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Abstract—Bridge detection in remote sensing images (RSIs)
plays a crucial role in various applications, but it poses unique
challenges compared to the detection of other objects. In RSIs,
bridges exhibit considerable variations in terms of their spatial
scales and aspect ratios. Therefore, to ensure the visibility and
integrity of bridges, it is essential to perform holistic bridge detec-
tion in large-size very-high-resolution (VHR) RSIs. However, the
lack of datasets with large-size VHR RSIs limits the deep learning
algorithms’ performance on bridge detection. Due to the limitation
of GPU memory in tackling large-size images, deep learning-based
object detection methods commonly adopt the cropping strategy,
which inevitably results in label fragmentation and discontinuous
prediction. To ameliorate the scarcity of datasets, this paper pro-
poses a large-scale dataset named GLH-Bridge comprising 6,000
VHR RSIs sampled from diverse geographic locations across the
globe. These images encompass a wide range of sizes, varying
from 2,048 × 2,048 to 16,384 × 16,384 pixels, and collectively
feature 59,737 bridges. These bridges span diverse backgrounds,
and each of them has been manually annotated, using both an ori-
ented bounding box (OBB) and a horizontal bounding box (HBB).
Furthermore, we present an efficient network for holistic bridge
detection (HBD-Net) in large-size RSIs. The HBD-Net presents a
separate detector-based feature fusion (SDFF) architecture and
is optimized via a shape-sensitive sample re-weighting (SSRW)
strategy. The SDFF architecture performs inter-layer feature fu-
sion (IFF) to incorporate multi-scale context in the dynamic image
pyramid (DIP) of the large-size image, and the SSRW strategy is
employed to ensure an equitable balance in the regression weight
of bridges with various aspect ratios. Based on the proposed
GLH-Bridge dataset, we establish a bridge detection benchmark
including the OBB and HBB tasks, and validate the effectiveness of
the proposed HBD-Net. Additionally, cross-dataset generalization
experiments on two publicly available datasets illustrate the strong
generalization capability of the GLH-Bridge dataset.
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I. INTRODUCTION

BRIDGES represent critical infrastructure components,
serving as fundamental transportation facilities that tra-

verse various landscapes. They hold substantial significance in
the domains of civil transportation, military maneuvers, and
disaster relief efforts [1]. Meanwhile, bridges exhibit rapid con-
struction and frequent modification. For example, in 2012, the
United States had about 617,000 bridges whose deterioration
will increase over the next 50 years, requiring more than $125
billion for a backlog of repairs.1 Therefore, efficient and effective
bridge detection is of paramount importance to the timely update
of the navigation map and further contributes to monitoring the
structural health and condition of bridges [2], [3]. Remote Sens-
ing Images (RSIs), with their extensive geographic coverage
and high revisit frequency, are well-suited as the foundational
data for bridge detection. Meanwhile, considering the powerful
feature representation abilities of deep networks, deep learning-
based bridge detection from RSIs holds substantial promise and
has become a focal point of research [4].

As illustrated in Fig. 1, detecting multi-scale bridges in RSIs is
quite challenging compared to other common objects, primarily
due to two main characteristics: (i) diverse object scales. In
VHR RSIs, the lengths of bridge instances vary from a few to
several thousand pixels. (ii) extreme aspect ratios. There are
significant variances in the degree of elongation among different
bridges. To ensure the detectability of small or narrow bridges,
the utilization of very-high-resolution (VHR) images is crucial.
At the same time, to pursue the structural integrity of large and
elongated bridges in VHR images, it is essential to conduct holis-
tic bridge detection in large-size images, which imposes strict
requirements on both datasets and methods. Despite notable
advancements in multi-class object detection [12], [13], [14],
[15], [16] and bridge detection [4], [11], [17], there remains a
deficiency in large-scale datasets and appropriate methods for
holistic bridge detection in large-size VHR RSIs.

As shown in Table I, although numerous popular datasets
for object detection in RSIs have been created [6], [7], [8],
[18], the quantity of bridges within these datasets is limited.
Furthermore, datasets explicitly created for bridge detection [4],

1[Online]. Available: https://infrastructurereportcard.org/cat-item/bridges-
infrastructure
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TABLE I
COMPARISON BETWEEN GLH-BRIDGE AND THE OTHER RELEVANT BRIDGE DETECTION DATASETS

Fig. 1. The main characteristics of bridges impose strict requirements on both
image resolution and size for bridge detection, as illustrated in (a). When tackling
large-size images, the mainstream cropping strategy results in inaccurate labels
and predictions. In (b), yellow windows denote the sliding windows (i.e.,
cropping windows), while red OBBs denote the labels and green OBBs show
the prediction results.

[11] are often constrained by sample volumes and image sizes.
Some of the existing datasets only provide horizontal bounding
box (HBB) annotations instead of the accurate oriented bound-
ing box (OBB) annotations. Therefore, training a robust and
generalizable bridge detection model using the aforementioned
datasets seems to be unrealistic. To address the data constraints,
we construct GLH-Bridge, a large-scale dataset for bridge
detection in large-size VHR RSIs. GLH-Bridge contains 6,000
VHR RSIs sampled globally and over 59 k manually annotated
bridges. Compared with existing datasets for bridge detection,
GLH-Bridge stands out by annotating multi-scale bridges in
large-Size VHR RSIs that encompass various background types
such as vegetation, dry riverbeds, and roads, thereby better
capturing the characteristics of bridges in real-world scenarios.
In short, the GLH-Bridge exhibits comprehensive advantages
and notable merits compared with existing bridge detection
datasets.

To advance the research on the fundamental and practical is-
sue, we propose a new challenging yet meaningful task: holistic
bridge detection in large-size VHR RSIs. To address this task,
the potential solutions can be categorized into four main aspects:
(i) Given the constraints of GPU memory, mainstream deep
learning-based object detection methods [15], [16], [19], [20],
[21] commonly employ cropping strategies [7], [22]. However,
such strategies have inherent limitations and easily cut off large
bridges, as shown in Fig. 1. In addition to the cropping strat-
egy, several object detection methods tackle the original large-
size images with fixed-window downsampling strategies [23],
[24], [25], resulting in a significant loss of image information;
(ii) Methods like streaming [26] perform the forward and back-
ward pass on smaller tiles of the large-size image, but they are
unable to support deep neural network (DNN) with normaliza-
tion; (iii) Methods like LMS [27] use memory offload to share
memory across system memory (CPU DRAM) and the GPU
memory. However, they introduce significant time overhead
and are constrained by the maximum memory expansion rate;
(iv) Multi-GPU tensor parallelization techniques [28], [29]
have the promise to extend deep networks to support holis-
tic processing of large-size images. However, they tend to be
resource-intensive and difficult to operate in regular conditions.
In summary, existing methods are ineffective under common
computational resources (e.g., a single GPU with 24 GB mem-
ory) for holistic bridge detection in large-size VHR RSIs.

