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Abstract

Simultaneous localization and mapping (SLAM) is a very
challenging yet fundamental problem in the field of robot-
ics and photogrammetry, and it is also a prerequisite for
intelligent perception of unmanned systems. In recent
years, 3D LiDAR SLAM technology has made remarkable
progress. However, to the best of our knowledge, almost all
existing surveys focus on visual SLAM methods. To bridge
the gap, this paper provides a comprehensive review that
summarizes the scientific connotation, key difficulties, re-
search status, and future trends of 3D LiDAR SLAM, aim-
ing to give readers a better understanding of LiDAR SLAM
technology, thereby inspiring future research. Specifically,
it summarizes the contents and characteristics of the main
steps of LIDAR SLAM, introduces the key difficulties it
faces, and gives the relationship with existing reviews; it
provides an overview of current research hotspots, includ-
ing LiDAR-only methods and multi-sensor fusion methods,
and gives milestone algorithms and open-source tools in
each category; it summarizes common datasets, evaluation
metrics and representative commercial SLAM solutions,
and provides the evaluation results of mainstream methods
on public datasets; it looks forward to the development
trend of LIDAR SLAM, and considers the preliminary ideas
of multi-modal SLAM, event SLAM, and quantum SLAM.
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benchmark, LiDAR simultaneous localization and mapping
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INTRODUCTION

Localization and navigation are crucial for acquiring space-time information, with significant implications for in-
telligent transport, security, economy, and people's well-being. The advent of 5G, the Internet of Things (loT),
and artificial intelligence has driven a soaring demand for precise space-time data in various societal and indus-
trial contexts. Current localization and navigation technology relies on the Global Navigation Satellite System
(GNSS), but its performance is hindered by weak satellite signals, rendering it highly unreliable in GNSS-denied
settings (Shi et al., 2020), like indoors, jungles, and tunnels. In contrast, simultaneous localization and mapping
(SLAM) technology is an active localization technology that operates independently of external signals, including
satellites and geomagnetism. SLAM facilitates seamless navigation in both indoor and outdoor environments.
Consequently, SLAM is essential, serving as the foundation and assurance for enabling intelligent perception in
unmanned systems.

SLAM is a technology that simultaneously restores the pose of an unmanned system and constructs a map
model of the surrounding environment (Cadena et al., 2016). When navigating in an unknown environment, an
unmanned system acquires scene observations (e.g., images, point clouds, inertial data, etc.) through mounted
sensors, and SLAM restores the real-time position and attitude of the unmanned system through spatial-temporal
correlation of the observations, thereby realizing localization and mapping. SLAM methods are mainly divided into
two categories according to the sensor type, that is, visual SLAM (Campos et al., 2021; Davison et al., 2007; Engel
etal., 2014, 2018; Forster et al., 2014; Klein & Murray, 2007; Mur-Artal et al., 2015; Mur-Artal & Tardds, 2017) and
LiDAR SLAM (Borrmann et al., 2008; Bosse & Zlot, 2009; Duan et al., 2023; Li et al., 2016; Li, Shi, et al., 2023a;
Shan et al., 2020; Shan & Englot, 2018; Xu, Cai, et al., 2022; Zhang & Singh, 2014). Compared with visual SLAM,
LiDAR SLAM (mainly referred to as 3D LiDAR) has the advantages of high mapping accuracy, good stability, un-
affected by illumination changes, and no scale drift, which makes it more popular in real large-scale applications.
In addition, the multi-sensor fusion scheme based on LiDAR SLAM has shown higher localization accuracy and
stability, which is the current research hotspot and development trend. In short, the development of LIDAR SLAM
technology will largely promote the progress and breakthroughs of intelligent perception applications such as 3D
surveying and mapping, unmanned driving, military navigation, and deep space exploration.

In the past decades, SLAM research has made significant progress in both accuracy and robustness, and a
number of milestone methods have emerged. However, due to factors such as motion distortions, occlusions,
illumination changes, repeated/weak textures, and long-term mapping, SLAM technology remains challenging.
To encourage beginners to engage in this field and inspire future research, scholars have summarized a series
of excellent tutorials and reviews, which sort out the taxonomy, difficulties, benchmarking, and open problems
of SLAM (Bailey & Durrant-Whyte, 2006; Cadena et al., 2016; Durrant-Whyte & Bailey, 2006; Fraundorfer &
Scaramuzza, 2012; Grisetti et al., 2010; Scaramuzza & Fraundorfer, 2011; Yousif et al., 2015). However, they pri-
marily focus on the visual SLAM problem, necessitating a comprehensive and systematic survey of LiDAR SLAM
methods to bridge this gap. This paper summarizes the scientific connotation, key difficulties, research status, and
future trends of LIDAR SLAM technology. Figure 1 shows a detailed methodological taxonomy of existing meth-
ods for LIDAR SLAM. The main contributions of this survey are four-fold:

e We present a systematic LIDAR SLAM review that covers the framework, challenges, taxonomy, benchmarking,
future trends, etc.

e We give an in-depth overview of LIDAR SLAM methods, with brief summaries of advantages and limitations for
each subcategory.

e We summarize commonly used datasets, evaluation metrics, and successful commercial SLAM solutions, and
provide comprehensive comparisons of existing methods.

e We discuss the open problems and look forward to the new development trends to provide insightful guidance

for the community.
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FIGURE 1 Methodological taxonomy of existing LIDAR SLAM. Mainstream methods are divided into LiDAR-
only frameworks (feature-based, direct and projection-based) and multi-sensor fusion solutions (LiDAR-inertial,
LiDAR-visual and LiDAR-inertial-visual).

The structure of this paper is as follows. Section 2 introduces the background of LiDAR SLAM, including
its concept, characteristics, framework, and key difficulties. Section 3 presents an in-depth overview of current
LiDAR-only and multi-sensor fusion methods. Section 4 summarizes publicly available datasets, evaluation met-
rics, and benchmarking results. Section 5 presents several promising future directions. Finally, Section 6 con-
cludes the paper.

BACKGROUND
Anatomy of a LiDAR SLAM

A complete LIDAR SLAM system mainly includes two modules: the front end and the back end (Cadena et al., 2016).
The front end (also known as odometry) first achieves data association and pose estimation of adjacent LiDAR
scans through matching (a LiDAR scan refers to a collection of scanned points in a few moments of time, similar
in concept to an image frame), and then uses loop-closure detection technology to construct pose constraints
between the current LiDAR scan and the set of historical LIDAR scans. It can be seen that it contains two major
components: scan matching and loop-closure detection. The back end uses optimization technology to globally
adjust the model built by the front end to overcome the error cumulative introduced by incremental scan match-
ing, which is an adjustment process. Figure 2 summarizes the classic framework and three components, that is,

scan matching, loop-closure detection, and optimization are briefly reviewed.

Front end

Scan matching
It also known as point cloud registration is the problem of aligning two LiDAR scans in order to recover their rela-
tive poses. It is the de-facto standard technology for LIDAR data association, which is mainly divided into two
categories: feature matching methods and direct matching methods.

