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Abstract— Cross-view geo-localization (CVGL) task aims to
utilize geographic data, such as maps or high-resolution satellite
images, as reference to estimate the positions of a ground- or
near-ground- captured query image. This task is particularly
challenging due to the significant changes in visual appearance
resulting from the extreme viewpoint variations. To address this
challenge, a range of innovative methods have been proposed.
However, intra-scene geometric information and inter-scene dis-
criminative representation are not fully explored. In this article,
we propose a novel CVGL method using contrastive attributes
mining and position-aware partitioning (CAMP), which incorpo-
rates a position-aware partition branch (PPB) and a contrastive
attributes mining (CAM) strategy. PPB learns fine-grained local
features of different parts and captures their spatial information,
providing a comprehensive understanding of scenes from both
textual and spatial perspectives. CAM establishes supervision of
the negative samples based on the images from the same platform,
empowering the model to better discern differences between
distinct scenes without extra memory cost. The proposed CAMP
surpasses existing methods, achieving state-of-the-art results on
the satellite-drone CVGL datasets University-1652 and SUES-
200. Additionally, our method also outperforms existing methods
in cross-dataset generalization, achieving an 8.85% increase in
R@1 when trained on the University-1652 dataset and tested on
the SUES-200 dataset at a height of 150 m. Our code and model
are available at https://github.com/Mabel0403/CAMP.

Index Terms— Cross-view geo-localization (CVGL), image
retrieval, remote sensing, satellite image, unmanned aerial vehi-
cles (UAVs).

I. INTRODUCTION

CROSS-VIEW geo-localization (CVGL) aims to deter-
mine the geographical location of query data based
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on the reference data, despite the perspective differences
between them. Image-level CVGL is to retrieve images cap-
tured from the same scene but on different platforms, with
applications spanning various domains [1], [2]. For example,
when presented with a drone-view image, the system intends
to seek corresponding images within a database of satellite
images [3]. These satellite images come pre-annotated with
geo-tags, facilitating the process of accurately pinpointing the
location of targets seen in the drone image. Image-level CVGL
not only facilitates the identification of corresponding scene
images for structure from motion (SfM) processing in aerial
photogrammetry but also enables the georeferencing of visual
intelligence data (such as images and videos), allowing for
location-based intelligence gathering. Moreover, it provides
initial position information for more precise geo-localization.
However, due to the significant changes in visual appearance
resulting from extreme viewpoint variations, CVGL remains a
highly challenging task.

Previous researchers have devoted considerable effort to
image-level CVGL [4], [5], [6], with a primary focus on
two tasks: 1) using ground panoramic images as queries and
aerial images (drone or satellite images) as references and 2)
employing both drone and satellite images interchangeably as
queries and references. Specially, matching drone and satellite
images can be broadly categorized into two main applications:
drone-view target localization and drone navigation.

Recent years have seen significant advancements in CVGL,
largely driven by progress in deep learning [7], [8], [9].
Scholars have combined emerging technologies (like convo-
lutional neural networks [CCNs], attention mechanisms, and
contrastive learning) to converge on a feature space, which
effectively brings matched image pairs closer while pushing
unmatched pairs further apart. For instance, Shi et al. [1] utilize
polar transformation to convert images from satellite perspec-
tive to ground perspective. LPN [10] employs a square-ring
partitioning method to extract features from the background
of the images. FSRA [11] segments images based on seman-
tic information and retrieval matched images with implicit
semantic local features. Sample4Geo [12] introduces two hard
negative sample mining strategies, enabling the model to
focus on distinguishing between similar but distinct scenes.
On the basis of the work so far available, we summarize that
the key of CVGL hinges on the model’s ability for scene
identification, which depends on two aspects: 1) the model’s
ability to extract invariant features across different perspectives
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of the scene and 2) the model’s ability to distinguish between
distinct scenes. However, most methods fail to simultaneously
integrate scene texture and spatial information when extracting
invariant features of the scene. Additionally, when comparing
the differences between scenes, they overlook the contrastive
constraints between images from the distinct scenes but the
same platform.

Integrating these two aspects, we introduce a CVGL method
using contrastive attributes mining and position-aware parti-
tioning, named CAMP. The position-aware partition branch
(PPB) in CAMP is designed to perceive scenes from both
texture and spatial perspectives, which conducts part-based
feature extraction and emphasizes the positional information
before partitioning the scene features. PPB yields fine-grained,
position-aware features, enhancing model’s ability to extract
invariant features across different perspectives of the scene.
Based on the previous methods that applied contrastive learn-
ing architectures to the field of CVGL, we proposed a
contrastive attributes mining (CAM) strategy to add contrastive
constraints between images from the same platform, which has
been overlooked before. CAM strategy significantly augments
the number of negative samples, enhancing the model’s abil-
ity to distinguish between distinct scenes without increasing
additional memory cost.

In short, the main contributions of this article are as follows.
1) A PPB is utilized in the contrastive learning stage,

extracting and aligning the fine-grained, position-aware
features of each scene, to enhance the model’s percep-
tion of geographical scenes.

2) A CAM strategy is proposed, adding contrastive con-
straints between images from the same platform.
It empowers the discrimination of the extracted scene
feature without increasing additional memory cost dur-
ing the training stage.

3) The experimental results on and across the University-
1652 and SUES-200 datasets demonstrate that our
CAMP achieves state-of-the-art performance on both
tasks of drone-view target localization and drone nav-
igation and has excellent generalization.

