
ISPRS Journal of Photogrammetry and Remote Sensing 209 (2024) 213–232

Available online 14 February 2024
0924-2716/© 2024 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.

From lines to Polygons: Polygonal building contour extraction from 
High-Resolution remote sensing imagery 

Shiqing Wei a,b, Tao Zhang b, Dawen Yu b, Shunping Ji b,*, Yongjun Zhang b, Jianya Gong b 

a College of Oceanography and Space Informatics, China University of Petroleum (East China), Qingdao 266580, China 
b School of Remote Sensing and Information Engineering, Wuhan University, 129 Luoyu Road, Wuhan 430079, China   

A R T I C L E  I N F O   

Keywords: 
Building extraction 
Feature line detection 
Transformer 
Topological reconstruction 
Remote sensing images 

A B S T R A C T   

Automated extraction of polygonal building contours from high-resolution remote sensing images is important 
for various applications. However, it remains a difficult task to achieve automated extraction of polygonal 
buildings at the level of human delineation due to diverse building structures and imperfect image conditions. In 
this paper, we propose Line2Poly, an end-to-end approach that uses feature lines as geometric primitives to 
achieve polygonal building extraction by recovering topological relationships among these lines within an in-
dividual building. To extract building feature lines with precision, we adopt a two-stage strategy that combines 
Convolutional Neural Network (CNN) and transformer architectures. A CNN-based module extracts preliminary 
feature lines, which serve as positional priors for initializing positional queries in the subsequent transformer- 
based module. For polygonal building contour reconstruction, we devise a learnable polygon topology recon-
struction module that predicts adjacency relationships among discrete lines, and integrates lines into building 
polygons. The resultant building polygons, based on feature lines, exhibit inherent regularity that aligns with 
manual labeling standards. Extensive experiments on the Vectorizing World Buildings dataset, the WHU aerial 
building dataset and the WHU-Mix (vector) dataset validate Line2Poly’s impressive performance in building 
feature line extraction and instance-level building detection. Moreover, Line2Poly’s predictions exhibit the 
highest level of concurrence with manual delineations, with over 83% agreement on the WHU aerial building test 
set and 68.7/59.7% on the WHU-Mix (vector) test set I and II, respectively.   

1. Introduction 

High-precision and large-scale polygonal building maps are exten-
sively used in various fields, including topographic map updates, urban 
planning, population density estimation, and disaster management 
(Yeh, 1999; Boo, 2022; Lu et al., 2004). The automated extraction of 
building contours from high-resolution remote sensing imagery, at a 
level comparable to manual delineation, has the potential to signifi-
cantly reduce both labor-intensive efforts and resource expenses. 
Despite the considerable research conducted in this area, achieving true 
end-to-end automation remains a challenge. Conventional methods 
struggle to handle the wide range of building structures, backgrounds, 
and diverse imaging conditions (Osher and Sethian, 1988; Chan and 
Vese, 2001). Recent developments in deep learning-based approaches 
offer promising solutions for building extraction. However, the majority 
of studies treat it solely as a semantic segmentation task, focusing on 

binary pixel classification (Ji et al., 2018; N. Nauata and Y. Furukawa, 
“Vectorizing World Buildings: Planar Graph Reconstruction by Primitive 
Detection and Relationship Inference,” Cham, 2020; Chen et al., 2022; 
Xiao et al., 2022). In this paper, our main objective is to achieve the 
extraction of vectorized and regularized building contours that can 
effectively replace the need for manual delineation. The inspiration for 
this objective comes from our earlier study (Wei et al., 2019). 

Digital building contours can be naturally represented as polygons 
enclosed by a sequence of interconnected vertices. Vertex-based 
methods (Xie, 2020; Ling et al., 2019; Peng et al., 2020; Liu et al., 
2021) aim to directly extract polygonal buildings by regressing the co-
ordinates of building contour vertices in an image. However, these 
methods often face challenges when confronted with complex scenes, 
such as occluded corners. In fact, the contours obtained from vertex- 
based methods or edge-tracked from segmentation-based methods are 
usually less accurate than manual delineation. To improve the quality of 
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these contours, some researchers apply a series of empirical post- 
processing steps to transform them into regular polygons (Wei et al., 
2019; Zhao et al., 2020; Zhao et al., 2018; Zorzi et al., 2020). However, 
the empirical post-processing may not always be effective, and the 
addition of post-processing steps can introduce additional complexity to 
the overall solution. 

To mimic the process wherein a human operator sequentially traces 
building contour lines to create a closed polygon, we propose an inno-
vative end-to-end approach called Line2Poly. This method utilizes lines 
as geometric primitives and reconstructs the topological relationships 
among these lines, enabling the extraction of polygonal building con-
tours in a bottom-up fashion. The resulting building polygons exhibit 
inherent regularity and align with the shape characteristics of buildings. 
Moreover, this approach can be expanded to include the extraction of 
interior feature lines within building roof structures, thus catering to a 
wider range of application requirements beyond the capabilities of 
segmentation-based or vertex-based methods. 

In our approach, the accurate extraction of lines is crucial for the 
subsequent reconstruction of polygonal buildings. To achieve this, we 
rely on the robust long-range information encoding capacity of neural 
networks, as lines are elongated in nature. While most line extraction 
methods (Huang et al., 2018; Zhou et al., 2019; Xue, 2020; Dai et al., 
2022) are based on CNN architectures, which excel at encoding local 
features, they also suffer from limited kernel sizes and receptive fields. 
LETR (Xu et al., 2021) integrates the transformer architecture, known 
for its ability to capture long-range contextual information, into line 
extraction. However, the attention-based transformer requires substan-
tial data for training and may experience slow convergence speed. In this 
study, we propose a two-stage feature line extraction strategy that 
combines the strengths of CNN and transformer methodologies. Our 
strategy includes a CNN-based preliminary feature line extraction 
module and a subsequent transformer-based accurate feature line 
extraction module. The former module identifies potential lines using 
building bounding boxes and corner information and filters out redun-
dant lines to obtain preliminary lines. The latter module uses these 
preliminary lines as a prior cue to initialize positional queries, resulting 
in meticulous extraction of feature lines. 

The ultimate goal of our research is the extraction of polygonal 
buildings. Therefore, the final step in Line2Poly involves the recon-
struction of discrete lines into polygons. However, due to the imperfect 
nature of automatically extracted feature lines, accurately restoring the 
topological relationships among these lines based solely on their co-
ordinates presents a challenge. Taking inspiration from PolyWorld 
(Zorzi et al., 2021), which employs neural networks to predict adjacency 
relations among corner points, we introduce a learnable module focused 
on line-based polygon topology reconstruction. This module predicts 
adjacency relationships among the extracted discrete lines, at the same 
time, it effectively addresses the challenges posed by imperfect line 
extraction and ultimately leads to more accurate polygon extraction. 

We conduct extensive experiments on three datasets, Vectorizing 
World Buildings dataset (Nauata and Furukawa, 2020), WHU aerial 
building dataset (Ji et al., 2018) and WHU-Mix (vector) building dataset 
(Wei et al., 2023; Luo et al., 2208), to evaluate the performance of our 
proposed Line2Poly approach. The experimental results show that 
Line2Poly can achieve superior performance in line extraction 
(measured by Structural Average Precision (SAP)), instance-level 
building detection (measured by Average Precision (AP) and Average 
Recall (AR)), and manual-level building delineation (measured by the 
Valid Polygon Ratio (VPR)). Our primary contributions in this work are 
as follows: 

(1) We propose Line2Poly, an end-to-end framework designed for 
polygonal building extraction. This innovative framework employs 
feature lines as fundamental geometric primitives and effectively gen-
erates building polygons through topological relationship reconstruc-
tion among the lines. Line2Poly can also be directly applied to the line 
extraction task. 

(2) We propose a two-stage strategy for accurately extracting 
building feature lines. This strategy takes advantage of the strengths of 
convolutional neural networks (CNNs) in encoding local features and 
transformers in capturing long-range information. This combination 
results in precise extraction of building feature lines. 

(3) We design a learnable module for line-to-polygon topology 
reconstruction. This module transforms discrete feature lines into 
building polygons by determining the potential adjacency relationship 
between contour lines. 

The subsequent sections of this paper are organized as follows: 
Section 2 provides an overview of the related work. Section 3 presents 
the details of the proposed Line2Poly framework. Section 4 introduces 
the dataset, implementation details, and the assessment metrics 
employed. The evaluation results, compared with state-of-the-art 
methods, are presented in Section 5, along with a comprehensive dis-
cussion on the efficacy of the design choices. Finally, Section 6 encap-
sulates the conclusions drawn from this study. 

