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LiDAR has gained popularity in autonomous driving due to advantages like long measurement distance, rich
three-dimensional information, and stability in harsh environments. Place Recognition (PR) enables vehi-
cles to identify previously visited locations despite variations in appearance, weather, and viewpoints, even
determining their global location within prior maps. This capability is crucial for accurate localization in au-
tonomous driving. Consequently, LiDAR-based Place Recognition (LPR) has emerged as a research hotspot in
robotics. However, existing reviews predominantly concentrate on Visual Place Recognition, leaving a gap in
systematic reviews on LPR. This article bridges this gap by providing a comprehensive review of LPR meth-
ods, thus facilitating and encouraging further research. We commence by exploring the relationship between
PR and autonomous driving components. Then, we delve into the problem formulation of LPR, challenges,
and relations to previous surveys. Subsequently, we conduct an in-depth review of related research, which
offers detailed classifications, strengths and weaknesses, and architectures. Finally, we summarize existing
datasets and evaluation metrics and envision promising future directions. This article can serve as a valuable
tutorial for newcomers entering the field of place recognition. We plan to maintain an up-to-date project on
https://github.com/ShiPC-AI/LPR-Survey.
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1 Introduction

1.1 Background

In recent years, autonomous driving has rapidly advanced with applications in logistics, public
transportation, food delivery, warehousing, and medical rescue. The autonomous driving system
integrates complex modules such as sensors, perception, localization, planning, control, and com-
munication. These modules employ techniques like computer vision, sensor technology, and data
processing to enable vehicle autonomy. Location information is a prerequisite for the entire system,
helping vehicles understand their environment for better navigation. Notably, Place Recognition

(PR) [1–5] is a vital technique for obtaining and expressing this information.
As shown in Figure 1, we summarize PR’s functions into two aspects. (1) It addresses the prob-

lem of “where have I ever been,” also known as Loop Closure Detection (LCD) [6–8]. When the
robot explores unknown environments, PR compares newly captured sensor data with historical
data to identify revisited locations. The loop closure data are then passed to the backend system to
establish constraints and mitigate pose drifts. In this context, PR and localization are interdepen-
dent, with PR enhancing localization accuracy through loop closure detection and error correction.
(2) It tackles the issue of “where am I,” also known as global localization [9, 10]. When the vehicle
travels within a predefined map, PR correlates newly captured sensor data with maps to pinpoint
the vehicle’s locations. Subsequently, the planning module utilizes this location to optimize path
prediction, while the control module generates corresponding vehicle commands. In this context,
PR is a specialized localization method that directly provides the vehicle’s global pose.

To date, place recognition remains a challenging and ongoing research problem. Traditional
Global Positioning System (GPS) [11] provides absolute positions but is easily blocked in under-
ground parking lots and canyons, limiting their effectiveness. Inertia Measurement Unit (IMU)

[12] offers high-frequency attitude data but suffers from accuracy degradation over time due to cu-
mulative errors. Wheel odometers [13] provide stable displacement information, but slippery roads
or sudden acceleration can distort data. In contrast, measurement sensors like cameras and LiDAR
provide high-resolution environmental information with frequent updates. Cameras [14] excel in
capturing visual details like color, shape, and texture but are susceptible to illumination changes
and a narrow Field Of View (FOV). In contrast, LiDAR [15] generates rich three-dimensional (3D)
data and operates reliably in harsh conditions (e.g., night, rain, and fog), signal-limited environ-
ments, and complex terrain. These attributes greatly enhance LiDAR’s suitability for autonomous
driving applications, leading to growing interest in LiDAR-based Place Recognition (LPR).

1.2 Relation to Autonomous Driving

1.2.1 Overview of Autonomous Driving Components. Autonomous driving [16] enables vehi-
cles to execute tasks independently using sensors, computer systems, and artificial intelligence,
managing acceleration, braking, and steering while ensuring safety and efficiency. The American
Society of Autonomous Driving Engineers classifies autonomous driving into six levels [17],
ranging from full human control (L0) to complete automation (L5). The key to vehicle automation
and intelligence is ensuring the core system components effectively interact and collaborate. The
industry and academia generally adopt a modular approach, viewing autonomous driving systems
as extensions of mobile robot architectures [18], including perception, localization, planning,
control, and Human–Machine Interface (HMI).

Perception. The perception module [19] acquires real-time environmental data through
multiple sensors. It performs target detection [20], classification [21], and tracking [22] to provide
high-precision environmental information for localization, planning, and control. It identifies
traffic signs, lanes, and lights to evaluate road conditions. Additionally, it detects and tracks
obstacles to determine their proximity to maintain a safe driving distance.
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Fig. 1. Two key problems addressed by PR. On the left, the blue line denotes the vehicle trajectory, with solid

circles indicating collected scans by sensors over time. The green circle marks the current scan, while the

others represent past scans. The green and red circles are geographically close, and their scans exhibit the

highest scene similarity, forming a closed loop. On the right, the black-marked area shows a vehicle’s global

location, only providing a single-location description within maps.

Localization. The localization module [23] determines the vehicle’s position to support naviga-
tion, decision, and control. It typically relies on multiple sensors, including LiDAR, cameras, GPS,
and IMU, to manage complex scenarios. GPS provides location data in open areas, while High-

Definition (HD) maps [24] offer detailed road information in GPS-denied environments, helping
anticipate hazards like sharp turns and steep slopes. IMU [12] measures acceleration and angular
velocity to help infer the vehicle’s motion in high-speed scenarios.

Planning. The planning module [25] connects perception, localization, and control, which em-
ploys path optimization and decision-making technologies to develop smooth and safe driving
routes in complex environments. It establishes a global path from the start to the destination based
on criteria such as shortest distance or minimum energy consumption. Simultaneously, it dynami-
cally adjusts the local path using real-time perception data and vehicle location to avoid obstacles
and address emergencies.

Control. The control module [26], interfacing directly with the vehicle, employs perception
data, vehicle location, and planning instructions to generate operational commands. It controls
acceleration, braking, and steering to guide vehicles to follow the predefined and dynamically
adjusted paths, ensuring smooth and safe driving. Additionally, it receives perception data and
location information to manage honking and lighting to alert pedestrians and other vehicles to
avoid accidents.

Human–Machine Interface. The HMI module [27] facilitates communication between users
and vehicles, enhancing the transparency of autonomous driving systems and user experience. It
enables interactions through voice, touch, or gesture, allowing users to convey instructions and
understand system responses. By providing intuitive interfaces and feedback, HMI helps users
grasp system status, warnings, and decisions, offering clear guidance at critical moments to ensure
safety and reliability in diverse scenarios.

1.2.2 Relationship between PR and Each Component. As illustrated in Figure 2, we summarize
the relationship between PR and autonomous driving components:

High-Precision Localization. In autonomous driving systems with HD maps, PR is typically
viewed as a component of the localization module. It integrates sensor data [28], perceived land-
marks [29], and HD map elements [30] to accurately pinpoint the vehicle’s location, even in GPS-
denied areas. HD maps, in turn, use the vehicle’s location and sensor data to monitor environmen-
tal changes and update the map if significant alterations are detected.

Environment Perception Support. PR and perception modules exchange information and
feedback with each other, facilitating data fusion and error correction to enhance perception
and localization accuracy [31]. The perception identifies landmarks like lanes and traffic signs,
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Fig. 2. The relationship between PR and key components of autonomous driving. HD maps, being external

information, are grouped with sensors under data modules.

supplying key features for PR to use in localization. PR offers location feedback to the perception,
comparing real-time data with maps to correct perception errors.

Path Planning Foundation. The precise location data from PR aids the planning module in
selecting the optimal path based on current road conditions and adjusting it for real-time traffic
changes [32]. It also supports precise obstacle avoidance and lane-keeping in complex scenarios,
ensuring safe vehicle operation.

Accurate Control Assistance. PR provides the control module with crucial location data, en-
abling precise control commands and real-time adjustments [33]. These data help the module deter-
mine the vehicle’s position and direction, allowing accurate acceleration, braking, and steering to
follow the planned path. If deviating from the trajectory, then the control module swiftly corrects
the course to keep vehicles on the correct route.

Enhanced Human–Machine Interactivity. PR aids the HMI in showing the vehicle’s precise
location, route, and destination, which enhances user understanding of the vehicle’s status [34]. In
abnormal situations, HMI employs PR’s feedback to issue warnings or provide suggestions, which
helps users deal with current driving conditions. Users can enter destinations, preferences, and
modes through HMI, and PR updates navigation and optimizes strategies based on real-time data,
improving the user experience.

Therefore, PR is crucial in autonomous driving, supporting localization, perception, planning,
control, and HMI modules by providing accurate vehicle location data. It boosts localization
accuracy, enables the system to adapt to complex environments, ensures efficient and safe vehicle
operation, and improves user experience. Effective collaboration among these modules creates a
comprehensive solution that allows vehicles to navigate safely in diverse and dynamic scenarios.

1.3 Contributions

In this article, we present a comprehensive review of LPR research, accompanied by a detailed
methodological taxonomy depicted in Figure 3. We categorize methods into handcrafted and
learning-based types, further subdividing them, and present detailed introductions to pioneering
works. This well-organized layout enhances reading efficiency and facilitates a better understand-
ing of the relevant technologies in place recognition. Our main contributions are as follows:

— Filling Survey Gap. Existing reviews focus on Visual Place Recognition or discuss general
place recognition issues with little emphasis on LiDAR. Our dedicated survey on LPR bridges
this gap, helping researchers understand and disseminate State-of-the-Art (SOTA) LPR
methods.

