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OccFaçade: enabling precise building façade parsing in large 
urban scenes with occlusion
Yongjun Zhang, Dongdong Yue , Xinyi Liu , Siyuan Zou, Weiwei Fan 
and Zihang Liu

School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, China

ABSTRACT
Building façade parsing is to recognize the building façade image 
into different categories of individuals including walls, doors, win
dows, balconies, etc. However, obstructions such as trees present 
a significant challenge to conducting façade parsing. In this paper, 
we designed OccFaçade to achieve high-precision parsing of 
occluded building façades in large urban scenes. OccFaçade pri
marily incorporates two modules, Multi-layer Dilated Convolution 
Module (MD-Module) and Multi-scale Row-Column Convolution 
Module (MRC-Module), to capture repeated texture in local and 
row-column directions. This aims to leverage repetitive textures to 
address occlusion challenges in building façade parsing. Besides, 
we introduce our building façade dataset MeshFaçade from the 
Mesh data generated by drone imagery to study the occlusion 
problem of missing textures. The experimental results demonstrate 
that OccFaçade achieves state-of-the-art performance with mIOU of 
85.01%, 84.09%, 72.95%, and 88.83% on the ENPC2014 dataset, ECP 
dataset, RueMonge2014 dataset, and our MeshFaçade dataset, 
respectively. The code and data are available at https://github. 
com/yueyisui/OccFacade.
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1. Introduction

Segmenting building façade elements, including doors, windows, and balconies, is 
important in parsing building façade images. This task is important for understand
ing urban environments, and its results are widely used in 3D building reconstruc
tion (C. Li, Zhang, and Zhang 2016), autonomous driving (Geiger et al. 2013), urban 
planning (Gonzalez-Aguilera et al. 2013), and so on. The Level of Detail 3 (LoD3) 
model in CityGML (Gröger and Plümer 2012) particularly emphasizes the impor
tance of detailed components such as windows (Hu et al. 2022). Therefore, it is 
crucial to adopt a high-precision building façade parsing method, as it contributes 
to superior building model reconstruction and a deeper understanding of urban 
semantic information. In essence, the meticulous segmentation of building façade 
elements is the cornerstone for advancing various applications that rely on 
a meticulous grasp of the urban landscape.
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Although semantic segmentation techniques in computer vision can be directly 
applied to building façade parsing, there are still some challenges. The most difficult 
problem to solve is the occlusion problem caused by tall objects such as trees as shown in 
Figure 1(a). Early methods (Cohen et al. 2017; Cohen, Schwing, and Pollefeys 2014; 
Kozinski et al. 2015) discovered that building façades have repetitive artificial structural 
features, and they used rules and shape grammar to solve the occlusion problem in 
appearance parsing. However, they have limited accuracy and lack generalizability. In 
recent years, convolutional neural networks (Chen et al. 2018; Long, Shelhamer, and 
Darrell 2015; Ronneberger, Fischer, and Brox 2015; K. Sun et al. 2019) and Transformer- 
based deep learning methods (Carion et al. 2020; Xie et al. 2021) have mainly focused on 
improving the accuracy of semantic segmentation without considering the unique struc
tural characteristics of building façades. Unlike other semantic segmentation tasks, build
ing façade parsing requires obtaining the real building semantic information behind 
occluded areas (as shown in Figure 1(d)). This requirement makes it difficult for conven
tional semantic segmentation models to achieve pleasant results on building façade 
images. In addition, available datasets for studying building façades include ECP2011 
(Teboul et al. 2011), CMP2013 (Tyleček and Šára 2013), ENPC2014 (Gadde, Marlet, and 
Paragios 2016), RueMonge2014 (Riemenschneider et al. 2014), etc. Most of these datasets 
consist of images that have been rectified and aligned to axes. This time-consuming and 

(a) (b)
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Figure 1. Building façade parsing. (a) Building façade with occluded signal. (b) Result of building 
façade parsing by DeepFaçade. (c) Repeatability in row-and-column direction. (d) Result of building 
façade parsing by OccFaçade.
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labour-intensive approach to image acquisition results in less data, with almost no large- 
scale urban building façade data. Therefore, before building façade parsing, we first make 
a large-scale urban building façade dataset MeshFaçade. The production process is 
simple, efficient, and fully automated. Initially, a large-scale building model reconstruction 
is achieved through an automated modelling process (X. Liu et al. 2023). Subsequently, 
the mesh textures are projected onto the corresponding building planes using parallel 
projection to obtain façade images.

To solve the interference caused by occlusion, we design a new network called 
OccFaçade, which uses encoding and decoding structures to capture local information 
and row and column direction information on the building façade to achieve high- 
precision building façade parsing. We divide the building feature extraction behind the 
occlusion signal into the local scope and the global scope. First, a Multi-layer Dilated 
Convolution Module (MD-Module) is introduced to extract the local features of the 
occlusion area. We then introduce a Multi-scale Row-Column Convolution Module (MRC- 
Module) to capture the repeated texture features in the row and column directions of the 
building façade (shown in Figure 1(c)) and integrate it into each sampling stage. 
Experimental results show that compared with the DeepFaçade (H. Liu et al. 2020) 
method, our OccFaçade not only effectively extracts the semantic information behind 
the occluded areas but also achieves better results in boundary detail segmentation, as 
shown in Figure 1(b) and (d). The contributions of this paper are summarized below:

(1) We propose OccFaçade to address occlusion challenges in building façade parsing, 
enabling high-precision semantic segmentation of urban façades.