2. Related work 

In this section, we briefly review the progress of the feature line 
extraction methods, the development of segmentation-based polygonal 
building extraction methods, and the recent vertex-based and contour- 
based polygonal building extraction methods. 

2.1. Segmentation-based polygonal building extraction 

Most studies consider building extraction as a task of semantic seg-
mentation (Ji et al., 2018; N. Nauata and Y. Furukawa, “Vectorizing 
World Buildings: Planar Graph Reconstruction by Primitive Detection 
and Relationship Inference,” Cham, 2020; Yuan, 2017; Bischke et al., 
2017). The emergence of fully convolutional neural network (FCN) 
(Long et al., 2015) and its variants such as U-Net (Ronneberger et al., 
October, 2015), and DeepLab (Chen et al., 2018) have significantly 
advanced semantic segmentation in this domain. Currently, mainstream 
techniques for building semantic segmentation still revolve around the 
FCN as the foundational framework, with specialized strategies to 
address issues specific to building extraction tasks (Chen et al., 2021; 
Zhu et al., 2020). More recently, transformer (Vaswani, 2017) have 
started to make their mark in computer vision. Several studies (Chen 
et al., 2022; Xiao et al., 2022), utilizing the Swin-Transformer (Liu, 
2021) as a feature encoder, amalgamate multi-scale feature information 
to enhance building segmentation precision. Transformer is particularly 
adept at capturing global contextual information while CNN excels in 
extracting local features. Consequently, researchers have combined 
these two structures for building segmentation tasks. For example, 
UNetFormer (Wang, 2022) utilizes a CNN-based encoder and a 
transformer-based decoder to achieve precise building segmentation. 
Wang et al. (Wang et al., 2022) devise a dual-path feature encoding 
structure based on transformer and CNN. Similarly, Sun et al. (Sun et al., 
2022) embrace a hybrid transformer and CNN architecture to furnish a 
global receptive field for each pixel. This collaborative approach maxi-
mizes the strengths of transformer and CNN, thereby augmenting the 
performance of semantic segmentation. Nevertheless, it should be noted 
that these studies focus on pixel-level segmentation. In this paper, the 
combination of Transformer and CNN is utilized for vectorized building 
contour extraction. 

The segmentation maps outputted by the segmentation-based 
building extraction methods cannot directly obtain instance-level in-
formation. To glean building instance information, some researches 
(Zhao et al., 2018; Chen et al., 2023; Wu et al., 2020) have introduce 
instance segmentation methods, achieving simultaneous building 
instance localization and segmentation map extraction. However, the 
rasterized representations of buildings obtained by the aforementioned 
methods often exhibit significant jaggedness, fragmentation, and irreg-
ularities, deviating substantially from actual building shapes. The 
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simplest approach to obtain polygonal building contour representations 
involves transforming segmentation maps into vector formats and then 
employing a series of post-processing steps to refine the vector contours 
(Zhao et al., 2020; Zhao et al., 2018; Zorzi et al., 2020). For instance, 
Wei et al. (Wei et al., 2019) track building contours by identifying 
foreground connected domains within the segmentation map, apply a 
polygon simplification algorithm (the Douglas-Peucker algorithm 
(Douglas and Peucker, 1973), and employ empirical regularization al-
gorithms to produce regular building polygons. Approaches like Poly-
Transform (Liang et al., 2020) and BOD (Chen et al., 2020) take the 
semantic segmentation map as initial contours and then refine it with an 
additional optimization module. The frame field learning method (Gir-
ard et al., 2021) introduces an extra frame field branch within semantic 
segmentation networks to enhance segmentation quality and facilitate 
polygonal representation. These methods heavily rely on the quality of 
building segmentation maps and typically involve multiple models or 
post-processing steps, resulting in complex overall workflows. 

2.2. Vertex-based and contour-based polygonal building extraction 

The vertex-based methods predict the corner points of buildings 
sequentially to obtain regular polygons. Methods like Polygon RNN 
(Castrejon et al., 2017) and Polygon RNN++ (Acuna et al., 2018) 
employ recurrent convolutional networks for polygon extraction. They 
initiate from an initial contour vertex and predict vertices iteratively in a 
predefined direction until polygon closure is achieved. This approach is 
well-suited for buildings with regular shapes, leading to further in-
vestigations (Huang et al., 2021; Zhao et al., 2021; Huang et al., 2021; 
Liu et al., 2022; Li et al., 2019) that apply and refine these techniques for 
polygonal building extraction. PolyWorld (Zorzi et al., 2021), on the 
other hand, achieves building polygon extraction by predicting building 
corner points and their adjacent relationships. However, this type of 
methods relies on the accurate extraction of building corners. For 
example, both Polygon RNN++ and PolyWorld often face the problem 
of vertex loss, resulting in incomplete building boundaries. 

Recent contour-based methods for general object instance segmen-
tation boost the building extraction study. The contour-based methods 
can also predict building polygons directly and have exhibited better 
stability than the vertex-based ones. For example, Curve GCN (Ling 

et al., 2019) leverages graph convolutional networks (GCN) in instance 
segmentation tasks. Expanding on this, TS-GCN (Wei and Ji, 2021) in-
troduces a dual-scale approach to enhance the accuracy of building 
extraction. One-stage methods like PolarMask (Xie, 2020) and LSNet 
(Duan et al., 2104) regress object contours based on central feature in-
formation, while two-stage methods like DeepSnake (Peng et al., 2020) 
generates initial contours based on object positions and then optimizes 
these contours through neural networks. The two-stage strategy has 
gained increased attention (Peng et al., 2020; Liu et al., 2021; Wei et al., 
2020; Zhang et al., 2022). Following this, CLP-CNN (Wei et al., 2021) 
and BuildMapper (Wei et al., 2023) introduce the two-stage framework 
to building polygon extraction, yielding favorable outcomes. To further 
enhance object contour quality, SharpContour (Zhu et al., 2022) in-
troduces an effective boundary refinement module. These contour-based 
methods often require a substantial and redundant number of vertices to 
ensure the integrity of building shapes, sometimes resulting in overly 
smooth contours. 

In contrast, taking lines as fundamental geometric primitives can 
offer more precise information and additional contextual cues for the 
learnable network. Even in the presence of occlusions, obscured areas 
can be reconstructed through the intersection of lines. In addition, 
complete building polygons can be directly produced through connect-
ing lines sequentially without the need for additional regularization and 
redundant vertex removal. 

2.3. Feature line extraction 

Lines, a fundamental visual element in images, often play a crucial 
role in facilitating various downstream visual tasks (Xue, 2020), such as 
image matching (Xue et al., 2017) and visual SLAM (Jiang et al., 2021). 
The extraction of feature lines has emerged as a prominent challenge in 
the field of computer vision. Classical techniques for line extraction, 
such as the Canny operator (Canny, 1986), Hough transform (Hough, 
1962) and LSD method (Von Gioi et al., 2008), have been widely used. 
With the advancements in neural network technology, wireframe 
parsing theories (Huang et al., 2018) have yielded promising results in 
the extraction of lines from natural images, and multiple large-scale 
benchmarks (Huang et al., 2018; Denis et al., 2008) have emerged. L- 
CNN (Zhou et al., 2019) adopts a two-stage approach, encompassing 

Fig. 1. The overall workflow of the proposed Line2Poly method.  
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proposal lines generation and verification, to accomplish end-to-end line 
extraction. AFM (Xue et al., 2019) and HAWP (Xue, 2020) employ 
attractive field maps to represent lines, bridging the gap between lines 
and regions. Zhao et al. (Zhao et al., 2022/05/01/ 2022) follow HAWP 
(Xue, 2020) and incorporate a graph neural network to enhance the 
representation of line and vertex features. F-CLIP (Dai et al., 2022) 
employs a fully neural network design and parameterizes lines as center 
points, lengths, and angles, thus enhancing line extraction efficiency. 
LETR (Yuan, 2017) utilizes a transformer architecture within a two- 
stage model to achieve line extraction. Some studies (Nauata and Fur-
ukawa, 2020; Stekovic et al., 2021; Zhang et al., 2020) focus on the 
reconstruction of planar structures in buildings, which also serves the 
purpose of feature line extraction. Approaches like (Nauata and Fur-
ukawa, 2020; Stekovic et al., 2021) use the neural networks to extract 
the geometric primitives (points, lines and regions) from remote sensing 
images, followed by complex optimization techniques for reconstructing 
plane structures. Conv-MPN (Zhang et al., 2020) utilizes a message 
passing neural architecture to infer corners relationships and address 
planar graph reconstruction, but it is prone to topological errors, 

especially when dealing with hanging lines. 

