
IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024 4705

Augmented Maximum Correntropy Criterion
for Robust Geometric Perception
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Abstract—Maximum correntropy criterion (MCC) is a robust
and powerful technique to handle heavy-tailed nonGaussian noise,
which has many applications in the fields of vision, signal pro-
cessing, machine learning, etc. In this article, we introduce sev-
eral contributions to the MCC and propose an augmented MCC
(AMCC), which raises the robustness of classic MCC variants for
robust fitting to an unprecedented level. Our first contribution is
to present an accurate bandwidth estimation algorithm based on
the probability density function (PDF) matching, which solves the
instability problem of the Silverman’s rule. Our second contribu-
tion is to introduce the idea of graduated nonconvexity (GNC) and
a worst-rejection strategy into MCC, which compensates for the
sensitivity of MCC to high outlier ratios. Our third contribution is
to provide a definition of local distribution measure to evaluate the
quality of inliers, which makes the MCC no longer limited to ran-
dom outliers but is generally suitable for both random and clustered
outliers. Our fourth contribution is to show the generalizability of
the proposed AMCC by providing eight application examples in
geometry perception and performing comprehensive evaluations
on five of them. Our experiments demonstrate that 1) AMCC
is empirically robust to 80%−90% of random outliers across
applications, which is much better than Cauchy M-estimation,
MCC, and GNC-GM; 2) AMCC achieves excellent performance
in clustered outliers, whose success rate is 60%−70% percentage
points higher than the second-ranked method at 80% of outliers;
3) AMCC can run in real-time, which is 10−100 times faster than
RANSAC-type methods in low-dimensional estimation problems
with high outlier ratios. This gap will increase exponentially with
the model dimension.

Index Terms—Geometry perception, maximum correntropy
criterion (MCC), outliers, robust estimation, robust fitting.

I. INTRODUCTION

ROBUST geometric fitting, a technique of simultaneously
estimating geometric models (e.g., line/circle, affine, rigid,

camera poses, and pose graph) and filtering outliers from con-
taminated observations (e.g., image features, 3-D correspon-
dences, and relative poses), is an important and fundamental
issue in robotics and computer vision. It has a wide spread
of applications such as image matching [1], [2], point cloud
registration (PCR) [3], [4], satellite pose estimation [5], [6],
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structure from motion (SfM) [7], simultaneous localization and
mapping (SLAM) [8], [9], to name a few. Generally, robust geo-
metric fitting methods can be divided into two groups, i.e., global
solvers and nonglobal approaches. The very high computational
complexity of global solvers makes them rarely used in practice.
Therefore, this article focuses on nonglobal solvers that are much
faster and sufficiently accurate, among which the random sample
consensus (RANSAC) family [10], M-estimation [11], [12], and
maximum correntropy criterion (MCC) family [13] are the most
popular methods.

RANSAC [10] approximately solves the consensus maxi-
mization problem through a hypothesis and verification frame-
work. It alternates between random sample fitting (hypothe-
sis) and model consensus calculation (verification) until the
stop criterion of the iterative program is reached. The model
corresponding to the largest consensus set is accepted as the
final solution. RANSAC is an intuitive, flexible, and highly
robust method. However, RANSAC and its variants still have
some limitations: 1) RANSAC-type methods are approximate
solvers [14]; 2) Its computational complexity grows exponen-
tially with the outlier ratio; 3) RANSAC-family can hardly be
applied to high-dimensional fitting problems.

M-estimation [11], [12] is a concept from statistics. Typi-
cal M-estimations include Huber, Cauchy, Welsch, Biweight,
and Geman-McClure (GM), whose idea is to penalize outliers
by a robust cost. M-estimations have several advantages over
RANSAC-type methods: 1) M-estimations are globally optimal
if good initializations are available; 2) Its computational com-
plexity is independent of the outlier ratio; 3) M-estimations are
suitable for both low- and high-dimensional problems. However,
traditional M-estimations are only suitable for low outlier ratio
problems (<50%) [14]. With the efforts of scholars, some M-
estimation variants (e.g., graduated nonconvexity (GNC) [15],
[16]) can handle 70% of random outliers, but they are still far
from the RANSAC.

MCC is also an M-estimation in essence [13], [17], whose
central idea is to maximize the correntropy between two given
variables according to the information potential and has been
widely used in signal processing and machine learning. It inher-
its all the advantages of M-estimation. Moreover, since MCC
analyzes the residual errors from a probabilistic perspective and
adaptively estimates the kernel bandwidth to control the shape
of the kernel function, it is applicable to any noise environ-
ment [18]. Although MCC is more robust than conventional
M-estimations, it is less stable and suffers from failures even at
low outlier ratios.

1941-0468 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Wuhan University. Downloaded on January 04,2025 at 07:45:42 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-9850-1668
https://orcid.org/0000-0003-0866-6678
https://orcid.org/0000-0001-5333-8054
https://orcid.org/0000-0001-9845-4251
mailto:liuxy0319@whu.edu.cn
mailto:zhangyj@whu.edu.cn
https://github.com/LJY-WHU/AMCC


4706 IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

Current RANSAC-type methods, M-estimations, and MCC-
family cannot handle clustered outliers well (see Fig. 3 for
examples of clustered outliers). Clustered outliers are important
for robotics and computer vision. For example, in SLAM or
SfM, dynamic objects (vehicles, pedestrians, etc.) weaken the
accuracy of existing methods, since dynamic correspondences
(extracted on dynamic objects) and static ones have different
motion models. Once the number of dynamic correspondences
dominates, motion tracking is easy to fail. Actually, dynamic
objects are much smaller compared with the static scene and
dynamic correspondences are spatially clustered.

This article aims to propose a robust algorithm with proper-
ties: 1) real-time efficiency; 2) local optimal solution; 3) high
robustness close to RANSAC; 4) good generalization to different
geometric problems; and 5) robust to both random and clustered
outliers. To achieve these goals, we propose a general and
scalable estimator, named augmented maximum correntropy
criterion (AMCC), which raises the robustness of classic MCC
variants to an unprecedented level. Extensive experiments on
simulated and real data demonstrate that AMCC significantly
outperforms current state-of-the-arts in terms of robustness or
efficiency, especially in cases with clustered outliers. In sum-
mary, our contributions are as follows.

1) We propose a fast, accurate, and robust algorithm, i.e.,
AMCC, for geometric fitting;

2) We present a bandwidth estimator via probability density
function (PDF) matching to solve the instability of the
Silverman’s rule [19];

3) We introduce the idea of GNC and a worst-rejection
strategy into MCC to improve its robustness;

4) We propose a novel concept of local distribution measure
(LDM) based on local and global PDF to measure the inlier
quality.

Novelty with respect to GNC methods: Using GNC to improve
the robustness of M-estimation is not a new idea [15], [16], [20].
Compared with M-estimation, MCC is suitable for any noise
environment [18]. One insight is that we can further improve
the robustness of MCC based on the close relationship between
MCC and M-estimation. It is the first time that the GNC is used
in the framework of MCC.

II. RELATED WORK

Here, two types of relevant methods are reviewed, i.e.,
RANSAC methods and M-like estimations.

A. RANSAC-Family

Combinatorial formulations are popular for outlier removal
in low-dimensional geometric fitting problems (e.g., line/circle
fitting and affine/rigid estimation) [21], among which consensus
maximization that seeks to find a solution maximizing the inlier
set is one of the most widely used formulations as follows:

argmax
θ

|I|

s.t. ri ≤ ε ∀i ∈ I (1)

where θ is a geometric model, ri is the residual error of the ith
observation, ε is an inlier threshold, I represents an inlier set,
and |I| denotes the size of set I.

RANSAC is the most intuitive way to solve the problem
(1), whose basic idea is to iteratively search for the best so-
lution with a given confidence using a hypothesize-and-verify
framework, i.e., random sample fitting (hypothesis) and model
consensus calculation (verification). There are many variants of
RANSAC, which improve one or several steps of the traditional
RANSAC. For example, NAPSAC [22], PROSAC [23], and
progressive NAPSAC [24] improve random sampling with the
help of local neighbors or similarity scores. LORANSAC [25],
FLORANSAC [26], and Graph-cut RANSAC [27] introduce a
local optimization stage into RANSAC for further refinement
based on the observation that models estimated by minimal
sample sets are inconsistent with the one estimated by all inliers.
R-RANSAC [28] presents a Td,d test to improve the efficiency
of RANSAC, where the Td,d is passed if all d data points out of d
randomly selected are consistent with the hypothesized model.
R-RANSAC-SPRT [29] and optimal randomized RANSAC [30]
introduce sequential probability ratio tests (SPRT) to further
accelerate the iterative procedure. Contrario RANSAC [31],
MAGSAC [32], and MAGSAC++ [33] present soft threshold
methods to reduce the dependence on the inlier/outlier decision
parameter. USAC [34], USACv20 [35], and VSAC [36] integrate
several improvements into their frameworks. In summary, the
advantages of RANSAC-type methods are conceptually simple,
flexible, and highly robust; and their disadvantages are nonop-
timal, time-consuming, and only suitable for low-dimensional
problems.

B. M-Like Estimations

M-estimation is the preferred robust technique for high-
dimensional geometric perception problems [e.g., bundle ad-
justment and pose graph optimization (PGO)], whose basic idea
is to use a robust cost to penalize outliers by assigning small
weights. It is generally formulated as follows:

argmin
θ

n∑
i=1

ρ (ri) (2)

where ρ(·) is a redescending robust cost function. Unlike the
combinatorial formulation of RANSAC, M-estimation is a con-
tinuous optimization problem [21]. This essentially determines
that M-estimation is optimal (local) while RANSAC methods
are approximate solvers. M-estimations (e.g., Huber, Cauchy,
Welsch, Biweight, and GM) are the generalizations of the
maximum-likelihood estimator. S-estimations [37] improve the
scale estimator of M-estimations via minimizing the dispersion
of residual errors. MM-estimations [38] combine the advantages
of M-estimations and S-estimations, i.e., they use S-estimations
for scale regression and apply M-estimations for fixed-scale
model regression. The common limitations of these traditional
M-like estimations are that they are only suitable for problems
with low outlier ratios (<50%) and are prone to getting stuck in
local minima.
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Recently, scholars try to solve the bottleneck problem of
the M-like estimations mentioned above. For instance, PbM-
estimator [40] and generalized pbM-estimator [41] reformu-
late the M-estimation as a projection-based optimization prob-
lem based on the errors-in-variables model. Weighted q-norm
estimator [42] combines a lq-norm (0 < q < 1) cost and an
M-estimator for geometric fitting. GNC [15], [16] introduces
a surrogate cost with a control parameter to optimize the
M-estimation problem. It starts from a convex surrogate and
changes the control parameter to increase the amount of non-
convexity until convergence. Barron [43] proposed an adaptive
robust cost. Although many efforts have been made, the robust-
ness of these methods is still far from RANSAC.