— Detailed Definition and Method Classification. We offer a comprehensive definition of
place recognition, including implicit loop closure detection and explicit global localization.
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Fig. 3. Proposed taxonomy of LPR methods.

The proposed taxonomy of LPR methods includes seven parts, each split into handcrafted
and learning-based branches, with further subcategories based on specific rules. We also
outline their advantages and disadvantages. The efforts may help researchers understand
the applicability of methods and inspire the development of place recognition techniques
for challenging scenarios like docks, parks, and woodlands.

— Future Direction. We propose promising directions for advancing LPR research: in-
novative solutions like cloud computing, quantum technology, bionic localization, and
applications in space exploration, polar research, and underwater robotics. These areas
remain unexplored in previous surveys. We also highlight multimodal information sources
such as WiFi, voice, and Radio Frequency Identification (RFID), along with advanced
sensors like solid-state lidar, event cameras, and millimeter-wave radar. Additionally, we
recommend evaluating methods based on scale, efficiency, long-term performance, and
developing standard datasets.

— Open source Project. We maintain an up-to-date project on our website, allowing the
robotics community to stay current with SOTA LPR technologies. This resource helps
newcomers quickly grasp essential information such as datasets, evaluation metrics, and
mainstream methods.

2 Definition and Challenges

2.1 Problem Formulation

As summarized in Reference [35], PR has two prevalent definitions: overlap-based and distance-
based. The overlap-based definition [36] emphasizes visual similarity, identifying two images
depicting the same place if they show significant visual overlap. However, the distance-based
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Fig. 4. Definition of LiDAR-based place recognition. We classify the definition into implicit loop closure

detection and explicit global localization. Since global localization provides global vehicle poses, we term

it explicit place recognition. In contrast, loop closure detection identifies revisited poses through frame-to-

frame comparison without a global pose, making it implicit.

definition [30] relies on geographical proximity, defining places as identical if the distance
between two vehicles is below a user-defined threshold. As our survey focuses on LiDAR sensors,
we follow the distance-based definition. Differently, we present two definitions for LPR: implicit
loop closure detection and explicit global localization. As shown in Figure 4, loop closure detec-
tion solves the revisit problem by determining if two locations are close based on similarity or
matching ratio. Due to the absence of direct global poses, it is called implicit place recognition. In
contrast, global localization provides the vehicle’s poses within a pre-existing map, termed explicit
place recognition.

2.1.1 Loop Closure Detection. We follow the definition in Reference [35]. Let Sp denote the cur-
rent sensor data, Lp the current robot location, L = {L1,L2, . . . ,Lk } previously visited locations,
and S = {S1, S2, . . . , Sk } previously collected data, with subscripts indicating the data index. Given
another sensor data Sq ∈ S collected at location Lq ∈ L, a loop closure occurs when Lp and Lq

are geographically close. Two geographically close locations typically have similar environmental
layouts, which result in their sensor data with high matching ratios:

dist(Lp ,Lq) < λl , score(Sp , Sq) > λs , (1)

where dist(Lp ,Lq) denotes the geographical distance between Lp and Lq , score(Sp , Sq) means the
matching ratio for Sp and Sq , λl , and λs are two user-defined thresholds based on a specific applica-
tion. Identifying the closest location is then transformed into searching the data with the highest
similarity score to the current data,

L̂q = arg min
Lq ∈L

dist(Lp ,Lq) ⇒ Ŝq = arg max
Sq ∈S

score(Sp , Sq), (2)

where L̂q is the closest location and Ŝq represents the most similar or best-matched sensor data.
Some researchers [4, 37–40] treat the above searching for best-matched data as a retrieval task.

These methods typically encode sensor data into a global descriptor G and aggregate historical
descriptors into a database G. During retrieval, the current descriptor Gp is matched against the

database G to find the most similar descriptor Ĝq :

L̂q = arg min
Lq ∈L

dist(Lp ,Lq) ⇒ Ĝq = arg min
Gq ∈G

δ (Gp ,Gq),Gp = f (Sp ),Gq = f (Sq), (3)

where δ (·) denotes the descriptor distance, typically the L2 norm, and f (·) represents a descriptor
encoding process. Since encoding methods vary widely without a unified rule, we do not provide
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a specific definition. Unlike image retrieval [41] in computer vision, this operates directly on point
clouds and uses the geographical distance between vehicles as the metric.

2.1.2 Global Localization. Since our survey focuses on LiDAR sensors, our definition of global
localization excludes GPS-based methods [42]. Let Sp represent the current sensor data and M rep-
resent a prior map. Global localization [43] establishes associations between Sp and M to pinpoint
the vehicle’s global pose:

T̂ = arg min
T

loss(T, Sp ,M), (4)

where T is a transformation with six or three Degree-of-Freedoms (DoF), loss denotes the loss
function between the current sensor data Sp and the map data M calculated based on the pose T,
generally the point-to-point or point-to-surface distance.

2.2 Challenges of LPR

Numerous recent LPR methods have explored techniques like Bird-Eye-View (BEV) [40, 44],
histograms [45, 46], image representations [47, 48], and graph theory [49, 50] to enhance perfor-
mance. They achieve rotational invariance through height similarity [7, 40] and frequency domain
analysis [44, 51]. Additional approaches employ pose proximity [52], sequence matching [53], and
Point Cloud Registration (PCR) [54] techniques to improve recognition accuracy. However,
these methods struggle in dynamic and highly occluded environments. Traditional methods rely
on low-level features (coordinates [55], normals [56], intensities [57], and range [58]), while
learning-based approaches gradually show promising results using neural networks [59], attention
mechanisms [60], and semantics [61]. Furthermore, diverse map representations, such as point
clouds [62], semantics [63], and mesh [64], have been successfully applied in map localization.
Despite the impressive results claimed by these methods, several challenges persist that require
further attention:

Motion Distortions. Vehicle motion inevitably distorts the point cloud, severely affecting
feature matching and registration between scans [65]. Several methods [66, 67] employ a constant
velocity motion model based on the previous pose to correct this. Although effective in most
scenarios, this approach is inadequate for sudden direction changes [68] or rapid acceleration [69].

Viewpoint Differences. Lane-level horizontal deviations may exist when a robot revisits a his-
torical place from different directions. While a few methods [7, 40, 48] address rotation invariance,
they overlook the impact of translation on place recognition.

Weather Conditions. Laser signals exhibit varying behavior under different weather condi-
tions [70]. They attenuate less and travel farther on sunny days but decay significantly in rainy
and foggy weather.

Perceptual Aliasing. Distinct places in confined corridors [71, 72] may exhibit similar point
cloud data, which introduces ambiguous interpretations.

Appearance Changes. Long-term navigation applications [29, 48] often involve significant
environmental changes, which leads to potential failures.

Sensor Characteristics. Mechanical LiDAR [73] produces point clouds in a format of multiple
scan lines, resulting in vertical sparsity. Solid-state LiDAR [74] provides limited horizontal FOV
and requires specific considerations.

2.3 Relation to Previous Surveys

In recent years, there has been a proliferation of reviews on visual technologies, addressing various
topics like place recognition [6, 36, 75, 76], localization [30, 77], tracking [78, 79], and SLAM [80–
82]. Despite their valuable contributions to the progress of research in robotics and autonomous
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driving, these reviews have unfortunately overlooked the technology of LiDAR. Cadena et al. [83]
extensively reviewed the current state of SLAM and delved into potential future directions. Yin et al.
[35] provided a comprehensive place recognition survey encompassing cameras, LiDAR, radar, and
joint sensors. However, the section dedicated to discussing LiDAR was relatively limited. Yin et al.
[84] offered an informative overview of the recent progress in LiDAR-based global localization,
while it merely represented a specialized branch of place recognition.

Comparatively, our survey distinguishes itself through the following features: (1) It is the first
survey dedicated solely to LPR research, filling a gap in the field and advancing the dissemination
of SOTA LPR methods. (2) It offers a more comprehensive problem formulation, method classifica-
tion, and summary, enhancing understanding of methodological advantages, disadvantages, and
applicability. The efforts facilitates the development of LPR techniques, especially in challenging
scenarios. (3) We envision promising future directions to advance LPR research, including innova-
tions such as cloud computing, quantum technology, and bionic localization, as well as applications
in space exploration, polar research, and underwater robotics. (4) We maintain an up-to-date
project to keep the robotics community updated on SOTA LPR technologies and aid newcomers
in quickly grasping essential information like datasets, evaluation metrics, and methodologies.

3 LPR Techniques: Local Descriptor

The local descriptor is a compact representation of regions or points, capturing distinctive charac-
teristics such as texture, color, density, or shape. Local descriptor-based methods typically extract
keypoints and employ local descriptors to characterize their surrounding context. They generally
fall into either 3D-based or 2D-based categories based on the nature of descriptors. Table 1 contains
a systematic summary.

3.1 Handcrafted Methods

3.1.1 3D-based Methods. We roughly categorized handcrafted 3D local descriptors into two
groups based on a Local Reference Frame (LRF).