Considering the limitations of the aforementioned poten-
tial solutions, we propose a holistic bridge detection network
(HBD-Net) specifically designed for bridge detection in large-
size VHR RSIs. Our method presents two key merits: (i) The sep-
arate detector-based feature fusion (SDFF) architecture, when
applied to the dynamic image pyramid (DIP), demonstrates
an efficient approach for processing large-size images with
minimal resource consumption. (ii) The shape-sensitive sample
re-weighting (SSRW) strategy balances regression weights of
bridges with different aspect ratios. Experimental results on
GLH-Bridge demonstrate an outstanding performance of our
proposed HBD-Net.

To sum up, to the best of our knowledge, this paper makes the
first exploration of holistic bridge detection in large-size VHR
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RSIs. The main contributions of this paper are summarized as
follows:
� We propose GLH-Bridge, the first large-scale dataset for

bridge detection in large-size VHR RSIs. With 59,737
bridges set against various backgrounds, this dataset offers
a comprehensive representation of bridges in real-world
scenarios.

� A cost-saving network for holistic bridge detection in
large-size images (i.e., HBD-Net) is proposed, which can
efficiently handle large-size images with the common GPU
and holistically detect multi-scale bridges with the well-
designed SDFF architecture and SSRW strategy.

� Using the proposed GLH-Bridge dataset, we create a
benchmark for bridge detection, covering both the OBB
and HBB tasks. The HBD-Net achieves superior perfor-
mance compared to existing state-of-the-art algorithms.
Furthermore, we conduct cross-dataset generalization ex-
periments to demonstrate the strong generalization ability
of GLH-Bridge. We hope this benchmark can contribute to
the fundamental evaluation of object detection in large-size
images.

The rest of this paper is organized as follows: Section II
provides an overview of existing datasets and algorithms for
bridge detection. Section III offers a detailed description of the
proposed GLH-Bridge dataset. In Section IV, we introduce the
proposed HBD-Net. Section V presents the experimental results.
Finally, Section VI concludes the paper and provides insights for
future work.

II. RELATED WORK

In this section, we first discuss available datasets for bridge
detection. Next, we briefly review bridge detection methods and
potential methods from relevant fields for object detection in
large-size images.

A. Datasets for Bridge Detection in Remote Sensing Images

As shown in Table I, the current datasets utilized for bridge
detection can be classified into two main categories: multi-class
datasets encompassing the bridge category among others, and
specialized datasets explicitly tailored for bridge detection pur-
poses.

1) Multi-Class Datasets for Bridge Detection: In the liter-
ature, numerous large-scale and high-quality remote sensing
object detection datasets have been proposed. For example,
NWPU VHR-10 [5] is a dataset with ten categories, expanding
the category of geospatial objects. DOTA [7] and DIOR [18]
have raised the number of instances to a new level, reflecting
the prevalence of multi-class objects in remote sensing scenes.
FAIR1M [6] accomplishes a more detailed classification taxon-
omy of geospatial objects. Despite these datasets containing the
bridge category, they have limited quantities of bridge instances.
As summarized in Table I, these multi-class datasets are unable
to fulfill the aforementioned three criteria of an ideal bridge
detection dataset: large volume of samples, large-size image,
and VHR image.

It has been clearly shown that the existing multi-class object
detection benchmarks [8], [18] and some algorithms designed
for enhancing oriented object detection [30], [31], [32] demon-
strate that bridge is one of the most difficult categories to detect.
For example, in DOTA-v1.0 and DOTA-v1.5 [7], the highest
accuracies for the bridge category in the OBB task are 64.5%
and 59.6%, respectively, which are obviously lower than the
other classes.2 Bridge detection, particularly in the OBB task,
undoubtedly poses significant challenges. Therefore, addressing
the shortage of large-scale bridge detection datasets is crucial to
training high-performance bridge detection models.

2) Specialized Datasets for Bridge Detection: Besides multi-
class object detection datasets of aerial images, researchers
have developed diverse remote sensing datasets for one specific
category to facilitate more adaptable and crucial single-class
object detection. As shown in Table I, there exist two publicly
available datasets [4], [11], which are specifically designed for
bridge detection in RSIs.

Bridges Dataset [11]: Keiller et al.proposed the first dataset
for bridge detection and identification in VHR RSIs, known
as Bridges Dataset. This dataset comprises 500 images with
a consistent size of 4,800 × 2,843 pixels. The image in this
dataset has a spatial resolution of 0.5 m, aligning with the VHR
criteria in remote sensing scenarios. It is sampled globally using
ArcGIS3 and annotated bridges across different types of back-
ground terrains. However, the dataset has certain limitations. It
is constrained by the relatively low number of instances and
offers coarse HBB annotations for the bridges. Furthermore, the
bridges are primarily located at the center of the image in this
dataset, which may potentially distort the learning process for
bridge detection models by prior biases.

BridgeDetV1 [4]: Guo et al.constructed a bridge detection
dataset named BridgeDetV1 for detecting waterborne bridges
in RSIs. The dataset consists of 5,000 images with the spatial
resolution ranging from 2 ∼ 6 meters and image size ranging
from 668 × 668 ∼ 1,000 × 1,000 pixels. It encompasses a total
of 8,371 bridges annotated with both HBB and OBB. Although
BridgeDetV1 contains a larger number of bridges compared to
previous datasets, its limited spatial resolution restricts its ability
to detect small bridges. Furthermore, BridgeDetV1 only focuses
on waterborne bridges, resulting in a lack of scene diversity.

As a whole, existing dedicated datasets for bridge detection
are insufficient to reflect the characteristics of bridges in real-
world scenarios. Therefore, it is urgent to build a comprehensive,
large-scale bridge detection dataset with large-size VHR images
and rich instance types.

B. Bridge Detection in Large-Size Remote Sensing Imagery

To motivate holistic bridge detection in large-size images,
we discuss methods for bridge detection in RSIs and potential
technologies to cope with object detection in large-size images
in the following sections.

1) Bridge Detection in Remote Sensing Imagery: Bridge
detection in RSIs is a longstanding research topic. Chaudhuri

2[Online]. Available: https://captain-whu.github.io/DOTA/results.html
3[Online]. Available: https://www.arcgis.com/
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et al. [33] utilized traditional supervised classification tech-
niques and prior knowledge to detect bridges from multi-spectral
images. Sithole et al. [1] focused on bridge detection in airborne
scenes by detecting the cross-sectional contours of bridges.
Several traditional algorithms were also developed to detect
bridges in synthetic aperture radar (SAR) images based on edge
and geometric features of bridges or water bodies [34], [35],
[36]. Generally, these methods mainly relied on hand-crafted
features by exploiting the bridges’ geometry structure and the
context of the surrounding water bodies.