(2) The MD-Module is designed to capture texture features similar to those near 
occluded areas to reduce the adverse impact of local occluded areas on segmenta
tion performance.

(3) The MRC-Module is designed to capture repeating texture features in both hor
izontal and vertical directions to solve the challenge of occlusion and refine the 
boundaries of building elements such as doors and windows.

(4) We propose a building façade dataset named MeshFaçade, which is derived from 
Mesh data texture mapping to LoD building models for building façade related 
research.

The rest of this paper is organized as follows. Section 2 provides an overview of the related 
research work relevant to this study. In Section 3, OccFaçade, along with its corresponding 
MD-Module and MRC-Module, are comprehensively discussed. In Section 4, we introduce the 
classical dataset used for the experiments as well as the MeshFaçade dataset mentioned in 
this paper. Section 5 and Section 6 outline the experimental setup and present the compara
tive results, respectively. Finally, Section 7 concludes and summarizes the proposed approach.

2. Related works

2.1. Traditional building façade parsing methods

Since the shapes of buildings are human-designed and have strong regularity and 
repetitiveness, many studies have employed the shape grammar and structural 
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information of buildings to parse façades with occlusions. For instance, Kozinski et al. 
(2015) proposed a new shape prior form capable of segmenting both visible and occluded 
objects and restoring the occluded façade structure. Koutsourakis et al. (2009) proposed 
the use of primitive shapes and parameterized rules for single-view modelling, which 
allows for adjustment and adaptation to different architectural styles. Teboul et al. (2010) 
proposed an approach for building façade parsing that combines shape grammar, super
vised classification, and random walks. They also introduced a reinforcement learning 
method for façade parsing, which resulted in improved computational speed (Hu et al.  
2022). Gadde et al. (2018) proposed a façade parsing method that uses decision trees 
trained with automatic contextual features, leveraging the highly structured prior infor
mation of buildings. Furthermore, some methods directly incorporate the constraints of 
repetitive textures found in building façades. Wendel, Donoser, and Bischof (2010) pro
posed utilizing prior knowledge of repetitive regions in buildings to segment a single 
façade. For example, if windows in the façade image exhibit similarities, they described 
the window features and searched for all locations with similar features to segment the 
façade. Cohen et al. (2017) also utilized prior information on building symmetry and 
repetitiveness to address building occlusion issues.

Moreover, dividing the task of façade parsing into distinct steps is also a common 
approach. Cohen, Schwing, and Pollefeys (2014) proposed a sequential optimization 
technique that can correct the semantic shape of a building façade and optimize semantic 
categories. Ripperda and Brenner (2006) analysed building façade from a structural 
description perspective, constructing a parsing tree to derive their method based on 
a reversible jump Markov chain Monte Carlo process. Han and Zhu (2009) proposed a top- 
down and bottom-up algorithm, utilizing it to infer the parsing of the building façade. 
P. Zhao et al. (2010) proposed a method for parsing building façade images into building 
units. They first segment the environment into three objects: ground, building, and sky, 
and then separately partition the building façade as an independent exterior facet. 
Mathias, Martinović, and Gool (2016) used a three-layer system, including semantic 
segmentation, object parsing, and building parsing, which entails a step-by-step and 
coarse-to-fine segmentation process.

In conclusion, while these traditional approaches have contributed to building façade 
parsing, their precision is generally limited, and some methods rely heavily on manual 
intervention. Consequently, these traditional methods are less frequently considered in 
modern building façade parsing.

2.2. Deep learning-based building façade parsing methods

In recent years, deep learning technologies have found widespread application in the 
field of image processing, achieving state-of-the-art (SOTA) results in areas such as 
semantic segmentation (Chen et al. 2018; Long, Shelhamer, and Darrell 2015) and object 
detection (Girshick et al. 2014; Redmon et al. 2016). Semantic segmentation and target 
detection are commonly used deep learning methods for building façade parsing. 
Researchers have successfully employed deep convolutional networks with rich contex
tual information or transformer networks with comprehensive contextual understanding 
to segment building façades into distinct regions, facilitating the identification of indivi
dual elements.
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Due to the inherent characteristics of building elements such as doors and windows, 
which usually appear as rectangular shapes, building façade parsing is usually performed 
through pixel-level semantic segmentation or area-level object detection. Methods in 
deep learning for object detection, such as Mask R-CNN (He et al. 2018), YOLO (Redmon 
et al. 2016), and DETR (Carion et al. 2020), can generate multiple bounding boxes on 
images. Each bounding box reflects the detected position and rectangular extent of the 
object. Assigning semantic attributes to the corresponding rectangular bounding boxes 
facilitates the parsing of building façades. For example, Nordmark and Ayenew (2021) 
employ Mask R-CNN (He et al. 2018) to detect windows, while Y. Sun et al. (2022) enhance 
detection accuracy by incorporating attention modules into Mask R-CNN. Although their 
method partially addresses the issue of small area occlusion, it still struggles to detect the 
complete outline of windows in scenes with significant occluded areas. In addition to 
bounding boxes, window detection can be achieved by determining the positions of 
keypoints. There are two approaches to determining keypoints: directly getting the four 
corners of the window to establish its scope (C. Li et al. 2020) or determining the centre 
and size of the window to get its scope (Tao, Zhang, and Chen 2022). However, methods 
for keypoint detection are not always stable, and errors in the localization and positional 
relationships of keypoints will occur in complex scenes.