Direct matching methods directly use LiDAR scan points for data association and pose estimation. Methods
based on probability models such as normal distributions transform (NDT) (Biber & Strasser, 2003; Hong &
Lee, 2017) have poor predictability of matching results, and correlation matching methods based on grid oc-

cupancy such as cartographer (Hess et al., 2016) have high computational complexity. Therefore, methods

s BuayoBuad Aq 26v2T 40ud/TTTT'OT/10p/W0D" A5 1M AkeiqjouUO//SANY WOy popeo|umoq ‘98T ‘¥Z0e ‘0EL6LLYT

85U8017 SUOLLILLIOD dA1TE.D) 8]qeo! dde au Ag peueno a1e s9oiie VO !8sN J0 S8|NJ 0} A%iqiT8uljuO A1 UO (SUONIPUOD-PUR-SWUBIALIY A8 1M Ale1q 1 U1 |UO//SHNY) SUORIPUOD PUe SWIB | 8U188S " [1202/90/0T] Uo ARiq1T8uliuO A8|IM * AISIBAIUN UYNM -



460 | 3D LiDAR SLAM: A SURVEY

Sensor SLAM
front-end back-end .
data estimate
Scan matching : ﬂw’;{ Ad
o l (short-term) i optimization :
P i Loop-closure detection :
I (long-term) 3
* Pose+Map

FIGURE 2 Framework of LIDAR SLAM (Cadena et al., 2016). A traditional system comprises two key
components: a front end (red) and a back end (green). It takes sensor data as input and yields mapping and pose
information.

based on geometric models such as iterative closest point (ICP) (Besl & McKay, 1992) have gradually become
mainstream. Representative ICP-based SLAM methods include SLAM6D (Borrmann et al., 2008), IMLS-SLAM
(Deschaud, 2018), GLIM (Koide et al., 2021a), CT-ICP (Dellenbach et al., 2022), Fast-LIO (Xu & Zhang, 2021), etc.
ICP is a technique to simultaneously calculate the current optimal correspondences and the optimal rigid-body
transformation, which has been widely used in point cloud registration. After more than 30years of develop-
ment, many mature variants of ICP have emerged. These variants improve one or several steps of the original ICP
framework, including subset sampling (e.g., random sampling, octree sampling [Schnabel & Klein, 2006], Voxel-
grid filtering [Rusu & Cousins, 2011], histogram sampling [Ervan & Temeltas, 2023]), distance metrics (e.g., point-
to-line [Censi, 2008], point-to-plane [Chen & Medioni, 1992], symmetric point-to-plane [Rusinkiewicz, 2019],
plane-to-plane [Koide et al., 2021b; Segal et al., 2009]), outlier rejection (e.g., sparse norm [Bouaziz et al., 2013;
Li, Hu, & Ai, 2020a], anisotropy ICP [Maier-Hein et al., 2011], M-estimation [Chetverikov et al., 2005; Li, Hu,
Ai, & Wang, 2021; Li, Hu, et al., 2022; Zhang et al., 2022]), and computational efficiency (e.g., Fast ICP [Zhang
et al., 2022], EfficientVarlCP [Rusinkiewicz & Levoy, 2001], and Anderson-accelerated ICP [Pavlov et al., 2018]).
Although these methods have high accuracy, they are highly dependent on the initializations due to partial over-
lapping, occlusions, and noise, which make it easy to fall into local extrema. With the great success of deep learn-
ing, point cloud registration methods based on end-to-end neural networks have also attracted much attention
(Aoki et al., 2019; Choy et al., 2020; Huang et al., 2021; Wang & Solomon, 2019a, 2019b). However, their perfor-
mances in SLAM are not as good as the ones of traditional geometric model methods.

Feature matching methods perform data association and pose estimation based on highly significant features
in LIiDAR scans to improve computational efficiency. Among them, LOAM (Zhang & Singh, 2014) is the most classic
and widely used method. It extracts both linear and planar features based on the curvature information of the
LiDAR scan lines. To make LOAM suitable for various types of LIDAR, LOAM-Livox (Lin & Zhang, 2020) designed
a feature selection strategy for petal-shaped scanning; MULLS (Pan et al., 2021) extracts ground, elevation, co-
lumnar, and linear features based on principal component analysis (PCA). These methods (Lin & Zhang, 2020;
Pan et al., 2021; Shan & Englot, 2018; Wang, Wang, Chen, & Xie, 2021; Zhang & Singh, 2014; Zhao et al., 2022)
establish correspondences by searching closest points, which is consistent with the ICP-type methods in essence,
and also has the problem of local extrema. Existing schemes usually assume that the robot is in a local uniform or
low-speed motion state, and use the pose prior information as the initializations to eliminate this problem.

Methods based on 3D feature descriptors can solve the above-mentioned prior hypothesis dependence prob-
lem. Similar to image feature matching (Li, Hu, & Ai, 2020b; Li, Shi, et al., 2023b; Li, Xu, et al., 2022; Lowe, 2004),
3D feature matching also includes the following steps: feature detection (e.g., intrinsic shape signatures [ISS]
[Zhong, 2009], KeypointNet [You et al., 2020], USIP [Li & Lee, 2019], Rskdd-net [Lu et al., 2020], etc.), feature
description (e.g., fast point feature histogram (FPFH), 3DMatch, SpinNet, GeDlI, etc.), matching relationship
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establishment (e.g., nearest neighbour distance ratio [Lowe, 2004], chi-square test [Zhong, 2009], etc.), and mis-
match elimination (e.g., RANSAC [Barath et al., 2022; Fischler & Bolles, 1981; Li et al., 2017; Li, Hu, & Ai, 2020c],
robust estimators [Jiang et al., 2023; Li, Hu, & Ai, 2021; Li, Zhao, et al., 2020; Yang et al., 2021], GORE [Li, 2022;
Parra Bustos & Chin, 2018], etc.). However, due to problems such as disordered organization, uneven density, lack
of texture, and structural occlusion, the outlier rate of 3D feature matching can reach 90%; in addition, descriptor-
based methods have high computational complexity and are difficult to process in real time. These issues prevent
them from becoming mainstream scan-matching methods for LIiDAR SLAM.

Loop closure detection (LCD)

It establishes global constraints in the pose graph by identifying historical scenes highly similar to the current
point cloud frame. Ensuring a robust LCD module is pivotal for overall system performance, as it effectively miti-
gates trajectory drift and facilitates high-precision map creation.

Current mainstream LCD techniques primarily encompass position prior-based, scene descriptor-based, and
deep learning-based approaches. Position prior-based methods (Dellenbach et al., 2022; Shan & Englot, 2018) re-
duce interference frames via local windows, cutting down the search space and enhancing the practicality of point
cloud matching-based LCD. However, they demand higher current position accuracy. Scene descriptor-based
methods encode point cloud frames as feature vectors and detect closed loops by measuring feature vector sim-
ilarity, enabling significant data compression and detection efficiency improvement. Notable techniques include
M2DP (He, Wang, & Zhang, 2016), SC (Kim & Kim, 2018), LiDAR-IRIS (Wang et al., 2020), SC++ (Kim et al., 2022),
etc. Deep learning-based methods excel in image/point cloud tasks and have been widely integrated into LCD, for
example, LocNet (Yin et al., 2018), OREQOS (Schaupp et al., 2019), and OverlapNet (Chen, Labe, et al., 2022), yet ex-
hibit limited generalization capabilities. However, LCD encounters two significant challenges. (1) Scene perception
ambiguity: discriminating between scenes with high structural similarity (e.g., stairs, corridors, tunnels) remains
challenging; and (2) insufficient information richness: Point cloud data lacks texture compared to images, making
scene description more challenging. These issues can lead to incorrect closed loops, and even valid closed loops
can be overshadowed in complex scenarios, posing significant challenges for subsequent graph optimization.