The rest of this article is organized as follows. In Section II,
we briefly introduce some of the relevant works. Section III
presents our proposed CAMP in detail. Experimental results
are presented in Section IV, followed by the conclusion in
Section V.

II. RELATED WORK

In this section, we briefly review related previous works,
including image-based CVGL and contrastive visual represen-
tation learning.

A. Image-Level CVGL

CVGL has attracted widespread attention in recent years
due to its extensive and promising applications. Image-based
CVGL has been approached as an image retrieval task,
with early researches relying on hand-crafted operators to
extract and align features from images captured at different
viewpoints [13], [14], [15].

With the rapid development of deep learning, CNNs have
made remarkable progress in extracting image features. Work-
man and Jacobs [9] pioneered using a pre-trained CNN,
specifically AlexNet [16], for extracting scene features in
CVGL. Subsequently, Workman et al. [17] fine-tuned the
pre-trained feature extractor using information from image
pairs, leading to improved performance. This sparked a series
of works aimed at leveraging constraints between scenes to
train models and enhance their discriminative capability. Lin
et al. [18] adopted methods from face recognition, utilizing
contrastive loss to train a Siamese network. Vo and Hays [19]
analyzed limitations of Siamese networks in CVGL tasks
and proposed soft-margin triplet loss to improve localization
accuracy. Hu et al. [20] introduced a weighted soft-margin
ranking loss, which enhanced both convergence speed and
localization accuracy. Cai et al. [21] mined hard samples
in training batches to strengthen the penalty of soft-margin
triplet loss. Zheng et al. [4] grouped images from the same
scene into the same category and introduced instance loss
to learn discriminative features. Wang et al. [22] refined the
widely used Barlow Twins method in contrastive learning
by introducing dynamic weighted decorrelation regularization,
motivating models to learn discriminative embeddings by
removing feature redundancy. Deuser et al. [12] proposed
a simplified yet effective architecture based on contrastive
learning, incorporating two novel sampling strategies to mine
hard negatives, significantly improving the model’s ability to
distinguish different scenarios.

Another line of work focused on addressing spatial mis-
alignment issues caused by extreme viewpoint variations and
extracting common features from cross-view image pairs.
Hu et al. [20] used NetVLAD to extract local features to
reduce the visual gap between images from different view-
points. Liu and Li [5] encoded orientation information into
feature maps to better align features of images from the
same scene. Shi et al. [23] first attempted to use optimal
transport theory to close the spatial layout information of high-
level features. Subsequently, Shi et al. [1] directly applied
polar transformation to align satellite images to ground view,
achieving pixel-level alignment. Wang et al. [10] proposed a
square-ring partition strategy to utilize background information
in images. Lin et al. [24] designed a method for automatically
detecting salient keypoints, improving the model’s robustness
to appearance changes. Dai et al. [11] performed patch-level
segmentation of images, followed by region-level alignment.
Shen et al. [25] achieved cross-dimension feature interaction
for feature alignment from both spatial and channel perspec-
tives. Zhao et al. [26] implicitly learned salient features of
scenes and dynamically aggregated contextual information.

B. Contrastive Learning

Contrastive learning has been widely employed in both
supervised and self-supervised visual representation learning.
The fundamental concept of contrastive learning involves
minimizing the distance between anchor and positive pairs
while maximizing the distance between anchor and negative
pairs through a contrastive loss function, aiming to derive a
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discriminative feature space [27]. Self-supervised contrastive
learning guides models to learn more general features and
achieve superior performance in downstream tasks [28], [29].
In supervised learning, contrastive learning is frequently uti-
lized in deep metric learning, including tasks such as image
classification, face recognition, person re-identification, and
image retrieval.

In earlier works, InstDisc [30] contended treating each
image as a class, leading to a series of contrastive repre-
sentation learning methods based on the discriminative proxy
task. These methods use the augmented results of anchor
as positive samples and augmented results of other data as
negative samples. CMC [31] suggested defining scenes as
the unit of samples, where images from the same scene
but with different modalities or perspectives act as positive
samples for each other, while data from other scenes act as
negative samples. CPC [32] introduced a contrastive learning
method based on generative models, taking multimodal data as
input and utilizing autoregression to predict future inputs, thus
generating positive and negative samples through generative
model-based data augmentation.

Inspired by prior work, contrastive learning has become
a prominent research focus. He et al. [33] proposed MoCo,
incorporating a momentum encoder module to ensure con-
sistency in sample encodings during training, surpassing the
performance of supervised methods in downstream tasks. Chen
et al. [34] introduced SimCLR, enhancing model performance
by eliminating domain differences between branches through
a projector added to the network’s backend. Subsequently,
MoCo v2 [35] and SimCLR v2 [36] were proposed, fur-
ther optimizing data augmentation methods, learning rate
adjustment strategies, and the momentum encoder to achieve
improved results.

However, contrastive learning based on discriminative mod-
els requires careful balancing of positive and negative sample
constraints to avoid model collapse. To address this, Grill
et al. [37] proposed a contrastive representation learning
method based on generative proxy tasks, which eliminates
dependence on negative samples by establishing mappings
between branches, thereby enhancing training efficiency and
stability. This structure has since become one of the main-
stream contrastive learning approaches. MoCo v3 [38] adopts
a vision transformer as the backbone network for contrastive
learning, improving the tokenization part of the model’s fron-
tend. DINO [39] introduces centering operations to prevent
model collapse effectively.

