground truth in the first iteration if the outliers
exceed 50%. Correct inliers incur higher residuals and receive
smaller weights. Thus, we introduce a scale-adaptive Cauchy
IRLS [37] in Algorithm 3. We start by assigning equal weights
(w) to all correspondences (I′′′). We then progressively lower
the residual threshold based on a scale factor (γ) and preserve
inliers (I). γ decreases continuously via the constant μ = 1.3.
Upon iteration termination, we output the optimal transforma-
tion (R∗, t∗). Unlike FGR [4], scale-adaptive Cauchy IRLS uses
a novel Cauchy objective function and automatically excludes
outliers with control parameters during optimization. Addition-
ally, it provides the applications of space intersection, robust
feature matching, and point cloud registration.

IV. EXPERIMENTS

A. Experimental Setup

Datasets: As summarized in Table I, we select ETH [38]
and KITTI [39] for validation. The ETH dataset comprises 32
scans from five scenes (office, facade, courtyard, arch, and trees),
acquired using Z + F Imager 5006i and Faro Focus 3D scanners.
The KITTI dataset provides 11 Velodyne HDL-64E LiDAR
sequences across diverse scenarios. We choose sequences 01
(highway), 02 (urban+country), 03 (country), 06 (urban), and
09 (urban+country). We randomly sample 200 pairs of point
clouds per sequence.

Evaluation Metrics: We evaluate all methods via registration

recall rr = Nsuccess

Nall
, rotation error er = arccos

tr(Re(Rg)
T)−1

2 ,
and translation error et = ||te − tg||. tr(·) is the matrix trace. t
and R denote translation and rotation, respectively. Subscript g
denotes ground-truth values while e represents estimated ones.

TABLE I
DATASET DETAILS

Fig. 7. Visualization of registration results on the ETH dataset. Red and green
denote the source and target point clouds, respectively. IR refers to the inlier
ratio, and OR denotes the overlap ratio. er refers to the rotation error, and et
denotes the translation error.

Nsuccess is the count of successfully registered point cloud pairs
while Nall is the total number. Registration is successful if er ≤
5◦, et ≤ 0.5 m on the ETH dataset, and er ≤ 5◦, et ≤ 1 m on
the KITTI dataset.

Implementation Details: We select RANSAC10K [21],
RANSAC50K [21], TEASER [17], SC2-PCR [1], MAC [2],
and PCR-99 [24] for comparisons. We implement our method in
C++ on Ubuntu 20.04, running all experiments on an Intel Core
i9-10850K CPU. For ETH, we downsample each point cloud
with 0.1 m voxels, then extract ISS [40] keypoints and FPFH [22]
descriptors. We apply 0.3 m voxels for KITTI, randomly sample
5,000 points, and extract FPFH [22] descriptors. Two points
qualify as a correspondence if their descriptors rank in each
other’s top three. We set τ as the point cloud’s resolution. The
maximal distance for a valid correspondence is 0.3 m in the ETH
dataset and 0.6 m for the KITTI dataset.

B. Results on ETH

Recall and Accuracy: Fig. 7 depicts our registration results
on the ETH dataset and Table II outlines the registration results.
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TABLE II
REGISTRATION RESULTS ON THE ETH DATASET

TABLE III
REGISTRATION RESULTS ON THE KITTI DATASET

Courtyard, facade, and office have inlier ratios exceeding 5%
while challenging arch and trees only have around 1%. Our
method matches MAC in the recall, achieving top performance
in all five scenarios. It delivers the best translation accuracy in
the arch (0.04 m), courtyard (0.04 m), and trees (0.03 m), the
second-best in the facade (0.03 m) and office (0.06 m).It also
excels in rotational accuracy, leading in the courtyard (0.02◦) and
ranking second in the facade (0.11◦). Our rotation error exceeds
MAC, SC2PCR, and TEASER by 0.05◦, 0.09◦, and 0.07◦ in
the arch, office, and trees, respectively. These results showcase
that our method achieves comparable or superior registration
accuracy and recall to mainstream methods.

Running Efficiency: Our method is generally two to three or-
ders of magnitude faster than baseline methods. For example, on
arch, it outperforms RANSAC50, SC2PCR, MAC, and PCR-99
by 465, 187, 9041, and 221 times, respectively. On the courtyard,
it is 40, 198, 77, 8311, and 145 times faster than RANSAC10K,
RANSAC50K, SC2PCR, MAC, and PCR-99, respectively. As
MAC constructs a high-order graph and searches for the max-
imum clique, its time consumption significantly escalates with
higher correspondence numbers and inlier ratios. In contrast,
TCF shows minimal impact from correspondence quantity. It
merely requires an additional 31ms and 69ms for trees and
courtyard than the office, respectively, which underscores our
high efficiency.

C. Results on KITTI

Recall and Accuracy: Table III summarizes the registration
results on KITTI dataset. Fig. 8 depicts our registration results.
The large offset (about 17m) between point clouds degrades per-
formance for all methods. Sequence 01 is a high-speed scenario
characterized by significant distortion and feature deterioration,

Fig. 8. Visualization of registration results on the KITTI dataset. Red and
green denote the source and target point clouds, respectively. IR refers to the
inlier ratio, and OR denotes the overlap ratio. er refers to the rotation error, and
et denotes the translation error.

resulting in a low inlier ratio of 2.4%. Despite this, our method
achieves the highest recall (65%). It attains the second-highest
translation accuracy across all five sequences. Our rotation ac-
curacy slightly lags behind SC2PCR and MAC but stays within
a maximum deviation of 0.18◦. These results underscore that
our method excels in challenging environments like highways,
exhibiting higher registration recall.