3. Methodology 

The Line2Poly architecture, as shown in Fig. 1, consists of three 
primary modules: the Preliminary Line Generation (PLG) module, the 
Accurate Line Extraction (ALE) module, and the Polygons Topology 
Reconstruction (PTR) module. Initially, the input RGB image is fed into a 
shared backbone network which conducts high-level feature extraction. 
Then, the CNN-based PLG module predicts oriented bounding boxes 
(OBB) and corner points of buildings and derives potential feature lines 
by connecting corner points. The filtered potential lines serve as prior 
information for the transformer-based ALE module, facilitating the 
extraction of precise lines. Finally, the PTR module establishes topo-
logical interrelationships among individual building feature lines, ulti-
mately leading to distinct and well-structured building polygons. 
Further details of Line2Poly are elaborated below. 

3.1. Backbone network 

The modified deep layer aggregation (DLA) network (Yu et al., 2018) 
is chosen as the foundational network for extracting high-level feature 
maps from the input images. These feature maps are subsequently 
shared with distinct sub-modules. While the original DLA network 
exclusively outputs 1/4 scale features, our study extends this capability 
to extract features at 1/8 and 1/16 scales, thus providing rich multi- 
scale information for subsequent modules. The architecture of the 
backbone network is shown in Fig. 2. Given an RGB input image I ∈
RW×H×3 with a width of W and a height of H, the backbone network 

generates feature maps at three scales,F =
{

FiR
W

2i+1×
H

2i+1×(c×i)
}3

i=1 
with C 

× i denoting the number of feature map channels. In this study, we set C 
= 128. 

3.2. Preliminary feature lines generation 

As shown in Fig. 3, the preliminary feature lines generation (PLG) 
module predicts the oriented bounding boxes (OBB) and corner points of 
buildings from the backbone feature map. By connecting the corners of a 
building, a set of potential lines is generated. These noisy potential lines 
are then subjected to a filtering process, yielding the preliminary set of 
feature lines. The details of OBB extraction, corner identification, po-
tential lines generation, and subsequent filtering are provided below. 

Fig. 2. The architecture of the backbone network. The numbers inside the 
boxes indicate the stride relative to the input image. 

Fig. 3. Preliminary feature line generation module.  

S. Wei et al.                                                                                                                                                                                                                                      



ISPRS Journal of Photogrammetry and Remote Sensing 209 (2024) 213–232

217

3.2.1. Oriented building bounding box extraction 
In contrast to the horizontal bounding box, OBB provides a more 

precise localization of the current building, thereby reducing the po-
tential overlap with neighboring buildings. We employ the Box 
Boundary-Aware Vectors (BBAVectors) (Yi et al., 2021) to extracting 
OBB of buildings. As depicted on the left side of Fig. 4, the process of 
OBB extraction involves four distinct subtask branches: center heatmap 
prediction, offset prediction, box parameters prediction, and orientation 
prediction. The first two prediction branches are used to determine the 
building’s center point, while the last two branches are responsible for 
generating the OBB based on the center point. These tasks require a high 
level of detail in image features. Therefore, only the highest-resolution 
feature map F1 is used as input for these purposes. For more compre-
hensive details, please refer to (Yi et al., 2021). 

3.2.2. Building corner extraction 
In a manner akin to the extraction of center points, corners can also 

be detected using a heatmap-based approach. In our Line2Poly method, 
we incorporate a corner prediction branch, as shown in Fig. 4, which 
produces a heatmap highlighting peak values corresponding to the 
building corners. This branch shares the same network architecture as 
the center point prediction branch. It is important to emphasize that the 
number of corner pixels is notably smaller in comparison to the rest of 
the image. Consequently, we utilize the focal loss function to calculate 
the corner points localization loss Lcor, which is analogous to the loss 
function used for center points. 

3.2.3. Filtering out redundant lines 
Within each OBB, corner points are associated with a specific 

building. However, inaccuracies in the prediction of bounding boxes can 
lead to potential loss of corner points. To mitigate this, we expand each 
box by a factor of 1.2. For a building with n corner points, the total 
number of lines formed by any two points is (n2-n)/2. As a result, 
redundant lines need to be filtered out, a task treated as a binary clas-
sification problem where lines that do not align with ground truth lines 
are distinguished from the valid ones. To achieve this, we have designed 
a line filtering branch. 

First, a line feature pooling operation is utilized to extract features 
for each potential line. This includes features of the two endpoints and 
midpoint of the potential line, as illustrated in Fig. 3. These features are 
then concatenated with the coordinates of the two endpoints, forming a 
feature representation of the line li, expressed as fi = Concat(fstart, fmid, 
fend, xstart, ystart, xend, yend). Specifically, the line filtering branch com-
prises six consecutive fully connected layers with ReLU activations. The 
Sigmoid function is applied to generate confidence scores for each po-
tential line, while lines exceeding a predefined threshold Tf (e.g., Tf =

0.2) considered valid. Finally, we obtain the preliminary feature lines of 
the buildings. It should be noted that the binary classification labels are 
assigned during the dynamic training process using the Hungarian al-
gorithm (Stewart et al., 2016; Carion et al., 2020). This process pairs 
each ground truth line with the optically predicted potential line by 
minimizing the matching distance. The focal loss is employed to 
compute the line filtering loss Lf, which is similar to the center point loss. 

The PLG module is overall quite lightweight, comprising only pre-
diction heads related to bounding boxes and corners, along with a simple 

Fig. 4. Pipeline for oriented bounding boxes and corners detection in Line2Poly. Left: oriented bounding boxes and corner detection network architecture. Right: 
oriented bounding box parameter description based on BBAVectors method. 

Fig. 5. Parametric representation of object detection and line extraction tasks.  
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line filtering branch. However, it provides subsequent modules with 
abundant and effective positional prior information about lines. 

3.3. Accurate line extraction module 

Preliminary lines alone are insufficient for generating precise 
polygonal building footprints. To address this limitation, Line2Poly in-
corporates the transformer-based Accurate Lines Extraction (ALE) 
module, which is adapted from the object detection network DAB-DETR 
(Liu, et al., 2201). The ALE module leverages the preliminary lines as 
prior knowledge to produce highly precise building feature lines. 

3.3.1. Preliminary 
Before introducing our transformer-based line extraction module, we 

will provide a brief review of recent transformer-based object detection 
methods and their relations to line extraction. DETR (Carion et al., 2020) 
is the first model to apply transformers to object detection tasks. DETR 
employs a standard transformer encoder-decoder architecture, mapping 
deep image features extracted from a CNN backbone into a set of 
bounding boxes. Unlike CNN-based object detection methods, which 
rely on anchor boxes for feature pooling, DETR automatically extracts 

feature information for specific regions using learnable queries. How-
ever, the learnable query variables in DETR lack positional priors and 
effective supervision, leading to a slower network convergence. DAB- 
DETR (Liu, et al., 2201) reintroduces the anchor frame into DETR, 
provides location prior knowledge for the model, and guides the 
network to focus on specific spatial regions, which can effectively 
improve the feature extraction ability and convergence speed of the 
network. 

A noteworthy parallel exists between the representations of lines and 
bounding boxes. As shown in Fig. 5(a), for object detection purposes, a 
bounding box can be represented as (x, y, w, h), where x and y denote the 
coordinates of the center point, while w and h represent the width and 
height of the bounding box, respectively. Similarly, a line segment l can 
be parameterized as (x1, y1, x2, y2), with (x1, y1) and (x2, y2) denoting the 
endpoints (Fig. 5 (b)). The objectives of line extraction and object 
detection are fundamentally aligned. Transformers excel in encoding 
long-range information, making them particularly well-suited for the 
extraction of elongated shapes, such as lines. 