III. MCC SOLVER REVISIT

A. Background

Correntropy proposed in the information theoretic learning is
often used to process nonGaussian noise and impulsive noise
[18], [44], [45], [46]. It is a local similarity measure between
two random variables A and B as follows:

Vσ(A,B) = E [kσ (A−B)] (3)

where Vσ represents the correntropy, E denotes the expectation
operator, and kσ(·) is a kernel function with a bandwidth σ
that satisfies the Mercer’s theorem [47], i.e., kσ(·) should be a
symmetric positive-definite function. The Gaussian kernelGσ(·)
is the most popular kernel function.

In practice, the expectation E[kσ(A−B)] can only be ap-
proximated by the sample mean, since the true joint PDF is
unknown and only a finite number of samples {(Ai, Bi)}n1 are
available. Thus, the correntropy becomes

Vσ(A,B) ≈ 1

n

n∑
i=1

kσ (Ai −Bi)

≈ 1

n

n∑
i=1

kσ (ri) (4)

where ri = Ai −Bi is a residual.
Further, Liu et al. [13], [17] proposed a robust criterion called

MCC for an adaptive model with parameters θ based on the
sample-based correntropy, i.e., (4), as follows:

θ∗ = argmax
θ

1

n

n∑
i=1

kσ (Ai −Bi)

= argmax
θ

1

n

n∑
i=1

kσ (ri (θ)) (5)

where A represents the model output, e.g., A = {kx1 +
m, . . . , kxn +m} for line fitting (LF) (see example 1 for
details), A = R for single rotation averaging (SRA) (Exam-
ple 4), and A = {π(P1X̃), . . . , π(PnX̃)} for multiview tri-
angulation (MT) (Example 7); B is the desired response, e.g.,
B = {y1, . . . , yn} for LF, B = {R̃1, . . . , R̃n} for SRA, and
B = {x1, . . . ,xn} for MT; θ∗ is the (local) optimal solution.
Essentially, the input of MCC is a set of errors {ri(θ)}n1 .

Many MCC variants have been proposed to improve the
original MCC. For example, Chen et al. [46] extended MCC
by considering a nonzero mean Gaussian kernel; GMCC [44]
introduces a generalized Gaussian density function as the kernel;
KMCC-L0 [48] proposes a sparse MCC cost with a constraint
of approximated l0-norm. Thanks to the excellent performance
of MCC, it has a wide range of applications in signal pro-
cessing and vision tasks, such as filtering [45], [49], [50], face
recognition [18], classification [51], [52], principal component
analysis [53], matrix completion [54], and learning [55]. Re-
cently, MCC has also been introduced into geometric perception
problems. For instance, Liang et al. [56] introduced MCC into
the constrained least-square ellipse fitting problem; Hu et al. [57]
further improved the MCC-based ellipse fitting by using a Lapla-
cian kernel. Wu et al. [58] used MCC as the similarity measure
of the iterative closest point for PCR; Huang et al. [59] proposed
a motion averaging framework based on Laplacian kernel-based
MCC. The main drawbacks of MCC in geometric fitting are 1)
the sensitivity to high outlier ratios; 2) the instability of kernel
bandwidth estimation; and 3) failures under clustered outliers.

B. Solver

Generally, the optimization of the above MCC problem in-
volves two subproblems.

1) Bandwidthσ update: Calculateσwith fixed residual errors
r(t−1) = {r(t−1)

i }n1 (t is an iteration counter and r(t−1)

is a residual vector that consists of the residuals of the
n observations in the (t− 1)th iteration.) based on the
Silverman’s rule [13], [19], which is an empirical criterion
that estimates bandwidth based on the standard deviation
and size of samples as follows:

σ(t) = 1.06×min

(
std(r(t−1)),

R

1.34

)
× n−0.2 (6)

where std(·) denotes a standard deviation operator and R
is the interquartile range of the errors.

2) Model θ update: Optimize model parameters θ(t) based
on (5) with a known bandwidth σ(t) as follows:

θ(t) = argmax
θ

1

n

n∑
i=1

kσ(t) (ri (θ)). (7)

Then, the residual errors are updated according to θ(t),
obtaining r(t).

These two subproblems are iterated alternately until conver-
gence to obtain a local optimal solution θ∗.

C. Application Examples

MCC has a wide range of applications in signal processing
and machine learning, e.g., face recognition, signal filtering, etc.
However, we are more interested in its applications in geometric
perception. Here, we provide eight commonly used geometric
fitting problems in vision, including LF, circle fitting (CF), image
feature matching (IFM), SRA, perspective-n-points (PnP), PCR,
MT, and PGO.

Authorized licensed use limited to: Wuhan University. Downloaded on January 04,2025 at 07:45:42 UTC from IEEE Xplore.  Restrictions apply. 



4708 IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

Fig. 1. Cost and influence functions of our surrogate cost for MCC, where
σ = 1 and largest residual rmax=10. (a) Cost function. (b) Influence function.

Example 1 (LF): Given n 2-D outlier-contaminated points
{(xi, yi) ∈ R

2}n1 , the goal of LF is to find the optimal straight
line θ = (k,m), where k is the slope andm is the intercept term.
The residual function is: ri(θ) = yi − (kxi +m). Fig. 2(a)
plots an instance of LF.

Example 2 (CF): Given n 2-D outlier-contaminated points
{(xi, yi) ∈ R

2}n1 , the goal is to seek the optimal parameters
θ = (x0, y0, R̃) that fit a circle, where (x0, y0) is the circle center
and R̃ is the radius. The residual function is chosen as: ri(θ)=√
|(xi−x0)2+(yi−y0)2−R̃2|. Fig. 2(b) plots an instance of

CF.
Example 3 (IFM): Given n 2-D-2-D outlier-contaminated

image feature correspondences {(xi ∈ R
2,yi ∈ R

2)}n1 (e.g.,
matched by scale invariant feature transform [60] or radiation-
variation insensitive feature transform (RIFT) [61]), the goal is
to estimate the best warping function f : R2 �→ R

2 that aligns
these two point sets. Here, we choose the affine transformation
as the warping function and its corresponding residual function
is: ri(θ) = ‖Axi + t− yi‖2, where θ = (A, t), A ∈ R

2×2 is
an affine matrix, and t ∈ R

2 is a translation vector. Fig. 2(c)
plots an instance of IFM.

Example 4 (SRA): Given n outlier-contaminated observa-
tions of an unknown 3-D rotation {R̃i ∈ SO(3)}n1 , the goal
of SRA is to estimate the optimal average rotation θ = R ∈
SO(3). The residual function is the chordal distance between
R and R̃i: ri(θ) = ‖R− R̃i‖F , where ‖ · ‖F is the Frobenius
norm. Fig. 2(d) plots an instance of SRA.

Example 5 (PnP): Given n 3-D-2-D outlier-contaminated
correspondences {(Xi ∈ R

3,xi ∈ R
2)}n1 , where {Xi}ni are 3-

D object points and {yi}ni are their corresponding projections on
an image, the goal is to estimate the best function f : R3 �→ R

2

that maps the 3-D object onto an image. PnP is also known as
the image orientation. The residual function is chosen as the

reprojection distance as follows: ri(θ) =

∥
∥
∥
∥
∥

P(1:2)[Xi 1]
T

P(3)[Xi 1]
T − xi

∥
∥
∥
∥
∥
2

,

where P = K[R t]∈ R
3×4 is the camera projection matrix (P(j)

is the jth row ofP),K ∈ R
3×3 is a precalibrated camera internal

parameter matrix, R ∈ SO(3) is a rotation matrix, t ∈ R
3 is a

translation vector, and θ = (R, t). Fig. 2(e) plots an instance of
PnP.

Example 6 (PCR): Given n 3-D-3-D outlier-contaminated
point correspondences {(Xi ∈ R

3,Y i ∈ R
3)}n1 extracted from

point clouds P and Q (e.g., fast point feature histograms
(FPFH) [62] and deep-learned features [63], [64]), the goal is
to estimate the best mapping function f : R3 �→ R

3 that aligns
point clouds P and Q. Here, 6-DOF rigid transformation θ =
(R, t) ∈ SO(3)× R

3 is chosen as the model and the residual
function is: ri(θ) = ‖RXi + t− Y i‖2, whereR ∈ SO(3) is a
rotation matrix and t ∈ R

3 is a translation vector. Fig. 2(f) plots
an instance of PCR.

Example 7 (MT): Given n 2-D outlier-contaminated image
observations {xi ∈ R

2}n1 obtained from n images of the same
object point X ∈ R

3 and the camera projection matrices {Pi ∈
R

3×4}n1 of these n images, the goal of MT is to estimate the
optimal object point θ = X [65], [66]. The residual function is:
ri(θ) = ||π(PiX̃)− xi||2, where π is the reprojection function
and X̃ = [X, 1]T . In triangulation, object point X must always
be in front of the cameras. Thus, it must satisfy the following
constraints: {Pi:(3)X̃ > 0}n1 , where Pi:(3) is the third row of
Pi. Fig. 2(g) plots an instance of MT.

Example 8 (PGO): Given n pairwise relative pose observa-
tions {(Rij ∈ SO(3), tij ∈ R

3)}n1 , the goal is to recover a set of
poses {(Ri ∈ SO(3), ti ∈ R

3)}m1 from them, where symbols
R and t denote rotation and translation, respectively. PGO is
essentially a directed graph problem, where Rij is an edge and
Ri and Rj are the nodes of the edge. The residual function is
chosen as follows [67]:

ri(θ) =√∥∥Log(RT
ijR

T
i Rj)

∥∥2
ΛR

ij

+
∥∥RT

ij(tij −RT
i (ti − tj))

∥∥2
Λt

ij

(8)

where ΛR
ij and ΛT

ij are the information matrices of rotation and
translation, respectively. ‖ · ‖Λ is the Mahalanobis norm of a
matrix or a vector, e.g., ‖a‖Λ = aTΛa. Log(·) is the logarithm
map of the rotation group, which converts a rotation matrix to a
3-D vector. Fig. 2(h) plots an instance of PGO.