Building façade parsing based on semantic segmentation achieves semantic informa
tion parsing at the pixel level. Conventional semantic segmentation models, such as FCN 
(Long, Shelhamer, and Darrell 2015), U-Net (Ronneberger, Fischer, and Brox 2015), 
Deeplab v3+ (Chen et al. 2018), HRNet (K. Sun et al. 2019), and Segformer (Xie et al.  
2021), can be directly applied to building façade parsing. Among them, U-Net 
(Ronneberger, Fischer, and Brox 2015) is a promising option for building façade parsing, 
as it demonstrates superior generalization for small-scale datasets and can help reduce 
overfitting. Based on the achievements above, many excellent works have applied deep 
learning technology to the field of remote sensing. Examples include the Multistage 
Information Complementary Fusion Network (J. Wang et al. 2024), the Spatial-Logical 
Aggregation Network (SLA-NET) (M. Zhang et al. 2023), and the Graph-Feature-Enhanced 
Selective Assignment Network (W. Li and Tao 2022). However, these methods are not 
specifically tailored to datasets of building façades and often fail to optimize performance 
due to ignoring the inherent structural characteristics of building façades. ALKNet 
(Ma et al. 2021) is designed to represent the relationships between building elements in 
multi-scale feature maps and improve the accuracy of building façade parsing through 
the contextual information. Meanwhile, H. Liu et al. (2020) propose DeepFaçade, which 
uses the symmetry of building elements as a loss constraint in training FCN (Long, 
Shelhamer, and Darrell 2015) networks to improve the precision of symmetric elements 
such as doors and windows. Based on DeepFaçade, Zhang et al. (G. Zhang, Pan, and 
Zhang 2022) design a novel hierarchical deep-learning framework for building façade 
parsing by integrating PSPNet (H. Zhao et al. 2017), DANet (Fu et al. 2019), and DETR 
(Carion et al. 2020). Kong and Fan (2021), also integrating the advantages of semantic 
segmentation networks and object detection networks, designed a new pipeline for 
street-level building façade segmentation. RTFP (B. Wang et al. 2024) utilizes Vision 
Transformer (ViT) (Dosovitskiy et al. 2021) and line feature extraction to capture semantic 
information of building façades. However, their methods are difficult to effectively solve 
the problem of building information loss caused by tree occlusion or loss of texture itself.
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Given the above challenges, existing methods make it difficult to solve the occlusion 
problem, especially when trees block buildings or textures are lost, and building informa
tion in the corresponding area cannot be directly obtained from the image. To take 
advantage of the inherent structural advantages of buildings and leverage the 
end-to-end capabilities of deep learning methods in semantic segmentation, OccFaçade 
is designed to learn both the repetitive texture information along the row and column 
directions of building façade images and the details of local texture information to obtain 
Building façade information behind the occluded area. OccFaçade focuses on the follow
ing key issues:

● Maximizing the structural advantages of buildings and the end-to-end capabilities of 
deep learning to achieve semantic segmentation of building façades.

● Addressing the issue of missing semantic information in building façades caused by 
obstructions like trees or texture loss.

3. Methodology

This section first introduces the network framework structure of OccFaçade. Then, it 
details the MD-Module and MRC-Module, which are adept at addressing occlusion issues. 
The MD-Module focuses on extracting similar texture information in local areas of the final 
feature map layer. Meanwhile, the MRC-Module captures feature information in row and 
column directions at different scales during each upsampling process using a rectangular 
convolution kernel. Finally, we introduce the loss function employed for training the 
network.

3.1. Network overview

Figure 2 shows the overall framework of the OccFaçade designed in this paper, which 
adopts an encoder-decoder structure. The encoding process uses many downsampling 
operations, which is advantageous for the network to extract features from images at 
different scales. To improve the generalization ability and reduce the training time of the 

Figure 2. Overview of the proposed OccFaçade framework.
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network, the encoding stage of OccFaçade uses the VGG16 (Simonyan and Zisserman  
2015) network trained on the ImageNet (Deng et al. 2009) dataset as the backbone.

After cropping or resizing, the input image is adjusted to a fixed size of 512� 512� 3. 
After the encoding process, a feature map of 32� 32� 512 is obtained, which is subse
quently transmitted to the Multi-layer Dilated Convolution Module (MD-Module) for 
extracting similarity texture features within a constrained scope. The MD-Module pro
duces a feature map of the same size (32� 32� 512) as the input map. However, the 
occluded area is now enriched with information from the neighbouring non-occluded 
regions after the MD-Module.

During the decoding process of the framework, a sequence of upsampling operations 
is used. Each upsampling process involves inputs that include features of the correspond
ing size from the encoder and the output from the previous process, utilizing a skip 
connection. MD-Module can be understood as the process of obtaining local similar 
texture features within a small isotropic area, while MRC-Module is the process of 
obtaining local features with repetitive texture positions in both the row and column 
directions. As shown in Figure 1, windows and balconies of buildings have a high degree 
of repetitiveness, and adding this feature to the network can effectively solve the occlu
sion problems.