Recently, some deep learning-based methods for bridge de-
tection in RSIs have been proposed. Chen et al. [37] incorporated
attention modules to perform waterborne bridge detection. Guo
et al. [4] introduced the prior information of water bodies and
combined bridge detection with the auxiliary task of water
body segmentation. Wang et al. [38] designed a module for
injecting water prior information into the bridge detection task
through binary segmentation maps. Some other researchers [17]
used multi-feature fusion methods to perform bridge detection.
However, these methods primarily concentrated on detecting
bridges in small-size or low-resolution images. It is noted that the
existing methods disproportionately prioritized water features
for locating bridges, even though bridges span across diverse
terrains. This overemphasis on water body information has
caused biases in feature learning and failed to present practical
scenarios. Hence, generalized bridge detection algorithms are
still much underexplored.

2) Object Detection in Large-Size Imagery: In this section,
we introduce methods designed for object detection in large-size
images and methods borrowed from related fields that may have
potential applications in tackling large-size images. It is worth
noting that in large-size VHR images, object detection is more
challenging than other tasks like semantic segmentation [39],
[40], [41], [42], [43], [44] or style transfer [45], as the latter
focuses on pixel-level details, while the former operates at the
instance level.

In the field of object detection, cropping strategies like
SAHI [22] are commonly used to handle large-size images in
popular benchmarks [6], [7]. However, the use of the cropping
strategy poses a significant risk of cutting off large bridges. This
can lead to misalignment of the supervision signal and loss of
contextual information. Moreover, some approaches have been
proposed to detect objects in large-size images by downsampling
the original image using a fixed size or resolution. Chen et al. [25]
proposed a coupled global-local object detection network with
two branches inspired by global-local networks for segmenta-
tion [39]. Deng et al. [23] utilized a global-local self-adaptive
network to conduct drone-view object detection in large-size
images via downsampling and self-adaptive cropping. However,
as mentioned in Section I, such methods are not suitable for
handling large-size images and can easily result in significant
information loss.

Some potential deep learning-based technologies [46], [47]
can be found in the literature to handle large-size images. Pinck-
aers et al.proposed streaming [26], which constructs the later
activations by streaming the input image through the CNN in a
tiled fashion, but it is unable to support DNN with normalization
despite the fact that the normalization is a critical dependency

in modern DNNs. Le et al. [27] proposed an approach based on
formal rules for graph rewriting, which is able to automatically
manage GPU memory to save memory usage. However, it is re-
stricted by the maximum memory expansion and often consumes
significant computational time. Additionally, Shazeer et al. [28]
proposed Mesh-TensorFlow for distributed tensor computations
and data parallelism to address the memory problem (e.g.,
memory limitation of GPU). Nevertheless, Mesh-TensorFlow
usually requires extensive computing resources, making them
unfriendly for deployment on edge-computing devices. As a
whole, it is not straightforward to extend the aforementioned
methods to address holistic bridge detection in large-size RSIs.

Hence, it is essential to develop a cost-effective approach for
bridge detection that efficiently handles large-size VHR images
with common GPU hardware.

III. GLH-BRIDGE DATASET

Our goals for developing a new dataset for bridge detection
are twofold: (i) to occupy the niche of large-scale datasets for
bridge detection in large-size VHR RSIs. (ii) to promote a new
meaningful yet challenging task: holistic bridge detection in
large-size VHR RSIs. This section provides a comprehensive
overview of the GLH-Bridge dataset, focusing on three key
aspects: data collection, data annotation, and data analysis.

A. Data Collection

Considering the variations in imaging perspectives of RSIs
and to increase data diversity, we collect images from multiple
satellite sensor platforms such as Google Earth and MapBox.
The GLH-Bridge dataset provides global coverage through the
collection of 6,000 optical RSIs obtained from over 400 cities or
regions covering Asia, Africa, South America, North America,
Europe, and Oceania. The images are collected from 2019 to
2022, with the image size ranging from 2,048 × 2,048 pixels
to 16,384 × 16,384 pixels, and spatial resolution varying from
0.3 m to 1.0 m. The overall distribution and some samples from
the dataset are illustrated in Fig. 2.

To comprehensively obtain RSIs depicting bridges on a global
scale, we employ two distinct methodologies to identify can-
didate areas for image acquisition. Firstly, we utilize meta-
information regarding bridges sourced from the National Bridge
Inventory (NBI),4 an extensive database curated by the Federal
Highway Administration. The NBI includes comprehensive de-
tails on bridges throughout the United States, including various
types such as highway, railway, waterborne bridges, and tun-
nels. Subsequently, we preprocess the acquired data by filtering
entries based on their construction years, thereby excluding ex-
cessively antiquated bridge structures. Finally, we utilize Google
Earth for image download. To ensure spatial randomness and
mitigate the potential concentration of bridges within the central
portions of the images, we define random spatial windows using
geographic coordinates during the download process.

The other approach entails the identification of candidate ge-
ographic regions utilizing electronic maps and satellite imagery
spanning a global scope, with the exclusion of the United States,

4[Online]. Available: https://www.fhwa.dot.gov/bridge/nbi.cfm
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Fig. 2. The geographical distribution map of the sampled images from the proposed GLH-Bridge dataset.

to ensure a comprehensive and evenly distributed sampling
area. In the selection of regions of interest, particular emphasis
is placed on sampling within major urban centers. Initially,
we utilize data pertaining to the locations of major cities and
significant rivers in each country to compile a roster of cities
exhibiting a high density of potential bridge structures. Sub-
sequently, a random sampling strategy is applied to select areas
within fixed-size regions within each city’s geographic confines.
Finally, RSIs are acquired from candidate geographic regions
displaying diverse terrain characteristics and bridge contexts
across varied regions. Notably, this methodology incorporates
the collection of negative samples from regions with sparse
bridge infrastructure, such as rural expanses, islands, and desert
areas, to ensure uniformity in geographic distribution and dataset
diversity.

With the purpose of leveraging the complementary geo-
graphic coverage via the aforementioned two image collection
approaches, we partition the overall dataset randomly into train-
ing, validation, and testing sets with a ratio of 6:2:2. More
specifically, the training, validation, and testing sets consist of
3613, 1194, and 1193 large-size images, respectively.

B. Data Annotation

1) Annotation Criteria: The geographical entity “bridge”
is defined by considering both the structure and the spatial

context. In this vein, our visual interpretation process adheres
to a stringent differentiation between bridges and roads. When
dealing with suspended roads that cast shadows, we determine
the two endpoints of one bridge based on the observation of
whether they intersect distinct topographic features like valleys,
rivers, or vegetation or not. This approach is crucial to ensure
the exactitude of bridge labeling, with specific emphasis placed
on the verification of objects that are susceptible to ambiguity,
such as overpasses lacking topographical intersections or roads
traversing regions between rice paddies.

The application of labeling criteria is illustrated in Fig. 3. Ob-
jects deemed to be non-bridges or bridges presenting challenges
in labeling are deliberately omitted from the labeling process,
such as two terminal connections shown in Fig. 3(a). Fig. 3(b)
shows a road across the water with excessive curvature or an ir-
regular shape that will not be labeled. In the process of annotating
bridges, we establish the length threshold as 12 pixels according
to the size of extremely Small in [48], whereby bridges shorter
than this threshold will not be labeled. It should be mentioned
that this approach incorporates bridges with a width less than the
length threshold into the dataset, thereby introducing a notable
challenge in the detection of diminutive instances.