LRF-based Methods. LRF rigidly transforms the patch into canonical representation by
selecting neighborhood points to build a covariance matrix and computing the eigenvector as
reference axes. While initially designed for PCR, it is also applicable to place recognition. Several
methods focus on encoding geometric information, such as normal [57], height [92], and mesh
[90], within the LRF to achieve precise geometric descriptions. Others enhance the stability of
LRF using weighted projection vectors [91] or sign disambiguation [89].

LRF-free Methods. Other methods ensure rotation invariance by avoiding LRF construction
and focusing solely on the underlying geometry of the local surface. Early methods directly count
surrounding geometric information, such as height [55], distance [87], and density [85]. Subse-
quently, several methods encode point distribution [88] and sparse triangulated landmark [86].

3.1.2 2D-based Methods. These methods build handcrafted local descriptors from the projected
2D image, followed by an image matching problem. Spherical view and BEV are two representative
projection approaches.

Spherical View. Projecting point clouds into a spherical or range image effectively mitigate
orientation ambiguity. Steder et al. [93] pioneer the projection of point clouds to range images for
place recognition. They extract the local descriptor vector [117] and evaluated candidate transfor-
mations through keypoint reprojection. Afterward, several works extend the method [93] using
Normal Aligned Radial Features [8], Speeded Up Robust Features [94], and ORB [95, 96].

BEV. Several works incorporate proposal-wise features from BEV images into image matching.
BVMatch [51] extract the maximum index map of the Log-Gabor filter responses, employing BEV
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Table 1. A Summary of Local Descriptor-based Methods

Handcrafted Methods

Methods Year Feature Size Similarity Metric Code

3D-based
Methods

LRF-free

Spin Image [85] 1999 Density 153 L2 Distance �
3DGestalt [55] 2013 Height 32×10 Voting

NBLD [86] 2016 Density 16×4×8 Voting

GLAROT-3D [87] 2017 Orientation+Range 1880 Rotated L1 Norm

HoPPF [88] 2020 Angle+Distance 600

LRF-based

USC [89] 2010 Density 1960 Euclidean Distance �
RoPS [90] 2013 Density 135 L2 Distance �

TOLDI [91] 2017 Depth 3×20×20

ISHOT [57] 2019 Angle+Intensity 1344 Voting �
Sun et al. [92] 2020 Height 20×20 Euclidean Distance

2D-based
Methods

Spherical View

Steder et al. [93] 2010 Range+Curvature Euclidean Distance

Steder et al. [8] 2011 Range+Curvature 36 Manhattan Distance

Zhuang et al. [94] 2013 Space Matching Score

Cao et al. [95] 2018 Position 600×391 L1-Norm

Shan et al. [96] 2021 Intensity 1024×128 L1 Distance+Hamming Distance �

BEV
BVMatch [51] 2021 Density 6×6×6 2D Rigid Pose �

HOPN [46] 2022 Normal+Density 6×6×6 2D Rigid Pose �

Learning-based Methods

Methods Year Backbone Size Loss EtE Code

3D-based
Methods

Voxel Grids

3DShapeNet [97] 2015 Convolutional BDN 24×24×24 Contrastive Divergence �
VolumetricCNN [21] 2016 CNN 512 Classification �

3DMatch [98] 2017 3D ConvNet 512 Contrastive �
3DSmoothNet [99] 2019 CNN 16 Batch Hard �
SpinNet [100, 101] 2021 Transformer+3DCCN 32 Contrastive � �

Raw 3D Points

PointNet [102] 2017 CNN 1024 Regularization Softmax �
PointNet++ [103] 2017 PointNet Cross Entropy � �

CGF [104] 2017 DNN 32 Triplet �
PPFNet [105] 2018 PointNet 64 N-tuple �

PPF-FoldNet [106] 2018 MLP 512 N-tuple �
DeepVcp [107] 2019 PointNet++ 32 L1+L2 � �

RelativeNet [108] 2019 PPF-FoldNet Chamfer �
L3Ds [109] 2022 TNet+PointNet 32 Contrastive �

Poiesi et al. [110] 2022 QNet+PointNet++ 32 Hardest-contrastive �
LEAD [111] 2022 Spherical CNN 512 Chamfer Distance �

2D-based Methods

LORAX [112] 2017 DNN 1032 Pixelwise Error+ICP �
MVDesc [113] 2018 MatchNet 32 Double-margin Contrastive

Li et al. [114] 2020 CNN 32 Batch-hard triplet � �
Gojcic et al. [115] 2020 FCGF 32 Hardest Contrastive � �

DeLightLCD [116] 2022 DNN 1×300×32 Binary Cross Entropy �

Size and EtE denotes the descriptor size and end-to-end learning, respectively.

feature transform and BoW for place recognition. It provides relative poses and effectively over-
comes sparsity and intensity distortion. Luo et al. [46] apply FAST [118] detectors on the BEV
image and construct a global descriptor using 3D normals. It showcases superior localization ca-
pability in large-scale scenarios.

3.2 Learning-based Methods

3.2.1 3D-based Methods. Learning-based 3D local descriptors typically employ 3D CNNs to
encode point cloud patches, divided into voxel grids and raw 3D points according to network
inputs.

Voxel Grids. The pioneering work 3DMatch [98] transform patches into voxel grids of Trun-
cated Signed Distance Function and employed eight convolutional layers to learn the descriptor.
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Several works extend this idea to more informative encoding manner such as binary occupancy
[21], multi-label occupancy [97], smoothed density value [99], and spherical voxelization
[100, 101].

Raw 3D Points. An alternative method involves direct processing of the raw point cloud data.
(a) PointNet Family. PointNet [102] is a pioneering work of learning from unordered point

clouds, which learns a symmetry function approximated by a Multi-Layer Perceptron (MLP) to
handle detailed shapes. Subsequently, several works extend PointNet [102] by ball query search
[103], normals [105], FoldingNet decoder [106], orientation [108], LRF [109, 110], and semantics
[107].

(b) Other Methods. Compact Geometric Features (CGF) [104] trains a deep network to map
from the high-dimensional space of spherical histograms to a low-dimensional Euclidean space.
LEAD [111] combines spherical CNNs to learn the equivariant representation.

3.2.2 2D-based Methods. Several works infer local descriptors using well-established 2D CNNs
from projected 2D images. They demonstrate superior performance in the task of 3D shape recog-
nition and retrieval. LORAX [112] and DeLightLCD [116] employ a Deep Neural Network (DNN)

auto-encoder and attention to enhance descriptor descriptiveness on 2D depth images, respectively.
Another spectrum of research fuses multi-view features into descriptors by soft-view pooling [114],
graphical model [113], and spectral relaxation [115].

3.3 Observations and Implications

This section review some representative methods and more comprehensive surveys of local de-
scriptors are available in Reference [119]. Although local descriptors find wide applications in
tasks such as registration and object recognition, they are not the preferred methods for PR. There
are mainly the following reasons:

(i) Viewpoint changes can affect the accuracy of 3D keypoints, rendering them unsuitable for
matching. Moreover, they may not effectively handle data noise and object occlusions. (ii) The
usage of 3D local descriptors [55, 86] can be challenging as it requires dense point clouds, which
is computationally expensive and may not work well with sensors like Velodyne VLP-16 [58] that
produce sparse point clouds. (iii) While converting point clouds into images [51, 93, 116] can use
mature image processing techniques, this results in the loss of geometric information, making it
unsuitable for large-scale scenarios.

4 LPR Techniques: Global Descriptor

The global descriptor captures the overall features of a scene, providing a holistic view of the data
rather than focusing on specific regions or points. Table 2 contains a systematic summary of global
descriptor-based methods.

4.1 Handcrafted Methods

4.1.1 BEV-based Methods. BEV projection gains significant attention in the robotics commu-
nity due to its ability to enhance algorithm efficiency through dimension reduction, making it
highly suitable for real-time applications. Scan Context (SC) [40] family and pairwise matching
are two mainstream methods.

SC Family. The pioneering work SC [40] partitions the horizontal space into discrete bins
while maintaining the points’ maximum height to generate a 2D matrix descriptor. It utilizes the
ring key to search for potential matches and conducts a columnwise comparison to identify the
closest one. This method demonstrates promising performance but may fail when dealing with
significant lateral offsets. Subsequently, researchers propose a series of SC-based variant methods,
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Table 2. A Summary of Global Descriptor-based Methods

Handcrafted Methods

Methods Year Metric Size Feature Code

BEV

SC
Family

SC [40] 2018 L0 Norm+Cosine Distance 60×20 Height �
ISC [7] 2020 Cosine Distance 60×20 Intensity �

SC++ [4] 2021 L1 Norm+Cosine Distance 60×20 Height �
FreSCo [120] 2022 L1 Norm+Cosine Distance 20×120 Height �

FSC [121] 2022 F-Norm Height+Intensity

Ou et al. [122] 2023 Cosine Distance 5×20×60 Density+Height

Pairwise
Matching

LiDAR Iris [44] 2020 Hamming Distance 80×360 Height �
RING [123] 2022 Circular Cross-correlation 120×120 Occupancy �

RING++ [124] 2022 Circular Cross-correlation 120×120 Height+Occupancy �
PGHCI [24] 2022 JS Divergence+Pixel Values 40×20 Height

Discretization
Fixed-

size

Magnusson et al. [125] 2009 Euclidean Distance Shape

Lin et al. [74] 2019 Normalized Cross-correlation 60×60 Shape �
Cao et al. [126] 2021 Euclidean Distance 360×180 Context+Layout