IV. OUR AUGMENTED MCC

As aforementioned, the limitations of MCC for robust fitting
lie in twofold: the sensitivities to clustered outliers and high
outlier ratios. The sensitivity to clustered outliers is a com-
mon limitation of robust estimation techniques, such as MCC,
RANSAC, and M-estimation. Moreover, MCC can not deal with
cases with high outlier ratios. First, kernel bandwidth is very
important to the performance. MCC uses the Silverman’s rule to
determine the bandwidth, which is not accurate when the number
of samples is not large enough. Under high outlier ratios, band-
width estimation becomes more inaccurate. Second, the model
estimation of MCC for geometric fitting is often converted to an
M-like estimation for efficient optimization, which is only able
to handle cases with low outlier ratios. To solve these problems,
we introduce an accurate bandwidth estimation algorithm based
on PDF matching, present an idea of GNC and worst-rejection
strategy for MCC model estimation, and define a concept of
LDM to tackle clustered outliers.
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Fig. 2. Robust geometric fitting examples considered in this article that can be solved by our AMCC. (Examples 1–8). (a) LF. (b) CF. (c) IFM. (d) SRA.
(e) PnP [6]. (f) PCR. (g) MT. (h) PGO [39].

Fig. 3. Influence of inlier quality on geometry fitting. (a) and (b) Examples of LF and CF based on the least-squares without outliers, respectively. (c) and (d)
Examples of LF and CF based on robust estimators with outliers, respectively. (a) LF. (b) CF. (c) Robust LF. (d) Robust CF.

TABLE I
DETAILED SETTINGS OF THE COMPARED ALGORITHMS (MNI REPRESENTS MAXIMUM NUMBER OF ITERATIONS)

Fig. 4. Local PDFs of clustered observations and uniform observations, as
well as the global PDF of all observations based on the LF and CF examples in
Fig. 3. (a) PDFs of line fitting in Fig. 3(c). (b) PDFs of circle fitting in Fig. 3(d).

A. Bandwidth σ Estimation

As shown in [46], bandwidth and variable center can be
obtained by optimizing the following problem based on the idea

of PDF matching:

(σ∗, c∗)=argmin
σ,c

{∫
[kσ (r−c)]2dr − 2E [kσ (r−c)]

}
(9)

where c is the variable center. In this article, we focus on the
geometric fitting problems, where we only want to retain inliers,
and the residual errors of inliers are usually distributed around
zero. Therefore, a kernel function centered at zero is more in
line with the expectation. We also use the Gaussian kernel in
our AMCC, then, problem (9) becomes the following:

σ∗ = argmin
σ

{∫
[Gσ(r)]

2dr − 2E [Gσ(r)]

}

= argmin
σ

{
1

2
√
πσ

−
√
2√

πσn

n∑
i=1

exp

(
− r2i
2σ2

)}
. (10)
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Fig. 5. CF on six real images. (Example 2). (a) Human iris. (b) Owl iris. (c) Earth. (d) Meteor crater. (e) Irrigation system. (f) Plates.

TABLE II
SUCCESS RATE (↑) COMPARISON OF FOUR TYPICAL TASKS UNDER RANDOM

OUTLIERS, WHERE LF, IFM, PNP, AND PCR REPRESENT LINE FITTING, IMAGE

FEATURE MATCHING, PERSPECTIVE-N-POINTS, AND POINT CLOUD

REGISTRATION, RESPECTIVELY

To solve this problem, we let χ = 1
σ , obtaining

χ∗=argmin
χ

{
g(χ) :=

χ

2
√
π
−

√
2χ√
π

1

n

n∑
i=1

exp

(
−r

2
i

2
χ2

)}
.

(11)
We perform the Taylor expansion on exp(− r2i

2 χ
2), and only take

its linear part.Substituting it into (11) yields a quadratic equation
(see Appendix A for details) as follows:

argmin
χ

g(χ)

≈argmin
χ

{√
2
π bχ0χ

2+
(

1
2
√
π
−
√

2
π bχ

2
0−
√

2
πa
)
χ
} (12)

where χ0 > 0 is a known approximation of χ and⎧⎨
⎩
a = 1

n

∑n
i=1 exp

(
− r2i

2 χ
2
0

)
b = 1

n

∑n
i=1 r

2
i exp

(
− r2i

2 χ
2
0

) . (13)

Obviously, b ≥ 0. In practice, there must be noise or outliers in
the observations, and it is impossible for all residuals to be 0.

TABLE III
SUCCESS RATE (↑) COMPARISON OF FOUR TYPICAL TASKS UNDER CLUSTERED

OUTLIERS, WHERE LF, IFM, PNP, AND PCR REPRESENT LINE FITTING, IMAGE

FEATURE MATCHING, PERSPECTIVE-N-POINTS, AND POINT CLOUD

REGISTRATION, RESPECTIVELY

Therefore, we have
√

2
π bχ0 > 0 and the quadratic function has

a unique solution as follows:

χ∗ = −
1

2
√
2
− bχ2

0 − a

2bχ0
. (14)

Since a good approximation χ0 is generally unavailable, we use
an iterative approach starting from 1

std(r0) to find the optimal χ∗.

B. Model θ Estimation

Let us start with two tools, i.e., the Black–Rangarajan dual-
ity [68] and GNC [15], which are used for outlier process and
nonconvex optimization, respectively. The model estimation
stage of our AMCC is built on top of them.

Tool 1 (Black–Rangarajan Duality [68]): Given a robust
cost ρ(·), if there exists a function φ(z)

.
= ρ(

√
z/s), where

z is a intermediate variable and s > 0 is a scale factor, and
its first and second partial derivatives φ′(z) and φ′′(z) sat-
isfy limz→0 φ

′(z) = 1, limz→∞ φ′(z) = 0, and φ′′(z) < 0, then
the robust estimation problem θ∗ = argminθ

1
n

∑n
i=1 ρ(ri) is
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Fig. 6. LF results on simulated data, i.e., first row—model error, middle row—RMSE, and last row—number of iterations. (Example 1). (a) Random outliers.
(b) Clustered outliers.

equivalent to the following outlier process:

θ∗ = argmin
θ,wi∈[0,1]

n∑
i=1

swir
2
i +Ψρ(wi) (15)

where wi = φ′(zi) ∈ [0, 1] is the weight of an observation, and
Ψρ(w) is an outlier process function. As suggested in [68],
a straightforward mechanism for selecting this function is
Ψρ(w) = φ(z)− zw.

Tool 2 (GNC [15]): Rather than directly optimizing a non-
convex cost ρ(·), GNC introduces a surrogate cost ρμ(·) with
a control parameter μ for optimization. This surrogate cost
ρμ(·) must satisfy two conditions: 1) There are some values
of μ such that ρμ(·) is a convex function, i.e., ∃u, ρ′′μ(·) ≥ 0;
2) the original nonconvex cost ρ(·) must be a special case of
ρμ(·), i.e., ρ(·) ∈ {ρμ(·)}u. Generally, when μ goes to infinity
or 1, ρμ(·) recovers ρ(·). In the optimization, GNC starts from a
convex surrogate to solve the problem globally, and then changes

μ gradually to increase the amount of nonconvexity until the
original cost is recovered. Since the GNC starts from a convex
function and uses the current solution as the initialization of the
subsequent iteration, it can largely avoid getting stuck in local
optima.

Now, let us turn to the model estimation problem. Once the
bandwidth is obtained, the model θ optimization is as follows:

θ∗ = argmax
θ

1

n

n∑
i=1

1√
2πσ

exp

(
− r2i
2σ2

)

= argmin
θ

1

n

n∑
i=1

− 1√
2πσ

exp

(
− r2i
2σ2

)
. (16)

Note that σ > 0 here is a known value. Since multiplying (16)
by a constant greater than zero or adding a constant has no effect
on the optimization results, we multiply it by

√
2πσ3 and add a
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Fig. 7. IFM results on simulated data, i.e., first row—model error, middle row—RMSE, and last row—number of iterations. (Example 3). (a) Random outliers.
(b) Clustered outliers.

Fig. 8. IFM on a multimodal dataset with six types of images. Each line represents a correct correspondence. (Example 3). (a) Optical-optical. (b) Infrared-optical.
(c) SAR-optical. (d) Depth-optical. (e) Map-optical. (f) Night-day.
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Fig. 9. Satellite pose estimation on the SPEED dataset. The first three instances suffer from random outliers while the last three ones contain clustered outliers.
Cyan squares represent inliers and red dots are outliers. (Example 5). (a) Random outliers. (b) Random outliers. (c) Random outliers. (d) Clustered outliers.
(e) Clustered outliers. (f) Clustered outliers.

constant σ2, giving as follows:

θ∗ = argmin
θ

1

n

n∑
i=1

σ2

(
(1− exp

(
− r2i
2σ2

))
. (17)

This becomes an M-like estimation, where ρ(r) =

σ2((1− exp(− r2

2σ2 )). Furthermore, one can verify ρ(r)
satisfies lim|r|→∞ρ′(r) = 0, where ρ′(r) is the first derivative
of ρ(r) with respect to r. Thus, it is a typical M-estimation.
To improve the robustness of (17), we introduce a surrogate
function of ρ(r) based on the theory of GNC as follows:

ρμ(r) = μσ2

(
1− exp

(
− r2

2μσ2

))
. (18)

The function ρμ(r) is such that: 1) It is convex when
μ ≥ r2

σ2 according to ρ′′μ(r) = (1− r2

μσ2 )exp(− r2

2μσ2 ). When

μ→ ∞, limμ→∞ ρ′μ(r) = limμ→∞ r exp(− r2

2μσ2 ) = r, and
limμ→∞ ρ′′μ(r) = 1. This is exactly the same as the first and
second derivatives of the least squares cost function. Hence,
ρμ(·) acts as the typical least-squares cost. 2) It becomes the
original ρ(r) when μ = 1 [see Fig. 1(a)].