2) Annotation Management: The procedure of labeling
GLH-Bridge encompasses a tripartite framework consisting of
three stages: pre-annotation stage, expert feedback and re-
finement stage, and large-scale detailed annotation stage. In
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Fig. 3. Examples of labeling according to the criteria, with the yellow circle
indicating scenarios that are not annotated. (a) Roads across water with excessive
curvature or an irregular shape are not labeled. (b) Two terminal connections are
not labeled.

light of the overhead perspective characteristic of remote sensing
images, it is acknowledged that HBB is inherently limited in
the ability to precisely delineate the actual positions of objects
with arbitrary directions, as it contains a significant amount of
irrelevant information from the background. Therefore, we use
RoLabelImg5 to manually generate the fine OBB for bridges.
Specifically, the labeled rectangular bounding box can be de-
fined by four corner points (x1, y1, x2, y2, x3, y3, x4, y4) in the
clockwise order. In the initial phase of pre-annotation, we form
a specialized team comprising 10 members, each possessing
extensive expertise in the field of remote sensing interpretation.
This team undergoes comprehensive training in fundamental
annotation techniques and subsequently conducts annotation
tests on a representative subset of the dataset. In the following
feedback and refinement stage, experts thoroughly review and
evaluate the team’s initial annotations, resulting in the formu-
lation of refined annotation criteria. Subsequently, guided by
this adjustment, the team embark on the formal large-scale
annotation process, accompanied by experts’ random sampling
inspections.

C. Dataset Analysis

In contrast to the other existing bridge detection datasets,
GLH-Bridge exhibits notable advantages in terms of GSD,
image size, instance quantity, and instance diversity. The GLH-
Bridge dataset showcases six prominent merits.
•Various Instance Scales: GLH-Bridge incorporates a diverse

range of bridge sizes, ranging from tiny bridges with 12 pixels
to giant bridges exceeding 3000 pixels. As depicted in Fig. 4(a),
large bridges show a high presence in GLH-Bridge, surpassing
the quantity reported in existing datasets. This highlights the
imperative of utilizing raw large-size images to preserve the
integrity of bridges. Furthermore, as illustrated in Fig. 4(b) and
(c), a substantial number of small bridges are showcased in GLH-
Bridge. Consequently, detecting huge bridges entails processing
raw large-size images, presenting a challenge in the context of
conventional practice that employs small-size images for the
detection of petite bridge instances.

5[Online]. Available: https://github.com/cgvict/roLabelImg

• Extreme Aspect Ratios: GLH-Bridge contains many giant
bridges with extreme aspect ratios, as depicted in Fig. 4(a). The
identification of these instances poses a formidable challenge
for oriented object detection algorithms.
• Large Image Sizes: In the context of the GLH-Bridge, over

1,000 large-size VHR images have sizes greater than 8,000
× 8,000 pixels. Due to the diverse sizes of these images,
conventional downsampling techniques using fixed ratios are
ill-suited. The effective processing of these large-size images,
while simultaneously preserving the integrity of exceptionally
large bridges, presents a significant challenge for existing object
detection methods.
•Diverse Background Types: As shown in Fig. 5, GLH-Bridge

includes bridges across diverse terrains, encompassing not only
water body but also dry riverbeds, vegetation, valleys, deserts,
urban roads, etc. This requires object detection algorithms to
possess the capability to recognize bridges across a spectrum of
backgrounds. Additionally, the challenge is further exacerbated
by the potential for bridges to intersect or overlap with other
objects, such as roads.
•Global Coverage: GLH-Bridge spans the globe and includes

samples from all continents. This vast and diverse region pro-
vides a wide range of bridge types and landscapes, promoting
the dataset’s generalizability to various scenarios.
• Variation in Instance Density: The distribution of bridges

per image in GLH-Bridge is illustrated in Fig. 4(d). In densely
populated urban areas or regions abundant in waterways and
transportation, bridges are frequently densely distributed. How-
ever, rural areas or less developed regions exhibit a smaller num-
ber of bridges, with background areas occupying a significant
proportion.

IV. THE PROPOSED METHOD

To holistically detect bridges from large-size VHR images,
this paper presents HBD-Net, which stands as the pioneering
approach expressly tailored for this objective. This section is
dedicated to providing a detailed explanation of the HBD-Net.

A. Model Preview

Contemporary deep networks encounter limitations when di-
rectly processing large-size RSIs due to the constrained memory
capacity of the GPU. To address this problem, we present one
factorized representation (i.e., the DIP) of the original large-size
image. What’s more, we leverage the proposed SDFF with sep-
arate detectors to train or infer upon the DIP, and an inter-layer
feature fusion (IFF) module is proposed to facilitate feature
complementation between layers within the SDFF. Moreover,
we enhance the performance of HBD-Net by incorporating the
SSRW strategy during sample allocation, and via cross-scale-
transfer distillation in SDFF. Our method is illustrated in Fig. 6.

B. HBD-Net Architecture

To effectively process the large-size image, we propose the
SDFF architecture, which utilizes separate detectors to tackle
the DIP and conducts feature fusion via the IFF module. We
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Fig. 4. Illustration of GLH-bridge’s characteristics. (a) Comparison of bridges’ characteristics across different datasets. (b) Distribution of bridges’ areas in
GLH-Bridge. (c) Distribution of bridges’ length in GLH-Bridge. (d) Distribution of bridges’ density in GLH-Bridge.

Fig. 5. Illustration of bridges across different backgrounds in the proposed
GLH-Bridge dataset. (a) Bridges across vegetation. (b) Bridges across dry
riverbeds. (c) Bridges across roads. (d) Bridges across water bodies.

will provide a detailed explanation of these components in the
following sections.

1) Separate Detectors on Dynamic Image Pyramid. DIP
Construction: When presented with a large-size VHR image
with a size of H ×W , we progressively downsample the orig-
inal large-size VHR images at a fixed ratio of σ to construct
the image-level pyramid with a variable number of layers. The
termination condition of the top layer (the n-th layer) of the
pyramid is defined as follows:

H

σn−1
≤ Ht or

W

σn−1
≤Wt, (1)

where (Ht,Wt) is the termination threshold. So we can get the
DIP withn layers and the size of its top layer image is (Hn,Wn),
where Hn = H/σn−1, Wn =W/σn−1. At each layer of the
DIP, we employ a fixed-sized window (the size is equal to
(Ht,Wt)) to gradually extract the image patches and send them
into the detector corresponding to the layer.

Separate Detectors: It is noted that retaining extremely small
labels in the downsampled layers can lead to severe information
loss. Additionally, the identification of tiny objects in layers
with higher resolution tends to be more accurate. Against this
backdrop, a set of thresholds is introduced to allocate the OBB
labels to each layer of the DIP based on the OBB’s length. As a
result, each detector embedded within the SDFF is responsible
for predicting bridges with specific scales. To enable the SDFF
to possess scale sensitivity when detecting multi-scale bridges,
we utilize separate object detectors at layers of the SDFF instead
of a unified detector (the reason is explained in Section V-B1).
Overall, one large-size VHR image is decomposed into one DIP
with multiple layers, which passes through the SDFF followed
by separate detectors. Hence, this factorized framework facili-
tates the training of HBD-Net even under constraints imposed
by limited computational resources (e.g., one single GPU).