Due to the similarity in input data formats, scholars nat-
urally apply contrastive learning mechanisms to cross-view
geolocation [12], [22]. However, these approaches neglect the
intrinsic relationship between images from the same plat-
form. To effectively harness this relationship, we propose
the CAM strategy. By integrating homologous image pairs
into the contrastive learning process, CAM enhances the
model’s capability to discern differences between distinct
scenes. By reinforcing contrastive constraints, CAM optimizes
information utilization during training without necessitating
additional memory cost.

III. PROPOSED METHOD

In this section, we introduce our proposed method CAMP.
The complete network structure is shown in Fig. 1. Similar
to the general contrastive learning framework, we first encode
cross-view images as corresponding features. In CAMP, global
and local features are extracted by ConvNeXt network and
PPB. Then, we use a contrastive optimization procedure to
train the features extracting module so that the feature extractor
can distinguish the same or different scenes from cross-view
images. The CAM strategy and symmetric InfoNCE loss are
used to strengthen the constraints between distinct scenes,
supervising the model to narrow the distance between images
from the same scene and enlarge the gap between images from
different scenes.

Problem Formulation: Given a geo-localization dataset,
denote the drone image as xit and the satellite image as y j .
i, j ∈ [1, R], where R indicates the number of scenes. i
denotes the scene id of the image xit , and j denotes the
scene id of the image y j . i = j means that xit and y j

are collected from the same scene. t ∈ [1, N ], where N
indicates the number of drone images in each scene. X denotes
a batch of drone images x t

i , while Y denotes a batch of
satellite images y j . The task of CVGL can be described
as follows: Given a query image xit , and reference images
{y1, y2, . . . , yR}, find the reference yi that best matches xit

on the feature space F and the similarity metric sim(x, y).
Formally, find

yi = argmaxy j
sim(F(xit ),F(y j )). (1)

In the following, the contrastive learning pipeline of CAMP
is described in Section III-A, followed by the details of PPB
in Section III-B. Then the CAM strategy to strengthen the
contrast constraints between distinct scenes is introduced in
Section III-C.

A. Contrastive Attributes Mining and Position-Aware
Partitioning

Our method adopts a contrastive learning architecture. Sim-
ilar to other methods utilizing contrastive learning [40], our
pipeline comprises two main components: 1) feature extraction
and 2) contrastive optimization.

1) Feature Extraction: To extract rich contextual infor-
mation, CAMP first adopts ConvNeXt-B as its backbone
and then PPB to capture features. Following [4], we share
weights between the satellite-view branch and drone-view
branch due to the shared patterns observed in aerial views
from both sources. ConvNeXt [41] is a standard CNN-based
network known for its comparable performance to the Vision
Transformer network [42], [43] in terms of both processing
speed and accuracy, albeit with a simpler design.

Given an input X ∈ RB×H×W×C0 for drone branch, where
B, H , W , C0 represent its batch size, height, width, and
channels. X undergoes a series of transformations starting
with a convolution layer followed by a layer normalization,
generating features with dimensions 1/4 of the input size.
Subsequently, it passes through four stages, each composed
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Fig. 1. Pipeline of our proposed CAMP. The blue-highlighted region in the figure represents PPB, extracting local features. This module injects positional
information into the image feature map, followed by partitioning to obtain features from different blocks. The green-highlighted region represents the CAM
strategy, enhancing the model’s ability to distinguish between distinct scenes without increasing additional memory cost. The contrastive constraints for Scene
#1 (green elements) are depicted. The gray arrows represent the original constraints between the anchor sample and the positive/negative samples, while the
black arrows represent the constraints between the anchor sample and the newly added “Negative+” samples introduced by the CAM strategy.

of a downsample layer and ConvNeXt blocks Bc, where
c = {1, 2, 3, 4}. The resulting output L(X)

∈ RB×N×C , where
N denotes the number of feature map elements, and C denotes
the number of channels of the ConvNeXt Layer FConvNeXtLayer,
can be represented as follows:

L(X)
= FConvNeXtLayer(X). (2)

To extract comprehensive feature representations, we input
feature L(X) into two branches. In the global branch, the global
average pooling operation is applied to L(X) and it is trans-
formed into a B × 1 × C-dim feature vector L(X)

global, which
is denoted as the global feature vector of the corresponding
input X .

Meanwhile, in the local branch, feature L(X) serves as
input to the PPB. PPB partitions the feature map into K
different part features based on the feature value and location,
resulting in the local features L(X)

localk , where k ∈ [1, K ]. This
process is detailed in Section III-B. Combining the outputs of
these two branches, we obtain both global and local features
corresponding to the input images.

2) Contrastive Optimization: CAMP employs symmetric
InfoNCE loss, mean-square error (MSE) loss, and CAM loss
to optimize the feature extractor [32], ensuring effective learn-
ing of the differences and similarities among various scene
features. Given an input Y ∈ RB×H×W×C0 for the satellite
branch, where B, H , W , C0 represent its batch size, height,
width, and channels. In CAMP, the treatment of Y parallels
that of X , resulting in the final feature extractor extracting
both the global feature L(Y )

global and local features L(Y )
localk , where

k ∈ [1, K ]. Following feature extraction, we proceed with the
computation of loss to supervise the feature extractor. This

procedure can be represented as follows:

Loss = LSin f N + m ∗ LMSE + n ∗ LCAM (3)

where

LSin f N = L
(

L(X)
global, L(Y )

global

)
Sin f N

LMSE =
1
K

K∑
k=1

L
(

L(X)
localk , L(Y )

localk

)
MSE

LCAM =
1
K

K∑
k=1

L
(

L(X)
localk , L(Y )

localk

)
CAM

.