Unfixed-
size

DELIGHT [127] 2018 Chi-squared Test 256 Intensity

Mo et al. [128] 2020 L2-Norm+Chi-square Test Density+Intensity+Height �

Point

Z-Projection [56] 2011 χ 2 Distance+Sørensen Distance 101 Normal

Fast Histogram [45] 2015 Wasserstein Metric 80 Height

M2DP [129] 2016 L2-Norm 192 Density �
C-M2DP [130] 2019 L2 Distance 576 Color+Shape

Learning-based Methods

Methods Year Backbone Aggregator Size Loss EtE

Point

Pointwise
MLP

Pointnetvlad [37] 2018 PointNet NetVLAD 256 Lazy triplet and quadruplet �
PCAN [38] 2019 PointNet NetVLAD 256 Lazy quadruplet �

SOE-Net [131] 2021 PointOE NetVLAD 256 HPHN quadruplet �
LCD-Net [132] 2022 PV-RCNN NetVLAD 256 Triplet �

Point
Conv

DH3D [60] 2020 FlexConv+SE block NetVLAD 256 N-tuple �
EPC-Net [59] 2022 PPCNN VLAD 256 Lazy quadruplet �

Graph

LPD-Net [2] 2019 PointNet NetVLAD 256 Lazy quadruplet �
DAGC [39] 2020 ResGCN NetVLAD 256 Lazy quadruplet

SR-Net [133] 2020 SGC+SAM NetVLAD 1024 Lazy quadruplet

vLPD-Net [134] 2021 LPD-Net+S-ARN MinkPool Joint loss

PPT-Net [135] 2021 Transformer VLAD 256 Lazy quadruplet �

Discretization

Sparse
Repre

MinkLoc3D [136] 2021 FPN GeM 256 Triplet margin �
MinkLoc++ [137] 2021 ResNet18+FPN GeM 256 Triplet margin �

EgoNN [138] 2021 CNN GeM 256 Triplet margin �
TransLoc3D [139] 2021 Transformer NetVLAD 256 Triplet margin �

MinkLoc3Dv2 [140] 2022 FPN GeM 256 Modified Smooth-AP �
MinkLoc3D-SI [141] 2022 FPN GeM 256 Triplet margin �

SVTNet [3] 2022 Transformer GeM 256 Triple �
LoGG3D-Net [142] 2022 U-Net O2P+ePN 256 Contrastive+Quadruplet �

Dense
Repre

SpoxelNet [143] 2020 CNN NetVLAD Lazy quadruplet �
VBRL [144] 2020 Modality norm

HiTPR [145] 2022 Transformer Max pooling 1024 Lazy quadruplet

NDT-Transformer [146] 2022 Transformer NetVLAD 256 Lazy quadruplet �

Projection

Spherical
View

Yin et al. [147] 2017 DNN Contrastive

MMCS-Net [148] 2022 Siamese CNNs NetVLAD Contrastive

SeqOT [149] 2022 Transformer GeM 256 Triplet �
OverlapTransformer [150] 2022 Transformer NetVLAD 256 Lazy triplet �

AttDLNet [151] 2021 DarkNet53 Max pooling 1024 Cosine similarity �
OREOS [47] 2019 CNN Triplet

BEV
SCI [48] 2019 LeNet Categorical cross-entropy �

DiSCO [152] 2021 U-Net 1024 Quadruplet+KL divergence �

Size and EtE denotes the descriptor size and end-to-end learning, respectively. Sparse/dense repre denotes
sparse/dense representation. Point Conv means point convolution.

ACM Comput. Surv., Vol. 57, No. 4, Article 106. Publication date: December 2024.



106:12 Y. Zhang et al.

which employ the polar and cart context [4], intensities [7], frequency domain [120], F-norm
[121], and Spatial Binary Pattern [122] to enhance performance.

Pairwise Matching. LiDAR Iris [44] draws inspiration from human iris signatures, utilizing
LoG-Gabor filtering and thresholding to create binary signature images, then measuring descrip-
tor similarities using Hamming distance. Some methods also employ weighted distances [24] and
orientation-invariant metrics [123, 124] for pairwise similarity computation.

4.1.2 Discretization-based Methods. The discretization processing transforms the point cloud
into 3D discrete representations, categorized into fixed and unfixed size-based approaches.

Fixed-size Discretization. Magnusson et al. [125] maps the point cloud to Normal Distribu-

tion Transform (NDT) voxels and creates a histogram based on the probability density function
of the local surface. They calculate the descriptor similarities using weighted Euclidean distances.
This method demonstrates the potential of NDT descriptors for place recognition. Subsequently, re-
searchers introduce techniques like k-means++ clustering [153] and normalized cross-correlation
metrics [74] to enhance generalization. Cao et al. [126] also generate a numerical descriptor by
detecting contours and computing spectrum energies from wedge-shaped voxels.

Unfixed-size Discretization. DELIGHT [127, 128] divides the support region into two con-
centric spheres and gets non-overlapping bins by horizontal and azimuthal divisions. It computes
intensity histograms for each bin and assesses descriptor similarities by chi-squared tests. Notably,
the descriptor can be local or global based on the descriptor’s radius and center point.

4.1.3 Point-based Methods. Several methods treat place recognition as a histogram matching
problem, encoding angle and height information and calculating histogram similarities using
Wasserstein metric [45], Sørensen [56], and χ 2 distances [56]. They achieve rotation invariance
and overcome noises. A parallel track of works follow a projection-based scheme. M2DP [129]
and C-M2DP [130] project the point cloud onto 2D planes using azimuth and elevation angles,
counting point densities to create the descriptor. Multi-view density signatures enable accurate
descriptions with fewer computational resources, making it particularly effective for sparse point
clouds.

4.2 Learning-based Methods

4.2.1 Point-based Methods. One prevalent approach directly utilizes the inherent 3D spatial
information for LiDAR point cloud processing, involving pointwise MLP, point convolution, and
graph representation.

Pointwise MLP. The pioneering work PointNetVLAD [37] combines PointNet [102] for local
feature extraction and NetVLAD [154] for global descriptor generation. It employs metric learn-
ing and introduces the lazy triplet and quadruplet loss functions to enhance generality. Afterward,
PCAN [38] and SOE-Net [131] improve high-dimensional feature representation by incorporating
attention mechanisms. LCD-Net [132] utilizes the PointVoxel-RCNN (PV-RCNN) [155] archi-
tecture and combines the feature extraction capabilities of DNN with transport theory algorithms.

Point Convolution. DH3D [60] introduces a Siamese network for local feature detection, de-
scription, and global descriptor extraction in a single forward pass. It incorporates multi-level
spatial contextual information and channelwise feature correlations. EPC-Net [59] is a compact
model based on edge convolution, simplifying the process with spatial-adjacent matrices and proxy
points. It achieves excellent performance while significantly reducing computational memory.

Graph Representation. Graph networks efficiently captures underlying geometric and shape
properties, allowing for feature comparison across multiple locations within graphs. LPD-Net [2]
and vLPD-Net [134] extract multiple local features, including curvature, height, and density, and
employ a Graph Neural Network (GNN) for feature aggregation. Several works integrate an
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attention module to discern task-relevant features [39], learn spatial relationships between regions
[135], and mitigated the influence of movable noises [133].

4.2.2 Discretization-based Methods. We divide discretization-based methods into sparse and
dense representations based on voxel density.

Sparse Representation. Three approaches for generating global descriptors using 3D CNNs
on sparse volume representations are Feature Pyramid Network (FPN), transformer network,
and other methods.

(a) FPN. MinkLoc3D [136], a pioneering work based on sparse voxelization, employs a 3D FPN
[156] and Generalized-Mean (GeM) [157] pooling for global descriptor generation. It
showcases a simple and elegant architecture, highlighting the potential of sparse voxelized
representation and sparse convolutions for efficient 3D feature extraction. Later works
extend enhance recognition performance by incorporating intensity [141], image [137], and
attention [138, 140].

(b) Transformer Network. TransLoc3D [139] re-weights features from multiple receptive
scales using an attention map and incorporates external attention layers for capturing
long-range contextual information. SVT-Net [3], introduces two types of transformers to
capture short-range local features and long-range contextual features, respectively. Despite
a shallow network architecture, it generates descriptive descriptors.

(c) Other Methods. LoGG3D-Net [142] utilizes the sparse point-voxel convolution for high-
dimensional feature embedding and introduces a local consistency loss for feature similarity
maximization. It exhibits superior end-to-end performance, operating in near real-time.

Dense Representation. Likewise, we broadly categorize dense representation-based ap-
proaches into transformer network, DNN, and other methods.

(a) Transformer Network. HiTPR [145] utilizes a short-range transformer to extract local fea-
tures within cells and a long-range transformer to encode global relations among the cells.
It enhances the relevance of local neighbors and global contextual dependencies. NDT-
Transformer [146] introduces a novel network with three stacked transformer encoders,
learning a global descriptor from discrete NDT cells. It is a valuable addition to NDT-based
SLAM and Monte Carlo Localization (MCL) methods.

(b) DNN. SpoxelNet [143] voxelizes the point cloud in spherical coordinates, representing voxel
occupancy using ternary values. It extracts multi-scale structural features and generates a
global descriptor by concatenating features from various directions. This method effectively
handles occlusion and moving objects in crowded indoor spaces.