2) Inter-Layer Feature Fusion: Considering the variation of
field-of-views in the same window at different layers of DIP, the
higher layers have global information, while the lower layers
contain detailed information. To effectively utilize complemen-
tary cues to feature fusion, we devise an Inter-Layer Feature
Fusion (IFF) module to enable bidirectional feature sharing
within the SDFF.

Similar to the basic feature extractors (e.g., Resnet [49] fol-
lowed by FPN [50]), this paper recommends extracting feature
pyramids from the DIP. Given the feature sets obtained by the
feature pyramid network (FPN) from all image layers within the
DIP, candidate feature sets are selected from the adjacent image
layers. Subsequently, we perform inter-layer feature fusion on
these candidate feature sets via feature alignment and fusion.

Feature Selection: We begin by identifying candidate feature
sets for fusion. As shown in Fig. 7, in the case of FPN, the
spatial sizes of adjacent levels in the feature pyramid always
differ by 2×. We set P ji as the i-th level feature in the feature
pyramid of the j-th image layer. Assuming that the j-th image
layer is located in the middle of the DIP, the feature pyramids
of the two neighboring layers can be represented as P j−1 and
P j+1, respectively. Given that the downsampling ratio of FPN
equals the downsampling ratio σ we set for DIP, we can draw the
conclusion that the following features P j−1

i+1 , P ji , and P j+1
i−1 have

the same actual downsampling ratio. We define this candidate
feature set as Pcand = {P j−1

i+1 , P
j
i , P

j+1
i−1 }.

Feature Alignment and Fusion: After obtaining the candidate
feature sets Pcand, we align the features within Pcand based
on consistent spatial position and conduct fusion. The rough
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Fig. 6. The pipeline of the proposed HBD-Net. It contains the proposed SDFF architecture and SSRW strategy. The SDFF architecture consists of separate
detectors and the IFF module. From the input large-size VHR image, we construct a DIP and send it to the separate detectors of the SDFF to obtain features. Then
features from all detectors of the SDFF are fused via the IFF module to share both contextual and detailed texture information. The SSRW strategy is applied in
the sample selection stage of object detectors to balance the regression weight. Finally, the output fusion features are fed into the object detectors’ heads to obtain
the results of each layer, which are used to compute the loss with corresponding ground-truth labels.

Fig. 7. Illustration of the proposed IFF module. The figure illustrates the ways
of feature fusion between two adjacent layers.

representation of this process is shown in Fig. 7. For P j−1
i+1 , we

begin by conducting downsampling it and then align it with the
spatial consistent region on P ji . For P j+1

i−1 , we align it with the
spatial consistent region onP ji by cropping. Due to the existence
of sliding windows, the image features of the (j − 1)-th layer are
extracted in batches during the training process. Consequently,
these features are concatenated along the spatial dimension to
fit the size of P ji after downsampling. Following this alignment
process, we perform feature fusion as follows:

P ji = act(conv(concat(align({P j−1
i+1 , P

j
i , P

j+1
i−1 })))), (2)

where act, conv, concat and align refer to activation layer
(e.g., sigmoid), 1× 1 convolutional layer, channel-wise con-
catenation operation and aforementioned alignment process,
respectively. During the layer-by-layer training of the DIP, the
fusion of features occurs subsequent to the training of detectors
across all levels. In instances where the feature set resides within
the middle image layer, it undergoes fusion with the original
feature sets before fusion with those from lower and higher
image layers. This fusion process remains independent of the
sequence in which various layers are fused. The original feature

set is preserved without performing feature fusion. In this way,
the features in each layer are fused with the features from the
adjacent layers, allowing to capture of contextual information
from the upper layer and detailed texture information from the
lower layer.

C. HBD-Net Optimization

As bridges exhibit drastic variations in spatial scales and
aspect ratios, the Intersection over Union (IoU) between the
prediction and label exhibits heightened sensitivity to regressive
bias, especially for boxes with larger aspect ratios. Existing
methods typically rely on fixed strategies, such as employing
the maximum IoU [19], [21] or distance metrics in feature
maps [51], to select positive samples and assign them uniform
weights. This practice is unsuitable, as it fails to account for
the disparities in regression weights required for samples with
distinct aspect ratios. To address this problem, we propose a
shape-sensitive sample re-weighting (SSRW) strategy during
the sample assignment stage. It aims to encourage the deep
network to prioritize samples with extreme aspect ratios, and
further balance the weighted regression losses.

As illustrated in Fig. 8, following the assignment and selection
of positive and negative samples (i.e., sample points), each
ground-truth box is linked to its positive samples for subsequent
regression and classification predictions. For the positive sam-
ples corresponding to a ground-truth box, where w and h repre-
sent the width and height of the ground-truth box, respectively,
and r denotes the normalized aspect ratio of ground-truth boxes
within the mini-batch. The distance between the center point of
this box and one of its corresponding positive samples is denoted
as Δd. From this, the projected lengthsw′ and h′ of Δd in thew
and h directions can be computed. The relative offset factors rw
and rh are then defined as rw = 2w′

w , rh = 2h′
h . After acquiring

the relative offset factors, we use offset measurement factorsQw

and Qh to evaluate the deviation of the selected samples. These
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Fig. 8. Illustration of the proposed SSRW strategy. The red and blue points
represent positive and negative samples selected by the object detector, respec-
tively. For anchor-based detectors, these points correspond to the feature map
locations generating anchors or proposals. For anchor-free detectors, these points
indicate the grids on the feature maps. To maintain clarity and simplicity, the
depiction of anchors or proposals associated with the sample points (applicable
to anchor-based methods) is not depicted in this illustration.

factors can be expressed as:

Qw = ln(rw + 1) + 1, (3)

Qh = ln(rh + 1) + 1. (4)

After obtaining the offset measurement factors Qw and Qh,
the SSRW strategy incorporates them into the regression loss
weight wreg to assign higher weights to more challenging sam-
ples (i.e., those with larger aspect ratios). Thewreg is defined as
follows:

wreg = μQwQhr, (5)

where μ is the adjustment factor and set to 1.0. In this case,
an increased value of Qw and Qh indicates a larger relative
distance between the positive sample’s prediction box and the
ground-truth box. This suggests that the transformation of the
candidate box into a high-quality regression box is more chal-
lenging. Consequently, assigning a higher wreg to such positive
samples enables the detector to prioritize them. Moreover, given
the prevalence of small objects, it contributes to achieving an
equitable balance in regression weights among bridges with
varying aspect ratios, when the weight wreg shifts towards
objects with larger aspect ratios.