Although putting ρμ(r) into (17), it is still hard to solve due
to its nonconvex nature. Fortunately, we can transfer the robust
estimator to an outlier process based on the Black–Rangarajan
duality. Let

φ(z)
.
= ρμ(

√
2z) = μσ2

(
1− exp

(
− z

μσ2

))
s.t. z ≥ 0

(19)
we can verify that limz→0 φ

′(z) = 1, limz→+∞ φ′(z) = 0, and
φ′′(z) < 0. Therefore, problem (17) becomes (see Appendix B
for details) the following:

θ∗ = argmin
θ,wi∈[0,1]

n∑
i=1

1

2
wir

2
i + μσ2wi (lnwi − 1). (20)

This problem can be efficiently solved by alternating optimiza-
tion (see Appendix C for details). Specifically, at each inner

iteration, the model parameters θ are first optimized with fixed
weights {wi}n1 , {wi}n1 are then optimized with fixed θ, and
finally, the control parameter μ is decreased by a factor τ .

Remark 1 (Robust to high outlier rate): Influence function
ψ(r) = ∂ρ(r)

∂r can intuitively reflect the robustness of a cost
function, which shows the impact of an observation on the energy
cost. The influence function of our surrogate ρμ(r) is displayed
in Fig. 1(b). As can be seen, when μ is small, large residuals
have no effect on the energy cost, so it has strong robustness.
However, once the initialization is not good, true inliers may
obtain large residuals and be eliminated as outliers, causing the
function to fall into local minima. On the contrary, when μ is
big, large residuals still have impacts on the energy cost, so its
robustness is limited. Fortunately, since its influence interval (the
residual range that has a large impact on the energy) is large, it is
not sensitive to the initializations and can effectively avoid local
minima. Obviously, they are complementary. Asμ decreases, the
robustness keeps increasing, and the model estimation accuracy
becomes more precise. Although the nonconvexity also keeps
increasing, the result of the previous iteration can provide a
good initialization for the next iteration, thereby reducing the
possibility of getting stuck into local minima.

Worst-Rejection Strategy: Although the GNC strategy im-
proves robustness, the true outlier rate of the observations re-
mains the same in each iteration. Intuitively, if we can discard
some true outliers during the iterative process, the true outlier
rate will become lower, which can also offset the increase in
nonconvexity to some extent and make the problem simpler. In
our method, we believe that observations with the largest resid-
uals are most likely to be true outliers. Hence, we sort residuals
in a decreasing manner and reject the first M observations via a
bool vector h in each iteration t.

Remark 2 (Differences from existing GNC methods): Using
the Black–Rangarajan duality and GNC to improve the ro-
bustness of M-estimation has been investigated in [15], [16],
and [20]. Differently, the research object of this article is
not M-estimation but MCC. Although MCC is essentially an
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M-estimation, it analyzes the residual errors from a probabilistic
perspective. Therefore, MCC is suitable for any noise environ-
ment [18]. Meanwhile, the bandwidth of the kernel in MCC
has a clear physical meaning, which controls the shape of the
kernel function and can be estimated adaptively. One of the main
insights is that we can use the close relationship between MCC
and M-estimation to improve the robustness of MCC. To the
best of the authors’ knowledge, the proposed AMCC is the first
MCC variant that can stably deal with high outlier ratios and
clustered outliers.

C. Local Distribution Measure

Classical robust estimation techniques usually only consider
the number of inliers, while ignoring the quality of inliers. For
example, RANSAC-family and maximum consensus algorithms
always use the number of inliers as the cost function. So, one
wonders if the quality of each inlier is the same and equally
important to the real model we are looking for.

Let us first look at two examples in Fig. 3(a) and (b), i.e, LF
and CF based on the least-squares. The observations in these two
examples suffer only from noise and are free of outliers. As can
be seen, although the number of clustered inlier observations is
much more than that of uniformly distributed inlier observations,
the fitting accuracy of clustered inliers is far less than that
of uniformly distributed ones. Therefore, inliers actually have
quality problems, and the most important factor that affects
the quality is their distribution characteristics. If we ignore the
quality of inliers, then the situations in Fig. 3(c) and (d) will
occur, that is, classical robust estimation methods (e.g., GNC,
RANSAC, etc.) usually find the wrong model when there are
clustered outliers in the observations.

In this section, we present a metric to describe the density of
each observation called LDM, whose definition is as follows:

Definition 1 (LDM): Given a set of observations {xi}n1 , sup-
pose that the global PDF satisfied by the pairwise distances
between observations is fg(D), and the local PDF of the
pairwise distances between observations in the local area of an
observation xi is f li (D). Then, the LDM Ci of xi is defined as
the ratio of the local probability to the global probability that the
distance is on the interval [0, sε]

Ci =

∫ sε

0 f li (D)dD∫ sε

0 fg(D)dD
(21)

where ε is an inlier threshold, s is a scale factor. sε is a
small value, and the probability on [0, sε] reflects the degree
of clusterness of observations.

Fig. 4 shows examples of local and global PDFs. As can be
seen, the PDF of uniform observations is very close to the global
PDF, so its LDM is close to 1. In contrast, the PDF of clustered
observations has a high peak and a narrow bandwidth, which is
far from the global PDF, and its LDM is much larger than 1. From
the definition, we can see that the key of LDM is to calculate
the global PDF fg(D) and local PDF f li (D). A straightforward
way is to use the kernel density estimation (KDE) to fit its
corresponding PDF. However, KDE is relatively slow and will
greatly reduce the efficiency of our AMCC. Instead, motivated

Algorithm 1: Augmented MCC (LF example).

by the idea of histogram, we direct calculate the probability
based on the discrete distances between observations as follows:∫ sε

0

fg(D)dD ≈ 1

n

n∑
1

�Di ≤ sε�

=
2

n(n− 1)

n∑
i=1

n∑
j=i+1

�‖xi − xj‖2 ≤ sε� (22)
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where �x� returns 1 if condition x is true, otherwise, returns 0;
‖ · ‖2 is the l2-norm. For local probability, we first search K
neighbors of each xi, and then compute the probability in the
same way as (22). Then, we assign each observation a Gaussian-
like weight based on the LDM as follows:

w′
i = exp

(
− C2

i

2(std (C))2

)
(23)

where C = {Ci}n1 .
Remark 3 (Relation between LDM and data selection): Ac-

tually, LDM is also a method for selecting uniformly distributed
data. The difference is that we do not select data directly, but
score the data (weights range from 0 to 1), which is a soft
selection method. In contrast, the commonly used method is
a hard selection method, that is, giving the data a score of 1
(retain) or 0 (discard). Hard methods may lose a lot of useful
information and cause bias. For example, cluster inliers may
be completely discarded and some uniform inliers may not be
selected.

D. Main Algorithm

Our proposed AMCC is summarized in Algorithm 1, where
we take the LF task as an example. Given a set of obser-
vations O = {xi = (xi, yi) ∈ R

2}n1 , AMCC first computes a
LDM weight to measure the clusterness of each observation.
Then, it performs the main framework of two-layer loops. In the
outer loop, AMCC estimates the Gaussian kernel bandwidth.
The inner loop conducts a GNC-like algorithm, which mainly
consists of four steps, i.e., weight update (contains three com-
ponents, including LDM weight, residual weight, and worst
rejection binary weight), model update, worst rejection, and
bandwidth update. It can be seen that we directly decay the kernel
bandwidth σwithout introducing an additionalμ. The reason for
this is that our σ_update function estimates the bandwidth of all
observation residuals (including outliers), so its value is very
large compared to the bandwidth corresponding to the correct
observations, which imply contains the parameter μ.

V. EXPERIMENTS AND EVALUATIONS

In this section, we first qualitatively and quantitatively eval-
uate the proposed AMCC algorithm on five examples provided
in Section III-C using simulated and real data. We consider both
random outliers and clustered outliers in our experiments. Then,
we conduct an ablation study to demonstrate the effectiveness
of our several contributions.

Baselines: We choose three well-known algorithms (i.e.,
Cauchy M-estimation, MCC, and RANSAC) and two state-of-
the-arts (i.e., GNC-GM [16] and MAGSAC++ [33]) as baselines
for comparison. For fairness, we use the official implementa-
tion code of these methods and their recommended parameter
settings. Details are summarized in Table I. For our method,
we set the number of neighbors K = 20 and scale s = 1 for
LDM calculation, the number of rejected observations M = 5
for worst rejection, and the GNC factor τ = 1.4.

Evaluation Metrics: We use four metrics for quantitative
evaluation: 1) the model error emodel of an estimatedθ∗ compared

to the ground truth one θ◦, i.e., emodel = ‖θ∗ − θ◦‖, where
we use l2 norm for vectors and Frobenius norm for matrix;
2) the root mean square error (RMSE) of inlier observations;
3) the number of iterations that an algorithm costs, which reflects
the runtime of a method; and 4) success rate describes the
number of successful estimates out of 100 Monte Carlo runs,
where an estimate is considered successful when its RMSE is
less than 3 times the noise level.

Hardware: All the experiments are conducted on a laptop with
i7-8550U CPU @ 1.8GHz and 8GB of RAM.

A. Line/Circle Fitting

Setup: At each Monte Carlo run, a set of 1-D points {xi}nin
1

that follows a normal distributionN (0, 1) and a ground truth 2-D
line model θ◦ = (k◦,m◦) are first randomly generated, where
nin = (1− η)n is the number of inlier observations with a given
outlier rate η; then, inliers are produced by yi = k◦xi +m◦ +
εi, where εi represents Gaussian inlier noise εi ∼ N (0, σ2

noise)
with σnoise = 0.01; outliers are 2-D random points that have no
relation to the ground truth model. For random outliers setup, we
use a Gaussian random generator N (0, I2) to produce outliers,
where I2 is a 2× 2 identity matrix; for clustered outliers setup,
we randomly generate T ∈ {1, 2, 3} 2-D cluster centers {ĉi}T1
and produce clustered outliers at each center by N (ĉi, σ

2
ĉi
I2),

where σĉi
∈ [σnoise, 10σnoise]. In our experiments, we fix nin to

be 50, sweep η from 10% to 90%, and perform 100 Monte Carlo
runs for each configuration.