Recently, several works have explored innovative solutions for addressing the LCD problem. Shi et al. (2021; Ye
et al., 2020) utilize indoor walls as a similarity criterion for scene comparison and employ wall matching for relative
pose estimation, but this approach is limited in scenes lacking walls. Several works (Chen, Vizzo, et al., 2021; Lu,
Zhou, et al., 2019; Schmiedel et al., 2015; Shi, Li, & Zhang, 2023a, 2023b; Wiesmann et al., 2022) aim for precise
global vehicle localization within high-precision (HD) maps. However, offline maps typically entail higher mem-
ory consumption and necessitate timely updates. Some researchers incorporate transformers (Ma et al., 2022),
semantics (Li, Kong, Zhao, Li, et al., 2021), and sequence data (Yin et al., 2022) into loop detection, but these
methods demand extensive computational resources and warrant improvements in generalization capabilities. In
summary, LCD remains an unsolved challenge in LIDAR SLAM, and achieving faster efficiency and higher accuracy

recognition represents a complex and promising direction for future research.

Back end

The back end can be divided into filtering-based methods and graph optimization methods (Cadena et al., 2016).
Filtering-based methods are early approaches for SLAM problems, which are derived from Bayesian estimation theory.
It turns out that they are not as accurate and efficient as graph optimization methods in large-scale scenarios. Therefore,
this article focuses on the currently more favoured graph optimization methods. More detailed information on filtering-
based methods can be found in the surveys (Bailey & Durrant-Whyte, 2006; Durrant-Whyte & Bailey, 2006).

Among graph optimization methods, the SLAM problem is often formulated as maximum a posteriori (MAP)

estimation, and factor graphs or pose graphs are often used to reason about the interdependencies between
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variables. The pose graph is a graph structure composed of nodes and edges, where the nodes reflect the pose
information of the robot at each moment, and the spatial constraints of poses at different moments are encoded
in the edges (Grisetti et al., 2010). The goal of graph optimization is to find the optimal pose configuration that
satisfies all constraints through adjustment. Iterative non-linear optimization, such as Gauss-Newton methods
(Kaess et al., 2008; Kiimmerle et al., 2011; Nasiri et al., 2021) and gradient descent methods (Grisetti et al., 2009;
Olson et al., 2006), exploits the sparsity of the pose graph to enable the use of fast linear solvers, which has be-
come the standard method of graph optimization technology and has developed many mature open-source tools,
such as GTSAM (Dellaert, 2012), iSAM (Kaess et al., 2008, 2012), G20 (Kimmerle et al., 2011), Ceres (Agarwal
et al., 2022), etc. However, iterative-based optimization methods cannot achieve the global optimal solution.

In recent years, researchers have found that under the condition of strong duality, the maximum likelihood es-
timation of this problem has a unique solution. Based on this observation, a series of convex relaxed optimization
methods with globally optimal solutions are proposed (Carlone et al., 2016; Fan et al., 2020; Lajoie et al., 2019; Rosen
et al., 2015). At present, these methods are still in the stage of theoretical research. In addition, scan matching and
loop-closure detection inevitably result in outlier observations, while the above methods assume that the observa-
tion noise conforms to a normal distribution and is very sensitive to outliers. A large number of methods have intro-
duced robust estimation technology to automatically detect outliers, such asl;-norm estimation (Carlone et al., 2014;
Casafranca et al., 2013), max-mixture model (Olson & Agarwal, 2013; Wang & Olson, 2014), M-estimation (Carlone
& Calafiore, 2018; Lajoie et al., 2019), etc. However, these methods are limited by theoretical bottlenecks and only
consider the graph optimization problem at low outlier ratios (Li, Zhang, & Hu, 2021). Therefore, algorithms with the
global optimal solution and higher robustness are one of the development trends of graph optimization technology.

Challenges of LIDAR SLAM

While image processing technology has matured, visual sensors like cameras face challenges in dynamic urban set-
tings, highways, and supermarkets due to sensitivity to lighting changes, dynamic environments, and adverse weather
conditions. LiDAR has gained significant research interest because of its capacity to offer rich 3D information, wide
field of view (FOV), and rapid update rates. Some methods have employed point cloud registration (Ji & Singh, 2017,
Shan & Englot, 2018; Wang, Wang, Chen, & Xie, 2021), image representation (Cho et al., 2020; Wang, Saputra,
et al., 2019), transformer (Liu et al., 2023), semantic information (Li, Kong, Zhao, Li, et al., 2021), branch and bound
theory (Hess et al., 2016), and multi-source data fusion (Lin & Zhang, 2022a; Zuo et al., 2019) to enhance LiDAR
SLAM. Despite their reported performance improvements, LiDAR SLAM still confronts the following challenges:

Weather condition

Laser signals exhibit less attenuation and longer propagation distances on sunny days while decaying signifi-
cantly in rainy and foggy weather. LIDAR SLAM in adverse weather conditions often experiences degradation
or failure.

Sensor diversity

There are three primary LiDAR types: mechanical, solid-state, and phased-array, each with distinct imaging princi-

ples, FOV, frequencies, and point cloud densities. Current LiDAR SLAM algorithms are tailored to specific LiDAR

types and lack universal applicability across different LiDAR categories.
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LCD

There is an immediate demand for a robust, efficient, and precise LCD algorithm. Accurately identifying revisited
places within a vehicle's trajectory is crucial for mitigating cumulative pose errors and enhancing mapping accu-

racy. Conversely, erroneous detection poses significant risks to the system.

Multi-sensor fusion

Synchronizing and accurately calibrating information between LiDAR and other sensors (e.g., cameras, IMU, radar,

wheel encoders) is challenging due to their significantly different frequencies.

Module cooperation

The standard LiDAR SLAM framework comprises front end and back end components. However, a comprehensive
unmanned autonomous system necessitates integration with perception, control, and planning modules, which

entails complex inter-module collaboration.

System efficiency

A single LiDAR frame generally contains tens or hundreds of thousands of points, making point cloud feature ex-
traction and matching time-intensive. If HD maps are involved, processing frames and maps may further increase

time requirements.

Relation to previous surveys

Recent computer vision advancements have resulted in numerous reviews on visual SLAM (Bailey & Durrant-
Whyte, 2006; Durrant-Whyte & Bailey, 2006; Fraundorfer & Scaramuzza, 2012; Nister et al., 2004; Saputra
et al., 2018; Taketomi et al., 2017; Yousif et al., 2015). While these reviews have significantly advanced robotics
and autonomous driving research, they have regrettably overlooked LiDAR technology. Cadena et al. (2016)
extensively review the current state of SLAM and delve into potential future directions. Grisetti et al. (2010)
present an introductory description of the graph-based SLAM and discuss state-of-the-art (SOTA) solu-
tions based on least-squares error minimization. Debeunne & Vivet (2020) offer a comprehensive survey on
visual-LiDAR SLAM. However, their sections discussing LiDAR are relatively limited in content. Shi, Zhang,
and Li (2023) provide a comprehensive review of place recognition methods employing LiDAR sensors and
conduct an in-depth review of related research, while it merely represents a module of LiDAR SLAM. Huang
et al. (2021) summarize common LiDAR SLAM frameworks and core module functions but provide an insuf-
ficient literature review.