The total loss of oriented object detection and horizontal
object detection is defined as follows:

LO =

n∑
m=1

λm

⎛
⎝ 1

N

∑
i∈ψ

Lclsi +
1

N+

∑
j∈ψp

wregj Lregj

⎞
⎠ , (6)

LH =

n∑
m=1

λm

⎛
⎝ 1

N

∑
i∈ψ

Lclsi +
1

N+

∑
j∈ψp

Lregj

⎞
⎠ , (7)

where wregj is the regression weight calculated by the proposed
SSRW strategy. n is the number of layers in the DIP, and λm is
the balanced weight corresponding to the loss of them-th layer,
which is set to 1. ψ and ψp represent the set of all samples and
the set of positive samples, respectively. N and N+ denote the

total number of all samples and positive samples, respectively.
The classification loss Lclsi is focal loss [52] and the regression
loss Lregj is Smooth L1 loss as defined in [53].

To make full use of the supervision of multi-scale bridges
and pursue the scale-sensitive detector, we train the separate
detectors within the SDFF layer-by-layer. This process com-
mences with training the bottom layer and proceeds to train
each subsequent layer, culminating with the top layer. Upon
the completion of training for the detector of the m-th layer
(m ∈ [1, n− 1]), we use its weights to initialize the detector of
the (m+ 1)-th layer. Meanwhile, congenetic labels from the la-
bel assign strategy are used to constrain the scale-equivalence of
outputs from separate detectors, achieving cross-scale-transfer
distillation and enhancing the performance of the deep network.

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. Benchmark

1) Evaluation Metrics: We establish a benchmark on the
GLH-Bridge dataset for two types of object detection tasks:
OBB detection and HBB detection. The Average Precision (AP)
is adopted as the main evaluation metric in this study (by the
IoU computation for the True Positive (TP), False Positive (FP),
and False Negative (FN)). We adopt the PASCAL VOC 07
metric [62] to calculate the mean Average Precision (mAP). In
the MS-COCO dataset [63], the pixel area of the ground-truth
boxes is used to determine small, medium, and large scales to
calculate the corresponding AP values, which has been widely
used to assess various detection algorithms. However, it is
important to note that bridges, despite varying significantly in
lengths and aspect ratios, may appear to possess the same area
in VHR images. Dividing bridges solely based on area may
prove inadequate to accurately reflect the detection difficulty and
overlook the influence of image size constraints on the detection
algorithm.

In light of the aforementioned limitation, we propose new
evaluation metrics based on the length of the longer side of
the ground-truth boxes. Specifically, we define a set of pixel
intervals as {(0, 50], (50, 200], (200, 800], (800, 16384]} to cat-
egorize bridges based on their lengths, classifying them as short,
middle, large, and huge. The corresponding APs are denoted as
APsh, APmd, APlg, and APhg, respectively. It is important to note
that the detection of huge bridges can often be a challenging task,
as they may not be effectively and completely captured within
a single sliding window when employing traditional cropping
strategies.

2) Implementation Details: The algorithms employed in our
experiments are from two open-source pytorch-based algo-
rithm libraries, MMRotate [64] and MMDetection [65]. These
libraries integrate various state-of-the-art object detection al-
gorithms, along with their corresponding backbone networks,
feature extractors, and detectors. They enable the reproduction
of the original accuracies of the respective algorithms within
a unified algorithm framework, ensuring fairness. Hence, these
two algorithm libraries were chosen for the benchmarks for our
experiments.
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Experiments are performed on a server with 1 Tesla V100
GPU and 16 GB memory. The backbone networks are initialized
with models pre-trained on ImageNet [66]. We adopt the “2×”
training schedule in MMRotate and MMDetection. The SGD
optimizer is employed with a learning rate of 0.005, momentum
of 0.9, and weight decay of 0.0001. When performing feature
fusion among the detectors of the proposed SDFF, the learning
rate is set to 0.001. A linear warm-up strategy is applied for the
initial 500 iterations, with a rate of 1.0/3. As for the algorithms
used to establish benchmark results, the batch size is set to 4.

In the case of the HBD-Net utilized in this study, the batch
size is set to 1 during training, and the learning rate is adjusted
accordingly. The image processing strategies for training and
testing follow the description in Section IV, the downsampling
ratio σ is set to 2.0. When training the HBD-Net, we use a
label filtering strategy to divide original labels into n groups
to calculate loss with the outputs of n layers. To the n-th label
group, the filtering threshold is represented as [minn,maxn),
and the minn is set to 15× 2(n−1) pixels and the maxn is set to
1448 pixels (i.e., 1024×√

2 pixels) considering the size of the
cropping window. In all experiments, random flipping was used
as the only data augmentation technique.

3) Mainstream Methods: To assess the efficacy of the HBD-
Net, we conduct a comparative evaluation against 18 advanced
object detection methods. For the OBB task, we choose two-
stage approaches such as Faster R-CNN-O [7], RoI Trans-
former [19], Oriented R-CNN [21], and ReDet [20]; one-stage
approaches including FCOS-O [51], R 3 Det [54], KLD [55],
and Oriented RepPoints [56]; and methods for object detection
in large-size images like CGL [25]. Oriented R-CNN is chosen
as the baseline method for the proposed HBD-Net and CGL. For
the HBB task, we choose RetinaNet [52], Faster R-CNN [57],
FCOS [51], TOOD [58], Cascade R-CNN [59], ATSS [60],
GuidingAnchor [61]; and methods designed for large-size im-
ages like CGL [25], GLSAN [23], and SAHI [22]. Faster R-CNN
is chosen as the baseline method for CGL, GLSAN, SAHI, and
HBD-Net on the HBB task. It should be noted that the SSRW
strategy is not used when training the proposed HBD-Net on the
HBB task.

In the case of CGL, GLSAN, and SAHI, we adopt their
default strategies to process large-size images. For SAHI, we
set the patch size to 1024×1024 pixels, with a 200-pixel overlap
if necessary, and combine three strategies: slicing-aided hyper
inference, full image inference (FI), and an overlapping patches-
based cropping strategy (PO). In the case of GLSAN, we adhere
to the original strategy by configuring the subregion number
to 4. We incorporate the subregion image cropping component
of its training data augmentation (TDA) and implement the
SelfAdaptiveCrop technique during testing, employing a crop
size of 1024 × 1024 pixels. For the other object detection
methods, the original images are processed using an overlapping
patches-based cropping strategy for training and testing. The
cropping settings for training and testing are consistent, with
a cropping window size of 1024×1024 pixels and a 200-pixel
overlap.

4) Results and Analysis: The benchmark and experimental
results for OBB and HBB tasks on GLH-Bridge are presented
in Table II.

For the OBB task, the experimental results demonstrate that
the HBD-Net achieves the best performance on the benchmark
of GLH-Bridge, with an mAP score of 35.35%. It achieves
an accuracy of 28.69% on the AP75 metric, underscoring the
efficacy of our approach in accurately detecting rotated bridges.
Furthermore, our method achieves the best performance, 33.47%
and 20.61% in the APlg and APhg metrics, respectively. This
highlights the HBD-Net’s effectiveness in handling the detection
of large bridges that may exceed the typical cropping size,
particularly for instances with a length exceeding 800 pixels.
Additionally, our method also shows benefits in detecting small
objects, which constitute a significant portion of the dataset.