3.3.2. Accurate line extraction based on enhanced DAB-DETR 
The ALE module within Line2Poly is built upon the Deformable DAB- 

DETR (Liu, et al., 2201), originally designed for object detection but 
adapted for precise feature line extraction, as shown in Fig. 6. ALE takes 
the multi-scale features F, derived from the CNN backbone, as its input 
and employs a transformer encoder for refine these features. It subse-
quently employs dual queries, comprising positional queries (lines) and 
content queries, which are fed into the decoder to iteratively extract 
accurate feature lines. In contrast to the original DAB-DETR, which 
utilizes randomly initialized embedding parameters as positional 
queries, ALE initializes its positional queries based on the preliminary 
feature lines obtained from the PLG module. This approach reduces the 
network’s learning burden and enhances line extraction performance. 

The number of preliminary feature lines may vary across images, but 
the number of queries should exceed the line count to ensure a satis-
factory recall rate. We establish the query count as a constant k. If the 
line count exceeds k, only the top-k lines with the highest confidence 
scores are retained. Otherwise, the vacancy is compensated by intro-
ducing additional randomly-initialized positional queries. The trans-
formation of preliminary feature lines l into positional queries Qp is 
accomplished through Eq. (1), where the positional queries Qp are 
derived from preliminary line l via positional encoding (PE) that utilizes 
sinusoidal embedding parameters generated according to the line co-
ordinates (Liu, et al., 2201), and a multi-layer perceptron (MLP). 

Qp = MLP(PE(l)) (1) 

ALE decoder consists of six stacked layers, as shown in Fig. 7. The 
content query embedding and positional queries (lines) are updated 
layer by layer to approach the ground truth building lines. Each layer 
consists of both self-attention module and deformable attention module. 

Fig. 6. The accurate line extraction (ALE) module.  

Fig. 7. Transformer decoder in the ALE module.  
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Each module receives queries, keys, and values to conduct attention- 
based feature aggregation. In the self-attention, query, key and value 
all take content query embedding as input, while query and key contain 
additional positional query embedding Qp. The output of the self- 
attention module is added to the input content query embedding 
through skip connections, processed by a layer normalization, and then 
used as part of the deformable attention module (Zhu et al., 2010). 
Deformable attention, on the other hand, employs image features as 
value elements, combines position encodings and content embedding 
that updated by the self-attention module for query elements, and ag-
gregates neighboring feature information around the reference line for 
key elements. Unlike cross-attention, deformable attention focuses on 
pivotal feature details near the reference position, regardless of the 
spatial size of the feature map. This approach accelerates convergence 
and reduces computational overhead by efficiently leveraging sparse 
spatial information. 

The output of each decoder layer is fed into a linear projection and a 
multi-layer perceptron (MLP) that composed of three stacked linear 
projections and ReLU operations to obtain the feature line coordinate 
offsets (Δx1, Δy1, Δx2, Δy2) and associated categories respectively. 

These offsets iteratively update the line coordinates, while the categories 
determine the validity of each feature line. Similar to Section 3.2.3, 
where potential lines are matched with ground truth, we employ the 
Hungarian algorithm to dynamically optimize the bipartite graph 
matching between predicted and ground truth lines before computing 
the losses during the training stage. The losses of within the ALE module 
include two components: the line classification loss and the line 
regression loss. We employ the focal loss to compute the feature classi-
fication loss Lcls, and the Smooth L1 loss to calculate the line regression 
loss Llin. 

3.4. From lines to polygons 

Within a building instance, the challenge of converting contour lines 
into polygons revolves around ascertaining the existence of adjacency 
relationships between any pair of lines. This can be framed as the pre-
diction of an adjacency matrix among building lines in a clockwise 
manner. As shown in Fig. 8(b), feature line A is adjacent to feature line B, 
with the reverse adjacency relationship between them being non- 
existent. 

3.4.1. Prediction of line adjacency matrix 
Initially, we utilize the bounding box to determine the corresponding 

lines for each building instance. When a significant portion of line l re-
sides within a bounding box, we link l with that specific building, as 
shown in Fig. 9. We evenly divide the feature line into four segments. To 
consider a feature line as part of the current building instance, both 
vertices at the 1/4 and 3/4 positions of the line must fall within the 
bounding box. The number of feature lines typically varies among 
different buildings. During training, the ground truth bounding boxes of 
buildings are utilized as inputs, whereas during testing, predicted 
bounding boxes are employed. To maintain the consistency of inputs, 
the number of lines for a building nins (e.g., nins = 40) is fixed. The rule is 
similar to the setting of query count k in section 3.3.2. If the line count 

Fig. 8. The matching relationship between the ground truth and predicted feature lines of the building, along with their corresponding adjacency matrix.  

Fig. 9. Example of associating feature lines (green lines are positive and blue 
ones negative) to a building instance (red box). (For interpretation of the ref-
erences to color in this figure legend, the reader is referred to the web version of 
this article.) 
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exceeds nins, only the top-nins lines with the highest confidence scores are 
retained. Otherwise, the vacancy is compensated by introducing addi-
tional virtual lines lv = (0, 0, 0, 0). 

The bounding boxes along sometimes cannot link a building instance 
with all of its line elements accurately. In the refinement step, we 
employ the Polygon Topology Reconstruction (PTR) module to derive 
the adjacency matrix among lines within a given building. Leveraging 
this adjacency matrix, we can exclude lines that are not pertinent to the 
building and connect the rest lines sequentially to form the building 
polygon. The PTR module comprises three components, as depicted in 
Fig. 10: line feature pooling, line feature encoding, and adjacency matrix 
prediction head. In the first step, the line feature pooling operation, akin 
to the PLG module, is applied to extract pertinent feature information for 
each line. Subsequently, the line feature encoding structure refines this 
information through a series of three sequential layers of 1D 

convolution, each with a kernel size of 1, followed by ReLU activation 
and 1D batch normalization operations. By pairing and concatenating 
the refined features of nins lines, two at a time, in series, we obtain the 
grouped feature, denoted as Fgroup ∈ Rnins×nins×C. This grouped feature is 
then used as input for the adjacency matrix prediction head. The adja-
cency matrix prediction head has two branches: one for predicting the 
clockwise adjacency matrix Acw and the other for the counterclockwise 
adjacency matrix Accw. Each branch comprises three stacked layers of 2D 
convolution with a kernel size of 1 × 1, each followed by ReLU activa-
tion. The final adjacency matrix A is obtained by applying a sigmoid 
activation to the sum of Acw and the transpose of Accw. During the 
training stage, we utilize the Hungarian algorithm to dynamically 
establish the optimal correspondences between the predicted and 
ground truth lines, using the distance between them as the matching 
cost, as shown in Fig. 8(c). Predicted lines that are not matched to any 
ground truth lines are only adjacent to themselves and detached from 
the current building. As seen in Fig. 8(e), the lines erroneously assigned 
to the current building (e.g., lines f, h, l) or incorrectly extracted (e.g., 
line b) are only adjacent to themselves and are then excluded. The PTR 
module utilize the focal loss to calculate the adjacency matrix prediction 
loss Ladj, and restrict supervision to valid line adjacency combinations 
(virtual lines lv are not involved in the loss computation). 

Finally, in the inference stage, the Sinkhorn algorithm (Cuturi, 2013; 
Sinkhorn and Knopp, 1967) is utilized to determine the optimal adja-
cency relationships among a building’s contour lines based on the pre-
dicted adjacency matrix. The Sinkhorn algorithm guarantees a line 
adjacent to only one line. Lines that are identified as being adjacent to 
themselves are excluded. We proceed to calculate intersection points 
between adjacent lines in a clockwise manner, facilitating the trans-
formation of the contour lines into polygons. 

Fig. 10. Pipeline for the PTR module in Line2Poly.  

Table 1 
Quantitative results of feature line extraction on the VWB dataset.  

method SAP (%) SAP5 (%) SAP10 (%) SAP15 (%) 

F-CLIP  57.5  47.8  60.1  64.7 
L-CNN  62.1  58.1  63.5  64.8 
HAWP  70.1  67.3  71.0  72.1 
LETR  46.2  33.4  49.0  56.2 
Line2Poly  72.3  69.6  73.1  74.1  

Table 2 
Quantitative results of feature line extraction on the WHU aerial building 
dataset.  

Method SAP (%) SAP5 (%) SAP10 (%) SAP15 (%) 

F-CLIP  74.8  72.0  75.4  77.1 
L-CNN  66.5  64.4  66.9  68.3 
HAWP  68.7  66.6  69.1  70.4 
LETR  66.8  60.5  68.3  71.6 
Line2Poly  77.2  75.2  77.7  78.7  

Table 3 
Quantitative results of feature line extraction on the WHU-Mix dataset.  