The Loss represents the final loss directly used for
supervising the model. LSin f N , LMSE, and LCAM represent
the symmetric InfoNCE loss, MSE loss, and CAM loss,
respectively. MSE loss is a classic loss function in deep
learning, which is widely favored for its mathematical inter-
pretability and ease of computation in various regression tasks.
It is a measure used to assess the performance of models
by computing the average squared difference between two
features, with lower MSE indicating better model fit to the
data. InfoNCE loss is a standard loss function in metric
learning, while Symmetric InfoNCE loss is a refined version
tailored for the specific demands of image representation learn-
ing [44]. CAM loss, derived from our proposed CAM strategy,
is based on InfoNCE loss and serves to augment the number
of negative samples, thereby fortifying the feature contrast
constraints between distinct scenes. The specific definitions of
InfoNCE loss function and CAM loss function are elucidated
in Section III-C. Besides, the scaling coefficients m and n in
the formula are set to 1.0.
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Fig. 2. Retrieval process of our method. We use the backbone network to
encode images into features and obtain retrieval results based on the similarity
between the query feature and reference features.

3) Retrieval Process: CVGL tasks require high processing
speed and low storage usage. Therefore, the features for both
the reference and query images in the retrieval phase are
obtained from the last layer of the backbone. The dimension
of these extracted features is 1 × 1024, effectively balancing
expressiveness and simplicity. They contain sufficient infor-
mation while being compact, ensuring quick computations
during retrieval without occupying excessive space. Specifi-
cally, we demonstrate the retrieval process in Fig. 2. First, all
reference images are encoded into 1 × 1024 feature vectors
using the backbone, which construct a reference features
database. For each query image, its feature vector is extracted
using the same model, resulting in a query feature vector.
Second, the distances between the query feature vector and
each of the reference feature vectors are calculated. Finally, the
reference images are sorted based on their calculated distances
from the query image. The top N closest reference images
are then selected based on this sorted order. This process
ensures that the most similar images to the query are retrieved
efficiently.

B. Position-Aware Partition Branch

While extracting global features that are robust and con-
textually connected is essential, numerous prior studies have
demonstrated the superior effectiveness of part-based meth-
ods for image retrieval. Therefore, to direct the model’s
attention to the details of scenes, we introduce PPB, which
generates local features with fine-grained information. Unlike
the mainstream part-based geographic scene retrieval meth-
ods [10], [11] (based on manual spatial partitioning and
automatic partitioning based on feature values), our proposed
PPB prioritizes spatial positional information before adaptive
partitioning. This ensures that each local feature has distinct
positional attributes, enabling the feature extractor to capture
fine-grained, position-aware information that assists the model
in discerning images from different scenes.

In Fig. 1, the blue-highlighted region illustrates the process
of the PPB, which incorporates positional information for the
input L(X)

∈ RB×N×C and divide it into K parts. Although the
ConvNeXt network inherently retains positional information of
features, direct partitioning of final layer output features based
solely on their values neglects the positions of individual ele-
ments. Therefore, we emphasize positional information after
the backbone, followed by partitioning operation. Specifically,
for each element in the feature map, we add positional values
and compute the mean of its feature value across all channels.

Subsequently, we sort all elements in descending order based
on their channel-wise mean feature values and partition them
equally according to the number of partitions K . Denote
P ∈ RB×N×C and represents positional encoding informa-
tion, which is initialized randomly and automatically adjusted
during the training process. Following [11], the number of
partitions K is set to 3. In Section IV-E, we validated the
effectiveness of the PPB.

C. Mining Contrastive Attributes

Contrastive learning can be viewed as the task of querying
a dynamic dictionary. It is desirable to build dictionaries that
are: 1) large and 2) evolves consistently during the train-
ing process. Intuitively, a larger dictionary facilitates better
sampling of continuous, high-dimensional visual spaces, and
the keys in dictionary should be represented by similar or
identical encoders so that their comparison with queries is con-
sistent [33]. Significantly increasing the batch size is evidently
the most straightforward method to build the ideal dictio-
nary mentioned above. However, this demands computational
resources to an impractical extent. Our CAM strategy, using
contrastive constraints between images from same platform,
improves feature extractor’s ability to distinguish between
distinct scenes. It augments the number of negative samples
without extra memory cost, offering a partial solution to the
problem aforementioned.

In the green-highlighted region of Fig. 1, the CAM strategy
utilizes the contrast between images from the same platform
but distinct scenes, tripling the number of negative samples
in each training iteration. The straight arrow in the figure
represents the constraint that supervise the model to pull
the anchor closer to the sample, while the curved arrows
represent the constraints that supervise the model to push
the anchor further away from the samples. The gray arrows
denote common constraints in previous methods, while the
black arrows represent the additional negative sample con-
straints introduced by the CAM strategy. We refer to the
newly introduced negative samples as “Negative+” samples,
which are captured from the same platform. CAM imple-
ments constraints in loss calculation, based on infoNCE
loss function. Given a batch of drone images x1, x2, . . . , xB

and their corresponding satellite images y1, y2, . . . , yB , the
feature extractor output features L(X)(L(X)

1 , L(X)
2 , . . . , L(X)

B )

and L(Y )(L(Y )
1 , L(Y )

2 , . . . , L(Y )
B ), where B represents the batch

size. Consistent subscripts indicate images (or features) from
the same geographical scene and serve as positive samples
for each other. The process of computing the loss can be
represented by the following equations:

L(L(X), L(Y ))CAM = L(L(X), L(Y ))Sin f N +λ1L(L(X), L(X))in f N

+ λ2L(L(Y ), L(Y ))in f N (4)

where

L(L(X), L(Y ))in f N = −
1
B

B∑
j=0

log
exp

(
L(X)

j ·
L(Y )

j

τ

)
∑B

i=0

(
exp

(
L(X)

j ·
L(Y )

i
τ

))


L(L(X), L(Y ))Sin f N = L(L(X), L(Y ))in f N + L(L(Y ), L(X))in f N .
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Fig. 3. Comparison of contrastive attributes between previous methods and our CAM. In previous methods where contrastive learning was applied to CVGL
tasks, images from the same scene but distinct platforms were considered positive samples (as shown by the blue arrows), while images from distinct scenes
and platforms were considered as negative samples (as shown by the green arrows). Our approach leverages the relationships between images from the same
source, adding a considerable number of newly negative samples named “Negative+ samples” (as indicated by the red arrows). Furthermore, this process
incurs no extra memory cost.

Lin f N represents the InfoNCE loss, quantifying the simi-
larity between query and reference images using dot-product.
It yields low values when the query and the positive match
are similar, and high values when the negative references are
dissimilar to the query. The cross-entropy is computed as
the loss function for measuring the similarity between views.
The temperature parameter τ , which can either be learned or
set to a fixed value, adjusts the scale of the loss function.
InfoNCE loss primarily used for unsupervised image repre-
sentation learning in an asymmetric manner, but symmetric
formulations are proven useful to bridge the gap between
different domains. Therefore, we use the same symmetric
approach LSin f N to leverage the supervision in both directions.
In (4), L(L(X), L(Y ))Sin f N calculates the InfoNCE loss between
drone and satellite images, a commonly used approach in
contrastive learning research to align features from differ-
ent domains. L(L(X), L(X))in f N computes the InfoNCE loss
between drone images from distinct scenes, effectively mining
negative samples from the original drone images. Similarly,
L(L(Y ), L(Y ))in f N calculates the InfoNCE loss between satel-
lite images from distinct scenes, enhancing feature extractor’s
ability to distinguish between distinct scenes. In summary, our
CAM loss is composed of the contrastive learning loss between
samples from different platforms (drone and satellite) and
within the same platform (intra-drone and intra-satellite). This
approach increases the number of negative samples within the
same platform without requiring additional total samples, sig-
nificantly improving the model’s ability to distinguish between
scenes while maintaining the same memory consumption.
Additionally, the scaling factors λ1 and λ2 in (4) both control
the magnitude of loss between anchors and Negative+ samples
in the drone and satellite branches, respectively. The losses
in both branches share a common objective: to facilitate
the model in better learning the distinctions between scenes.
Therefore, we constrain λ1 and λ2 according to the following
equation and treat them as hyper parameters to be learned

during the training process:

λ1 · λ2 = 1. (5)

Moreover, since Negative+ samples originate from the
existing samples within the batch, the CAM strategy does not
require additional memory cost to introduce new negative sam-
ples, thereby simplifying its implementation. In Section IV-E,
we validate the effectiveness of the CAM strategy.

IV. EXPERIMENT

We first introduce two CVGL datasets and the evaluation
protocols. Then, Section IV-B describes the implementation
details. We provide the comparison with the state-of-the-
arts in Section IV-C, followed by the ablation studies in
Section IV-D.

A. Datasets and Evaluation Protocols

CAMP is proposed to solve the CVGL between
satellite-view images and drone-view images. Therefore,
we train and evaluate our method on two mainstream CVGL
datasets: University-1652 [4] and SUES-200 [45].

1) University-1652 is a large-scale multiview multi-
source dataset containing synthetic drone-view images,
satellite-view images, and ground-view images. It pio-
neered the integration of drone images for CVGL,
proposing two new tasks, i.e., drone navigation
(Satellite→Drone) and drone-view target localiza-
tion (Drone→Satellite). University-1652 collects 50 218
training images in total, and has 71.46 images per class
on average, captured from 1652 buildings of 72 univer-
sities. Moreover, the buildings in the training set and the
test set have no overlap in University-1652.

2) SUES-200 is the latest cross-view matching dataset,
which contains images from two views, drone-view,
and satellite-view. It provides diverse scenes and height
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TABLE I
COMPARISON WITH STATE-OF-THE-ART RESULTS ON UNIVERSITY-1652

views for each scene. Images in SUES-200 are from four
height views (150, 200, 250, and 300 m), acquired in
real environments of multiple types of scenes, i.e., parks,
schools, lakes, and public buildings near the Shanghai
University of Engineering Science. There are 50 drone-
view images per height view and one corresponding
satellite-view image for each location. Therefore, exper-
iments on this dataset, especially images with low flight
height, are more challenging.

3) Evaluation protocol: In our experimental evaluations,
we employ Recall@K (R@K) and average precision
(AP) metrics to assess the effectiveness of our model.
R@K quantifies the percentage of correctly matched
images within the top-K of the ranking list, where
a higher recall score indicates superior model perfor-
mance. The formula for R@K is

Recall@K =
nK

Nq
(6)

where nK represents the count of query images for which the
correct location is found within the top K results and Nq rep-
resents the total number of query images tested. Additionally,
we compute the area under the precision–recall curve, denoted
as AP, whose formula is

AP(q) =

nq∑
iq=1

(R(iq) − R(iq − 1)) · P(iq) (7)

where q represents the query item. P(i) represents the preci-
sion at position i in the list of retrieved results of q and R(i)
represents the recall at position i , showing the proportion of
correctly localized queries up to position i . nq represents the
total number of correct reference images of q . AP evaluates the
retrieval performance by considering the precision at various
recall levels, which provides insight into the precision–recall
trade-off in retrieval performance.