Random outlier results: Fig. 6(a) plots the comparison met-
rics, from which we can make several observations. 1) M-
estimation and MCC perform well only on low outlier ratios.
Once the outlier ratio exceeds 50%, M-estimation fails com-
pletely. MCC is slightly better than M-estimation, but there are
still many failures. Moreover, MCC may also fail in the case of
low outlier ratios, e.g., 30%, which indicates that MCC is not
as stable as M-estimation. 2) The idea of GNC can effectively
improve the robustness of M-estimation. Traditional GM esti-
mator can only handle up to 50% of outliers while GNC-GM
can deal with 70%–80% of outliers. 3) RANSAC-type meth-
ods (RANSAC and MAGSAC++) have the highest robustness;
however, the computational complexity of RANSAC increases
exponentially with the increase of the outlier ratio. For example,
MAGSAC++ requires an order of magnitude more iterations
than our AMCC at an outlier ratio of 70%. 4) Our proposed
AMCC solves the instability problem of MCC and raises the
robustness of classic MCC to a new level. AMCC can stably
handle 80% of outliers, and even at an outlier ratio of 90%,
its success rate is still around 90%, which is better than the
GNC-GM (see Table II for details).

Remark 4 (AMCC is not as robust as RANSAC): Statistical
robust estimators (M-estimations and MCCs) and RANSAC
family are two different types of methods with different advan-
tages and disadvantages. With random outliers, as long as the
number of iterations of RANSAC is sufficient, it can always find
an approximation to the correct solution no matter how high the
outlier ratio is. Hence, the robustness of any existing statistical
estimators is inferior to the RANSAC family in the case of a
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super-high outlier rate (random outliers). This is the bottleneck
of the entire field of statistical estimator-based robust fitting,
and it is not the goal of this article to propose a method that
outperforms the RANSAC family in terms of robustness under
random outliers. Instead, we aim to improve the outlier-resistant
performance of traditional MCC from 50% to a level close to that
of RANSAC, while speeding up by 1− 2 orders of magnitude
compared to RANSAC.

Clustered outlier results: From Fig. 6(b), we can see that:
1) All the five compared baselines are very sensitive to clustered
outliers. M-estimation, MCC, and GNC-GM can only handle
less than 50% of outliers. Once the outlier ratio exceeds 50%,
RANSAC-type methods become very unstable, since their costs
maximize the number of inliers while ignoring the quality of
inliers. 2) Our AMCC is suitable for both random outliers and
clustered outliers. It still achieves a success rate of 98% at 80% of
clustered outliers, which is a 62 percentage point improvement
over the second-ranked method (see Table III for details).

Real CF results: We select six real images with circular
objects (human iris, owl iris, Earth, meteor crater, irrigation
system, and plates) to show our fitting performance. For images
with a single circular object, we use image binarization, morpho-
logical operations, and edge detection techniques to extract the
data points of the circle. Obviously, these points contains many
outliers. For images with multiple circles, we first locate each
circle object using a circle detector, then take the same approach
as above to extract data points for each circle. The results are
displayed in Fig. 5. As can be seen, our AMCC achieves accurate
CF.

B. Image Feature Matching

Setup: We first randomly sample a set of 2-D points {xi}n1
using a normal generator N (0, 1002I2). Then, we generate a
random ground truth model θ◦ = (A◦, t◦), where A◦ = s◦R◦,
s◦ ∈ [0.5, 2] is a 2× 1 scale vector which represents the scales
in the x-axis and y-axis, R◦ is a 2-D rotation matrix whose
angle belongs to [−π/2, π/2], and t◦ ∈ [−100, 100] is a 2× 1
translation vector. Using θ◦, we produce observations {yi}n1 by
yi = A◦xi + t◦ + εi if yi is an inlier, where εi ∼ N (0, 22I2)
is a 2× 1 noise vector; or by yi ∼ N (0, 1002I2) if yi is a
random outlier; or by yi ∼ N (ĉi, σ

2
ĉi
I2) if yi is a clustered

outlier. Again, we fixnin to be 50 and sweep η from 10% to 90%.
We also perform 100 Monte Carlo runs for each configuration.

Random outlier results: Fig. 7(a) shows the evaluation results,
from which we can make several observations. 1) Although
MCC is essentially an M-estimation, it has better robustness
than traditional M-estimations such as the Cauchy estimate. The
reason is that MCC studies the residuals from a probabilistic
perspective and estimates the kernel bandwidth adaptively. 2)
Our AMCC is robust to 80% of outliers, which is better than
Cauchy M-estimation (robust to 50% of outliers), typical MCC
(robust to 70% of outliers), and GNC-GM (robust to 70% of
outliers). 3) Comparing Fig. 7(a) with Fig. 6(a), we can find that
RANSAC-type methods requires almost an order of magnitude
more iterations in the IFM task than that of the LF task. Actually,
the computational complexity of RANSAC-type methods is

exponential to the size of the minimum sampling sets, which is
determined by their theoretical basis. Therefore, RANSAC-type
methods can hardly be applied to high-dimensional problems,
such as face recognition and PGO. 4) Our AMCC only requires
no more than 100 iterations and is not closely related to the
model dimension. In fact, MCC-type methods have been widely
used in high-dimensional problems.

Clustered outlier results: From Fig. 7(b), we can see that our
AMCC is able to handle cases with up to 90% of clustered
outliers, which is even better than the cases of random outliers. In
contrast, other compared baselines can only deal with up to 50%
of outliers, among which Cauchy estimate suffers from many
failures even at an outlier ratio of 30%. From Table III, the suc-
cess rates of Cauchy M-estimation, MCC, RANSAC, GNC-GM,
MAGSAC++, and our AMCC at an outlier ratio of 80% are 0%,
17%, 31%, 5%, 20%, and 98%, respectively. Our success rate is
67 percentage points higher than the second-ranked method.

Real multimodal image matching: To showcase the excellent
performance of AMCC on real data, we perform IFM on a
multimodal dataset consisting of six types of image pairs (i.e.,
optical-optical, infraredoptical, synthetic aperture radar (SAR)-
optical, depth-optical, map-optical, and night-day). We use the
RIFT [61] or locally normalized image feature transform [69]
to establish putative feature correspondences. The ground truth
affine transformation for each pair is established by least-squares
fitting with ten manually picked correspondences. It is very
challenging to match these multimodal images due to severe
nonlinear radiation differences. Therefore, these matching pairs
have a high outlier ratio from 69.8% to 96.5%. From the results
in Fig. 8, we can observe that AMCC achieves good results on
all six pairs. Its RMSE is lower than 2 pixels under a 3-pixels
inlier threshold and it only takes about 0.02 s to deal with 1000
correspondences.

C. Perspective-n-Points

Setup: Given a camera internal parameter matrix K, we first
randomly sample a set of 3-D image space points {Xc

i}n1 in a
box [-10, 10] × [-10, 10] × [1, 2]. Then, we randomly generate
a 3-D rotation matrix R◦ whose angles belong to [−π/2, π/2],
and the 3-D translation vector t◦ is the mean of {Xc

i}n1 . The
corresponding object space point of Xc

i is obtained via trans-
formation Xi = (R◦)−1(Xc

i − t◦). Using θ◦ = (R◦, t◦), 3-D
object point Xi is projected onto an image to get its ground
truth 2-D image correspondence x◦

i via di[x◦
i 1]T =KXc

i ,
where di is the depth. Finally, observations {xi}n1 is gener-
ated by xi = x◦

i + εi, where εi ∼ N (0, 22I2) if xi is an in-
lier, or εi ∼ N (0, 10002I2) if xi is a random outlier, or by
xi ∼ N (ĉi, σ

2
ĉi
I2) if xi is a clustered outlier. We use the unit

quaternion to represent the rotation and apply the Gauss–Newton
method for PnP optimization, where the initialization for the
model θ is required. Therefore, we initialize t by generating a
translation vector within [50%× t◦, 150%× t◦] and initialize
R by adding a random disturbance within [−π/6, π/6] to the
ground truth angles. For a fair comparison, the same initializa-
tion is applied for all compared methods. In this task, we set nin

to be 100.
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Fig. 10. PnP results on simulated data, i.e., first row – model error, middle row – RMSE, last row – number of iterations. (Example 5). (a) Random outliers.
(b) Clustered outliers.

Random outlier results: Fig. 10(a) shows the evaluation re-
sults, from which we can make several observations. 1) Our
AMCC is robust to 90% of outliers with appropriate initial-
izations, which is almost comparable to RANSAC-type meth-
ods. AMCC is a local optimal method, while RANSAC-type
methods only find approximate solutions. Thus, AMCC gen-
erally has a higher model fitting accuracy than RANSAC-type
methods. In our experimental results, RANSAC-type methods
are as accurate as our AMCC, since their results are refined
by an M-like estimation and the inlier threshold (3σnoise) is
very precise. 2) Although MCC performs better than Cauchy
M-estimation and GNC-GM at high outlier ratios, it is not stable
even in cases with low outlier ratios. Our AMCC overcomes this
limitation, i.e., its success rate is always 100% when η ≤ 80%
(see Table II for details). 3) Even at an outlier ratio of 90%,
our AMCC requires no more than 100 iterations, which is two
orders of magnitude smaller than the ones of RANSAC-type
methods.

Clustered outlier results: Fig. 10(b) plots the results of clus-
tered outliers. As can be seen, our AMCC is far superior to other
compared methods. From Table III, despite a high outlier ratio of

90%, our success rate still reaches 99%, which is 73 percentage
points higher than the second-ranked MCC method.

Satellite pose estimation results: We estimate the 6-DOF pose
of satellites on the SPEED dataset [70], where the 11 2-D-3-D
correspondences for each image are provided by the pipeline
described in [5]. To show the robustness of AMCC, we spoil
these observations by adding 15–30 random or clustered out-
liers. Fig. 9 provides six examples, where our AMCC achieves
accurate localization of the satellites within 0.3 s. The model
error is better than 0.05 and the RMSE of reprojection errors is
smaller than 3 pixels.