(c) Other Methods. Voxel-based Representation Learning (VBRL) [144] tackles long-term
place recognition by jointly learning voxel importance and feature modalities using struc-
tured sparsity-inducing norms. It integrates all features into a unified regularized optimiza-
tion formulation.

4.2.3 Classification-based Methods. Several approaches address the place recognition problem
using classifiers. FastLCD [158] encodes multi-modality features into a global descriptor, detect-
ing candidate loop closures using supervised learning and rejecting false positives through cross-
validation and post-verification. Habich et al. [159] perform loop searches within a variable radius
based on the eigenvalue of the position covariance matrix and predict loops using a classifier.

4.2.4 Projection-based Methods. Following the taxonomy of learning-based 2D local descrip-
tors (Section 3.1.2), this section also categorizes projection methods into spherical view and BEV.

Spherical View. Using spherical projection images as input, three representative methods
include siamese network, transformer network, and 2D CNN only.
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Fig. 5. Two projection-based methods. Panels (a) and (b) are originally shown in References [150] and [152],

respectively.

(a) Siamese Network. Yin et al. [147] transform the point cloud into a one-channel image
and use a Siamese CNN to convert LCD into a similarity modeling problem, improving
search efficiency by combining Euclidean metric and kd-tree. MMCS-Net [148] incorporates
a Siamese CNN with shallow-deep feature fusion and a cascaded attention mechanism to
handle pseudo images. It effectively strikes a favorable balance between effectiveness and
efficiency.

(b) Transformer Network. SeqOT [149] employs multi-scale transformers to generate sub-
descriptors that fuse spatial and temporal information from sequential LiDAR range images.
It ensures robustness to viewpoint changes and scan order, enabling reliable place recogni-
tion even in opposite directions. As depicted in Figure 5(a), OverlapTransformer [150] ex-
tracts features from range images and integrates a transformer to capture relative feature
locations, demonstrating fast running speed and robust generalization. AttDLNet [151] in-
corporates a four-layer attention network to capture long-range context and inter-feature
relationships.

(c) 2D CNN Only. OREOS [47] uses 2D convolutional and max pooling layers to extract features
from 2D range images, enhancing the descriptor performance via a triple loss function and
strong negative mining strategy. It efficiently computes the descriptor while enabling long-
term three-DoF metric localization in outdoor environments.

BEV. Two representative BEV-based methods are encoder-decoder network and 2D CNN only.

(a) Encoder-decoder network. As shown in Figure 5(b), DiSCO [152] employs an encoder-
decoder network to extract descriptors and estimates relative orientation through Fourier-
Mellin Transform and differentiable phase correlation. It enhances the interpretability and
efficiency of the feature extractor.

(b) 2D CNN only. Scan Context Image (SCI) [48] extends SC [40] into three channels,
enabling robot localization on a grid map through a convolutional neural network-based
place classification. It demonstrates robust year-round localization with only a single day of
learning.

4.3 Observations and Implications

Global descriptors are currently the most popular place recognition method, which can provide
information about the entire scene, unaffected by local changes. The progress of deep learning
in 3D computer vision paves the way for data-driven methods in LPR. Several observations are
summarized as follows:

For the handcrafted part: (i) BEV [4, 40] demonstrates superior performance in flat structural
environments but may yield poor results when the LiDAR’s z-axis changes, as these methods as-
sume local planar vehicle motion. (ii) Discretization-based methods [74, 125, 126] can describe the
local surface using robust mathematical theories. However, increasing the resolution will signif-
icantly incur a heavy computational burden. (iii) Point-based methods [45, 56, 129] are the most
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Fig. 6. An illustration of three representative segment-based methods. Panels (a)–(c) are originally shown in

References [160], [161], and [162], respectively.

basic global descriptor methods. However, they require expensive neighbor searching to establish
topological relationships. Furthermore, projection operations may result in information loss and
cause potential false positives.

For the learning part: (i) Learning-based methods are efficient and accurate but require large,
clean datasets and often necessitate transfer learning to address real-world issues like noise
and occlusions. (ii) Transformers [145, 146] excel at capturing contextual relationships, enabling
reliable recognition in cluttered environments. However, their substantial computational demands
constrain the batch size for metric learning. Sparse convolutional architectures [136, 141] excel
at generating informative local features while struggling to discriminate feature size in dynamic
scenarios. (iii) Point-based methods [37, 38] handle unordered data well but may miss local spatial
details. Classification-based methods [158, 159] assign higher weights to informative features
during training. However, the specific contribution of each weak classifier to the overall prediction
may be less interpretable. Projection-based methods [47, 148] are efficient and interpretable but
may lose information due to dimensionality reduction.

5 LPR Techniques: Segments

Segments are meaningful region divisions characterized by similar geometric properties. These
methods divide the point cloud into segments and three typical methods are shown in Figure 6.

5.1 Handcrafted Methods

5.1.1 Matching-based Methods. Segment-based matching for finding correspondences primar-
ily comprises the SegMatch [160] family and other methods.

SegMatch Family. The pioneering work SegMatch [160], depicted in Figure 6(a), employs
Euclidean clustering to partition the point cloud into segments and extracts eigenvalue-based
features. It effectively identifies potential correspondences using random forest and Random

Sample Consensus (RANSAC) [163]-based geometric verification. Dubé et al. [164] enhance
SegMatch [160] by tracking a single segment using region-growing-based incremental segmenta-
tion. Moreover, certain studies effectively integrate SegMatch [160] into traditional LiDAR SLAM
[165] and multi-robot systems [166].

Other Methods. RDC-SLAM [167] combines an eigenvalue-based segment descriptor, K Near-

est Neighbors (KNN) search, and RANSAC-based verification [163] to refine relative poses. Gong
et al. [168] construct a spatial relation graph to represent segments, effectively capturing general
spatial relations between irregular clusters.

5.1.2 Similarity-based Methods. Seed [169] develops a segmentation-based egocentric de-
scriptor, incorporating topological information into SC-based place recognition [40]. It achieves
translation and rotation invariance by utilizing the inner topological structure of segmented
objects.
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5.2 Learning-based Methods

5.2.1 Matching-based Methods. Tinchev et al. [170] encode geometric properties and point dis-
tribution of segments to extract repeatable oriented key poses, which are matched using reliable
shape descriptors and a Random Forest. However, significant changes in the sensor’s vantage point
could negatively impact segment-matching performance. Tinchev et al. [171] utilize convolution
to obtain an embedding space suitable for urban and natural scenarios. They subsequently estimate
match quality through probabilistic geometric validation.

5.2.2 Classification-based Methods. Several works compute the category of segments by per-
forming classification in the descriptor space, categorized into SegMap family and other methods.

SegMap Family. As shown in Figure 6(b), the pioneering work SegMap [161] incrementally
clusters point clouds to create a global segment map. It employs segmentwise KNN retrieval with
a data-driven descriptor extractor comprising three convolutional and two fully connected layers,
then assigns a classification score using a fully connected network. It enables high compression
rates in environment reconstruction and facilitates large-scale 3D LiDAR SLAM. Subsequently,
researchers successfully integrate SegMap [161] into LiDAR SLAM [172] and segment-based map-
ping framework [173].

Other Methods. Wietrzykowski et al. [174] propose a DNN that learns visual context from
synthetic LiDAR intensity images. They claim that using the latest LiDAR and ambient images
can yield additional performance improvements. OneShot [58] employs a range image-based
method for segment extraction and a custom-tailored neural network to extract LiDAR-Vision
descriptors.

5.2.3 Similarity-based Methods. Another approach constructs segment-based descriptors and
assessed their similarities, thus combining the advantages of segments and global descriptors. As
shown in Figure 6(c), Locus [162] encodes topological and temporal information of segments to cre-
ate a global descriptor using second-order pooling and nonlinear transformation. It avoids global
map construction, achieving robustness to viewpoint changes and occlusions.

5.3 Observations and Implications

Traditional point cloud descriptors rely on low-level properties [7, 45, 56, 93, 127] to encode the
point cloud, but local descriptors lack description ability, and global descriptors struggle with rota-
tion and translation invariance. Fortunately, segments offer a good compromise between the two.
Several observations are summarized as follows:

(i) Segments [160, 161, 173] offer a potential solution to reduce feature computation by
avoiding processing the entire point cloud. Nevertheless, several approaches rely on point
cloud aggregation or map construction, leading to inefficiencies when dealing with large-scale
environments. (ii) Segment-based methods show promise in enhancing accuracy by incorporating
geometric, color, and semantic information of segments. However, they require rich 3D geometry
structures for segmentation, which may not always be available, thus limiting their applicability.
(iii) Segment-based methods are well-known for their resilience to environmental changes, encom-
passing illumination, weather, and seasonal variations. However, they offer limited insights into
the underlying 3D structures, resulting in subpar segmentation performance during long-term
localization scenarios with numerous moving objects.

6 LPR Techniques: Semantics

Semantics refers to labels or categories that divide point clouds into various instances us-
ing learning-based segmentation technology, facilitating semantic-level place recognition. Thus,
semantics-based place recognition falls under the category of learning-based methods. Based on
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Fig. 7. Two semantics-based methods. Panels (a) and (b) were originally shown in References [49] and [175],

respectively.

the approach used for semantics association, they can be classified into two types: graph-based
and graph-free.