B. Implementation Details

Our method was implemented using the PyTorch plat-
form, and all experiments were conducted on a desktop
computer running Ubuntu 22.04 with an NVIDIA GeForce
RTX 4090 GPU.

1) In Terms of Network Structure: In our experiments,
the ConvNeXt-B with 88M parameters is used as backbone.
The backbone networks of the satellite-view branch and the
drone-view branch share weights.

2) In Terms of Training Strategy: Each experiment is con-
ducted with a batch size of 24 using the AdamW optimizer.
We set the initial learning rate of 0.001 and the cosine
learning rate scheduler with a one-epoch warmup period.
The position information used truncated normal initialization.
Data augmentation included resizing to 384 × 384, horizontal
flipping, random padding, rotation, grid dropout, cropping, and
color jitter. Moreover, we use a custom sample strategy to
prevent the occurrence of multiple images from the same class
within the batch.

3) In Terms of Loss Function: To mitigate overfitting during
training, we incorporate label smoothing with a value of
0.1 into the InfoNCE loss function and consider the tem-
perature parameter τ as a trainable parameter. Furthermore,
we treat the scaling factors λ1 and λ2 in the CAM loss function
as hyperparameters subject to learning.

4) In Terms of Testing: We utilize the Euclidean distance
metric to compute the similarity between the query image and
the candidate images in the satellite gallery.

C. Comparison With the State-of-the-Arts

1) Results on University-1652: As shown in Table I,
we compare our method with other competitive approaches
on University-1652. The proposed CAMP method has
achieved 94.46% Recall@1 accuracy and 95.38% AP on
Drone→Satellite and 96.15% Recall@1 accuracy and 92.72%
AP on Satellite→Drone. All experiments only use drone and
satellite views for training. The performance of CAMP has
surpassed the reported result of other competitive methods.

Specially, the performance has surpassed the SOTA
method [12] of about 2% R@1 improvement in the drone-view
target localization task (Drone→Satellite), establishing a
new state-of-the-art. The notable performance gain can be
attributed to CAMP’s advanced ability to effectively capture
and differentiate geographic features from both drone and
satellite perspectives. This capability significantly enhances
precision in cross-view localization tasks by ensuring that even
subtle differences in geographic characteristics are accurately
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TABLE II
COMPARISON WITH STATE-OF-THE-ART RESULTS ON SUES-200

identified and matched. As a result, CAMP provides a more
accurate solution for applications requiring precise localization
across various aerial and satellite views.

2) Results on SUES-200: We also test CAMP on SUES-
200. As shown in Table II, in the drone-view target localization
task (Drone→Satellite), the proposed CAMP has achieved
95.40%, 97.63%, 98.05%, 99.33% Recall@1 and 96.38%,
98.16%, 98.45%, 99.46% AP at four heights. In the drone
navigation task (Satellite→Drone), CAMP achieves 96.25%,
97.50%, 98.75%, 100.00% Recall@1 and 93.69%, 96.76%,
98.10%, 98.85% AP at four heights. This consistent perfor-
mance highlights the robustness of CAMP in adapting to
altitude variations, which is crucial for real-world applica-
tions. The applications of CVGL often involve diverse drone
platform capabilities, where maintaining stable performance
despite changes in altitude is essential for reliable and effective
operation.

D. Cross-Dataset Generalization Results

The generalization of geo-localization methods serves as a
crucial measure in practice. The generalization of a model
refers to its performance when trained on data from spe-
cific geographical region or type of scenes and subsequently
tested on data from other regions or different types of
scenes. To evaluate the generalization of our proposed method
for geo-localization, we conducted experiments using the
University-1652 dataset for training and the SUES-200 dataset
for testing. In our experiments, we compared our proposed
method, CAMP, with the state-of-the-art methods as MCCG
and Sample4Geo for satellite-drone CVGL. All methods were
trained under identical conditions, utilizing ConvNeXt-B as
the backbone, an image input size of 384, and a training batch

size of 48. The results presented in Table III demonstrate
that although our CAMP may not achieve the same level
of geo-localization performance as methods trained specif-
ically on the target scene, it still exhibits a notably high
success generalization in satellite-drone CVGL. Furthermore,
compared to the current state-of-the-art methods, CAMP out-
performs by a large margin in geo-localization performance.
Our method shows an average improvement of 4.56% in the
R@1 and 4.38% in the AP. Particularly when there is a
significant viewpoint difference between query and reference
images (height at 150 m), CAMP, compared to Sample4Geo,
achieves an 8.85% increase in R@1 and 7.45% in AP for
the drone-view target localization task (Drone→Satellite) and
a 3.75% increase in R@1 and 5.15% in AP for the drone
navigation task (Satellite→Drone) at the 150-m height. These
results demonstrate that our approach exhibits excellent gen-
eralization and robustness across different datasets.