Unlike prior research, our review exclusively concentrates on LiDAR-based SLAM studies. It delivers a com-
prehensive overview of the framework, task challenges, method taxonomy, and code resources. Furthermore, it
collects more open-source datasets, evaluation metrics, commercial SLAM solutions and experimental perfor-

mance on public datasets while pointing out promising future research directions.
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LITERATURE REVIEW
LiDAR-only SLAM
Feature-based methods

LiDAR actively emits and receives laser signals to create 3D point clouds depicting real-world surfaces. However,
dense point clouds often carry redundant data, impeding computation efficiency. Feature-based systems aim to
extract representative features with tangible physical significance and estimate vehicle motion through feature
association. Typically, feature-based methods encompass basic and advanced features, depending on their char-
acteristics. Table 1 gives a summary of these methods. Figures 3 and 4 illustrate the workflow and mapping results

of various representative methods.

Basic feature-based SLAM

Basic features refer to fundamental geometric properties like coordinates, colours, intensities, curvatures, and
normals. They can be derived from individual or grouped points to comprehend the underlying 3D scene. One
type of feature pertains to appearance characteristics, encompassing colour, reflectance, and texture, which
describe the visual appearance of the point cloud and aid in material differentiation on surfaces. As shown in
Figures 3a and 4a, LOAM-Livox (Lin & Zhang, 2020) introduces a SLAM system tailored to LiDARs with limited
FOV, building upon the basic structure of standard LOAM while bringing forth notable innovations, including
reflectivity-driven point selection, iterative pose optimization, and parallelization. Intensity-SLAM (Wang, Wang,
& Xie, 2021) devises an intensity-assisted framework utilizing both intensity and geometry data for odometry
estimation, integrating intensity-based LCD and factor graph optimization, and outperforming geometry-only
methods across varied environments.

The other common types, namely geometric features, encompassing coordinates, distances, normals, curva-
ture, and density, which describe point properties related to their spatial arrangement or geometry. LOAM (Ji &
Singh, 2017; Zhang & Singh, 2014) is a pioneering LIDAR SLAM framework that extracted 3D planar and edge
points using curvatures, enabling high-frequency odometry calculations through point-to-line and point-to-plane
distance minimization and linear interpolation-based motion compensation. It optimizes poses by registering
accumulated scans into maps, achieving low-frequency mapping and transformation integration. Subsequently,
several LOAM variants incorporate LCD (Rozenberszki & Majdik, 2020; Shan & Englot, 2018), local bundle ad-
justment (Liu & Zhang, 2021), and non-linear distortion compensation (BA) (Wang, Wang, Chen, & Xie, 2021) to
bolster system robustness. Other variants (Jiao et al., 2021, 2022; Lin et al., 2020) have successfully extended to
multi-robot systems. Another research branch employs learning techniques to detect interest or matching points.
CAE-LO (Yin et al., 2020) employs a convolutional auto-encoder-based odometry for detecting interest points
from spherical ring data and a 3D encoder for feature extraction from multi-resolution voxel models. It ensures
efficient computation, retains the original 3D shape, and exhibits high versatility. DMLO (Li & Wang, 2020) devises
a sparse matching odometry framework involving point cloud projection onto a cylindrical plane, cascade convo-
lutional neural network (CNN) for grid-wise feature extraction and corresponding points, and rigid transformation

solution through singular value decomposition (SVD).

Advanced feature-based SLAM

Advanced features encompass broader attributes derived through sophisticated processing techniques to de-
scribe the scene and object-level information. The first type is semantics, involving the meaningful interpretation
of points based on their content or 3D context. By assigning labels (e.g., car, road, building, and tree) to repre-
sent point categories, the understanding of elements within the 3D environment will be enhanced. SA-LOAM (Li,
Kong, Zhao, Li, et al., 2021) (Figure 3b) introduces a semantic-enhanced SLAM, building upon F-LOAM (Wang,
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TABLE 1 Summary of feature-based SLAM. These methods are organized based on feature types, method
names, published years and code websites.

Type Feature Method Year Code
Basic feature- Appearance LOAM-Livox (Lin & 2020 https://github.com/hku-mars/loam_livox
based SLAM Zhang, 2020)
Intensity-SLAM (Wang, 2021 https://github.com/wh200720041/inten
Wang, & Xie, 2021) sity_slam
Geometry LOAM (Zhang & 2017 https://github.com/laboshinl/loam_
Singh, 2014; Ji & velodyne
Singh, 2017)
LeGO-LOAM (Shan & 2018 https://github.com/RobustFieldAuto
Englot, 2018) nomylLab/LeGO-LOAM
LOL (Rozenberszki & 2020 https://github.com/RozDavid/LOL
Majdik, 2020)
Lin et al. (Lin 2020 https://github.com/hku-mars/decentrali
et al., 2020) zed_loam
CAE-LO (Yin 2020 https://github.com/SRainGit/CAE-LO
et al., 2020)
DMLO (Li & 2020 x
Wang, 2020)
BALM (Liu & 2021 https://github.com/hku-mars/BALM

Zhang, 2021)

F-LOAM (Wang, Wang, 2021 https://github.com/wh200720041/floam
Chen, & Xie, 2021)

M-LOAM (Jiao 2021 https://ram-lab.com/file/site/m-loam
etal., 2021)
Advanced Semantics S-LOAM (Chen 2020 X
feature- et al., 2020)
based SLAM PSF-LO (Chen, Wang, 2021  x
et al.,, 2021)
SA-LOAM (Li, Kong, 2021 X
Zhao, Li, et al., 2021)
Generalized-LOAM 2023 https://github.com/kohonda/proj-gloam
(Honda et al., 2022)
Shape Bosse et al. (2009) 2009 X
Velas et al. (2016) 2016 https://github.com/robofit/but_velod
yne_lib
Grant et al. (2019) 2019 X
MULLS (Pan 2021 https://github.com/YuePanEdward/
etal., 2021) MULLS

Wang, Chen, & Xie, 2021) (Figure 4b), with a semantic-assisted ICP and a semantic graph-based LCD. Leveraging
semantics elevates accuracy in localization, enhances LCD, and ensures global map consistency, even in expansive
environments. Other works leverage semantic segmentation techniques to offer valuable insights for local shape
description (Honda et al., 2022), odometry estimation (Chen, Wang, et al., 2021) (Figure 4c), and optimization
(Chen et al., 2020).