6.1 Learning-based Methods

6.1.1 Graph-based Methods. Semantic graphs intuitively depict the location and topological
information of objects. Graph similarity and graph matching are two typical graph operations.

Graph Similarity. As depicted in Figure 7(a), SGPR [49, 176] represents semantic categories
and centroids of points as nodes, capturing node feature relations through edges. It develops a
GNN-based graph network with node embedding, graph embedding, and graph-graph interac-
tion to compute graph similarity. SGPR demonstrates robustness against occlusion and viewpoint
changes, especially for reverse loops.

Graph Matching. GOSMatch [50] introduces an object-based place recognition approach for
urban environments, which employs graph descriptors for candidate search and vertex descriptors
for one-to-one correspondence calculation. BoxGraph [177] stores object shapes in vertices and
simplifies place recognition to an optimal vertex assignment problem. It employs bounding boxes
as appearance embeddings for vertex entities and extends them for pose estimation.

6.1.2 Graph-free Methods. Other works avoid semantic graph construction and mainly fall into
two categories: semantic descriptors and other methods.

Semantics Descriptors. As shown in Figure 7(b), Semantic Scan Context [175] enhances SC
[40] by utilizing semantics instead of height. Object Scan Context [178] improves SC [40] by con-
structing the descriptor around uniformly distributed objects (e.g., street lights and trash cans).
Seq-Ndt [179] extends the NDT-based histogram descriptor[180] by incorporating semantic in-
formation and utilizes the Kullback–Leibler (KL) divergence to measure similarity. RINet [181]
develops a lightweight siamese network with convolution, down-sampling, and attention mecha-
nisms to compute descriptor similarities. It prioritizes scene learning over point cloud orientation
and is highly efficient, allowing for deployment on resource-constrained platforms.

Other Methods. Recent studies enhance semantic-based LPR through innovative technologies
and theories, including multiple hypothesis trees [182], siamese neural network [61], spherical
convolution [183], and neural tensor network [184].

6.2 Observations and Implications

Inspired by human perception, semantic-based methods utilize pre-defined knowledge databases
to categorize objects and identify their topological relationships. However, these methods are still
relatively new and immature, because they required advanced semantic segmentation technology.
Several key observations are summarized below:

(i) Graph-based methods [49, 50, 176] have streamlined point cloud comprehension but exhibited
three limitations. First, potential loss of specific features, like object size. Second, inability to differ-
entiate between parts of the same category leading to information loss. Third, computing metrics
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between two graphs remains NP-complete, hindering the precise distance calculation within a rea-
sonable timeframe. (ii) Semantic labels outperform using only geometric features, offering more
interpretable and intuitive results. They demonstrate greater resilience to occlusion and viewpoint
changes, especially in reverse LCD. However, predefined semantic labels in test datasets are lim-
ited, failing to encompass various categories in real-life scenarios. (iii) In dynamic or cluttered
environments, leveraging objects and their topological information can enhance recognition accu-
racy. These methods heavily rely on the outcomes of semantic segmentation, which may lead to
poor performance in diverse scenarios. Despite these challenges, they hold promise in applications
where traditional methods fall short.

7 LPR Techniques: Trajectory

Trajectory information enables correlating current and recent historical scans for place recogni-
tion. Odometry (handcrafted) and sequence (learning) are two prominent methods for historical
data.

7.1 Odometry-based Methods

SLAM systems with LCD modules often adopt handcrafted approaches, utilizing front-end poses
or traditional registration techniques [185, 186] for place recognition to reduce system complexity.
They can be further categorized into naive Euclidean distance, overlap ratio, and PCR-based test.

7.1.1 Naive Euclidean Distance. Comparing the Euclidean distance between real-time and his-
torical poses enables rough loop closure detection. Some works use piecewise orientation func-
tions [187] and global factor graphs [52] for pose similarity comparison, while others employ
multi-sensor calibration and mapping [188].

7.1.2 Overlap Ratio. The overlap ratio can assess place similarity, with a higher value indicating
closer proximity. S4-SLAM [189] stores historical poses using a kd tree and evaluates candidate
loops based on overlap rate. It balances real-time performance and accuracy, demonstrating ro-
bustness even with limited feature points and high moving speeds. Mendes et al. [190] utilize an
overlap criterion to generate new keyframes and implement a graphical model layer over LiDAR
odometry to reduce drifts through graph-level loop closing.

7.1.3 PCR-based Test. PCR techniques verify candidate loops using relative poses, such as stan-
dard ICP, point-to-line/plane ICP, and Generalized ICP (GICP).

Standard ICP. IN2LAAMA [69] devises an offline probabilistic framework that identifies loop
closures using poses and validates candidates with an ICP test [191], proficiently handling motion
distortion without an explicit motion model.

Point-to-Line/Plane ICP. Lego-LOAM [73] compares historical scans with pose constraints
and refines transformations with ICP [191]. It is a pioneering work to incorporate LCD into Li-
DAR SLAM, making it well suited for long-duration navigation tasks. LILO [192] extends this idea
to a LiDAR-IMU system. Other works enhance registration robustness using plane graphs [193],
intuitive weighting [22], and KL divergence [194], respectively.

GICP. LAMP [195] develops a multi-robot LiDAR SLAM system for challenging subterranean
environments that utilizes GICP [196] to register nearby scans and proposes an Incremental Con-
sistent Measurement set maximization to reject outlying loop closures.

7.2 Sequence-based Methods

SeqSLAM [197] pioneers visual feature similarity comparisons over time to integrate sequence
information and identify the best match within local sequences, showcasing exceptional
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Fig. 8. Two sequence-based methods. Panels (a) and (b) are originally shown in References [198] and [199],

respectively.

performance in extreme environmental changes and providing insights for LiDAR-based solu-
tions. The point cloud sequence matching incurs higher computational costs than image-based
alternatives. Consequently, approaches such as scan matching and submap matching integrate
neural networks with GPUs to enhance efficiency.

7.2.1 Scan Matching. As shown in Figure 8(a), SeqLPD [198] employs LPD-Net [2] for global
descriptor extraction and selects super keyframes based on feature space distribution. It combines
super keyframe-based coarse matching with the local sequence fine matching to improve detection
accuracy and efficiency. The trained model can be directly applied in real-world scenarios without
additional training, facilitating practical applications.

7.2.2 Submap Matching. As illustrated in Figure 8(b), SeqSphereVLAD [199] and Yin et al. [53]
utilize a spherical convolution module to extract orientation-equivariant local features across mul-
tiple layers of spherical perspectives. It effectively handles changing viewpoints and addresses
large-scale SLAM challenges. FusionVLAD [200] proposes a multi-view fusion network that en-
codes top-down and spherical-view features from the local map, enhancing feature combination
through a parallel fusion module for end-to-end training. It is well suited for large-scale mapping
tasks with limited computation resources.

7.3 Observations and Implications

Traditional frame-to-frame comparison methods yield an intuitive similarity score but intend to
degrade in closed, symmetric, and dynamic environments. The trajectory-based approaches in-
corporate both spatial and temporal information to address this limitation. Two observations are
summarized as follows:

(i) LiDAR SLAM [73, 195] employs a straightforward LCD method based on pose proximity,
followed by PCR for calculating relative transformations. Despite satisfactory results, two limita-
tions remain. Cumulative errors affect the reliability of odometry poses in large-scale scenarios.
Furthermore, the local optimality of PCR impeds the integration of loop constraints into global
optimization. (ii) Sequence-based methods exhibit versatility, since they effectively incorporate
diverse place recognition techniques, such as local and global descriptors [53, 198], semantics,
and segments. While visual sequence-based methods have been well-studied, LiDAR-based
approaches are still in the early stages. Furthermore, the expensive calculations required for
matching and feature fusion restrict their practical applicability.

8 LPR Techniques: Map

Map-assisted methods provide global metric localization to achieve place recognition. They
generally fall into two groups based on the map construction timing: offline and online maps.
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8.1 Handcrafted Methods

8.1.1 Offline Map-based Methods. As the vehicle moves, the static offline map confines its mo-
tion within predefined boundaries. Handcrafted methods mainly involve five map types: feature,
probability, point cloud, grid, and mesh.

Feature Map. Dong et al. [29] employ range image-based pole extraction to build a global map
and utilize MCL to update particle weights based on pole matching. Shi et al. [71] use RANSAC
[163] to extract walls from the offline map and online scans, applying point-to-point and point-to-
line distance constraints to compute vehicle poses.

Probability Map. Schmiedel et al. [201] characterize surface patches in NDT maps using cur-
vature and object shape. They match descriptors between online scans and the global map, apply
RANSAC [163] for outlier detection, and evaluate matches using a normalized inlier ratio.

Point Cloud Map. Xu et al. [62] introduce a cross-section shape context descriptor that de-
scribes spatial distribution using elevation and point density, improving recognition performance
with two-stage similarity estimation and the nearest cluster distance ratio. Shi et al. [72, 202] create
an offline map database with a kd tree to simulate vehicle orientations and develop a binary loss
function to improve localization accuracy.

Grid Map. Aldibaja et al. [203] convert LiDAR scans into image-like representations of road sur-
faces, incorporating elevation and irradiation data. They employ a shared ID-based XY correlation
matrix to represent loop-closure events among map nodes, facilitating large-scale map processing
and map-combiner event detection independent of the driving trajectory.