E. Comparison of Feature Heatmaps

Understanding how different networks extract and empha-
size features is crucial for evaluating their performance and
interpretability. Feature heatmaps provide a visual represen-
tation of the areas in an input that a network considers
important for its predictions. Therefore, we compare the
feature heatmaps generated by our network with other method.
For this comparison, we chose to contrast our method, CAMP,
with the MCCG [25] network. Both MCCG and CAMP use
ConvNeXt as the backbone network and apply specialized
processing to the features outputted by the penultimate layer
of ConvNeXt. Therefore, we extracted the features from the
penultimate layer of ConvNeXt in both networks to generate
the heatmaps. The visualized results are shown in Fig. 4.
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TABLE III
GENERALIZATION FROM UNIVERSITY-1652 TO SUES-200

TABLE IV
COMPARISON OF MODEL PARAMETERS AND INFERENCE TIME ON UNIVERSITY-1652

The heatmap results reveal that the MCCG’s features tend
to focus on the center of the scene. In contrast, CAMP’s
features naturally highlight prominent areas within different
scenes. This difference is particularly noticeable in scenes with
irregular or multiple buildings. Our network is able to precisely
locate and gather areas of interest, avoiding a mechanical focus
on the image center. This suggests that our method is more
adapt at identifying and concentrating on significant regions
within various contexts.

F. Comparison of Model Parameters and Inference Time

In this section, we compare our proposed CAMP with sev-
eral other state-of-the-art networks in terms of the number of
parameters and inference time required to inference one-step
images in “test” part of University-1652 dataset. These metrics
are crucial for evaluating the efficiency and feasibility of
deploying models in real-world applications. A model with
fewer parameters and faster inference time is generally more
desirable for practical use, particularly in resource-constrained
environments.

We have selected the MCCG [25] and Sample4Geo [12]
models for comparison, as they use the same backbone
network as our proposed CAMP. Additionally, we included
the FSRA [11] model, which utilizes a transformer-based
backbone. As shown in Table IV, the FSRA model has
fewer parameters and shorter inference time due to its smaller
backbone network. While both MCCG and our CAMP model
incorporate additional network structures on top of the back-
bone, leading to a higher number of parameters compared
to Sample4Geo, our CAMP model has a distinct advantage.

The additional network structure in CAMP is only employed
during training. For inference, CAMP directly utilizes the
highly summarized feature vectors produced by the backbone
network. This design choice ensures that despite having more
parameters overall, the inference time for CAMP is similar
to that of Sample4Geo, demonstrating the efficiency of our
approach.

G. Ablation Studies

In the ablation studies, we first investigated the effects of
the PPB and CAM in our proposed CAMP. Considering that
the motivation behind designing the CAM strategy was to
enhance the model’s discernment without increasing the batch
size, we purposefully designed experiments to investigate the
adaptability of the CAM strategy when reducing the batch size.

1) Effect of the PPB: As depicted in Table V, ablation
experiments were conducted on University-1652. Compared
to the model without PPB, our proposed method achieves a
performance improvement of 1.20% in R@1 and 1.17% in AP
for the drone-view target localization task (Drone→Satellite).
For the drone navigation task (Satellite→Drone), there is a
performance gain of 0.57% in R@1 and 0.78% in AP. The
experimental results demonstrate that enhancing the model’s
perception of scenes through the PPB effectively improves the
results of cross-view geolocation.

2) Effect of the CAM Strategy: The CAM strategy is
designed to increase the number of negative samples in
contrastive learning, which strengthens the contrast between
different scenes. As shown in Table V, “w/ CAM” means
that our CAM strategy was adopted, which increases the
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TABLE V
ABLATION STUDY TO VERIFY THE EFFECT OF PPB AND CAM

Fig. 4. Comparison of heatmaps between MCCG [25] and CAMP. The first
column is the original image pair. The second and third columns are the heat
maps generated by the features extracted by the MCCG and CAMP network,
respectively.

number of negative samples from the same platform. “w/o
CAM” refers to the use of the traditional positive and neg-
ative sample construction strategy in contrastive learning.

Incorporating CAM strategy in the geo-localization model,
compared to not using it, results in a 0.87% increase in
R@1 and a 0.61% increase in AP for the drone-view target
localization task (Drone→Satellite). In the drone navigation
task (Satellite→Drone), there is a performance gain of 0.57%
in R@1 and 0.59% in AP. Although the sole integration of
the CAM strategy may not lead to a substantial improvement
in results, augmenting the CAM strategy on top of the PPB
achieves a further enhancement in the drone-view target local-
ization task performance, with an increase of 1.30% in R@1
and 1.11% in AP metrics.

Evidently, the combined usage of both PPB and CAM
strategy for localization demonstrates a significantly superior
performance compared to their individual application. The
experimental results demonstrate that the CAM strategy can
significantly enhance retrieval performance regardless of the
utilization of PPB.

3) Adaptability of CAM When Reducing Batch Size: As
shown in Fig. 5, we designed ablation studies to explore the
adaptability of the CAM strategy when reducing batch size.
We conducted two sets of experiments: one set employed the
CAM strategy while the other did not. We compared the results
of the two models across batch sizes ranging from 8 to 24.
Considering that the metrics for the drone navigation task
(Satellite→Drone) were relatively high and approaching sat-
uration, we chose the Recall@1 metric for the drone-view
target localization task (Drone→Satellite) as the evaluation
protocol. Under each batch size condition, the model with the
CAM strategy consistently outperformed the model without
the CAM strategy. Specifically, when the batch size decreased
from 24 to 6, the Recall@1 of the model with the CAM
strategy decreased from 94.46% to 87.36%, a decrease of
7.1%. In contrast, the Recall@1 of the model without the
CAM strategy decreased from 93.31% to 84.96%, a decrease
of 8.35%. These results demonstrate that our CAM strategy
not only can improve the identification ability of the model but
also alleviate the loss in geo-localization performance caused
by insufficiently large batch sizes.