Shape characteristic is another vital advanced feature that describes and elucidates the overall shape and

structure of surfaces, facilitating the analysis of shape-related aspects within the 3D environment. Bosse and

s BusyoBued Aq 2621 10yd/TTTT OT/I0p/W00 A8 |1 Ake.q1jpul juo//:SANY Wiy popeojumoq ‘98T ‘v20Z ‘0EL61L5T

85U8017 SUOLLILLIOD dA1TE.D) 8]qeo! dde au Ag peueno a1e s9oiie VO !8sN J0 S8|NJ 0} A%iqiT8uljuO A1 UO (SUONIPUOD-PUR-SWUBIALIY A8 1M Ale1q 1 U1 |UO//SHNY) SUORIPUOD PUe SWIB | 8U188S " [1202/90/0T] Uo ARiq1T8uliuO A8|IM * AISIBAIUN UYNM -


https://github.com/hku-mars/loam_livox
https://github.com/wh200720041/intensity_slam
https://github.com/wh200720041/intensity_slam
https://github.com/laboshinl/loam_velodyne
https://github.com/laboshinl/loam_velodyne
https://github.com/RobustFieldAutonomyLab/LeGO-LOAM
https://github.com/RobustFieldAutonomyLab/LeGO-LOAM
https://github.com/RozDavid/LOL
https://github.com/hku-mars/decentralized_loam
https://github.com/hku-mars/decentralized_loam
https://github.com/SRainGit/CAE-LO
https://github.com/hku-mars/BALM
https://github.com/wh200720041/floam
https://ram-lab.com/file/site/m-loam
https://github.com/kohonda/proj-gloam
https://github.com/robofit/but_velodyne_lib
https://github.com/robofit/but_velodyne_lib
https://github.com/YuePanEdward/MULLS
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FIGURE 3 Four representative feature-based methods. (a) and (b) are originally shown in Lin & Zhang (2020)
and Li, Kong, Zhao, Li, et al. (2021), respectively.

(c) PSF-LO [134] in Urban (d) MULLS [57] in Urban

FIGURE 4 Mapping results of representative feature-based methods.
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Zlot (2009) incorporate 3D grid-based local geometry and vehicle motion constraints into point matching, laying
the groundwork for a thorough 3D SLAM and eliminating the necessity for odometric or inertial sensors. Velas
et al. (2016) form a line cloud representation via randomly generated collar line segments (CLS) and estimate a
transformation aligning matched line segments onto a 3D plane, addressing LiDAR point cloud sparsity. Grant
et al. (2019) employ an efficient plane detector for stable feature extraction, serving both localization and graph-
based SLAM landmarks. This method accommodates non-smooth trajectories, making it applicable to humanoid
and aerial robots without necessitating odometry measurements. As shown in Figure 4d, MULLS (Pan et al., 2021)
utilizes dual-threshold ground filtering and PCA for extracting ground, facade, pillar, and beam features. It es-
timates ego-motion via optimized point-to-point (plane, line) error metrics within each point class and employs

hierarchical pose graph optimization to mitigate drift from dead reckoning.

Direct methods

Different from feature-based methods, direct LIDAR SLAM operates on the entire point cloud, eliminating the need
for feature extraction and utilizing direct matching for pose calculation. This characteristic renders it well-suited
for featureless environments and provides higher accuracy and resolution maps. Contingent on the matching pro-
cess, direct SLAM methods typically encompass two primary matching processes: scan-to-scan and scan-to-model
methods. Table 2 gives a method classification while Figures 5 and 6 shows several representative direct methods.

Scan-to-scan matching
Scan-to-scan methods typically employ point cloud matching to compute the relative pose between two sequential point
clouds, incrementally building a point cloud map. A prevalent approach involves employing ICP (Besl & McKay, 1992)
for ascertaining the relative pose between two point clouds. ICP, a well-established point cloud registration, iteratively
refines transformation parameters by identifying the nearest corresponding points. It finds broad application in robot-
ics, 3D reconstruction, and geographic information systems (GIS). SLAM6D (Borrmann et al., 2008) pioneers the appli-
cation of ICP for sequential scan registration, using distance criteria within a graph to detect closed loops. This method
effectively mitigates error accumulation issues in sequential matching approaches. The original ICP excels in achieving
precise point cloud alignment and generating dense maps, rendering it suitable for accurate localization and mapping.
However, it heavily depends on the initial pose and struggles in high-speed or occluded scenarios. Subsequent research
introduces ICP variants like generalized ICP (GICP) (Koide et al., 2021a; Reinke et al., 2022), KL-divergence-based ICP
(Yokozuka et al., 2021) (Figure 6a), and voxelized generalized ICP (VGICP) (Frosi & Matteucci, 2022) for the system.
Inspired by deep learning's success in visual odometry, researchers have extended this technology to LiDAR
odometry. The network takes two real-time point clouds as input and predicts the odometry pose. As shown in
Figure 5(b), LO-Net (Li et al., 2019) introduces a scan-to-scan LiDAR odometry network, improving feature repre-
sentation with a novel mask-weighted geometric constraint loss. It implicitly handles sequential dependencies and
data dynamics. Furthermore, it includes a scan-to-map module that enhances accuracy by incorporating geomet-
ric and semantic information. DeepVCP (Lu, Wan, et al., 2019) introduces an end-to-end framework for point cloud
registration. It generates corresponding points using learned matching probabilities among candidate groups,
which enhances registration accuracy and effectively mitigates interference from dynamic objects. HPPLO-Net
(Zhou et al., 2023) (Figure 6b), an unsupervised hierarchical framework for large-scale dynamic outdoor scenes,
achieves precise pose estimation using a differentiable point-to-plane solver with scene flow information. It em-
ploys a differentiable weighted point-to-plane SVD to resolve the pose matrix and rectify data association inac-
curacies. Learning-based odometry excels at discerning intricate patterns in LiDAR data, resulting in enhanced
accuracy. Nevertheless, it lacks transparency and interpretability, posing difficulties in comprehending the mod-
el's decision-making process and hindering generalization, particularly in scenarios significantly divergent from

the training data distribution.
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TABLE 2 Summary of direct LIDAR SLAM. These methods are organized based on matching types, method
names, published years and code websites.

Type

Scan-to-scan

Scan-to-map

Feature

Handcrafted ICP

Neural network

Point cloud map

Surfel map

Other types

Method

SLAMG6D (Borrmann et al., 2008)
GLIM (Koide et al., 2021a)
LITAMIN2 (Yokozuka et al., 2021)

LOCUS 2.0 (Reinke et al., 2022)

LO-Net (Li et al., 2019)

DeepVCP (Lu, Wan, et al., 2019)

HPPLO-Net (Zhou et al., 2023)

Cartographer (Hess et al., 2016)

HDL-Graph-SLAM (Koide et al., 2019)

CT-ICP (Dellenbach et al., 2022)

KISS-ICP (Vizzo et al., 2023)

Elastic LiDAR (Park et al., 2018) fusion
Droeschel & Behnke (2018)
SuMa (Behley & Stachniss, 2018)

SuMa++ (Chen et al., 2019)

MARS (Quenzel & Behnke, 2021)

IMLS-SLAM (Deschaud, 2018)
Vizzo et al. (2021)