3.2. Multi-layer dilated convolution module (MD-Module)

To better capture the information around the occluded region, we design a multilayer 
dilated convolution module, the input and output of the MD-Module are feature maps with 
the size of 32� 32� 512. As shown in the schematic diagram of the MD-Module structure 
in Figure 3, the MD-Module has 5 dilated convolution operations, and the convolution 
kernel is a square of size 3, but they have different dilation rates: 1, 2, 4, 8, 16. Larger 
convolution kernels can increase the receptive field (Peng et al. 2017), but directly increas
ing the kernel size will rapidly increase the number of parameters. Assuming a normal 

Figure 3. Schematic diagram of the multi-layer dilated convolution module (MD-Module).
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convolution kernel size is a square of x, an increase of 1 in kernel size corresponds to an 
increase of 2x þ 1 in parameters.

Therefore, we chose to use dilated convolutions with different expansion rates instead 
of increasing the kernel size. As shown in Figure 4, using the same number of parameters 
can also expand the receptive field of the convolution. The input to each dilated con
volution module is the output of the previous step. Finally, the input of the MD-Module is 
connected to the outputs of the five-hole convolution modules, and the resulting output 
is passed through a regular convolution layer to adjust its dimensionality before being 
sent to the upsampling process.

3.3. Multi-scale row-column convolution module (MRC-Module)

Unlike other semantic segmentation works, building facades have strong repetitive 
structures in both horizontal and vertical directions, such as windows, balconies, and 
other objects, as shown in Figure 1(c). Inspired by (Mei et al. 2020), we leverage this 
unique characteristic of building facade data to obtain similar features from occluded 
regions on the same row and column, to complement the information in those regions. 
Therefore, we have designed the MRC-Module. After each upsampling operation, 
a constant MRC-Module is applied to capture row and column orientation features at 
varying scales.

As shown in Figure 2, the output of the previous operation is concatenated with the 
corresponding-sized features from the encoder as the input to the MRC-Module. As 
illustrated in Figure 5, the MRC-Module consists of three distinct sub-modules directly 
connected to the input feature layer. After passing through these three parallel sub- 
modules, the features are concatenated together and outputted through a 3� 3 con
volutional layer, as shown in Figure 5. Each sub-module has two convolutional kernels, 
K Row and K Column, with the same size but different orientations: 3; 15ð Þ for the row 
direction and 15; 3ð Þ for the column direction. These kernels are used to capture features 

Figure 4. 3 × 3 convolution kernels with different dilation rates. Kernel (a) has 9 parameters, while 
kernel (b) has a dilation rate of 2 and 9 parameters. With the same number of parameters, kernel (b) 
has a larger receptive field.
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in the row and column directions, respectively. The row and column information are 
obtained through 3� 3 convolutional layers. To capture features at different scales in the 
row and column directions, the dilation rates of K Row and K Column in the three sub- 
modules are set to 1, 2, and 4, respectively.

3.4. Loss function

Given that the building façade parsing belongs to the field of semantic segmentation in 
computer vision, we employ cross-entropy loss as the loss function. Specifically, the loss 
function is defined as follows: 

where N is the number of all pixels, yi is the true probability distribution value of the ith 
pixel, and ŷi is the probability division value of the ith pixel predicted by the network.

4. Experimental dataset

To demonstrate the performance of our MD-Module and MRC-Module in building façade 
parsing, we initially evaluate their effectiveness using three different types of publicly 
available datasets: (1) building façade datasets without occlusions: ECP dataset (Teboul 
et al. 2011); (2) building façade datasets with occlusions: ENPC2014 dataset (Gadde, 
Marlet, and Paragios 2016); (3) multi-view building façade datasets: RueMonge2014 
dataset (Riemenschneider et al. 2014). Additionally, to facilitate the acquisition of building 
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Figure 5. Schematic diagram of the multi-scale row-column convolution module.
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façade images in large urban scenes, we create MeshFaçade dataset. This dataset is 
derived from the projection of a mesh model generated from drone imagery. 
Furthermore, due to Mesh quality issues, the loss of texture in this dataset also presents 
a form of occlusion challenge.

4.1. ECP dataset

The ECP dataset comprises façade images of the Haussmann-style buildings in Paris, 
collected by the École Centrale Paris. There are a total of 104 usable images, each with 
varying sizes, ranging from a maximum resolution of 628� 554 to a minimum resolution 
of 186� 486. There are two versions of annotations available for the ECP dataset. The first 
version is annotated while ensuring the translational symmetry of elements such as doors, 
windows, and balconies, which results in a visually pleasing appearance. However, in this 
version, the balconies are connected to each other to maintain aesthetic consistency and 
regularity, which deviates from the actual appearance. The second version, annotated by 
Mathias, Martinović, and Gool (2016), aims to annotate the images based on the actual 
appearance and includes nine categories: background, window, wall, balcony, door, roof, 
sky, shop, and chimney. This version includes an additional category of chimneys com
pared to the first version. Given that semantic segmentation and object detection tasks 
require standardized datasets, this paper chooses to use the second version of the ECP 
dataset. Since semantic segmentation and object detection tasks require more standar
dized datasets, this paper opts to use the second version of the ECP dataset.

4.2. ENPC2014 dataset

The ENPC2014 dataset includes 79 rectified façade images captured from Parisian build
ings with Art Nouveau style. This dataset comprises eight categories: background, win
dow, wall, balcony, door, roof, sky, and shop. In contrast to the ECP dataset, the ENPC2014 
dataset contains many images which are partially occluded by objects such as trees, 
streetlights, and power poles, which poses a significant challenge for façade parsing.