D. Point Cloud Registration

Setup: We first randomly sample a set of 3-D points {Xi}n1
in a box [-100, 100] × [-100, 100] × [-100, 100]. Then we gen-
erate a random ground truth 6-DOF rigid model θ◦ = (R◦, t◦),
where the angles of R◦ are within [−π/2, π/2] and the transla-
tions of t◦ are within [−100, 100]. Using θ◦, we generate 3-D
correspondence observations {Y i}n1 by Y i = R◦Xi + t◦i + εi
if Y i is an inlier, where εi ∼ N (0, 0.32I3) is a 3× 1 noise
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Fig. 11. Point cloud registration results on simulated data, i.e., first row – model error, middle row – RMSE, last row – number of iterations. (Example 6).
(a) Random outliers. (b) Clustered outliers.

vector; or by εi ∼ U(Φ) if Y i is a random outlier, where
region Φ = {Y i = (Xi, Yi, Zi)|Xi, Yi, Zi ∈ [−100, 100]}; or
by Y i ∼ N (ĉi, σ

2
ĉi
I3) if Y i is a clustered outlier. We fix nin

to be 50 and randomly sample T ∈ {1, 2, 3} clusters.
Random outlier results: Fig. 11(a) shows the evaluation met-

rics, from which we can make several observations. 1) GNC-GM
and MCC perform better on rigid fitting than other tasks (e.g., LF
and IFM), while Cauchy M-estimation performs much worse.
Cauchy M-estimation has many failures at an outlier ratio of
50%. 2) Our AMCC achieves almost the same robustness as
that of RANSAC-type methods. AMCC achieves a success rate
of 99% under 90% of outliers, which is better than GNC-GM
and MCC (see Table II for details).

Clustered outlier results: Fig. 11(b) plots the results of clus-
tered outliers. As can be seen, our AMCC is far superior to other
compared methods. From Table III, the success rates of Cauchy
M-estimation, MCC, RANSAC, GNC-GM, MAGSAC++, and
our AMCC at an outlier ratio of 90% are 0%, 25%, 25%, 14%,
13%, and 99%, respectively. Our success rate is 74 percentage
points higher than the second-ranked method.

Scan matching results: We pick six scan pairs from two open
datasets with ground truth transformations, i.e., the small-scale

FGR dataset [20] and large-scale ETH LIDAR dataset,1 for
point cloud registration. For each scan pair, we first apply the
VoxelGrid filter to downsample the original point clouds, in
which the downsampling resolutions for the FGR and ETH
datasets are 0.01 m and 0.1 m, respectively. Then, we use the
intrinsic shape signatures (ISS) [71] and FPFH [62] to establish
3-D correspondences. Finally, a support line voting strategy [72]
is used to filter out a portion of outliers. The results are displayed
in Fig. 12. As shown, AMCC only takes about 0.15 s to achieve
an accurate registration with more than 80% of outliers. Its
model error is better than 0.03 and its RMSE is lower than the
downsampling resolution.

E. Running Time

In the previous experiments, we reported the number of it-
erations required by different methods. To show the efficiency
of each method more intuitively, we provide the running time
information of each method based on two tasks, i.e., IFM and
point cloud registration. The results are displayed in Fig. 13,

1[Online]. Available: http://www.prs.igp.ethz.ch/research/completed_
projects/automatic_registration_of_point_clouds.html
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Fig. 12. Scan matching on two open datasets with ground truth transformations. (Example 6). (a) Bimba. (b) Dragon. (c) Bunny. (d) Arch. (e) Courtyard.
(f) Facade.

Fig. 13. Running time comparison on the tasks of IFM and point cloud
registration. Note that MAGSAC++ is implemented in C++ while others are
implemented in MATLAB. (a) IFM with random outliers. (b) IFM with clustered
outliers. (c) PCR with random outliers. (d) PCR with clustered outliers.

from which we can make several observations. 1) RANSAC-
type methods are much slower than M-estimations and MCC
algorithms at high outlier rates. For example, at 80% of out-
liers, our AMCC is almost two orders of magnitude faster than
RANSAC and one order of magnitude faster than MAGSAC++.
Note that MAGSAC++ is implemented in C++ while others are
implemented in MATLAB. From Figs. 7 and 11, we can see that
the number of iterations of MAGSAC++ is even higher than
the one of RANSAC. Hence, MAGSAC++ is actually slower
than RANSAC. 2) Our AMCC can run in real-time, which is
important for tasks such as SLAM. At 90% of outliers, the
number of observations is 500 (a moderate size) and our AMCC
only costs about 10 ms. 3) The runtime of AMCC is almost
independent of the outlier rate, just like M-estimation and MCC.
The slight increase in the time curve is due to the increased
number of observations.

F. Ablation Study

Setup: We introduce several contributions to the traditional
MCC. To demonstrate the effectiveness and necessity of each
contribution, we conduct an ablation study experiment based on
the LF task. The simulation process is the same as in Section V-A.
We compare the proposed AMCC with classic MCC, AMCC,1

AMCC,2 AMCC,3 and AMCC,4 where the details of the last
four methods are as follows.

1) AMCC1: Replace the Silverman’s rule in traditional MCC
with our proposed kernel bandwidth estimation algorithm.
Namely, removing the GNC idea, worst-rejection strategy,
and LDM part from our AMCC.

2) AMCC2: Removing the worst-rejection strategy and LDM
part from our complete AMCC method.

3) AMCC3: Removing the LDM part from our complete
AMCC method.

4) AMCC4: Replace our kernel bandwidth estimation algo-
rithm with the Silverman’s rule in traditional MCC.

As can be seen, the only difference between MCC and
AMCC1 (AMCC and AMCC4) is the kernel bandwidth esti-
mation method.

Results: Fig. 14 plots the comparison metrics, from which
we can make several observations. 1) Our kernel bandwidth
estimation algorithm is more stable than the one in the traditional
MCC at low outlier ratios. Comparing MCC and AMCC1 in
Fig. 14(a), although MCC is more robust to high outlier ratios,
AMCC1 has a higher success rate at low outlier ratios. For
example, MCC suffers from several failures at an outlier ratio of
30%. 2) The GNC idea can effectively improve the robustness
and perfectly compensate for the sensitivity of our kernel band-
width estimation method to high outlier ratios. From Fig. 14(a),
AMCC1 becomes very unreliable once the outlier ratio reaches
50%, while AMCC2 is almost robust to 80% of outliers. The only
difference between AMCC1 and AMCC2 is that AMCC2 has one
more GNC step than AMCC1. 3) The worst-rejection strategy
can further improve the robustness. As shown, the robustness
of AMCC3 increases to 90% while AMCC2 is only robust to
80% of outliers. 4) The compatibility of our kernel bandwidth
estimation method with GNC and worst-rejection is better than
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Fig. 14. Ablation study results based on LF simulations, i.e., first row – model error, middle row – RMSE, last row – number of iterations. (a) Random outliers.
(b) Clustered outliers.

that of the Silverman’s rule. As aforementioned, the Silverman’s
rule is more robust to high outlier ratios than our bandwidth
estimation algorithm. However, after adding the GNC step and
worst-rejection part, AMCC4 performs much worse than our
AMCC when the outlier ratio reaches 70%. 5) Our LDM step
largely improves the robustness to clustered outliers without los-
ing robustness to random outliers. From 14(b), AMCC3 breaks
down once the outlier ratio reaches 50%, while AMCC is still
robust at an outlier ratio of 90%. The only difference between
AMCC3 and AMCC is the LDM step.

G. Robustness to Initialization

1) Robustness of Worst Rejection: To show the robustness of
our worst rejection strategy, we perform an experiment based on
the IFM task. Basic settings of the experiment are the same as in
Section V-B. Differently, we provide different initializations to

AMCC, and use AMCC with worst rejection (AMCC_W) and
AMCC without worst rejection (AMCC_WO) as comparison
methods. For initializations, we use θini = αθ◦ = (αA◦, αt◦),
where α = {0.0, 0.25, 0.5, 0.75, 0.95} and θ◦ is the ground
truth. We report two measures S1 and S2 to evaluate the ro-
bustness, where S1 indicates the ratio that AMCC_W succeeds
while AMCC_WO fails (i.e., the increment of success rate when
worst rejection is added),S2 indicates the ratio that AMCC_WO
succeeds while AMCC_W fails (i.e., the decrement of success
rate when worst rejection is added). In total, 1000 Monte Carlo
runs are performed.

From Fig. 15, we can make following observations: 1) Re-
gardless of the initialization situation, the S2 metric is always
0, that is, the addition of worst rejection strategy will not cause
the AMCC algorithm to fail. 2) When the outlier rate reaches
70%, the S1 metric is higher than 0, that is, the addition of worst
rejection strategy will improve the success rate of AMCC.
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Fig. 15. Evaluation of the robustness of our worst rejection strategy. Note that
some curves are identical and thus overwritten. (a) IFM with random outliers.
(b) IFM with clustered outliers.

Fig. 16. Success rate results under different initializations based on the IFM
and PCR tasks. (a) IFM with random outliers. (b) IFM with clustered outliers.
(c) PCR with random outliers. (d) PCR with clustered outliers.

2) Robustness of AMCC: We also report the success rate of
our AMCC under different initialization settings based on the
IFM and PCR tasks. The initialization strategy is the same as in
Section V-G1. The results are shown in Fig. 16. As can be seen:
1) Initialization has some effect on our AMCC, but this effect
is relatively small and not caused by worst rejection. 2) With
α = 0.25 (a not good initialization), our success rate almost
reaches 100% at 80% of outliers. So, our AMCC is not very
sensitive to initializations.

H. Limitations

The limitations of our method are as follows:
1) AMCC is not as robust as the RANSAC-type methods for

very high ratios of random outliers. For instance, AMCC
may fail when the outlier ratio exceeds 90%.

2) AMCC is not a global optimal method, which only
achieves a locally optimal solution.

3) AMCC may fail when it faces nonadversarial outliers.
For example, if observations contain multiple geometric
models, AMCC can only find one model at one run.

VI. CONCLUSION

In this article, we proposed a robust estimator, called AMCC,
which is robust to both random and clustered outliers. We first
presented a bandwidth estimator based on PDF matching to
improve the stability of MCC. We then introduced the GNC and
worst-rejection strategies into MCC to cope with high outlier
ratios. We also defined a concept named LDM to measure
the quality of inliers. Finally, we provided eight application
examples in geometric perception and tested our AMCC on five
of them, demonstrating its high efficiency, high accuracy, high
robustness, and high scalability.