4) Effect of K in PPB: The number of partitions K is
a crucial parameter in the PPB. In our experiments, we set
K = 3 as the default. To analyze the impact of different K
values, we conducted an ablation study examining how varying
Kinfluences the accuracy metrics R@1 and AP. As shown in
Fig. 6, we explored the retrieval results for the drone-view
target localization and drone navigation tasks as K increased
from 1 to 5. Specifically, when K = 0, the PPB is inactive.
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Fig. 5. Ablation study to explore the adaptability of CAM when reducing
batch size.

Fig. 6. Ablation study to explore the effect of the number of partitions in
PPB.

When K = 1, the PPB does not partition the feature map,
directly treating it as a whole. Our results indicate that the
best performance was achieved with K = 3, followed by
K = 2. This suggests that three partitions provide the optimal
balance between granularity and representational ability in our
model.

5) Choice of Loss Function for PPB: Our CAMP employs
a combination of symmetric InfoNCE loss, MSE loss, and
CAM loss. The symmetric infoNCE loss supports the over-
all contrastive learning framework and is commonly used
in contrastive learning research. The CAM loss, introduced
through our CAM strategy, increases the number of negative
samples without additional memory cost. The MSE loss is
utilized for PPB. We chose the MSE loss because our PPB
is designed to partition and align features, allowing MSE loss
to achieve fine-grained alignment. However, MSE loss is not
irreplaceable compared to the symmetric InfoNCE loss and
CAM loss. Therefore, we added a simple ablation study to
detect the influence of MSE loss by replacing it with other
loss functions. The results, presented in Table VI, indicate that
the best performance was achieved with MSE loss regardless
of the utilization of CAM. Upon analysis, we found that after
processing through the PPB, features are less suitable for con-
trastive loss functions like InfoNCE loss or triplet loss, which

Fig. 7. Qualitative image retrieval results on University-1652. (Top) Top-5
retrieval results of drone-view target localization. (Bottom) Top-5 retrieval
results of drone navigation.

are typically used to compare differences between features
from different regions. Instead, the features are better suited
for directly learning the similarities between features from the
same region but across different platforms. The MSE loss
effectively captures these fine-grained alignments within the
same region, leading to superior performance. This suggests
that MSE loss achieves the best fine-grained alignment for the
features partitioned by PPB, as it directly addresses the small
domain gap and enhances feature consistency across platforms.

H. Visualization of Qualitative Results

As an additional qualitative assessment, we provide visu-
alizations of retrieval outcomes for various tasks using the
University-1652 dataset in Fig. 7. For the drone-view target
localization task and the drone navigation task, we both
selected three scenes and showcased the top five retrieval
outcomes generated by the model. Correctly matched results
between query and reference images are highlighted in yellow
boxes, while incorrect results are indicated with blue boxes.

We specifically analyzed cases that do not achieve Top-1
matching and categorized the results. We defined “Mediocre
Results” as cases that do not achieve Top-1 matching but do
achieve Top-5 matching (as shown in the second and fifth
rows of Fig. 7). “Bad Results” are defined as cases that do
not achieve Top-10 matching (as shown in the third and sixth
rows of Fig. 7). We analyzed the main reasons for these poor
results.

1) High similarity between geographic scenes: Many geo-
graphic scenes in the University-1652 dataset share a
high degree of similarity, which poses a significant
challenge for accurate image retrieval. For example,
urban environments often feature similar patterns such
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TABLE VI
REPLACE MSE LOSS WITH OTHER LOSS FUNCTIONS IN PPB ON “DRONE TO SATELLITE” TASK

as grids of streets, uniform building styles, and similar
vegetation layouts. This high similarity can cause the
model to confuse one area with another, leading to
incorrect matches.

2) Changes in geological objects: Aerial and satellite
images are often not collected simultaneously, result-
ing in significant changes in the main objects within
the scene, such as building demolition, reconstruction,
or repainting. These temporal discrepancies make it
difficult for the model to correctly identify the same
geographical area in both aerial and satellite imagery,
resulting in erroneous retrievals.

3) Dense region partitioning: In the University-1652
dataset, some of the data are collected in a very dense
manner. Therefore, aerial images with smaller elevation
angles often capture objects of adjacent scenes, leading
to confusion and poor retrieval results. This is why,
in some cases, the “label” and “retrieval results” appear
to be the same scene but are evaluated as different due
to misidentification of the correct scene.

V. CONCLUSION

In this article, we analyze the CVGL task and propose a
novel method CAMP with the PPB and the CAM strategy.
The PPB is proposed to learn fine-grained features of dif-
ferent parts and captures their spatial information, providing
a comprehensive understanding of scenes from both textual
and spatial perspectives. To reinforce the constraints between
distinct scenes, we introduce the CAM strategy, which effec-
tively leverages the constraints between same-platform images
without extra memory cost. Our method achieves competitive
accuracy on the University-1652 and SUES-200 datasets and
demonstrates robust generalization capability. The results of
ablation studies confirm the viewpoint advocated throughout
this article: enhancing the model’s identification ability for
scenes is crucial and hinges on two aspects: improving its
perceptual understanding of each scene and enhancing its
ability to differentiate between distinct scenes. Moving for-
ward, we aim to explore a module for enhancing the model’s
discriminative abilities toward scenes by integrating images
from diverse perspectives.
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