Method WHU-Mix test set I (%) WHU-Mix test set II (%) Test set I & II (%) 
SAP SAP5 SAP10 SAP15 SAP SAP5 SAP10 SAP15 mSAP 

F-CLIP  31.2  26.5  32.2  35.0  25.0  21.5  25.6  27.9  28.1 
L-CNN  32.4  27.6  33.5  36.0  19.4  16.6  19.8  21.8  25.9 
HAWP  37.1  31.6  38.4  41.2  22.5  19.5  23.0  24.9  29.8 
LETR  28.2  17.8  30.2  36.6  20.0  13.2  21.1  25.7  24.1 
Line2Poly  36.6  32.1  37.8  40.0  25.8  22.6  26.4  28.3  31.2  
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4. Experimental settings 

4.1. Datasets 

To demonstrate the superiority and robustness of Line2Poly for 
building polygon extraction tasks, we choose three open source building 
datasets with varying styles, the Vectorizing World Buildings (VWB) 
dataset (Nauata and Furukawa, 2020), the WHU aerial building dataset 
(Ji et al., 2018), and the WHU-Mix (vector) building dataset (Wei et al., 
2023), for experiments. 

4.1.1. Vectorizing World buildings dataset 
The VWB (Nauata and Furukawa, 2020) dataset provides intricate 

data regarding roof structural feature lines for individual buildings. This 
dataset encompasses 2,001 256 × 256-pixel aerial image tiles of indi-
vidual buildings, 1,010 tiles in Atlanta, 670 tiles in Paris, and 321 tiles in 

Las Vegas. The training set consists of 1,601 tiles, while the test set 
comprises 400 tiles. 

4.1.2. WHU aerial building dataset 
The WHU aerial building dataset (Ji et al., 2018) offers a large 

quantity of high-resolution aerial imagery with accurate annotations of 
building polygons. Covering a vast area of 200 km2 in Christchurch, New 
Zealand, the dataset comprises over 187,000 buildings representing 
diverse architectural styles and purposes, all captured at a resolution of 
0.2 m. The aerial images have been cropped into 5,640 512 × 512 tiles. 
The dataset is categorized into three subsets: a training set consisting of 
2,793 tiles (about 130,000 buildings), a validation set comprising 627 
tiles (about 14,500 buildings), and a test set containing 2,220 tiles 
(about 42,000 buildings). 

4.1.3. Whu-mix (vector) building dataset 
The WHU-Mix (vector) building dataset (Wei et al., 2023; Luo et al., 

2208), hereinafter referred to as the WHU-Mix dataset, comprises 
remote sensing imagery of buildings in multiple countries across five 
continents, showcasing significant variations in building styles and 
types. This dataset facilitates comprehensive and effective performance 
evaluation of various methods. It consists of over 64,000 tile images, 
representing more than 754,000 individual buildings and covering a 
total geographical area of approximately 1,100 km2. The WHU-Mix 
dataset has been divided into four distinct subsets: a training set con-
taining 43,778 tiles, a validation set with 2,922 tiles, test set I containing 
11,675 tiles, and test set II comprising 6,011 tiles. It should be noted that 

Fig. 11. Qualitative comparison on VWB dataset among different feature line extraction methods.  

Table 4 
Quantitative results of building extraction on the WHU aerial building dataset.  

Method AP (%) AP50 (%) AP75 (%) AR (%) 

Mask R-CNN  65.3  90.0  77.1  70.7 
Yolact  65.3  88.5  76.5  71.1 
Solo  68.6  89.8  79.4  73.4 
Deep Snake  72.7  91.5  82.8  78.6 
CLP-CNN  72.6  90.9  82.6  78.0 
BuildMapper  73.6  89.0  81.6  78.9 
Line2Poly  73.8  89.4  82.1  79.7  
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test set II exhibits no geographical overlap with the training set, thereby 
introducing a heightened level of difficulty and facilitating a more 
comprehensive assessment of the method’s generalization capacity. 

4.2. Evaluation metrics 

We conducted a comprehensive comparison of different methods 
using multiple evaluation metrics to assess their performance from 
different perspectives. Specifically, three key aspects, feature line 
extraction, polygonal building extraction, and manual-level building 
polygon extraction, are evaluated. 

4.2.1. Feature line extraction evaluation metric 
We utilize Structural Average Precision (SAP) (Zhou et al., 2019) as 

the evaluation metric to assess the performance of feature line extrac-
tion. SAP is defined as the area under the precision-recall curve, which is 
computed based on a scored list of the detected feature lines. Feature 
line l=(p1, p2) is considered correctly detected if it satisfies the condi-
tions in Eq. (2), where ̂l= (p̂1,p̂2) represents the corresponding ground 
truth feature line, (i, j)=(1, 2) or (2, 1), and ϑ is a predefined threshold. 
To prevent duplicate predictions, each ground truth feature line is 
associated with only one prediction, with repeated predictions being 
deemed errors. Consistent with previous studies on line extraction (Zhou 
et al., 2019; Xue, 2020; Dai et al., 2022), we calculate the SAP at a 
resolution of 128 × 128 pixels, and set the threshold ϑ to 5, 10, and 15, 
respectively, resulting in the accuracy of SAP5, SAP10, and SAP15. The 
mean SAP (mSAP) represents the average accuracy across the three 
threshold conditions. 

min
(i,j)

‖p1 − p̂i‖
2
+‖p1 − p̂j‖

2
≤ ϑ (2)  

4.2.2. Instance-level building extraction evaluation metric 
The evaluation of instance-level building extraction quality employs 

the standard COCO measure, which includes average precision (AP) and 
average recall (AR) calculated at various intersection over union (IoU) 
thresholds. The IoU value is determined by the ratio of the intersection 
and the union of the predicted and ground-truth building area. AP is 
computed as the average precision across 10 IoU values ranging from 
0.50 to 0.95 with a step size of 0.05. AR is calculated in a similar manner 
to AP. Additionally, we report AP50 and AP75, representing the average 
precision at IoU thresholds of 0.5 and 0.75, respectively. 

4.2.3. Manual-level building polygon extraction evaluation metric 
Follow (Wei et al., 2019; Wei et al., 2023), the evaluation metric for 

building extraction at the manual level is determined by the Valid 
Polygon Ratio (VPR). The VPR represents the ratio of automatically 
extracted building vector polygons that align with the level of manual 
delineation to the total number of ground truth building polygons. 
Specifically, the level of manual delineation is defined as the accuracy of 
boundary delineation that a human operator can reasonably achieve, 
with an approximate bias of 2- or 3-pixels bias (as it is challenging for a 
human to guarantee delineation at a one-pixel or subpixel level). This 
tolerance value can be used to calculate an IoU value between the 
“tolerance” polygon and ground truth polygon. The IoU value serves as 
the threshold to determining the quality of manual-level building 
polygon extraction. 

Fig. 12. Examples of feature line and polygonal building results achieved by Line2Poly on the WHU aerial building dataset. The left side of each group of images 
shows the feature line extraction result, and the right side displays the building polygon reconstruction result. 

Table 5 
Quantitative results of building extraction on the WHU-mix dataset.  

Method WHU-Mix test set I (%) WHU-Mix test set II (%) Test set I & II (%) 
AP AP50 AP75 AR AP AP50 AP75 AR mAP mAR 

Mask R-CNN  47.0  67.0  53.2  53.7  46.1  73.9  49.0  54.8  46.5  54.3 
Yolact  42.3  65.7  47.2  49.7  41.3  71.3  42.3  50.6  41.8  50.2 
Solo  57.1  83.2  65.1  63.9  45.3  74.3  47.9  54.7  51.2  59.3 
Deep Snake  55.3  82.1  63.0  61.8  46.9  73.9  51.5  54.8  51.1  58.3 
CLP-CNN  55.6  81.8  63.5  62.3  48.3  75.2  52.4  56.4  52.0  59.4 
BuildMapper  59.1  83.8  67.3  65.6  48.8  73.0  53.2  56.6  54.0  61.1 
Line2Poly  58.6  81.9  66.2  65.5  48.9  73.3  52.8  58.4  53.8  62.0  
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4.3. Implementation details 

The proposed Line2Poly method optimizes several task losses 
collectively, encompassing the bounding box loss Lobb, corner loss Lcor, 
line filtering loss Lf, feature line regression loss Llin, feature classification 
loss Lcls, and adjacency matrix loss Ladj. Consequently, we define the 
multi-task loss of Line2Poly method as: 

L = Lobb + Lcor + Lf + λLlin + Lcls +Ladj (3)  

where λ is the balancing hyperparameter for Llin, and we set λ to 5. We 
implemented and tested Line2Poly method in PyTorch on a desktop 
computer with a Nvidia RTX 3090 24 GB graphics processing unit 
(GPU). During the training stage of the Line2Poly method, we employ 
data augmentation techniques including multi-scale scaling, flipping, 
cropping, and color dithering. We utilize the Adam function with a 
learning rate of 1e-4 as optimizer to optimize the entire network. 