Year

2008
2021
2021

2022

2019

2019

2023

2016

2019

2022

2023

2018
2018
2018

2019

2021

2018
2021

Code

X
X

https://github.
com/bzdfzfer/
litamin2

https://github.com/
NeBula-Auton
omy/LOCUS

https://github.com/
PawitKoch/LO-
Net-pytorch/
tree/main

https://github.com/
vccheng2001/
DeepVCP-Point
cloud-Regis
tration

https://github.com/
IMRL/HPPLO
-Net

https://github.
com/googlecart
ographer

https://github.com/
koide3/hdI_
graph_slam

https://github.com/
jedeschaud/
ct_icp

https://github.
com/PRBonn/
kiss-icp

X

X

https://jbehley.
github.io/proje
cts/surfel _
mapping

https://github.com/
PRBonn/seman
tic_suma

https://github.
com/AlS-Bonn/
lidar_mars_regis
tration

X

https://github.com/
PRBonn/puma
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https://github.com/bzdfzfer/litamin2
https://github.com/bzdfzfer/litamin2
https://github.com/bzdfzfer/litamin2
https://github.com/NeBula-Autonomy/LOCUS
https://github.com/NeBula-Autonomy/LOCUS
https://github.com/NeBula-Autonomy/LOCUS
https://github.com/PawitKoch/LO-Net-pytorch/tree/main
https://github.com/PawitKoch/LO-Net-pytorch/tree/main
https://github.com/PawitKoch/LO-Net-pytorch/tree/main
https://github.com/PawitKoch/LO-Net-pytorch/tree/main
https://github.com/vccheng2001/DeepVCP-Pointcloud-Registration
https://github.com/vccheng2001/DeepVCP-Pointcloud-Registration
https://github.com/vccheng2001/DeepVCP-Pointcloud-Registration
https://github.com/vccheng2001/DeepVCP-Pointcloud-Registration
https://github.com/vccheng2001/DeepVCP-Pointcloud-Registration
https://github.com/IMRL/HPPLO-Net
https://github.com/IMRL/HPPLO-Net
https://github.com/IMRL/HPPLO-Net
https://github.com/googlecartographer
https://github.com/googlecartographer
https://github.com/googlecartographer
https://github.com/koide3/hdl_graph_slam
https://github.com/koide3/hdl_graph_slam
https://github.com/koide3/hdl_graph_slam
https://github.com/jedeschaud/ct_icp
https://github.com/jedeschaud/ct_icp
https://github.com/jedeschaud/ct_icp
https://github.com/PRBonn/kiss-icp
https://github.com/PRBonn/kiss-icp
https://github.com/PRBonn/kiss-icp
https://jbehley.github.io/projects/surfel_mapping
https://jbehley.github.io/projects/surfel_mapping
https://jbehley.github.io/projects/surfel_mapping
https://jbehley.github.io/projects/surfel_mapping
https://github.com/PRBonn/semantic_suma
https://github.com/PRBonn/semantic_suma
https://github.com/PRBonn/semantic_suma
https://github.com/AIS-Bonn/lidar_mars_registration
https://github.com/AIS-Bonn/lidar_mars_registration
https://github.com/AIS-Bonn/lidar_mars_registration
https://github.com/AIS-Bonn/lidar_mars_registration
https://github.com/PRBonn/puma
https://github.com/PRBonn/puma
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FIGURE 6 Mapping results of representative direct methods.
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Scan-to-model matching
Scan-to-model methods align acquiring scans with online submaps or pre-existing maps. While models offer richer
surface information than sparse individual scans, significant quantitative disparities pose challenges for the match-
ing process. A prevalent model is the point cloud map, constructed directly from accumulated 3D points, storing
spatial coordinates, colour, intensity, or other attributes, ideal for precise modelling. Cartographer (Hess et al., 2016)
employs a branch-and-bound approach (Nicolai et al., 2016a) for scan-to-submap matching as loop closure con-
straints, enabling real-time mapping of vast areas, even up to tens of thousands of square metres, with optimized
results for the operator. HDL-Graph-SLAM (Koide et al., 2019) employs Graph SLAM (Grisetti et al., 2010) to con-
struct an offline map and combines NDT (Biber & Strasser, 2003) with angular velocity-based pose prediction using
an unscented Kalman filter (UKF) (Wan & Van der Merwe, 2000) for tracking, facilitating long-term and wide-area
behaviour assessment. CT-ICP (Dellenbach et al., 2022) integrates scan continuity and discontinuity between scans
by solving a scan-to-map registration, enabling elastic scan distortion during registration for higher precision and en-
hanced robustness against high-frequency motion. As depicted in (Figure 6c), KISS-ICP (Vizzo et al., 2023) combines
point-to-point ICP with adaptive thresholding, a robust kernel, universal motion compensation, and point cloud
subsampling, creating a low-parameter system compatible with various sensor types.

The surface element (surfel) map is another well-received model, with each surfel encoding information about
a segment of the environment's surface, including position, radius, orientation, timestamps, and attributes such
as colour or reflectivity. Surfels provide a more space-efficient alternative to storing raw 3D points, albeit with
increased computational demands. They also bolster map accuracy by reducing noise and uncertainty, thus en-
hancing localization precision. Elastic LiDAR fusion (Park et al., 2018) employs a linear continuous-time trajec-
tory to eliminate the need for global trajectory optimization. It introduces map deformation and improves the
precision of the reconstructed dense map via probabilistic surfel fusion. Droeschel & Behnke (2018) aggregate
local multi-resolution maps through surfel-based registration, forming a hierarchical graph structure treating in-
dividual 3D scans as subgraphs. It employs graph optimization to tackle drift and misalignment while enabling
measurement interpolation between scan poses. SuMa (Behley & Stachniss, 2018), depicted in Figure 5c, utilizes
frame-to-model ICP for aligning points between vertex maps and constructs a surfel-based map. It harnesses
map representation to create a virtual map view, enhancing detection robustness even in scenarios with limited
overlap. SuMa++ (Chen et al., 2019) further integrates semantic information (Milioto et al., 2019) to facilitate
the mapping process. Multi-adaptive-resolution-surfel (MARS) (Quenzel & Behnke, 2021) depicted in Figure 6(d),
integrates a continuous-time B-spline trajectory representation with a Gaussian mixture model (GMM) to align
multi-resolution surfel maps collaboratively. Utilizing sparse voxel grids and permutohedral lattices ensures rapid
access to map surfels, while an adaptive resolution selection scheme significantly enhances registration speed.

Other works strive to create innovative maps for enhanced localization and mapping accuracy. IMLS-SLAM
(Deschaud, 2018) selects an implicit moving least square surface as a map representation. Vizzo et al. (2021) em-
ploy frame-to-mesh ICP, representing the map as a Poisson surface-reconstructed triangle mesh within a sliding
window. It provides a 3D map with finer geometric details compared to traditional methods employing truncated
signed distance functions (TSDF) (Millane et al., 2018) or surfels (Behley & Stachniss, 2018; Park et al., 2018).

Projection-based methods

Projection-based methods typically transform point clouds into images and employ visual odometry techniques
to estimate the sensor's self-motion. A key advantage lies in the 2D representations (e.g., images or grids), which
streamline data processing, reduce computational demands, and tap into well-established image processing tech-
niques. Nonetheless, the projection process invariably leads to information loss, potentially compromising map-

ping precision by distorting or omitting fine environmental details. As summarized in Table 3, projection-based
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TABLE 3 Summary of project-based LIiDAR SLAM. These methods are organized based on projection types,
method names, published years and code websites.

Projection type Method Year Code
Cylindrical projection 3D Laser VO (Tong & Barfoot, 2013) 2013 X
CNN-LO (Nicolai et al., 2016b) 2016 X
DeepPCO (Wang, Saputra, et al., 2019) 2019 https://github.
com/soupl997/
DeepPCO
SLO (Guadagnino et al., 2022) 2022 X
TransLO (Liu et al., 2023) 2023 https://github.com/
IRMVLab/TransLO
Spherical projection Velodyne SLAM (Moosmann & 2011 X
Stiller, 2011)
Cho et al. (2020) 2020 X
ELO (Zheng & Zhu, 2021) 2021 X
ECTLO (Zheng & Zhu, 2022) 2022 X
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FIGURE 7 Two representative projection-based methods. (a) and (b) are originally shown in Liu et al. (2023)
and Zheng & Zhu (2021), respectively.

systems are classified as spherical and cylindrical based on the chosen projection method. Figures 7 and 8 illus-
trates corresponding two projection methods.