APPENDIX A
DERIVATION FROM (11) AND (12)

Let f(χ) = exp(− r2i
2 χ

2), we perform the Taylor expansion
on f(χ) and take its linear part as follows:

f(χ) ≈ f(χ0) + f ′(χ0)(χ− χ0) (A.1)

where χ0 is a known value and⎧⎨
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f(χ0) = exp
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Substituting (A.1) into g(χ), we have as follows:
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For notational simplicity, we further define⎧⎨
⎩
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Then, (11) yields a quadratic equation as follows:
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χ

g(χ)

≈argmin
χ

{√
2
π bχ0χ

2+
(

1
2
√
π
−
√

2
π bχ

2
0−
√

2
πa
)
χ
} (A.5)

and its unique solution is as follows:

χ∗ = −
1

2
√
2
− bχ2

0 − a

2bχ0
. (A.6)

APPENDIX B
DERIVATION FROM (19) AND (20)

Let s = 1
2 , then, φ(z)

.
= ρμ(

√
z/s) = ρμ(

√
2z). From the

definition of the Black–Rangarajan duality, we have w = φ′(z),
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i.e.,

w = exp
(
− z

uσ2

)
. (B.1)

Taking the natural logarithm of (B.1) yields

z = −uσ2 lnw. (B.2)

Putting (B.2) into function Ψρ(w), getting

Ψρ(w) = φ(z)− zw

= uσ2
(
1− exp

(
− z

uσ2

))
− zw

= uσ2(1− w) + uσ2w lnw

= uσ2w(lnw − 1) + uσ2. (B.3)

Then, (13) becomes

θ∗ = argmin
θ,wi∈[0,1]

n∑
i=1

1

2
wir

2
i + uσ2wi(lnwi − 1) + uσ2. (B.4)

The constant term uσ2 can be dropped because it has no effect
on the optimization results, obtaining

θ∗ = argmin
θ,wi∈[0,1]

n∑
i=1

1

2
wir

2
i + μσ2wi (lnwi − 1). (B.5)

APPENDIX C
GNC OPTIMIZER

The GNC optimizer has following three main steps in an
internal iteration t:

1) θ update: Optimize (18) over θ with given weights
w(t−1) = {w(t−1)

i }n1

θ(t) = argmin
θ

n∑
i=1

1

2
w

(t−1)
i r2i (C.1)

where the second term in (18) is a constant and is dropped.
This simple weighted least-squares problem can be easily
solved.

2) w update: Optimize (18) over w with given θ(t)

w(t) = argmin
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where r
(t)
i is a known value with a given θ(t). Then,

we can find the minimum of (C.2) by letting h′(wi) =∑n
i=1 u

(t−1)σ2 lnwi +
1
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i )2 = 0 and the solution is

as follows:
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3) μ update: Decrease the control parameter μ by a step-size
τ , i.e., μ(t) = μ(t−1)/τ .

REFERENCES

[1] J. Ma, W. Qiu, J. Zhao, Y. Ma, A. L. Yuille, and Z. Tu, “Robust L2E
estimation of transformation for nonrigid registration,” IEEE Trans. Signal
Process., vol. 63, no. 5, pp. 1115–1129, Mar. 2015.

[2] J. Li, Q. Hu, and M. Ai, “LAM: Locality affine-invariant feature matching,”
ISPRS J. Photogrammetry Remote Sens., vol. 154, pp. 28–40, 2019.

[3] H. Yang, J. Shi, and L. Carlone, “TEASER: Fast and certifiable point cloud
registration,” IEEE Trans. Robot., vol. 37, no. 2, pp. 314–333, Apr. 2021.

[4] J. Li, “A practical O(N2) outlier removal method for correspondence-based
point cloud registration,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44,
no. 8, pp. 3926–3939, Aug. 2022.

[5] B. Chen, J. Cao, A. Parra, and T.-J. Chin, “Satellite pose estimation
with deep landmark regression and nonlinear pose refinement,” in Proc.
IEEE/CVF Int. Conf. Comput. Vis. Workshops, 2019, pp. 2816–2824.

[6] H. Yang and L. Carlone, “Certifiably optimal outlier-robust geometric
perception: Semidefinite relaxations and scalable global optimization,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 3, pp. 2816–2834,
Mar. 2023.

[7] J. L. Schonberger and J.-M. Frahm, “Structure-from-motion revisited,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016, pp. 4104–4113.

[8] R. M.-Artal, J. M. M. Montiel, and J. D. Tardos, “ORB-SLAM: A versatile
and accurate monocular SLAM system,” IEEE Trans. Robot., vol. 31, no. 5,
pp. 1147–1163, Oct. 2015.

[9] J. Engel, V. Koltun, and D. Cremers, “Direct sparse odometry,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, no. 3, pp. 611–625,
Mar. 2018.

[10] M. A. Fischler and R. C. Bolles, “Random sample consensus: A paradigm
for model fitting with applications to image analysis and automated car-
tography,” Commun. ACM, vol. 24, no. 6, pp. 381–395, 1981.

[11] P. J. Huber, Robust Statistics, vol. 523. Hoboken, NJ, USA: Wiley, 2004.
[12] P. J. Rousseeuw and A. M. Leroy, Robust Regression and Outlier Detec-

tion, vol. 589. Hoboken, NJ, USA: Wiley, 2005.
[13] W. Liu, P. P. Pokharel, and J. C. Principe, “Correntropy: Properties and ap-

plications in nonGaussian signal processing,” IEEE Trans. signal Process.,
vol. 55, no. 11, pp. 5286–5298, Nov. 2007.

[14] T.-J. Chin and D. Suter, “The maximum consensus problem: Recent algo-
rithmic advances,” Synth. Lectures Comput. Vis., vol. 7, no. 2, pp. 1–194,
2017.

[15] A. Blake and A. Zisserman, Visual Reconstruction. Cambridge, MA, USA:
MIT Press, 1987.

[16] H. Yang, P. Antonante, V. Tzoumas, and L. Carlone, “Graduated noncon-
vexity for robust spatial perception: From nonminimal solvers to global
outlier rejection,” IEEE Robot. Autom. Lett., vol. 5, no. 2, pp. 1127–1134,
Apr. 2020.

[17] W. Liu, P. Pokharel, and J. Principe, “Error entropy, correntropy and m-
estimation,” in Proc. IEEE 16th Signal Process. Soc. Workshop Mach.
Learn. Signal Process., 2006, pp. 179–184.

[18] R. He, W.-S. Zheng, and B.-G. Hu, “Maximum correntropy criterion for
robust face recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 33,
no. 8, pp. 1561–1576, Aug. 2011.

[19] B. W. Silverman, Density Estimation for Statistics and Data Analysis.
Evanston, IL, USA: Routledge, 2018.

[20] Q.-Y. Zhou, J. Park, and V. Koltun, “Fast global registration,” in Proc. Eur.
Conf. Comput. Vis., Springer, 2016, pp. 766–782.

[21] P. Antonante, V. Tzoumas, H. Yang, and L. Carlone, “Outlier-robust es-
timation: Hardness, minimally-tuned algorithms, and applications,” IEEE
Trans. Robot., vol. 38, no. 1, pp. 281–301, 2021.

[22] P. H. Torr, S. J. Nasuto, and J. M. Bishop, “NAPSAC: High noise, high
dimensional robust estimation-its in the bag,” in Proc. Brit. Mach. Vis.
Conf., 2002, pp. 458–467.

[23] O. Chum and J. Matas, “Matching with prosac-progressive sample con-
sensus,” in Proc. IEEE 2005 Comput. Soc. Conf. Comput. Vis. Pattern
Recognit., 2005, pp. 220–226.

[24] D. Barath, M. Ivashechkin, and J. Matas, “Progressive NAPSAC: Sampling
from gradually growing neighborhoods,” 2019, arXiv:1906.02295.

[25] O. Chum, J. Matas, and J. Kittler, “Locally optimized RANSAC,” in
Joint Pattern Recognition Symposium. Berlin, Germany: Springer, 2003,
pp. 236–243.

[26] K. Lebeda, J. Matas, and O. Chum, “Fixing the locally optimized
RANSAC–full experimental evaluation,” in Brit. Mach. Vis. Conf., 2012,
pp. 1–11.

[27] D. Barath and J. Matas, “Graph-cut RANSAC,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2018, pp. 6733–6741.

Authorized licensed use limited to: Wuhan University. Downloaded on January 04,2025 at 07:45:42 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: AUGMENTED MAXIMUM CORRENTROPY CRITERION FOR ROBUST GEOMETRIC PERCEPTION 4723

[28] J. Matas and O. Chum, “Randomized RANSAC with Td, d test,” Image
Vis. Comput., vol. 22, no. 10, pp. 837–842, 2004.

[29] J. Matas and O. Chum, “Randomized RANSAC with sequential probability
ratio test,” in Proc. IEEE 10th Int. Conf. Comput. Vis. Vol. 1, 2005, vol. 2,
pp. 1727–1732.

[30] O. Chum and J. Matas, “Optimal randomized RANSAC,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 30, no. 8, pp. 1472–1482, Aug. 2008.

[31] L. Moisan, P. Moulon, and P. Monasse, “Automatic homographic registra-
tion of a pair of images, with a contrario elimination of outliers,” Image
Process. Line, vol. 2, pp. 56–73, 2012.

[32] D. Barath, J. Matas, and J. Noskova, “MAGSAC: Marginalizing sample
consensus,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
2019, pp. 10197–10205.

[33] D. Barath, J. Noskova, and J. Matas, “Marginalizing sample consensus,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 11, pp. 8420–8432,
Nov. 2022.

[34] R. Raguram, O. Chum, M. Pollefeys, J. Matas, and J.-M. Frahm, “USAC: A
universal framework for random sample consensus,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 35, no. 8, pp. 2022–2038, Aug. 2013.

[35] M. Ivashechkin, D. Barath, and J. Matas, “USACV20: Robust
essential, fundamental and homography matrix estimation,” 2021,
arXiv:2104.05044.