Running Efficiency: Our method still demonstrates supe-
rior efficiency. In sequence 01, it outperforms RANSAC10K,
RANSAC50K, TEASER, SC2PCR, MAC, and PCR-99 by 28,
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TABLE IV
PERFORMANCE IMPROVEMENT WITH OUR METHOD

141, 2, 23, 451, and 155 times, respectively. Similarly, in se-
quence 06, our speeds surpass RANSAC10K, RANSAC50K,
TEASER, SC2PCR, MAC, and PCR-99 by 42, 205, 3, 35, 465,
2132, and 194 times, respectively. In sequence 09, our method
executes in 54 ms, significantly outperforming RANSAC10K,
RANSAC50K, TEASER, SC2PCR, MAC, and PCR-99, being
46, 221, 2, 28, 580, and 68 times faster, respectively. Our
approach offers comparable or superior performance to base-
line methods while significantly enhancing speed. The results
demonstrate our effectiveness and efficiency with low-overlap
data. Furthermore, these results reaffirm that our method elevates
the RANSAC family to SOTA performance.

D. Boosting Performance With TCF

As illustrated in Table IV, we feed our consensus set into other
method. The total runtime in the table comprises ours and the
baseline methods. Our approach boosts trees’ inlier ratio from
1.2% to 98%. All pipelines achieve 100% recall, with deviations
limited to 0.27◦ and 0.05 m. TEASER and PCR-99 enhance
the recall by 30% and 50%, respectively. TEASER, SC2PCR,
MAC, and PCR-99 are 332 ms, 9s, 330s, and 10s faster than
their original methods, respectively. We boost the inlier ratio in
sequence 01 jumps from 2.4% to 48%. TEASER, SC2PCR and
MAC demonstrate 12%, 15%, and 10% recall improvement,
respectively. TEASER, SC2PCR, MAC, and PCR-99 become
faster by approximately 70 ms, 2s, 30s, and 12s, respectively.
The results prove that cascading our method with other meth-
ods effectively boosts registration performance and facilitates a
qualitative leap in speed.

E. Noise Study

As shown in Fig. 9, we evaluate the registration performance
under various noise levels. In each, we randomly generate 3000
correspondences between −100 m and 100 m, satisfying the
same transformation. Then, we replace 10%, 50%, 90%, 95%,
and 98% correspondences with random values between−100 m
and 100 m as outliers. Finally, we add 50 levels of Gaussian
noise, with standard deviations σnoise from 0.1 m to 5 m, to the
remaining inliers. We run 100 tests to compute recall, average
rotation error, and translation error. Registration is successful if
the RMSE of true inliers is less than three times σnoise . The

Fig. 9. Registration across various noise levels. (b): Rotation (left) and trans-
lation (right) errors are shown in one figure.

TABLE V
OUTLIER REMOVAL ANALYSIS FOR THREE RANSAC MODULES

TABLE VI
ABLATION EXPERIMENTS ON REGISTRATION PERFORMANCE FOR 3R AND IRLS

results show an overall recall of over 98%. With 98% outliers,
the translation error stays below the noise level, and the rotation
error remains under 2◦, highlighting the method’s robustness.

F. Ablation Study

Outlier Removal: Table V examines the contributions of our
three RANSAC modules in outlier removal. IR is the inlier ratio
while IN means the inlier number. In the arch, the slowest three-
point RANSAC (3R) requires 3234 ms and achieves an inlier
ratio of 27%. The fastest one-point RANSAC (1R) completes
in 20 ms, delivering an inlier rate of 21%. Compared to 3R,
1R+2R+3R increases the inlier ratio by 58% and reduces runtime
by 3202 ms. In sequence 01, 1R remains the fastest, taking 29 ms
with 8% inliers. The slowest 3R requires 3139 ms and achieves
28% inliers. 1R+2R+3R attains the highest inlier ratio at 38%,
reduces runtime by 3089 ms compared to 3R, and improves the
inlier ratio by 30% relative to 1R. The results illustrate that our
method decreases iterations for 3R and preserves a high inlier
ratio.

PCR Performance: Table VI examines the contributions of 3R
and IRLS to final registration performance. In Arch, 3R+IRLS
reduces rotation errors by 0.06◦ and translation errors by 0.02 m
compared to using only 3R. It shows improvements of 0.04◦

and 0.01 m upon IRLS. It takes only 1–2 ms longer than 3R and
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IRLS. In sequence 06, 3R+IRLS enhances recall by 1% over
other pipelines. Compared to 3R, it reduces angle error by 0.35◦

and translation error by 0.07 m. Compared to IRLS, it reduces
errors by 0.12◦ and 0.02 m. It takes just an extra 4 ms than the
fastest 3R. These results indicate: (1) with most outliers removed
by 1R+2R, the subsequent registration converges quickly, and
(2) our overall pipeline (1R+2R+3R+IRLS) balances accuracy
and efficiency.

V. CONCLUSION

We propose a two-stage consensus filtering method for
correspondence-based registration. Our approach restores the
RANSAC family to SOTA performance. By combining length
consistency with angle consistency, we eliminate the majority
of outliers, thus reducing the requisite iterations by three-point
RANSAC. We combine three RASNAC modules and iterative
weighted least squares into a complete registration pipeline
that accelerates registration without compromising accuracy.
Experimental results demonstrate a three-orders-of-magnitude
speed enhancement while maintaining high registration quality.
Moreover, integrating our method with existing approaches can
notably improve efficiency and recall.
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