Cylindrical projection
Given a 3D point p = (x,y, z) and corresponding image coordinate (u, v), the cylindrical projection Il is defined as
equation (1). 3D Laser VO (Tong & Barfoot, 2013) introduces a 3D LiDAR-based visual odometry that generates
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i

(a) CNN-LO [158] in Indoor (b) ECTLO [162] in Campus

FIGURE 8 Mapping results of representative feature-based methods.

intensity images, tracks sparse visual features, and mitigates motion distortion using the Gaussian process
Gauss-Newton (GPGN) (Tong et al., 2012) for continuous-time state estimation. CNN-LO (Nicolai et al., 2016b),
depicted in Figure 8a, leverage recent advancements in image classification to reduce the LiDAR scan's state
space and employ standard fully connected layers to learn odometry estimation from the extracted features.
DeepPCO (Wang, Saputra, et al., 2019) presents an end-to-end deep parallel neural network for accurate odom-
etry by integrating 2D panoramic depth projections and two sub-networks. It eliminates traditional intermedi-
ate modules like scan matching and geometric estimation while performing well with various neural network
architectures. SLO (Guadagnino et al., 2022) utilizes SuperPoint (DeTone et al., 2018) on intensity images for fea-
ture selection and introduces a self-supervised online fine-tuning procedure for the feature extraction network,
which doesn't rely on labels or ground truth poses. As illustrated in Figure 7a, TransLO (Liu et al., 2023) designs
the first transformer-based LiDAR odometry, which can process tens of thousands of points simultaneously by
projecting points onto a 2D surface and then feeding them into a local transformer with linear complexity.

|atan2(y,x)/ A8 |
= HC(X! Y, Z) =

u
v larcsin (z, \/m) /A¢J 1

where A9 and A ¢ is the average horizontal and vertical angle resolution between consecutive beam emitters, re-
spectively.| - | means the floor computation. Generally, the element at (u, ¢) is filled with two-channel data (d, z), where
d = 1/x2 + y2. The elements in 2D positions without projected 3D points are (d, z) = (0, 0).

Spherical projection

Equation (2) describes the mapping function IIs from the Cartesian to its corresponding spherical coordinate.
Spherical projection maps point clouds onto a distortion-free 2D sphere, ideal for applications demanding a full
360° view. Velodyne SLAM (Moosmann & Stiller, 2011) is a specialized system tailored to the Velodyne laser scan-
ner, focusing on flat surface measurements and incorporating an offline filtering step to enhance the generated
map for detailed city mapping. Cho et al. (2020) introduce the first unsupervised learning-based odometry, utiliz-
ing input vertices and a geometry-aware consistency loss calculation to eliminate the need for time-consuming la-
belling procedures. ELO (Zheng & Zhu, 2021), depicted in Figure 7(b), exploits non-ground spherical range images
and bird's-eye-view (BEV) maps for ground points, formulating odometry as a non-linear least squares minimiza-
tion problem. It incorporates a range-adaptive technique for robustly estimating local surface normals, merging
points and normals using a rapid memory-efficient model update scheme. As shown in Figure 8(b), ECTLO (Zheng
& Zhu, 2022) develops an efficient odometry method for solid-state LiDARs, utilizing a point-to-plane GMM for
registration, implementing a continuous-time motion model to mitigate distortions, and keeping all map points

within a single range image to enable implicit data association in parallel.

s BuayoBuad Aq 26v2T 40ud/TTTT'OT/10p/W0D" A5 1M AkeiqjouUO//SANY WOy popeo|umoq ‘98T ‘¥Z0e ‘0EL6LLYT

85U8017 SUOLLILLIOD dA1TE.D) 8]qeo! dde au Ag peueno a1e s9oiie VO !8sN J0 S8|NJ 0} A%iqiT8uljuO A1 UO (SUONIPUOD-PUR-SWUBIALIY A8 1M Ale1q 1 U1 |UO//SHNY) SUORIPUOD PUe SWIB | 8U188S " [1202/90/0T] Uo ARiq1T8uliuO A8|IM * AISIBAIUN UYNM -



ZHANG ET AL. | 473

. =TIs(x,y,2) = %(1_5)% (2)

where the sensor's vertical FOV f = f,, + fou, cOmprises the upper (f,,,) and lower (fy,,, ) parts. ws and hs are the width
and height of image, respectively. The azimuth angle 0 = arctan(y /x), — = < 6 < =, while the elevation angle

¢=arcsin(z/ x2+y2+z2>, - ’5’ <¢p< ’é

Summary

In this section, LiDRA-only SLAM is categorized into three primary categories: feature-based, direct, and
projection-based methods, further subdivide them into more subclasses based on common characteristics.
Several key observations are summarized as follows:

e LiDAR sensors, unlike visual counterparts, are impervious to lighting variations and texture dependencies and
offer precise depth data. LIDAR-only odometry remains the foremost choice for its reliability. The advent of
groundbreaking odometry frameworks like LOAM (Ji & Singh, 2017) and LeGO-LOAM (Shan & Englot, 2018)
has empowered single-sensor localization and mapping, catalysing the adoption of robotics and autonomous
driving across civilian, commercial, educational, and military domains. This development has energised the ro-
botics community, propelling innovation in resilient and cost-effective robotic solutions.

e Handcrafted SLAM frameworks (Hess et al., 2016; Shan & Englot, 2018), (Dellenbach et al., 2022; Ji &
Singh, 2017; Lin & Zhang, 2020; Wang, Wang, & Xie, 2021) consist of well-established modules, serve as cur-
rent mainstream solutions, and form a strong foundation for multi-sensor fusion. However, the system's mainte-
nance and updates pose challenges, particularly in light of emerging sensors and hardware (Zheng & Zhu, 2022),
necessitating ongoing algorithmic improvements. The rapid evolution of 3D computer vision has partly pro-
pelled learning-based odometry frameworks (Chen, Wang, et al., 2021; Li et al., 2019; Zhou et al., 2023), which
primarily focus on feature extraction and matching rather than providing a complete solution. Despite yielding
impressive results, enhancing their generalization capabilities (Chen et al., 2020; Li, Kong, Zhao, Li, et al., 2021)
and managing their substantial computational demands (Liu et al., 2023) remains a priority.

e Selecting a suitable LIDAR SLAM method should align with specific requirements related to environments,
sensors, mapping, memory, and platforms. Feature-based methods excel in structured environments, as they
prioritize tracking distinctive features, making them advantageous and memory-efficient in urban settings with
landmarks, pedestrians, and vehicles. However, their reliance on features renders them ineffective in feature-
sparse, featureless, and dynamic environments. Direct methods preserve complete 3D information from point
cloud data, ideal for precise mapping but computationally intensive. Conversely, projection-based techniques
convert point clouds into images, enhancing efficiency, especially on resource-limited platforms. Nevertheless,
projection entails information loss, and sensor tilts may distort projections, impacting map quality.