4.3. RueMonge2014 dataset

The RueMonge2014 dataset includes 428 images captured from a street in Paris, but only 
219 of them are manually annotated with semantic information. The dataset consists of 8 
categories, including background, window, wall, balcony, door, roof, sky, and shop. Since 
the RueMonge2014 dataset was captured along Rue Monge Street in Paris, it has the 
characteristic of having multiple viewpoints.

4.4. MeshFaçade dataset

The MeshFaçade dataset comprises 3120 images generated by projecting the mesh 
data of buildings. Among them, there are 306 images of roof façades and 2814 
images of building façades. We annotate 184 building façade images to obtain 
semantic labels for training and predicting the network. The classification informa
tion of the MeshFaçade data set is relatively simple, with only two categories: wall 
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and window. Different from the acquisition methods of the above three data sets, 
the images generated by Mesh do not require additional correction, and it is easier 
to acquire large-scale data. To acquire the data for the entire city, corresponding 
aerial images are needed for photogrammetry to generate the Mesh model. 
Subsequently, an automated modelling algorithm (X. Liu et al. 2019, 2023) is 
employed to generate LoD2 models (Gröger and Plümer 2012). The mesh is finally 
projected onto the corresponding building planes to obtain images of building 
façades as shown in Figure 6. Simultaneously, the building façade images in 
MeshFaçade exhibit a certain lack of texture. The lack of texture can be seen as 
the effect of the building façade being occlusive, which poses a new challenge to 
the task of building façade parsing.

5. Experimental settings

5.1. Evaluation metrics

To quantitatively evaluate the proposed OccFaçade in this paper, we utilize Intersection 
Over Union (IOU) and accuracy for each class, mean Intersection Over Union (mIOU), class 
average accuracy (mPA), F1-score and total pixel accuracy (Acc) as evaluation metrics, and 
compare OccFaçade with existing state-of-the-art methods.

The IOU for each class is expressed using Formula (2): 

where TP represents true positives, which are true samples predicted as true; FN repre
sents false negatives, which are true samples predicted as false; FP represents false 
positives, which are false samples predicted as true; and TN represents true negatives, 
which are false samples predicted as false. The mIOU is the average of IOUs of all classes.

The pixel accuracy (PA) of each class is represented by Formula (3): 

window
wall

image label

LoD building model with texture

LoD2 building model

Mesh data MeshFaçade dataset

Figure 6. The process of MeshFaçade dataset production.
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The average value of PA is mPA. The total pixel accuracy (Acc.) is defined as the ratio of 
correctly classified pixels to the total number of pixels in the image, and is calculated 
using Formula (4): 

The formula for calculating the F1 score is: 

5.2. Experimental settings

The network architecture is implemented in PyTorch, and experiments are executed on an 
NVIDIA GeForce RTX 3090 GPU. To overcome the limited availability of building façade 
data, we adopt K-fold cross-validation, dividing the dataset into five parts for compre
hensive experimentation. Our results are compared with existing state-of-the-art deep 
learning-based façade parsing methods. The optimization utilizes the Adam optimizer 
with an initial learning rate (lr) of 0.0001 and a weight decay rate of 0.0001. The training 
spans 300 epochs, adjusting the learning rate by a constant factor wt at each epoch: 

To increase the randomness of the data, we apply data augmentation operations such 
as random scaling, cropping, flipping, etc. to the data.

6. Experimental results

6.1. Comparison of state-of-the-art methods

We compare OccFaçade with several popular semantic segmentation models, including 
deeplabv3+ (Chen et al. 2018), HRNet (K. Sun et al. 2019), SegFormer (Xie et al. 2021), and 
three deep-learning models for façade parsing: namely DeepFaçade (H. Liu et al. 2020), 
ALKNet (Ma et al. 2021) and RTFP (B. Wang et al. 2024). For the ENPC2014 Dataset and ECP 
Dataset, we conducted five experiments using 5-fold cross-validation. Taking the 
ENPC2014 Dataset as an example, the overall accuracy comparison results of various 
deep learning methods and the proposed OccFaçade are shown in Figure 7. For ease of 
presentation, the experimental results for the ENPC2014 Dataset and ECP Dataset below 
are the averages of the 5-fold cross-validation experiments. Our experimental results 
show that the OccFaçade achieves state-of-the-art (SOTA) on occluded, non-occluded, 
multi-view data, and mesh texture.

6.1.1. Results of comparison on ENPC2014 dataset
As shown in Tables 1 and 2, for the occluded ENPC2014 dataset, OccFaçade achieves 
almost the highest scores for both individual and overall evaluation metrics. Specifically, 
OccFaçade achieves 91.09% mPA, 93.60% Acc., and 85.01% mIOU. The most remarkable 
finding is that the mIOU of OccFaçade is at least 3% points higher than other methods. 
The visualization results are shown in Figure 8. We can see that OccFaçade can better 
predict the semantic information of the occluded region, thanks to the fact that the MD- 
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Module and the MRC-Module have respectively obtained local and row-column direction 
texture features. Furthermore, OccFaçade outperforms other methods in accurately resol
ving the boundaries of elements such as doors and windows and predicting their overall 
contours.

6.1.2. Results of comparison on ECP dataset
As shown in Tables 3 and 4, OccFaçade achieves the state-of-the-art (SOTA) on the ECP 
dataset even without occlusion. Specifically, OccFaçade achieves 91.07% mPA, 93.39% 
Acc., and 84.09% mIOU, which are the highest scores among all compared methods. The 

Figure 7. The mPA, acc., mIOU and F1-score of 5-fold cross-validation on the ENPC2014 dataset.