For the HBB task, we consider that the aspect ratio of the
horizontal box is determined by both the orientation of bridges
and their true aspect ratios. Therefore, it does not accurately
reflect whether the bridges are elongated in shape. As a result,
we do not incorporate the SSRW strategy for the HBB task, only
utilizing the proposed SDFF architecture as the employed ap-
proach. Under this setting, the HBD-Net also achieves a remark-
able performance of 34.49% mAP. Furthermore, in comparison
to general object detection methods, the HBD-Net showcases
outstanding performance in detecting large bridges. It obtains
35.21% and 35.59% in theAPlg andAPhg metrics, respectively.

Additionally, for the methods designed for object detection
in large-size images, although SAHI achieves fine small object
detection by resizing overlapping patches, its upsampling tech-
nique provides limited benefits for VHR RSIs. CGL employs a
fixed downsampling strategy, which results in information loss
and suboptimal performance inAPhg. GLSAN performs predic-
tion on the downsampled original image and selects sub-blocks
for detailed detection through clustering of the predicted results.
However, it tends to miss scattered small bridges, and is still hard
to comprehensively detect large bridges.

In conclusion, the experimental results from both the OBB and
HBB tasks demonstrate the effectiveness of the HBD-Net in a
general sense. It is capable of adapting to the characteristics of
both horizontal and oriented bounding boxes, and the visual re-
sults are shown in Fig. 9. Additionally, our HBD-Net is indepen-
dent of the specific object detection methods. Therefore, it can
seamlessly accommodate a wide range of advanced one-stage
or two-stage object detectors within the proposed SDFF without
encountering specific limitations. This observation highlights
the versatility and applicability of the proposed approach in this
study.

B. Component Analysis

We conduct ablation experiments on the GLH-Bridge dataset
to evaluate the impact of two key components in our proposed
HBD-Net (i.e., the SDFF architecture and the SSRW strategy).

1) Effectiveness of the SDFF: As shown in Table III, we
explore the effectiveness of the detector utilization strategy and
IFF used in the proposed SDFF architecture. Our proposed SDFF
without cross-scale-transfer distillation and IFF demonstrates a
significant enhancement in accurately detecting large bridges,
with a notable 8.57% improvement in APhg metric compared to
the baseline. When considering whether each layer in the SDFF
employs an individual detector or if all layers share a detector,
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TABLE II
ACCURACY (%) OF OBB AND HBB TASKS ON GLH-BRIDGE

TABLE III
ACCURACY (%) OF ABLATION STUDIES ON THE IMPACT OF DIFFERENT STRATEGIES USED IN THE PROPOSED SDFF ARCHITECTURE ON THE OBB TASK OF

GLH-BRIDGE

the former slightly outperforms the latter. When we incorporate
a cross-scale-transfer distillation strategy into the process of
training the SDFF, the accuracy can be improved, resulting in an
additional improvement of 3.4% improvements in APhg metric.
Furthermore, through the integration of the IFF module, the
higher layer can benefit from the finer details provided by the
lower layer, resulting in enhanced final performance in terms of
the AP75 and APhg metrics, which reach 28.06% and 17.30%,
respectively.

2) Effectiveness of the SSRW Strategy: As our proposed
HBD-Net utilizes respective detectors in the proposed SDFF,
as shown in Table IV, we examine the effectiveness of the
SSRW strategy when applied to these detectors individually. It
can be observed that the proposed SSRW strategy enhances the
regression accuracy of the detector when it is solely applied

to the detector of the bottom layer, it results in 1.37% and
3.30% improvements in APlg and APhg metrics, respectively,
compared to the baseline. Furthermore, with the incorporation
of the SDFF architecture, we extend the application of the SSRW
strategy to detectors corresponding to the higher layers of the
pyramid, leading to a further improvement of 2.29% in APhg

metric. Given the typically larger aspect ratios of large bridges,
the above experiments demonstrate the effectiveness of our
proposed SSRW strategy in directing the network’s focus toward
bridges with larger aspect ratios, thereby improving detection
accuracy. Finally, in addition to the overall improvement in
all metrics, the HBD-Net achieves a significant improvement
of 2.40%, 4.17% and 14.93% in AP75, APlg and APhg met-
rics, respectively, compared to the baseline. This study affirms
the effectiveness of the proposed method in enhancing bridge
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Fig. 9. The visualization results of OBB and HBB tasks on the GLH-Bridge dataset using the HBD-Net and comparison object detection methods. * indicates
using the HBD-Net without the proposed SSRW strategy.

TABLE IV
ACCURACY (%) OF ABLATION STUDIES ON THE IMPACT OF THE SDFF ARCHITECTURE AND THE SSRW STRATEGY ON THE OBB TASK OF GLH-BRIDGE

detection performance in large-size images, especially concern-
ing the detection of large bridges in their entirety. It is important
to note that, with the implementation of the SSRW strategy for
higher-layer detectors, a decrease in theAPsh metric is observed.
This decrease is attributed to a decrease in the proportion of
small-scale labels at the higher layers resulting from the label
filtering. As a result, SSRW’s role in maintaining the balance
of loss between small and large objects is diminished, aligning
with its intended design principles.

Moreover, to comprehensively evaluate the effectiveness of
our method, we further conducted ablation experiments on the
DOTA-v1.0 dataset [7]. These experiments demonstrate how our
designed modules progressively enhance the performance step
by step. As shown in Table V, our proposed SSRW strategy
and SDFF architecture result in 0.96% and 1.26% improvement
respectively in APBR metric. Our HBD-Net achieves 46.11%
mAP and 56.02% APBR based on the baseline. These results
highlight the capability of our proposed HBD-Net to enhance
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Fig. 10. The visualized prediction results of the DIOR-R dataset by the model
trained on the GLH-Bridge dataset.

Fig. 11. The visualized prediction results of the DOTA-v1.0 dataset by the
model trained on the GLH-Bridge dataset.

TABLE V
ACCURACY (%) OF ABLATION STUDIES ON THE OBB TASK ON DOTA-V1.0

TABLE VI
MEMORY CONSUMPTION AND INFERENCE SPEED OF DIFFERENT METHODS

TABLE VII
ACCURACY (%) ON CROSS-DATASET GENERALIZATION EXPERIMENTS

the performance of existing state-of-the-art object detection
methods.

C. Complexity Comparison Experiments

For a more comprehensive comparison between our method-
ology and existing approaches for large-size images, we present
the comparative results in terms of model parameters, inference
speed, and accuracy across different methods. In our compar-
ison, we opt for mainstream cropping strategies and employ
multi-scale testing time augmentation (TTA), as they are specif-
ically designed to handle large-size images or objects with
significant scale variations. Additionally, we introduce a simple
acceleration strategy based on our DIP structure. Specifically,
in the second layer (double downsample) of the DIP, we use
a predefined confidence threshold during the inference process
for filtering. If the current tile lacks any objects of interest (the
confidence score falls below the threshold), we skip its four
corresponding tiles at the original resolution, thereby expedit-
ing the process. We refer to this acceleration strategy as the
region selection strategy. Detailed experimental settings are as
follows.