5. Results and discussion 

5.1. Comparison with the state-of-the-art feature line extraction methods 

Accurate extraction of building feature lines is a fundamental pre-
requisite for building polygon reconstruction in this study. In this sec-
tion, we conduct a comparative analysis between Line2Poly and state-of- 
the-art methods for feature line extraction. Tables 1-3 present a quan-
titative comparison of Line2Poly alongside F-CLIP (Dai et al., 2022), L- 
CNN (Zhou et al., 2019), HAWP (Xue, 2020), and LETR (Xu et al., 2021), 
focusing on SAP, SAP5, SAP10, SAP15 metrics, across the VWB dataset, 
WHU aerial building dataset, and WHU-Mix dataset. 

As depicted in Table 1, Line2Poly achieves the highest accuracy, with 
a 72.3 % SAP score on the VWB dataset, surpassing the second-ranking 
HAWP method by 2.2, and outperforming other feature line extraction 
methods by more than 10 %. It’s noteworthy that F-CLIP, L-CNN, and 
HAWP are all CNN-based methods, which are constrained by the limited 
capacity of CNN architecture to encode long-range information. Spe-
cifically, HAWP employs a reparameterization strategy for feature lines, 
establishing connections between lines and regions to enhance network 
learning, resulting in the second-best accuracy. LETR, on the other hand, 
is a fully transformer-based method designed based on DETR. However, 

Fig. 13. Examples of feature lines and polygons achieved by Line2Poly on the WHU-Mix dataset. The left side of each group of images represents the feature line 
extraction result, and the right side displays the building polygon reconstruction result. 
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its performance is hampered by the limited training data available from 
the VWB dataset, which comprises only 1601 256 × 256-pixel tiled 
images for training. Consequently, LETR exhibits the lowest overall 
accuracy among all evaluated methods. Line2Poly’s two-stage feature 
line extraction strategy combines the strengths of both CNN and 
Transformer techniques. The prior information generated by the CNN- 
based PLG module mitigates the training challenges of the 
transformer-based ALE module. In turn, the ALE module compensates 
for the limitations of the CNN-based module in encoding long-range 
information. This synergistic approach propels Line2Poly to achieving 
the highest level of precision performance. 

Fig. 11 presents examples of feature line extraction results from 
different methods on the VWB dataset. Line2Poly stands out with its 
excellent performance, closely matching the ground truth, and exhibit-
ing minimal missing or incorrect detections. HAWP secures the second 
position but occasionally suffers issues of missing lines. F-CLIP and L- 
CNN demonstrate similar and moderate performance. In contrast, LETR 
lags behind, displaying relatively low accuracy in feature line posi-
tioning. As an example, in the sixth row of Fig. 11, F-CLIP, LCNN, and 
LETR misinterpret the shadow area as the building edge, while 
Line2Poly and HAWP correctly distinguish this situation. However, 
HAWP misses five ridge lines and Line2Poly misses one in the left-lower 
low-contrast region. This illustrates the common challenge of extracting 
lines in low-contrast scenarios. 

To further affirm Line2Poly’s superiority in feature line extraction, 
we conducted additional experiments on the WHU aerial building 
dataset and the WHU-Mix dataset. These datasets solely provide build-
ing contour polygon information, so we transformed them into lines for 
feature line extraction. As shown in Table 2, on the WHU aerial building 
dataset with higher data quality, Line2Poly maintains its top-notch ac-
curacy performance. L-CNN, HAWP, and LETR deliver very similar 
overall accuracy performances. Unlike the VWB dataset, the WHU aerial 
building dataset offers a larger number of training samples, enabling 
LETR to be fully trained and achieve performance on par with CNN- 
based methods in terms of accuracy. Notably, F-CLIP secures the 
second-best accuracy, closely trailing Line2Poly. 

The WHU-Mix dataset combines data from various geographical re-
gions and different sensors, demanding more robust algorithm capa-
bilities. Moreover, the WHU-Mix test set II is entirely distinct from the 
training set, ensuring no geographical adjacency or overlap, facilitating 
a robust evaluation of methods’ generalization ability on heterogeneous 

remote sensing images. As shown in Table 3, Line2Poly demonstrates the 
best overall accuracy performance (mSAP) on the WHU-Mix dataset. 
Although HAWP outperforms Line2Poly by 0.5 % SAP on the test set I, it 
falls behind Line2Poly by 3.3 % SAP on the test set II. This discrepancy 
highlights HAWP’s proficiency with homologous data but its limitations 
in generalization for complex building feature line extraction tasks in 
practical applications. In contrast, F-CLIP exhibits robust generalization 
capabilities due to its network’s resistance to overfitting. On the other 
hand, L-CNN and LETR perform less satisfactorily results overall. 

5.2. Comparison with instance extraction methods 

We conduct a comparative evaluation of Line2Poly alongside state- 
of-the-art building instance extraction methods on both the WHU 
aerial building dataset and the WHU-Mix dataset. These methods 
include Mask R-CNN (He et al., 2017); Yolact (Bolya et al., 2019), Solo 
(Wang et al., 2020), Deep Snake (Peng et al., 2020), CLP-CNN (Wei 
et al., 2021), and BuildMapper (Wei et al., 2023). 

Table 4 provides a quantitative comparison of building extraction 
performance on the WHU aerial building dataset. CLP-CNN, Build-
Mapper, and Line2Poly are methods purpose-built for building extrac-
tion, equipped to generate regular building polygons. Line2Poly stands 
out with the highest accuracy, achieving 73.8 % AP and 79.7 % AR. 
BuildMapper secures the second position and closely rivals Line2Poly. In 
contrast, common instance segmentation methods such as Mask R-CNN, 
Deep Snake, Yolact, and Solo lack specialized approaches for the 
inherent regularity of building structures, leading to comparatively 
inferior results. Deep Snake achieves a 72.7 % AP, whereas Mask R-CNN, 
Yolact and Solo exhibit lower performance, with AP values of 65.3 %, 
65.3 % and 68.6 %, respectively. It’s worth noting that Deep Snake, CLP- 
CNN, and BuildMapper are all contour-based methods capable of 
directly generating polygonal buildings. However, contour-based 
methods require additional modules or post-processing steps to elimi-
nate redundant vertices based on empirical thresholds. Moreover, we 
observed limitations in these techniques when dealing with complex 
building scenarios. In contrast, Line2Poly utilizes feature lines for 
polygon generation, effectively avoiding vertex redundancy and directly 
yielding regularized building polygons. 

Fig. 12 provides visual examples of feature line and polygon 
extraction results achieved by Line2Poly on the WHU aerial building 
dataset. Within the high-quality WHU aerial building dataset, Line2Poly 

Fig. 14. Qualitative comparison on the WHU aerial building dataset.  
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inherently ensures result regularity, closely resembling manual delin-
eation. Furthermore, Line2Poly’s learnable polygon topology recon-
struction (PTR) module effectively identifies inaccurate or redundant 
feature lines as invalid and construct complete polygons, as illustrated 
within the red box in the upper-left image of Fig. 12. 

Table 5 presents the building extraction accuracy across various 
methods on the WHU-Mix dataset, with mAP (mean average precision) 
and mAR (mean average recall) for both test set I and test set II. 
Line2Poly’s outstanding performance on the WHU-Mix dataset is 
evident. A comprehensive comparison between result from test set I and 

test set II highlights Line2Poly and BuildMapper as the leading con-
tenders among the methods evaluated. They exhibit close mAP (53.8 vs. 
54.0), with Line2Poly surpassing BuildMapper by 0.9 % in mAR. In test 
set I, Line2Poly obtains the same AR as BuildMapper and falls margin-
ally behind by 0.5 AP. However, in the more practical and challenging 
test set II, Line2Poly achieves the same AP as BuildMapper but out-
performs it by 1.8 AR. A detailed comparative analysis between 
Line2Poly and BuildMapper will be conducted in subsection 5.5.1. 