Table 1. The quantitative comparison results of PA for each category on the ENPC2014 dataset.
Method Deeplabv3+ HRNet SegFormer DeepFaçade ALKnet RTFP OccFaçade

Door 77.13±1.09 76.92±1.02 79.62±1.67 82.51±1.82 68.07±1.21 78.33±3.36 82.90±1.58
Shop 95.63±1.94 96.28±1.43 96.68±1.52 94.94±2.38 90.61±1.77 94.28±1.28 97.12±0.48
Balcony 83.93±2.11 86.81±2.98 84.23±2.78 84.15±2.78 74.18±1.85 79.45±2.82 88.66±1.51
Window 84.86±2.60 85.67±2.48 84.05±2.09 85.84±1.29 81.67±0.98 83.10±2.29 88.36±0.74
Wall 94.11±0.77 94.36±1.17 93.62±1.01 93.78±0.47 94.32±1.27 93.85±1.01 95.66±0.72
Sky 96.46±1.10 97.00±1.63 96.44±2.54 94.67±0.32 97.78±1.42 96.22±1.58 97.59±1.63
Roof 85.47±1.00 84.26±1.16 84.82±1.56 86.62±1.87 84.57±1.52 80.15±2.86 87.37±1.20

Table 2. The quantitative comparison results of overall metrics on the ENPC2014 dataset.
Method Deeplabv3+ HRNet SegFormer DeepFaçade ALKnet RTFP OccFaçade

mPA 88.23±2.20 88.76±2.10 88.50±1.94 88.93±1.95 84.46±1.76 86.48±1.25 91.09±1.20
Acc. 87.55±1.16 91.97±1.40 91.20±1.59 91.72±1.20 88.14±1.71 89.99±0.85 93.6±0.82
mIOU 77.81±2.63 81.64±1.26 80.98±1.59 78.14±2.10 79.39±1.76 77.99±1.27 85.01±1.90
F1 86.21±1.89 89.44±1.97 89.77±1.29 86.42±1.50 88.14±1.26 89.99±0.84 91.68±1.03
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visual results displayed in Figure 9 suggest that OccFaçade can neatly segment the edges 
of building elements, even on the ECP dataset without any occlusion issues, and it stands 
out as the most elegant among all the compared methods.

6.1.3. Results of comparison on RueMonge2014 dataset
Besides the occluded and non-occluded datasets, we evaluate OccFaçade against state-of 
-the-art façade parsing approaches on a multi-view dataset. As shown in Tables 5 and 6, 

Figure 8. Visualization comparison results of various state-of-the-art methods on ENPC2014 dataset.

Table 3. The quantitative comparison results of PA for each category on the ECP dataset.
Method Deeplabv3+ HRNet SegFormer DeepFaçade ALKnet RTFP OccFaçade

Window 85.04±2.22 86.52±1.69 86.12±1.62 87.46±2.00 81.81±2.71 84.01±1.40 86.83±0.82
Wall 94.32±0.30 94.69±0.85 94.35±0.43 94.72±0.28 96.30±0.50 94.81±0.23 94.89±0.36
Balcony 90.89±1.17 91.75±1.72 90.71±2.56 91.07±0.42 90.07±2.13 89.97±2.77 92.11±2.52
Door 79.66±1.94 82.50±1.63 80.17±1.38 82.10±1.51 71.26±1.73 80.42±1.97 82.75±1.27
Roof 90.85±1.89 91.19±1.80 90.13±1.59 92.02±0.51 90.28±1.31 86.74±1.91 90.99±1.57
Sky 93.19±1.11 94.90±1.99 95.60±0.85 95.62±0.37 92.75±2.22 95.14±1.23 95.96±1.16
Shop 95.45±1.11 95.22±1.88 96.35±1.71 95.26±1.63 85.53±1.86 93.37±1.74 96.25±1.58
Chimney 82.80±1.41 85.70±1.98 84.39±1.10 81.09±1.55 94.76±3.20 80.30±1.56 88.86±1.47

Table 4. The quantitative comparison results of overall metrics on the ECP dataset.
Method Deeplabv3+ HRNet SegFormer DeepFaçade ALKnet RTFP OccFaçade

mPA 89.03±1.16 90.31±1.10 89.73±0.74 89.92±0.67 87.85±1.02 88.09±1.48 91.07±1.28
Acc. 89.52±0.87 92.98±0.72 92.71±0.67 92.37±0.34 92.44±0.82 91.93±0.89 93.39±0.94
mIOU 79.92±1.12 82.68±1.60 82.28±0.71 80.09±1.27 81.84±1.35 79.50±1.60 84.09±1.84
F1 87.53±0.69 90.36±0.96 90.11±0.48 89.00±0.71 89.79±0.79 88.41±1.00 91.22±1.10
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mPA, Acc., and mIOU of the proposed method are very similar to those of SegFormer, and 
almost achieve the highest values. Among them, our mIOU achieves the highest score of 
72.95% among all methods. Due to the RueMonge2014 dataset being a multi-view data 
without image rectification, where elements such as doors and windows are not neatly 
arranged in the image, MD-Module and MRC-Module cannot achieve their best perfor
mance. Nevertheless, OccFaçade still produces pleasant parsing results, as demonstrated 
in Figure 10.