In our experimental setup, we utilize the Oriented R-CNN
as the baseline, the window settings for the cropping strategy
remain consistent with those in the benchmark. Additionally,
the ratios for multi-scale TTA are configured as (0.5, 1.0, 1.5),
following the approach adopted in MMRotate. The confidence
threshold used in our region selection strategy is set to 0.3.
The results are presented in Table VI. Despite our method
featuring slightly more parameters, it achieves superior accu-
racy, particularly for large-scale bridges in APhg, as well as
higher FPS compared to multi-scale TTA. Notably, our region
selection strategy significantly enhances inference speed while
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Fig. 12. Visualization of failure cases of HBD-Net. Most of these failure cases arise due to localized predictions triggered by backgrounds similar to that of
bridge banks, or because the shape of the bridge is too extreme.

upholding accuracy standards. It results in a noteworthy 28.6%
reduction in inference time on the HBD-Net, speeding up the
process by 40.4% compared to the cropping strategy. All in
all, our framework has room for acceleration expansion, and it
holds the potential to boost processing efficiency in application
scenarios.

D. Cross-Dataset Generalization Experiments

1) Datasets: We choose two public datasets (DOTA-v1.0
and DIOR-R) for the cross-dataset generalization experiments.
These datasets are chosen based on their large-scale and diverse
data characteristics, making them fundamental benchmarks in
the field of remote sensing object detection. The details are as
follows.

DOTA-v1.0 [7]: DOTA-v1.0 is a large-scale dataset for object
detection in aerial images. Its training and validation sets contain
a total of 2,541 bridges in 288 images.

DIOR-R [9]: DIOR-R is a large aerial images dataset and
has various spatial resolutions, containing 4,000 bridges among
1,576 images with OBB annotation. For the DIOR-R dataset,
the provided training, validation, and testing sets are utilized for
the cross-dataset generalization experiments.

2) Experimental Setting: Cross-dataset generalization anal-
ysis is an important evaluation method for assessing the gen-
eralization performance of a dataset. We conduct cross-dataset
generalization experiments using the bridge subset of the DOTA-
v1.0 dataset [7] and the DIOR-R dataset [9]. For the DOTA-v1.0
dataset, we extract the bridge subset from the official training and
validation sets for training purposes. The inference is performed
on the official unlabeled test set using the standard format.
Finally, the test results are uploaded to the official server to obtain
accuracy. For the DIOR-R dataset, we select the bridge subset

within the provided training and validation sets for training and
evaluate the official test set.

We employ Oriented R-CNN [21] as the algorithm for training
and testing. We train models on these three datasets respectively
and conduct cross-dataset evaluation. The training settings for
DOTA-v1.0 and DIOR-R are kept consistent with the original
papers, both with the “1×” training schedule [64]. For our
constructed GLH-Bridge dataset, we utilize the training set to
train our models while maintaining consistent training settings
with the benchmark baseline. To ensure image size compat-
ibility, we implement a cropping strategy with window sizes
of 1024×1024 pixels for DOTA-v1.0 and 800×800 pixels for
DIOR-R, along with a 200-pixel overlap. The evaluation of
cross-dataset generalization experiments is conducted based on
the AP metric.

3) Results and Analysis: The experimental results presented
in Table VII demonstrate that GLH-Bridge has achieved out-
standing zero-shot generalization performance on two main-
stream benchmarks. Specifically, it has achieved a performance
improvement of 3.79% on the DOTA-v1.0 dataset and 0.86 %
on the DIOR-R dataset. These results indicate that the ability
of the GLH-Bridge dataset to provide a more comprehensive
and accurate representation of bridge characteristics within the
domain of the perspective of remote sensing imagery.

The visual results of the DIOR-R dataset generated by the
model trained on the GLH-Bridge dataset are shown in Fig. 10.
It can be observed that despite the significant variation in image
resolution within the DIOR-R dataset (ranging from 0.5 m to
30 m), the model trained on GLH-Bridge exhibits the capa-
bility to identify bridges in low-resolution images. Addition-
ally, the DIOR-R dataset contains bridges with diverse color
tones and extreme aspect ratios. Despite differences in satellite
sources between these images and those in the GLH-Bridge
dataset, the model trained on GLH-Bridge demonstrates strong
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generalization ability by successfully detecting bridges in back-
grounds with high interference and images with lower resolu-
tions.

The visualized prediction results of the DOTA-v1.0 dataset
by the model trained on the GLH-Bridge dataset are shown
in Fig. 11. It can be observed that despite the inclusion of
panchromatic RSIs in addition to RGB images in the DOTA-v1.0
dataset, the proposed model trained on the GLH-Bridge dataset
is still able to accurately identify bridges. This demonstrates that
the GLH-Bridge dataset can capture the core features of bridges
in RSIs, which are invariant to color. Moreover, the trained model
achieves good performance in identifying small bridges in the
DOTA-v1.0 dataset, which proves that the GLH-Bridge dataset
has meticulous and high-quality annotations.

E. Failure Analysis

To identify potential enhancements for HBD-Net, we conduct
an analysis of visualizations showcasing failure cases, as illus-
trated in Fig. 12. These instances of failure primarily stem from
two key factors: i) The ground background beneath the bridge
exhibits a pronounced contrast with the surrounding bodies of
water. This contrast often leads to localized delineation of the
bridge’s terminus, resulting in the prediction of only a portion of
the entire bridge structure. ii) The irregular or excessively com-
plex shape of the bridge contributes to imprecise predictions.

VI. CONCLUSION

In this paper, we propose a large-scale dataset named GLH-
Bridge for holistic bridge detection in large-size VHR RSIs.
The proposed dataset consists of 6,000 VHR RSIs, with image
sizes ranging from 2,048 × 2,048 to 16,384 × 16,384 pixels,
and contains 59,737 bridges spanning diverse backgrounds with
OBB and HBB annotation. The large image size, the large
sample volume, and the diversity of object scale and back-
ground type make GLH-Bridge a valuable dataset, which has the
premise to promote one new challenging but meaningful task:
holistic bridge detection in large-size VHR RSIs. Furthermore,
we present the HBD-Net, a cost-effective solution tailored for
holistic bridge detection in large-size images. Based on the
proposed GLH-Bridge dataset, we establish a benchmark and
provide empirical validation of the effectiveness of the proposed
HBD-Net. In future work, we will continue to enrich the GLH-
Bridge dataset in terms of its sample volume and sub-category
annotation. Furthermore, our objective encompasses the gener-
alization of the proposed HBD-Net to cater to multi-class object
detection in large-size images. We endeavor to explore methods
that can concurrently enhance the accuracy of both large-scale
and small-scale bridges, thus widening the applicability and
effectiveness of HBD-Net across various scenarios.
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