Fig. 13 displays Line2Poly’s results on the WHU-Mix dataset, with 
the upper two rows derived from test set I and the lower two rows from 
test set II. Line2Poly consistently delivers satisfactory results across 
diverse building types. However, due to the variable image quality in the 
WHU-Mix dataset, Line2Poly may encounter occasional false extrac-
tions, omissions, and imprecise localizations of feature lines. Despite 
these challenges, Line2Poly’s robust topology reconstruction module 
consistently achieves accurate building polygon extraction. 

Fig. 14 and Fig. 15 show examples of results from different methods 
on the WHU and WHU-Mix dataset, respectively. Overall, common 
instance segmentation methods such as Mask R-CNN, Yolact, and Solo 
yield coarse raster building maps, they cannot process the tree occlusion 
problem, as shown in the third row of Fig. 14. DeepSnake and CLP-CNN 

Fig. 15. Qualitative comparison on the WHU-Mix dataset.  

Table 6 
The percentage of extracted polygonal buildings that reach the manual delin-
eation level with different methods.  

Method WHU WHU-Mix test set I WHU-Mix test set II 
2-Pixel 3-Pixel 2-Pixel 3-Pixel 2-Pixel 3-Pixel 

MA-FCN  68.2 %  77.5 %  51.4 %  63.6 %  29.5 %  40.1 % 
CLP-CNN  69.3 %  85.5 %  57.1 %  73.7 %  49.7 %  65.5 % 
BuildMapper  82.2 %  87.1 %  66.1 %  77.2 %  53.4 %  62.9 % 
Line2Poly  83.2 %  87.4 %  68.7 %  79.5 %  59.7 %  71.5 %  
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can directly produce polygons but with obvious boundary errors in large 
buildings (see the last two rows of Fig. 14 and the sixth row of Fig. 15). 
BuildMapper creates much more satisfactory polygons with occasionally 
failed cases. The proposed Line2Poly demonstrates precise extraction of 
regular polygonal buildings across diverse scenarios, surpassing alter-
native methods. 

5.3. Comparison of manual-level building extraction methods 

Table 6 displays the VBP accuracy of various regular polygonal 
building extraction methods, including Line2Poly, MA-FCN (Wei et al., 
2019), CLP-CNN (Wei et al., 2021), and BuildMapper (Wei et al., 2023), 
under 2 or 3-pixel-accuracy assumptions. 

On the WHU dataset, MA-FCN, which comprises a semantic seg-
mentation network and empirical regularization post-processing, ach-
ieves 68.2 % and 77.5 % of building polygons reaching a manual 
delineation level under 2-pixel and 3-pixel accuracy, respectively. This 
method necessitates additional raster-to-vector processing, resulting in 
precision loss and a relatively lower degree of automation. CLP-CNN 
incorporating a vertex-based network and post-processing regulariza-
tion, reports 69.3 % at 2-pixel accuracy and 85.5 % at 3-pixel accuracy. 
Unlike MA-FCN and CLP-CNN, which rely on empirical regularization 
algorithms, the recent BuildMapper achieves end-to-end extraction of 
vectorized building polygons, resulting in 82.2 % at 2-pixel accuracy 
and 87.1 % in 3-pixel accuracy. Our proposed Line2Poly, also an end-to- 
end method, attains 83.2 % at 2-pixel accuracy, outperforming Build-
Mapper by 1.0 %, surpasses it by 0.3 % at 3-pixel accuracy. In compared 
to the early MA-FCN approach, Line2Poly demonstrates significant im-
provements of 15.0 % and 9.9 % under the 2-pixel and 3-pixel accuracy 
criteria, respectively. According to previous researches (Wei et al., 2023; 

Wei et al., 2021), a 3-pixel precision level is deemed sufficient for 
evaluating manual delineation quality. Therefore, the proposed 
Line2Poly method effectively extracts the vast majority (up to 87 %) of 
buildings polygons from high-quality remote sensing imagery, demon-
strating potentials for practical applications like map updates. 

The WHU-Mix dataset encompasses a wide variety of complex 
building types, which poses a challenge for all methods compared to the 
WHU aerial building dataset. In particular, the WHU-Mix test set II 
simulates real-world applications, where models are pretrained on a 
large dataset and then evaluated on previously unseen images from 
different cities. Therefore, test set II represents a formidable challenge 
and serves as a robust reference for assessing the practical performance 
of various methods. Despite these difficulties, Line2Poly exhibits 
exceptional performance when compared to other methods. In the 
WHU-Mix test set I, 68.7 % and 79.5 % of polygons achieve 2-pixel and 
3-pixel delineation accuracy, respectively, marking an improvement of 
2.6 % and 2.3 % over the suboptimal BuildMapper. In test set II, 59.7 % 
and 71.5 % of buildings reach 2-pixel and 3-pixel accuracy, surpassing 
the BuildMapper method by 6.3 % and 8.6 %, respectively. These results 
in challenging contexts are highly promising, highlighting Line2Poly’s 
potential effectiveness in real-world applications, where over 71 % of 
buildings can be automatically labeled without manual intervention. 

Fig. 16 further demonstrates Line2Poly’s capability to extract 
buildings polygons with different styles and architectures from images 
of varying quality in the WHU-mix test set II. Whether dealing with a 
residential house, a large-scale factory, or a towering skyscraper, the 
proposed method consistently and accurately extracts their regularized 
polygons. It’s worth noting that certain buildings with more complex 
shapes (e.g., the one in the bottom-right of Fig. 16) or those captured in 
non-orthorectified images often exhibit multiple principal directions. 
Regularization algorithms, which assume that building edges align 
vertically with the principal direction, as used in MA-FCN and CLP-CNN, 
struggle to generate accurate polygons under these circumstances. 
Additionally, CNN-based methods may face limitations in dealing with 
large buildings (e.g., the one in the bottom-left of Fig. 16) due to limited 
receptive fields. In contrast, Line2Poly adeptly handles these scenarios 
by reconstructing polygons from building lines. 

Fig. 16. Examples of building polygons achieved by Line2Poly on the WHU-Mix test set II.  

Table 7 
The effect of the PLG and ALE modules of Line2Poly for feature line extraction.  

Method SAP (%) SAP5 (%) SAP10 (%) SAP15 (%) 

Only PLG  64.1  65.2  64.2  62.9 
Only ALE  74.3  72.3  74.8  75.9 
PLG and ALE  77.2  75.2  77.7  78.7  
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5.4. Ablation study 

In this subsection, we further investigate the details of the proposed 
Line2Poly method, including the effectiveness of the feature line 
extraction component, the influence of query numbers within the ALE 
module, and the influence of line count in the PTR module. All 

experiments were conducted using the WHU aerial building dataset. 

5.4.1. The effect of PLG and ALE module for feature line extraction 
We first evaluate the contribution of the preliminary feature line 

generation (PLG) module and the accurate feature line extraction (ALE) 
module. In Table 7, “Only PLG” denotes the exclusive use of the CNN- 

Fig. 17. Examples of feature line extraction results based on various modules.  

Fig. 18. Left: Impact of query numbers in the ALE module; Right: Effect of line count in the PTR module.  
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based PLG module for feature line extraction, while “Only ALE” involves 
utilizing the transformer-based ALE module with randomly initialized 
embeddings as positional queries. The combined use of both PLG and 
ALE modules is labeled as “PLG and ALE”. Using only the PLG module 
achieves 64.1 % SAP, comparable to the performance levels observed in 
CNN-based methods such as L-CNN and HAWP in Table 2. Conversely, 
the exclusive utilization of the ALE module results in a 74.3 % SAP, 
demonstrating a remarkable 10.2 % improvement over the use of the 
PLG module alone. This observation indicates the Transformer’s supe-
riority over CNN in the context of feature line extraction, attributed to its 
potent capacity for encoding global information. The Line2Poly 
approach, which sequentially integrates the PLG and ALE modules, 
achieving a 77.2 % SAP. This is accomplished by initializing positional 
queries within the ALE module, originally randomized, with prior 
feature line information obtained from the PLG module. 

Fig. 17 shows examples of feature line extraction outcomes 
employing diverse methodologies across three distinct building sce-
narios: residential zones (characterized by small-sized buildings), villa 
districts (with mid-sized buildings), and industrial areas (featuring 
large-sized buildings). Notably, significant line extraction errors are 
evident when relying solely on the CNN-based PLG module. Conversely, 
feature lines generated by the transformer-based ALE module exhibit 
notably higher visual quality, albeit with some remaining errors. The 
integration of both modules obtains perfect performance in these 
scenarios. 