6.1.4. Results of comparison on MeshFaçade dataset
As shown in Figure 11, due to the quality of Mesh data, there are some holes and 
missing problems in the building façade of MeshFaçade. These problems can be 
viewed as building occlusion problems, which can be effectively solved by our 
proposed OccFaçade. In terms of visual comparison, OccFaçade can still segment 

Figure 9. Visualization comparison results of various state-of-the-art methods on ECP dataset.

Table 5. The quantitative comparison results of PA for each category on the RueMonge2014 dataset.
Method Deeplabv3+ HRNet SegFormer DeepFaçade ALKnet RTFP OccFaçade

Window 68.91±0.89 77.43±0.12 74.96±1.21 81.28±2.01 82.77±1.14 72.16±1.44 89.91±0.93
Wall 80.13±1.25 91.05±0.56 90.41±1.63 79.73±1.22 85.44±1.85 89.69±1.64 92.88±1.08
Balcony 77.01±1.58 87.66±1.52 87.33±0.85 75.43±1.37 75.33±1.63 79.32±1.09 83.55±1.41
Door 55.08±1.41 56.45±1.14 60.79±1.64 62.10±1.45 49.43±0.59 58.74±0.96 62.21±1.33
Roof 70.87±1.03 85.03±1.97 87.44±1.77 83.76±0.86 82.99±0.87 77.21±0.87 87.89±0.56
Sky 80.66±1.11 93.51±1.23 94.10±1.44 84.08±0.47 85.53±1.87 95.77±1.96 90.17±0.87
Shop 80.76±0.96 88.41±0.88 92.09±0.55 73.41±0.97 74.86±0.74 83.99±1.21 77.26±0.72

Table 6. The quantitative comparison results of overall metrics on the RueMonge2014 dataset.
Method Deeplabv3+ HRNet SegFormer DeepFaçade ALKnet RTFP OccFaçade

mPA 73.35±0.65 82.79±0.74 83.87±0.77 77.11±0.99 76.62±1.01 79.55±0.98 83.41±0.61
Acc. 81.30±0.74 87.84±0.54 87.95±0.59 79.53±0.93 82.38±0.54 84.73±1.27 87.64±0.71
mIOU 66.76±0.67 72.40±0.61 72.75±0.93 58.97±0.47 68.37±0.67 66.45±0.65 72.95±0.69
F1 70.23±0.69 83.33±0.72 83.61±0.74 70.03±0.61 80.62±0.82 79.01±0.81 86.43±0.47

Table 7. The quantitative comparison results of PA for each category on the MeshFaçade dataset.
Method Deeplabv3+ SegFormer DeepFaçade ALKnet RTFP OccFaçade

Wall 91.85±0.32 96.77±0.61 92.31±0.74 94.63±0.14 94.46±0.62 96.41±0.44
Window 86.87±0.74 87.09±0.47 86.82±0.66 88.42±0.71 91.74±0.41 91.22±0.65

INTERNATIONAL JOURNAL OF REMOTE SENSING 6665



complete and nearly rectangular windows with almost no noise. However, it is 
difficult for other methods to completely restore semantic information where the 
image is missing. Comparing the classification accuracy, OccFaçade achieves the 
highest scores of 93.82%, 94.36 and 88.83% on the three overall evaluation 
indicators of mPA, Acc., and mIOU respectively, as shown in Table 8. The accuracy 
for each category of walls and windows also achieves good results as shown in 
Table 7.

In Figure 12, we visualize the Gradient-weighted Class Activation Mapping (Grad 
CAM) (Selvaraju et al. 2017) on the MeshFaçade, illustrating the superior feature- 
extracting capabilities of OccFaçade. The left side of Figure 12 shows some higher- 
floor building façades. Due to resolution limitations, the windows appear as smaller 
targets on the façade image, but OccFaçade can capture the characteristics of 
every small target very well. The right side of Figure 12 shows some building 
façades that are not very high but have serious textures. OccFaçade can still 
extract relatively complete window features.

Figure 10. Visualization comparison results of various state-of-the-art deep learning methods on 
RueMonge2014 dataset.

Figure 11. Visualization comparison results of various state-of-the-art deep learning methods on 
MeshFaçade dataset.
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6.2. Ablation study

To verify the effectiveness of our designed MD-Module and MRC-Module in resolving the 
occlusion, we conduct ablation experiments on the ENPC2014 dataset. Our baseline is the 
U-Net network with an encoder of Vgg trained in ImageNet. +MD-Module means that only 
the MD-Module is used based on the baseline. +MD-Module means that the MD-Module 
is used after the encoder and only one MRC-Module is used in the decoder. +MD+MRCs 
(OccFaçade) means that the MD-Module is used after the encoder and the MRC-Module is 
used in each stage of upsampling of the decoder, and the network structure is shown in 
Figure 2.