Mesh Map. Chen et al. [64] employ Poisson surface reconstruction to generate a mesh map,
developing an observation model of an MCL framework. It showcases robust generalization
across different LiDAR sensors, eliminating the need for additional training data in varying
environments.

8.1.2 Online Map-based Methods. SLAM dynamically constructs and updates an online point
cloud map of the surrounding environment as the vehicle navigates within unknown terrain.
MULLS [67] incorporates TEASER [204] for loop verification and employs map-to-map ICP [191]
to enhance inter-submap edges with accurate transformations. CT-ICP [68] projects a local map
onto an elevation image, estimates a 2D transformation using RANSAC [163], and computes a
six-DoF pose through ICP [191] to identify potential loop closures. Liu et al. [205] introduce a real-
time 6D SLAM for large-scale natural terrains, which combines rotation histogram matching with
a branch and bound search-based ICP [191] to achieve real-time LCD.

8.2 Learning-based Methods

8.2.1 Offline Map-based Methods. Researchers explore four types of offline maps in learning-
based map localization: intensity, point cloud, node, and OpenStreetMap (OSM).

Intensity Map. Barsan et al. [206] embed LiDAR intensity maps and online scans into a joint
space to determine the vehicle’s position. This method achieves centimeter-level accuracy and
showcases robustness in handling uncalibrated data.

Point Cloud Map. Some works [207, 208] employ DNN for feature learning and achieve global
localization through the MCL framework. They address the non-conjugate issue between the
Gaussian model and MCL, enhancing long-term localization performance. L3-Net [209] captures
temporal motion dynamics using deep Recurrent Neural Networks, achieving comparable
localization accuracy to SOTA methods. Retriever [210] aggregates compact features with a per-
ceiver for place recognition, enhancing computation efficiency by avoiding computation-heavy
decompression.
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Node Map. S4-SLAM2 [211] constructs a node map comprising point cloud, feature vectors,
and location information. It extracts geometric and statistical features to create multi-modal de-
scriptors and classified loop closures with a random forest classifier.

OpenStreetMap. OSM offers comprehensive geographic details such as streets, railways, water
systems, and buildings. Several approaches [212, 213] integrates semantic information extracted
from OSM into a particle filter framework. Cho et al. [214] generate a descriptor by calculating the
distances to buildings at regular angles.

8.2.2 Online Map-based Methods. These methods are roughly divided into surfel-based and
grid map-based methods.

Surfel Map. SuMa [215] and SuMa++ [63] employ range images and surfel-based maps for data
association, detecting candidate loops by combining radius search and frame-to-model ICP [191].
They verify loops by tracking poses, which ensures robust detection even with low overlap.

Grid Map. Yin et al. [216] generate a BEV map from the local occupancy map, considering vehi-
cle motion errors. Furthermore, they introduce an additional GAN [217] with conditional entropy
reduction to enhance unsupervised feature learning for long-term recognition applications.

8.3 Observations and Implications

Maps [72, 208, 209] have been widely used in robot localization and path planning as they offer
precise and detailed representations of the environment. Remarkably, map-based methods excel
in recognizing topologically similar localization, providing pose information, and recovering kid-
napped robots effectively. Several observations are summarized as follows:

(i) Map representations enhance global consistency and reduced localization errors. However,
their large memory requirements result in time-consuming loading, communication, and pro-
cessing. (ii) Map can overcome noise and partial occlusions, ensuring robust recognition even in
challenging scenarios. However, the significant density difference poses difficulties in registering
online scans to maps. (iii) A robust prior map facilitates long-term localization in a consistent
environment. However, significant environmental changes can cause the existing map to be
outdated, resulting in localization errors.

9 LPR Techniques: Other Methods

InCloud [218] distills the angular relationship between global representations, preserving the com-
plex structure of the embedding space between training steps. Granström et al. [219] encode the
point cloud using geometry features and range histograms, detecting loops with a trained classifier.
While achieving high precision and recall rates, it requires the ordered point cloud.

10 Datasets and Metrics

10.1 Datasets

A large number of datasets have been collected to evaluate the performance of LPR methods.
Table 3 provided a summary of these datasets. Their characteristics are summarized as follows:

Long-term Collection. [222, 223, 228] repeatedly gather the same scenario along similar routes
in different seasons or times.

Multi-modal Data. In addition to LiDAR sensors, radar is used in References [226, 228] and
cameras are mounted in References [150, 183, 220–223, 227–229]. Semantic information is also
available in Reference [225].

LiDAR Sparsity. These datasets cover various density LiDAR sensors, such as mechanical 16-
line [224, 227], 32-line [222, 228], 64-line [220, 221], and 128-line LiDAR [121], as well as solid-state
LiDAR [74].
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Table 3. A Summary of Existing Datasets for LPR

Year Name Seq Trajectory (KM) Type
Sensor

Modilty
Model of LiDAR Loop GT LT Public

2009 Hannover2 [125] 1 1.24 Out L S+O � �

2010 Freiburg [93] 1 0.723 Out L SICK LMS S � �

2011 Ford Campus [220] Out C+L Velodyne HDL-64E � �

2012 KITTI Odometry [221] 22 39.2 Out C+L Velodyne HDL-64E S+O � �

2016 NCLT [222] 27 147.4 In+Out C+L Velodyne HDL-32+Hokuyo
UTM-30LX+Hokuyo URG-04LX

S+O � � �

2017 Oxford RobotCar [223] > 130 >1000 Out C+L SICK LD-MRS+SICK LMS-151 S+O � � �

2018 Complex Urban [224] 19 158.82 Out L Velodyne VLP-16+SICK LMS-511 S+O � �

2018 In-House [37] 3 Out L Velodyne HDL-64E � � �

2019 Semantic KITTI [225] 22 39.2 Out L Velodyne HDL-64E S+O � �

2019 Apollo-SouthBay [209] >380 Out L Velodyne HDL-64E � � �

2019 HKUST [74] In+Out Livox-MID40 �

2020 MulRan [226] 12 41.2 Out L+R Ouster OS1-64 S+O � � �

2020 USyd [227] >50 Out C+L Velodyne VLP-16 S+O � � �

2020 Oxford Radar Robotcar
[228]

>32 >280 Out C+L+R Velodyne HDL-32E+SICK
LMS-151+Navtech CTS350-X

S+O � � �

2021 DUT-AS [126] 30 Out L SICK LMS 511 S+O � �

2021 CMU Dataset [183] 11 2.0 Out C+L Velodyne VLP-16 �

2021 Pittsburgh Dataset [183] 12 12.0 Out C+L Velodyne VLP-16 �

2022 HAOMO [150] 5 Out C+L HESAI PandarXT-32 S+O � � �

2022 Campus [53] 11 2 Out L Velodyne-VLP 16 �

2022 City [53] 13 11 Out L Velodyne-VLP 16 �

2022 KITTI-360 [229] 9 73.7 Out C+L Velodyne HDL-64E S+O � �

2022 CHDloop [121] 5 1.519 Out L RoboSense RS-Ruby 128 S+O �

2022 LGSVL [148] Out Velodyne HDL-64E � �

2022 Real Vehicle [148] Out C+L Velodyne VLP-32C S+O �

Seq, GT and LT represent sequence, ground-truth, and long-term, respectively. In and Out mean indoor and outdoor,
respectively. C, L, and R denote camera, LiDAR, and radar, respectively. S and O represent the same and
oppo-direction loop, respectively.

Viewpoint Change. In addition to same-direction revisits, References [121, 126, 148, 150, 221–
229] contain reverse loops.

Scenario Diversity. These datasets are generally divided into two categories: indoor and
outdoor datasets. Outdoor datasets are the most widely used, mainly including campuses [222],
highways [224], rural areas [221], cities [227], and riversides [226].

10.2 Evaluation Metrics

Different evaluation metrics have been proposed to test LPR methods, summarized as follows:
Revisit Criteria. A distance threshold is defined before evaluation to determine whether the

query and candidate belong to the same place.
Precision-recall (PR) Curves [230]. As depicted in Figure 9(a), this curve measures the re-

lationship between Pecision (P ) and Recall (R) under different threshold parameters. P measures
the ratio of correct matches to the total of predicted positive instances, while R quantifies the
proportion of real positive cases correctly identified as positive matches,

P =
TP

TP + FP
, R =

TP

TP + FN
, (5)

where TP , FP , and FN represent true positive, false positive, and false negative, respectively.
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Fig. 9. An illustration of PR curve and AUC. (a) is originally shown in Reference [4]. The AUC in (b) corre-

sponds to the area of the blue region.

Area Under the PR Curve (AUC) [48]. As illustrated in Figure 9(b), it reflects the discrimina-
tion power of a LPR method and a larger AUC means more places are recognized with fewer errors.
However, it does not retain any information regarding the features of the original PR Curve.

Recall @Top-N. It evaluates the accuracy of place recognition methods in identifying the cor-
rect places among the top-k retrieved matches. A higher value indicates better performance. TOP
1% [51] and TOP 1 [123] are the two most frequently used metrics.