[36] M. Ivashechkin, D. Barath, and J. Matas, “VSAC: Efficient and accurate
estimator for h and f,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2021,
pp. 15243–15252.

[37] P. Rousseeuw and V. Yohai, “Robust regression by means of S-estimators,”
in Robust and Nonlinear Time Series Analysis. Berlin, Germany: Springer,
1984, pp. 256–272.

[38] V. J. Yohai et al., “High breakdown-point and high efficiency robust
estimates for regression,” Ann. Statist., vol. 15, no. 2, pp. 642–656, 1987.

[39] E. Olson and P. Agarwal, “Inference on networks of mixtures for robust
robot mapping,” Int. J. Robot. Res., vol. 32, no. 7, pp. 826–840, 2013.

[40] H. Chen et al., “Robust regression with projection based M-estimators,”
in Proc. 9th IEEE Int. Conf. Comput. Vis., 2003, pp. 878–885.

[41] S. Mittal, S. Anand, and P. Meer, “Generalized projection-based M-
estimator,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 12,
pp. 2351–2364, Dec. 2012.

[42] J. Li, Q. Hu, and M. Ai, “Robust geometric model estimation based on
scaled Welsch q-norm,” IEEE Trans. Geosci. Remote Sens., vol. 58, no. 8,
pp. 5908–5921, Aug. 2020.

[43] J. T. Barron, “A general and adaptive robust loss function,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2019, pp. 4331–4339.

[44] B. Chen et al., “Generalized correntropy for robust adaptive filtering,”
IEEE Trans. Signal Process., vol. 64, no. 13, pp. 3376–3387, Jul. 2016.

[45] B. Chen, X. Liu, H. Zhao, and J. C. Principe, “Maximum correntropy
Kalman filter,” Automatica, vol. 76, pp. 70–77, 2017.

[46] B. Chen, X. Wang, Y. Li, and J. C. Principe, “Maximum correntropy
criterion with variable center,” IEEE Signal Process. Lett., vol. 26, no. 8,
pp. 1212–1216, Aug. 2019.

[47] V. Vapnik, The Nature of Statistical Learning Theory. Berlin, Germany:
Springer Sci. Bus. Media, 1995.

[48] F.-Y. Wu, K. Yang, and Y. Hu, “Sparse estimator with l0-norm constraint
kernel maximum-correntropy-criterion,” IEEE Trans. Circuits Syst. II:
Exp. Briefs, vol. 67, no. 2, pp. 400–404, Feb. 2020.

[49] S. Zhao, B. Chen, and J. C. Principe, “Kernel adaptive filtering with
maximum correntropy criterion,” in Proc. 2011 Int. Joint Conf. Neural
Netw., 2011, pp. 2012–2017.

[50] S. Wang, L. Dang, B. Chen, S. Duan, L. Wang, and K. T. Chi,
“Random Fourier filters under maximum correntropy criterion,” IEEE
Trans. Circuits Syst. I: Reg. Papers, vol. 65, no. 10, pp. 3390–3403,
Oct. 2018.

[51] J. Peng and Q. Du, “Robust joint sparse representation based on
maximum correntropy criterion for hyperspectral image classification,”
IEEE Trans. Geosci. Remote Sens., vol. 55, no. 12, pp. 7152–7164,
Dec. 2017.

[52] J. Cao, H. Dai, B. Lei, C. Yin, H. Zeng, and A. Kummert, “Maximum
correntropy criterion-based hierarchical one-class classification,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 32, no. 8, pp. 3748–3754, Aug. 2021.

[53] R. He, B.-G. Hu, W.-S. Zheng, and X.-W. Kong, “Robust principal com-
ponent analysis based on maximum correntropy criterion,” IEEE Trans.
Image Process., vol. 20, no. 6, pp. 1485–1494, Jun. 2011.

[54] Y. He, F. Wang, Y. Li, J. Qin, and B. Chen, “Robust matrix completion via
maximum correntropy criterion and half-quadratic optimization,” IEEE
Trans. Signal Process., vol. 68, pp. 181–195, 2020.

[55] B. Du, T. Xinyao, Z. Wang, L. Zhang, and D. Tao, “Robust graph-based
semisupervised learning for noisy labeled data via maximum correntropy
criterion,” IEEE Trans. Cybern., vol. 49, no. 4, pp. 1440–1453, Apr. 2019.

[56] J. Liang, Y. Wang, and X. Zeng, “Robust ellipse fitting via half-quadratic
and semidefinite relaxation optimization,” IEEE Trans. Image Process.,
vol. 24, no. 11, pp. 4276–4286, Nov. 2015.

[57] C. Hu, G. Wang, K. Ho, and J. Liang, “Robust ellipse fitting with Lapla-
cian kernel based maximum correntropy criterion,” IEEE Trans. Image
Process., vol. 30, pp. 3127–3141, 2021.

[58] Z. Wu, H. Chen, S. Du, M. Fu, N. Zhou, and N. Zheng, “Correntropy based
scale ICP algorithm for robust point set registration,” Pattern Recognit.,
vol. 93, pp. 14–24, 2019.

[59] Y. Huang, H. Liu, and T. Huang, “Robust motion averaging for multi-view
registration of point sets based maximum correntropy criterion,” 2022,
arXiv:2208.11327.

[60] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, 2004.

[61] J. Li, Q. Hu, and M. Ai, “RIFT: Multi-modal image matching based
on radiation-variation insensitive feature transform,” IEEE Trans. Image
Process., vol. 29, pp. 3296–3310, 2020.

[62] R. B. Rusu, N. Blodow, and M. Beetz, “Fast point feature histograms
(FPFH) for 3D registration,” in Proc. IEEE Int. Conf. Robot. Automat.,
2009, pp. 3212–3217.

[63] A. Zeng, S. Song, M. Nießner, M. Fisher, J. Xiao, and T. Funkhouser,
“3Dmatch: Learning local geometric descriptors from RGB-D recon-
structions,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017,
pp. 1802–1811.

[64] C. Choy, J. Park, and V. Koltun, “Fully convolutional geometric features,”
in Proc. IEEE Int. Conf. Comput. Vis., 2019, pp. 8958–8966.

[65] R. I. Hartley and P. Sturm, “Triangulation,” Comput. Vis. Image Under-
standing, vol. 68, no. 2, pp. 146–157, 1997.

[66] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision.
Cambridge, U.K.: Cambridge Univ. Press, 2003.

[67] F. Bai, T. V.-Calleja, and G. Grisetti, “Sparse pose graph optimization in
cycle space,” IEEE Trans. Robot., vol. 37, no. 5, pp. 1381–1400, Oct. 2021.

[68] M. J. Black and A. Rangarajan, “On the unification of line processes,
outlier rejection, and robust statistics with applications in early vision,”
Int. J. Comput. Vis., vol. 19, no. 1, pp. 57–91, 1996.

[69] J. Li, W. Xu, P. Shi, Y. Zhang, and Q. Hu, “LNIFT: Locally normalized
image for rotation invariant multimodal feature matching,” IEEE Trans.
Geosci. Remote Sens., vol. 60, 2022, Art. no. 5621314.

[70] M. Kisantal, S. Sharma, T. H. Park, D. Izzo, M. Märtens, and S. D’Amico,
“Satellite pose estimation challenge: Dataset, competition design, and
results,” IEEE Trans. Aerosp. Electron. Syst., vol. 56, no. 5, pp. 4083–4098,
Oct. 2020.

[71] Y. Zhong, “Intrinsic shape signatures: A shape descriptor for 3D object
recognition,” in Proc. IEEE Int. Conf. Comput. Vis. Workshops, 2009,
pp. 689–696.

[72] J. Li, P. Zhao, Q. Hu, and M. Ai, “Robust point cloud registration based on
topological graph and cauchy weighted lq-norm,” ISPRS J. Photogram-
metry Remote Sens., vol. 160, pp. 244–259, 2020.

Jiayuan Li received the B.Eng., M.Eng., and Ph.D.
degrees in photogrammetry and remote sensing from
the School of Remote Sensing and Information Engi-
neering, Wuhan University, Wuhan, China, in 2012,
2015, and 2018, respectively.

He is currently a Professor with Wuhan University.
He has authored more than 60 peer-reviewed arti-
cles in international journals. His research interests
include SLAM, image matching, and point cloud
registration.

Dr. Li was the recipient of the Best Youth Author
Award by ISPRS in 2021 and the Talbert Abrams Award by ASPRS in 2018.

Authorized licensed use limited to: Wuhan University. Downloaded on January 04,2025 at 07:45:42 UTC from IEEE Xplore.  Restrictions apply. 



4724 IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

Qingwu Hu received the B.Eng. and M.Eng. de-
grees in photogrammetry and remote sensing from
the Wuhan Technical University of Surveying and
Mapping, Wuhan, China, and the Ph.D. degree in
photogrammetry and remote sensing from Wuhan
University, Wuhan, in 2007.

He has authored more than 100 peer-reviewed ar-
ticles in international journals. His research inter-
ests include methods, techniques, and applications
of remote sensing, GIS and GPS integration, and
photogrammetry.

Xinyi Liu received the B.S. and Ph.D. degrees from
the School of Remote Sensing and Information En-
gineering, Wuhan University, Wuhan, China, in 2014
and 2020, respectively.

She is currently an Associate Researcher with
Wuhan University. Her research interests include 3-D
reconstruction, LiDAR and image integration, and
texture mapping.

Yongjun Zhang (Member, IEEE) received the B.S.
degree in geodesy, the M.S. degree in geodesy
and surveying engineering, and the Ph.D. degree in
geodesy and photography from Wuhan University,
Wuhan, China, in 1997, 2000, and 2002, respectively.

He is currently the Dean of the School of Remote
Sensing and Information Engineering, Wuhan Uni-
versity. He has authored or coauthored more than 180
research articles and one book. His research interests
include aerospace and low-attitude photogrammetry,
image matching, combined block adjustment with

multisource datasets, object information extraction and modeling with artificial
intelligence, integration of LiDAR point clouds and images, and 3-D city model
reconstruction.

Dr. Zhang is the coEditor-in-Chief of The Photogrammetric Record.

Authorized licensed use limited to: Wuhan University. Downloaded on January 04,2025 at 07:45:42 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