As demonstrated in Tables 9 and 10, the addition of the MD-Module increases 
mPA by 1.65% points and mIOU by 2.98% points. After adding a single MRC- 
Module, the segmentation accuracy of each element of the building façade has 
been significantly improved. However, as can be seen from Figure 13, the boundary 
details of elements such as doors and windows are not very good. Each sample on 
the decoder After adding MRC-Module to the process, both segmentation accuracy 
and visualization effects have been further improved. Therefore, OccFaçade adopts 
the +MD+MRCs strategy to achieve an mPA of 93.60 and an mIOU of 85.01. In 
terms of visual effects, it can not only predict the building features behind the 
occlusion texture but also achieve segmentation with richer details. The increase in 

Table 8. The quantitative comparison results of overall metrics on the MeshFaçade dataset.
Method Deeplabv3+ SegFormer DeepFaçade ALKnet RTFP OccFaçade

mPA 89.36±0.66 91.93±0.47 89.57±0.77 91.52±0.57 93.10±1.33 93.82±0.66
Acc. 92.16±0.14 92.16±1.08 91.34±1.28 92.17±1.49 93.41±0.57 94.36±0.71
mIOU 82.99±0.67 86.12±1.01 82.26±0.44 85.51±0.54 87.06±0.63 88.83±0.62
F1 89.25±0.59 92.51±0.63 89.12±0.61 92.17±0.81 93.06±0.95 94.07±0.54

Figure 12. Visualization of grad CAM on the MeshFaçade dataset.
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metrics and enhancement of visual effects both testify to the effectiveness of our 
designed MD-Module and MRC-Module in addressing the issue of occlusion in 
building façade parsing.

Table 9. mPA of OccFaçade ablation study on ENPC2014 dataset.
Model Fold1 Fold2 Fold3 Fold4 Fold5 mean

Baseline 92.05 88.96 89.41 91.41 88.30 90.03
+MD-Module 91.91 91.29 91.58 92.99 90.61 91.68
+MD+one-MRC 92.48 90.85 92.14 92.87 91.01 91.87
+MD+MRCs 93.83 92.90 93.51 94.88 92.87 93.60

Table 10. mIOU of OccFaçade ablation study on ENPC2014 dataset.
Model Fold1 Fold2 Fold3 Fold4 Fold5 mean

Baseline 81.85 75.46 77.65 80.40 75.36 78.14
+MD-Module 81.96 79.40 80.60 83.73 79.91 81.12
+MD+one-MRC 82.46 80.46 82.46 84.40 80.59 82.07
+MD+MRCs 85.27 82.88 84.35 88.04 84.50 85.01

Figure 13. Visualization results of ablation experiments on the ENPC2014 dataset.
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6.3. Building façade parsing in large urban scenes

Through comparative experiments on existing public datasets and the MeshFaçade 
dataset, this paper determines that OccFaçade achieves state-of-the-art perfor
mance in building appearance parsing tasks. In addition, the introduced 
MeshFaçade dataset allows the extraction of building façades without 
a correction process, providing a strong data basis for parsing building façades 
in a wide range of urban scenes in a short time. As shown in Figure 14, by 
replacing the semantic information obtained by OccFaçade façade analysis with 
the building LoD2 model, the three-dimensional semantic information of the entire 
urban area can be obtained.

6.4. Evaluation of transferability of OccFaçade in MeshFaçade

We use the OccFaçade trained on the MeshFaçade dataset to parse building façades in 
other cities to explore the transferability of OccFaçade in the MeshFaçade dataset. As 
shown in Figure 15, Even for building façades outside the MeshFaçade dataset, OccFaçade 
can achieve pleasant segmentation results. Compared with the MeshFaçade dataset, the 
mPA and mIOU of the transferability experiment only dropped by about 5 points as shown 
in Figure 16. The transferability experiment thoroughly demonstrates that our method and 
dataset exhibit strong adaptability in large-scale urban buildings. Furthermore, it proves 
our ability to achieve high-precision façade analysis even with limited annotated data.

Figure 14. Semantic information parsing of building façades in larger urban scenes. (a) illustrates the 
projection of the mesh model of the building onto LoD2, while (b) illustrates the building façade 
parsing results obtained by OccFaçade.
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Figure 15. Visualization results of transferability experiment on other urban mesh textures. The top 
row is the original building façade image, the middle row is the ground truth, and the bottom row is 
the predicted result.

Figure 16. Quantitative evaluation results of transferability experiment on other urban mesh textures.
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6.5. Time cost

To better evaluate the performance of the OccFaçade algorithm, we measured the 
average time taken by OccFaçade and other methods to segment a single building 
façade image. The results are shown in Table 11. The shortest time cost is from the 
lightweight Deeplabv3+, at 0.0073 seconds. Our OccFaçade has a time cost of 0.0080  
seconds, ranking second and demonstrating good performance.

7. Conclusion

To address the occlusion challenges in the parsing of large urban building façades, 
OccFaçade is introduced. This architecture consists two modules: MD-Module and 
MRC-Module, specifically designed to capture the local and row-column directional 
repeated texture features on building façades. Leveraging the inherent repetitive 
structural characteristics of buildings, OccFaçade excels in high-precision parsing of 
occluded regions. Through extensive comparative experiments on publicly available 
datasets, including ENPC2014, ECP, RueMonge2014, and the newly proposed 
MeshFaçade dataset, OccFaçade achieves state-of-the-art, and it can generate more 
regular and textured edges at the edges of building components such as doors and 
windows.

Simultaneously, a dataset named MeshFaçade is introduced, acquired by projecting 
mesh data onto building façades. Different from traditional image correction approaches, 
this dataset relies on automated modelling to quickly obtain building façade data in 
extensive urban scenes. It provides a novel and valuable resource for various applications, 
including building façade parsing.

8. Limitations

The MRC-Module of OccFaçade can capture features in the row and column direc
tions of building façades, which is beneficial for extracting semantic information 
behind occluded areas. However, the strategy requires the façade images to be 
rectified to achieve horizontally and vertically aligned images to fully leverage the 
advantages of OccFaçade. The comparative results on the RueMonge2014 Dataset 
and the ENPC2014 Dataset have already demonstrated this.
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