Fβ Score. It is the harmonic mean of precision and recall. A high value indicates the system
struck a good balance between them as follows:

Fβ =
(
1 + β2) × P × R

β2P + R
, (6)

where P and R represent precision and recall, respectively. β is a parameter that determines the
weights of P and R. F1 score [49, 61, 158, 162, 168, 175, 177] is the most frequently used metric:

F1 = 2 ×
P × R

P + R
, (7)

where F1 treats P and R as equally important. The maximum F1 score (Fm
1 ) is then calculated as

follows:

Fm
1 =max

τ
2 ×

Pτ × Rτ

Pτ + Rτ
, (8)

where τ refers to a user-defined threshold for matching score or distance. For place recognition, we
identify the best candidate for the query scan and compute their matching score or distance. We
compare this score with τ to classify the result as TP , FP , or FN . We then calculate the precision,
recall, and F1 score for the entire sequence. Finally, we evaluate different τ values to determine the
highest F1 score as the final result Fm

1 .
Extended Precision (EP). It provides more comprehensive insights by simultaneously consid-

ering the lower and upper-performance bounds of an LPR method [162, 175, 231]:

EP =
1

2
(PR0 + RP100) , (9)

where PR0 is the precision at minimum recall, and RP100 is the max recall at 100% precision.
Translation and Rotation Error. In global localization-related tasks, the translation error et

quantifies the difference between the estimated and ground-truth translations, reflecting the accu-
racy of the robot’s position. The rotation error er measures the discrepancy between the estimated
and actual rotations, indicating the accuracy of the robot’s attitude,

et = tes − tдt , er = arccos(trace
(
R

T
дt Res

)
/2), (10)

where tes and Res denote the estimated translation and rotation and tдt and Rдt denote the ground-
truth values. trace refers to the matrix’s trace.
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Localization Success Rate. The success rate ratesuccess is the proportion of successfully local-
ized cases Nsuccess to the total cases Ntotal . A higher success rate indicates a more robust system
capable of accurately localizing the robot from its initial state:

ratesuccess =
Nsuccess

Ntotal
, (11)

where a localization is successful only if the translation error et is less than ϕt and the rotation
error er is less than ϕt ; ϕt and ϕt are thresholds for translation and rotation errors, respectively.

Running Efficiency. Runtime is crucial for online SLAM. Descriptor-based methods typically
involve feature extraction and search, while map-based methods require map processing and
matching. Data-driven methods, however, necessitate training and inference.

11 Future Directions

11.1 Multi-modality Information

Multi-modality information offers the opportunity to leverage complementary features and en-
hance the robustness of localization. Several novel solutions are as follows:

WiFi. WiFi-based localization retrieves the Media Access Control address of routers via
the client device to calculate positions. This solution offers extensive coverage and achieves
accurate indoor localization, overcoming GPS signal limitations. Moreover, it is easy to deploy
and provides fast localization, holding significant potential for advancing indoor localization
industries.

Voice. Voice-based localization uses microphone arrays to capture audio signals, employing
delay estimation or spectral analysis to determine sound source locations. It offers advantages
like low computational requirements, high concealment, and strong compatibility. Furthermore,
it can seamlessly integrate with human-computer interaction systems, smart homes, and other
voice-controlled applications, enhancing vehicle situational awareness.

Radio Frequency Identification. RFID employs radio signals to identify and track objects
without physical contact. Its anti-interference capability will ensure reliable autonomous driving
in harsh environments. Additionally, the long lifespan can enhance the stability of long-term
localization systems. Applying cryptographic encryption to tag data can strengthen system
security.

11.2 Innovative Solutions

Breaking free from conventional solutions and incorporating interdisciplinary new technologies
into autonomous driving holds the potential for unforeseen improvements:

Cloud Computing. Cloud computing offers high-performance shared computing resources to
users. Offloading computing tasks to cloud servers enhances robot localization efficiency. With
access to powerful computing resources, robots can process diverse high-precision sensor data,
thus improving their localization capabilities.

Quantum Technology. Quantum technology revolutionizes information calculation, encoding,
and transmission. Quantum sensors can capture subtle changes, delivering ultra-high-precision
measurements. Integrating such sensors into robotic navigation will greatly enhance localization
and mapping in complex environments.

Bio-inspired Localization. Bio-inspired navigation and group behavior provide novel insights
for robot localization. Inspired by turtles’ navigation behavior, robots can enhance localization ro-
bustness by employing magnetic field sensors. Multi-robot systems can improve formation stability
by emulating the cooperative behavior seen in bird flocks.

ACM Comput. Surv., Vol. 57, No. 4, Article 106. Publication date: December 2024.



LiDAR-Based Place Recognition For Autonomous Driving: A Survey 106:25

11.3 Advanced Sensors

Equipping robots with advanced sensors can enhance their navigation capabilities. We present
several promising sensors as follows:

Solid-State LiDAR. Solid-state LiDAR employs a Micro-Electro-Mechanical System, Optical
Phased Array, or flash technology for signal transmission and reception. It boasts a compact size,
high resolution, fast scanning speed, and extended measurement range. It enables precise iden-
tification of buildings, vehicles, and traffic signs, effectively ensuring autonomous driving safety,
supporting smart transportation data, and monitoring traffic accidents.

Event Camera. Event cameras exclusively generate an asynchronous event stream when no-
table visual changes occur. They offer numerous benefits, including high time resolution, low
latency, wide dynamic range, and low power consumption. Equipping vehicles with event cam-
eras enhances obstacle avoidance in high-speed scenarios, enables navigation through scenes with
abrupt light changes, and facilitates handling emergencies.

Millimeter Wave Radar. Millimeter-wave radar employs Frequency-Modulated Continuous
Wave signals and mixers to measure speed, distance, and direction, providing cost-effectiveness,
precise longitudinal ranging, accurate object detection, weather resistance, and high bandwidth. It
will find wide applications in blind spot detection, object detection and tracking, parking assistance,
and adaptive cruise control.

11.4 Significant Applications

As a new scientific and technological revolution unfolds, robot technology will spearhead advance-
ments in several critical fields shaping the fate of humanity:

Space Exploration. In inhospitable environments like the moon, robots will assume the role
of humans, undertaking tasks such as terrain mapping, mineral identification, house construction,
and 3D printing. They will aid human understanding of deep space and other planets.

Polar Research. Robots advance polar research by enhancing data collection capabilities. They
collect data on glaciers, weather, and temperature, facilitating continuous environmental monitor-
ing. High-resolution mapping of polar topography helps identify landform changes, glacier move-
ment, and geological processes.

Underwater Robots. Underwater robots are advanced submersibles tailored for extreme un-
derwater operations. The fiber optic gyroscope and Doppler log will greatly enhance localization
performance, benefiting port construction and naval defense. Sonar detection technology will fur-
ther improve task efficiency like underwater rescue and pipeline maintenance.

11.5 Approach Evaluations

A fair and thorough evaluation is crucial for adapting robot products, algorithms, and scenarios.
Here are three pivotal considerations for future algorithm evaluation.

Scalability and Efficiency. The growing affordability and accessibility of LiDAR sensors have
spurred the demand for large-scale place recognition. This necessitates the development of scalable
algorithms for handling large-scale point clouds and the design of efficient algorithms for the real-
time processing of point cloud data on resource-constrained platforms.

Long-term Place Recognition. Long-term place recognition refers to the ability of a system
to identify places over extended periods, despite appearance and weather variations. It is a crucial
capability for autonomous navigation. Designing algorithms that can handle seasons, weather,
appearances, and dynamic objects, will drive significant advancements in this field.

Standardized Datasets. A good dataset should possess sufficient size, high-quality data,
reliable ground truth, annotations or labels, ethical considerations, normalized form, and clear
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instructions. Creating diverse data encompassing various sensor modalities, environmental
conditions, and weather changes is also highly valuable.

12 Conclusions

As high-level autonomous driving advances, robust navigation systems are essential for navi-
gating complex environments. Place recognition enables vehicles to recognize previously visited
locations despite changes in appearance, weather, and viewpoints, even determining their global
location within prior maps. It is becoming increasingly important in autonomous driving. LiDAR,
with its rich 3D data, long-range measurement, and stability in harsh conditions, has made LPR a
research hotspot. To address the gap in this field, we propose the first LPR survey. We first discuss
the main problems solved by place recognition and analyze LPR’s role in autonomous driving.
Then, we offer a comprehensive problem statement, which divides LPR into implicit loop closure
detection and explicit global localization to help readers understand the function of LPR in different
requirements.

In recent years, many regions have implemented strict safety requirements for autonomous driv-
ing. LiDAR, as a reliable sensor, enhances system safety and reliability, making it an ideal choice.
With technological advancements and increased production, LiDAR costs have decreased, broad-
ening its application scope. Consequently, many LPR methods have emerged. We comprehensively
classify these methods, describe their principles, and summarize their architectures, advantages,
and disadvantages. These detailed analyses aim to help researchers understand each method’s
applicability and inspire advancements in place recognition technology for challenging environ-
ments such as docks, parks, and woodlands.

In the future, ongoing technological innovations will enhance LiDAR performance with higher
resolution, faster scanning speeds, and longer detection distances. Large-scale production and us-
age of new materials will reduce costs, broadening LiDAR’s applications. The fusion of LiDAR with
other sensors (e.g., cameras, radars, GPS) will advance, providing more comprehensive and accu-
rate localization and place recognition. To promote the further development of LPR, we summarize
commonly used datasets, evaluation metrics, and promising future directions. Additionally, we
maintain a project to collect SOTA LPR technologies, keeping the robotics community up to date.
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