5.4.2. Impact of query numbers in the ALE module 
The quantity of queries k plays a crucial role in influencing the 

performance of Line2Poly’s ALE module. As shown on the left side of 
Fig. 18, starting with an initial query count of 800 and gradually 
increasing it has demonstrated an enhancement in precision for both 

building feature line and polygon extraction, with the peak performance 
achieved at 1200 queries. However, further increments in the query 
count resulted in a slight decrease in accuracy. This observation high-
lights the fact that an excessive number of positional queries can impact 
the network’s ability to leverage prior information from preliminary 
feature extraction. Consequently, we have fixed the positional query 
count k at 1200 for optimal results. 

5.4.3. The influence of line number in the PTR module 
In the case of more intricate buildings, a higher number of lines is 

required to accurately delineate polygons. The right side of Fig. 18 
shows the relationship between polygon extraction accuracy and the 
feature line count nins within the PTR module. It can be observed that 
accuracy stabilizes as nins exceeds 20, with the peak accuracy achieved 
when nins equals 40. To inform this decision, we conducted a thorough 
analysis of line counts for individual buildings in both the WHU and the 
WHU-Mix dataset, revealing that 99.82 % and 99.55 % of buildings, 
respectively, have fewer edge lines than 40. Hence, we adopted 40 as the 
maximum allowable number of lines in this paper. 

5.5. Discussion 

5.5.1. Comparison of Line2Poly and BuildMapper 
Both Line2Poly and BuildMapper are end-to-end methods tailored 

for polygonal building extraction. Previous experiments conducted on 
two datasets have consistently demonstrated the exceptional perfor-
mance of both approaches in comparison to other methods. To facilitate 
a more comprehensive comparative analysis between Line2Poly and 
BuildMapper, their results are visually presented in Fig. 19, encom-
passing diverse architectural scenarios, including common building 
areas (first row), densely building scenes (second row), and large-size 

Fig. 19. Results of Line2Poly and BuildMapper in different building-style scenarios. The first row: common building areas; the second row: densely distributed 
building scenes; the third row: large-sized buildings zones. 
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buildings zones (third row). The comparison shown in Fig. 19 demon-
strates that Line2Poly excels in generating more regularized polygons, 
ultimately resulting in superior overall performance when contrasted 
with BuildMapper. In the first row of Fig. 19, both methods perform on 
par. In the second row of Fig. 19, the densely arranged buildings and 
closely positioned boundaries present challenges for the algorithms, a 
situation that can be intricate even for human operators. However, both 
Line2Poly and BuildMapper successfully and accurately delineate the 
majority of individual buildings. BuildMapper employs a strategy of 
regressing building contour coordinates from central points, thus ad-
vantageous in extracting small-sized buildings. Line2Poly is constrained 
by the limited number of feature lines available per image, leading to 
occasional missed detections. In scenes with large-sized buildings, as 
illustrated in the bottom row of Fig. 19, another challenge for building 
extraction arises. Large-sized buildings often are divided into multiple 
tiles of limited size. Extracting these large-sized buildings necessitates 
the network’s ability to encode long-range information. Due to the 
confined receptive field of the CNN architecture, BuildMapper encoun-
ters difficulties in accurately extracting large-sized buildings. In 
contrast, Line2Poly, integrated with the Transformer architecture, 
demonstrates robust global information encoding capabilities and holds 
a distinct advantage in handling such scenarios. 

5.5.2. Influence of feature line extraction error on polygon reconstruction 
Fig. 20 illustrates the process of translating lines into polygons. 

Fig. 20 (a) shows the results of building feature line and bounding box 
extraction. Based on the positions of lines and boxes, we can initially link 
the lines to each building instance (Fig. 20 (b)), represented with distinct 
colors. Subsequently, the PTR module is employed to predict the 

adjacency relationship matrix between lines for each building. Those 
isolated lines (adjacent to themselves in the matrix) are then excluded, 
as shown in the yellow ellipses in Fig. 20 (c). Ultimately, the recon-
struction of building polygons is achieved according to the valid lines 
and their order recorded in the adjacency relationship matrix (Fig. 20 
(d)). 

We can see the key step of line-to-polygon reconstruction is how to 
handle the extracted separate feature lines with potential errors. 
Fortunately, our dedicatedly designed PTR module in Line2Poly can 
effectively manage several types of line errors. As more examples, the 
top row of Fig. 21 highlights the PTR module’s capability to rectify 
misidentified or redundant feature lines. Those erroneous lines, marked 
with yellow circles, are identified as “self-adjacent” and subsequently 
eliminated, thus reinstating the correct topological relationships among 
valid lines. In the second row of Fig. 21, enclosed in orange circles, are 
instances where certain feature lines were either missed or duplicated 
during detection. For those missing lines, the PTR module strategically 
seeks the optimal adjacent line for each line within the current set of 
valid lines, ensuring polygon closure. Moreover, in cases where absent 
lines result in the approximation of parallelism between two adjacent 
feature lines, the PTR module introduces a perpendicular line to guar-
antee polygon closure. 

5.5.3. Limitation and future work 
While Line2Poly has showcased impressive performance in polyg-

onal building extraction, it does have some limitations. One common 
issue arises from occlusions caused by surrounding objects. In cases 
where the occluded region of a building is relatively small, Line2Poly 
can infer the missing parts and complete the contours (Fig. 22 (a)). 

Fig. 20. From building feature lines to polygons. (a) Building feature lines and bounding boxes; (b) lines corresponding to each building instances; (c) removal of 
isolated lines; (d) building polygon reconstruction. 
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However, when the occluded region is extensive (Fig. 22 (b)), Line2Poly 
can only provide a rough shape. Additional assistance from sources such 
as Digital Surface Models (DSM) can mitigate this problem. Another 
limitation is that Line2Poly is primarily designed for polygonal build-
ings. For round-shaped buildings (as seen in Fig. 22 (c)), Line2Poly 
approximates the curve with a series of short lines. Thirdly, while 
Line2Poly can tolerate minor errors in feature line extraction, it cannot 
rectify significant errors. For example, when the predicted feature lines 

for a large building with an unusual tilt angle in the WHU-Mix dataset 
result in bad boundary (Fig. 22 (d)), Line2Poly cannot provide a precise 
solution. Fig. 22 (e) showcases a densely populated region with poor 
imaging quality, where the reconstructed polygons show some obvious 
errors including dislocation, overlap, and intersection. 

In our future work, we plan to focus more on fine-grained roof 
structures. Although we have made progress in extracting internal 
feature lines within building roofs, the lack of adequate vector datasets 

Fig. 21. Line2Poly’s polygon topology reconstruction results in cases involving erroneous feature line extraction. In the upper row, false feature line extractions are 
highlighted by yellow circles, while in the lower row instances of missing lines are marked with orange circles. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 

Fig. 22. Some examples of Line2Poly in special scenarios.  
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depicting building roof structures has led us to primarily discuss the 
extraction of external building outlines. We aim to build a comprehen-
sive building dataset that includes information on vectorized and fine- 
grained building roof structures. Additionally, we intend to integrate 
data sources such as DSM or point clouds to facilitate the automatic 
generation of Level of Detail 2 (LOD2) 3D building models. 

6. Conclusion 

In this paper, we propose Line2Poly, an end-to-end method designed 
for extracting polygonal building footprints from remote sensing images. 
Unlike existing segmentation-based or vertex-based methods, Line2Poly 
adopts feature lines as geometric primitives and assembles them directly 
into building polygons with a level of detail comparable to manual 
delineation. The Line2Poly framework ensures the inherent regularity of 
predicted results, obviating the need for post-regularization steps. We 
have devised a two-stage strategy to fully leverage the strengths of both 
CNN and transformer architectures. Specifically, we utilize a CNN-based 
PLG module to extract preliminary feature lines as the initial positional 
queries for the second-stage transformer-based ALE module, which en-
sures the network’s ability to capture long-range information while 
preserving convergence capability. In addition, the learnable PTR 
module adeptly handles instances of imperfect feature line extraction 
and infers adjacency relationships among discrete feature lines based on 
feature information. Extensive experiments on publicly available data-
sets underscore Line2Poly’s remarkable performance in feature line 
extraction and instance-level building detection tasks, highlighting its 
capacity to generate individual polygonal buildings that align with 
human delineation, thus catering to the demands of real-world 
applications. 
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