Multi-sensor fusion SLAM
LiDAR-inertial (LI) fusion
LiDAR usually has a low scanning frequency, and the perceived point clouds suffer from motion distortions. In

the case of high-speed or complex motion, the accuracy of the linear distortion correction model is poor, which

easily leads to the deterioration of the LiDAR-only SLAM methods. However, inertial sensors have high output
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frequency and local accuracy, which can well compensate for the internal motion of the points inside a single
LiDAR scan. LI fusion can effectively improve the robustness and accuracy of SLAM systems in featureless scenar-
ios such as long corridors. Depending on how they are combined, LI SLAM systems can be classified into loosely

coupled methods and tightly coupled ones. Table 4 provides a method summary of these methods.

TABLE 4 Summary of LiDAR-inertial fusion LIDAR SLAM. These methods are organized based on coupled
types, method names, published years and code websites.

Type Feature Method Year Code
Loosely coupled IMU odometry aided IMU-aided LOAM (Zhang & 2014 https://github.com/HKUST-
Singh, 2014) Aerial-Robotics/A-LOAM
Kim et al. (Kim et al., 2023) 2023 X
IMU odometry and PPP-LOAM (Li, Pei, 2020 X
LO fusion et al., 2020)
LION (Tagliabue et al., 2021) 2021 X
EKF-LOAM (Janior 2022 X
et al, 2022)
Tightly coupled  Filter-based LINS (Qin et al., 2020) 2020 https://github.com/ChaoginRob
otics
Fast-LIO (Xu & Zhang, 2021) 2021 https://github.com/hku-mars/
FAST_LIO
Fast-LIO2 (Xu, Cai, 2022 https://github.com/hku-mars/
etal., 2022) FAST_LIO
Faster-LIO (Bai et al., 2022) 2022 http://github.com/gaoxiang12/
faster-lio
Puma-LIO (Jiang & 2022 https://www.github.com/lewis
Shen, 2022) jiang/puma-lio
AdalLlO (Lim et al., 2023) 2023 X
Swarm-LIO (Zhu et al., 2023) 2023 X
HD-LIO (Wang et al., 2023) 2023 X
Duan et al. (Duan 2023 X
et al., 2023)
Graph optimization LIPS (Geneva et al., 2018) 2018 https://github.com/rpng/lips
LIOM (Ye et al., 2019) 2019 https://ram-lab.com/file/hyye/
lio-mapping
LIO-SAM (Shan et al., 2020) 2020 https://github.com/TixiaoShan/
LIO-SAM
GR-LOAM (Su et al., 2021) 2021 X
LiLi-OM (Li, Li, & 2021 https://github.com/KIT-ISAS/
Hanebeck, 2021) lili-om
LIO-vehicle (Chou & 2022 X
Chou, 2022)
D-LIOM (Wang et al., 2022) 2022 https://cslinzhang.github.io/D-
LIOM/D-LIOM.html
Koide et al. (2022) 2022 X
DLIO (Chen et al., 2023) 2023 https://github.com/vectr
-ucla/direct_lidar_inertial _
odometry
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Loosely coupled LI SLAM

Loose coupling typically processes LiDAR and IMU observations separately and then fuses their results. The
simplest way is to use the IMU measurements to correct the non-linear motion distortions of LiDAR scans and
obtain the IMU odometry through the IMU pre-integration, which is provided as initializations to the scan match-
ing to improve its robustness. This coupling can be directly applied to LiDAR-only SLAM systems with little
modification. Representative works are IMU-aided LOAM, LeGO-LOAM, MULLS, Adaptive Keyframe LIO (Kim
et al., 2023) (Figure 10a), etc. Another more popular loose coupling approach is to perform state estimation based
on LiDAR and IMU observations separately, and then fuse the LiDAR odometry (LO) and IMU odometry results
using Kalman filtering (Kalman, 1960) or other technologies. For example, methods such as EKF-LOAM (Junior
etal., 2022) (Figures 9 and 10b) and PPP-SLAM (Li, Pei, et al., 2020) use extended Kalman filters (EKF) to integrate
measurements from LiDAR, IMU, and GNSS during the state optimization stage. LION (Tagliabue et al., 2021) ex-
presses the results of LO and IMU odometry as a factor graph and optimizes it through a fixed-lag sliding window
smoother. In loose coupling, the separation of scan matching and result fusion reduces the computational load,
making it highly efficient, easy to implement, and easy to expand. However, because loose coupling ignores other
state quantities of the system (such as velocity), it may lead to information loss, so that the advantages of each

sensor cannot be maximized.

Tightly coupled LI SLAM
Tight coupling formulates the state estimation factors of LiDAR and IMU observations as a joint optimization
problem. Since tightly coupled methods overcome the above-mentioned limitations, they show better perfor-

mance in complex scenarios and have become the mainstream methods for LI fusion. Tightly coupled methods can
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FIGURE 9 Arepresentative framework of loosely coupled LI SLAM (Janior et al., 2022).
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FIGURE 10 Mapping results of a loosely coupled LI SLAM.
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be divided into filter-based methods and graph optimization methods. Filtering methods usually construct state
models and measurement models based on the observations from various sensors such as LiDAR, IMU, etc., and
carry out state estimation through the particle filter or Kalman filter. An early important work was proposed by
Bry et al. (2012), which fused 2D LiDAR and IMU observations under the Gaussian particle filter framework and
applied them to the Boston Dynamics Atlas robot. However, due to a large number of 3D LiDAR feature points,
the time complexity of particle filtering is too high to run in real-time. Kalman filter and its variants have been
introduced to replace particle filtering, such as the UKF (Holmes et al., 2008; Huang et al., 2013), EKF (Huang
et al., 2008; Huang & Dissanayake, 2007), and iterated Kalman filter (Qin et al., 2020; Xu & Zhang, 2021). Since
the UKF and EKF are susceptible to linearization errors, they are prone to produce false matches in scan matching
when the initializations are not accurate enough, resulting in poor SLAM performance. The iterated Kalman filter-
based methods perform error correction in each iteration, achieving the current SOTA performance.

LINS (Qin et al., 2020) designs an error-state iterated Kalman filter (ESIKF) to recursively correct the estimated
state by generating new point correspondences in each iteration and reduces the number of features by fitting
the ground plane to achieve real-time performance. Swarm-LIO (Zhu et al., 2023) implements a fully decentralized
UAV swarm system state estimation method under the framework of ESIKF. Similarly, Fast-LIO (Xu & Zhang, 2021)
(Figure 11a) realizes the tight coupling of LiDAR and IMU observations under the iterated extended Kalman filter
(IEKF) framework. Compared with LINS, Fast-LIO proposes a new Kalman gain calculation formula, which makes
the computational complexity of Kalman filtering depend on the dimension of the state vector rather than the
feature dimension, thus greatly reducing the calculation load of the entire system. This also makes Fast-LIO the
latest filtering-based baseline, and a number of variants have been developed. For example, Fast-LIO2 (Xu, Cai,
et al., 2022) uses a direct method to replace the feature-based one in Fast-LIO for scan matching, and proposes
an incremental k-d tree (kd-Tree) data structure for map maintenance, thereby improving the accuracy and speed.

Faster-LIO (Bai et al., 2022) adopts sparse incremental voxels (iVox) to replace the tree structure for point cloud
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FIGURE 11 Two representative frameworks of tightly coupled LI SLAM. (a) and (b) are originally shown in Xu
& Zhang (2021) and Li, Li, & Hanebeck (2021), respectively.
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organization, further improving the computing efficiency of Fast-LIO2. Puma-LIO (Jiang & Shen, 2022) considers
the principled uncertainty model in LiDAR-inertial odometry (LIO). AdaLIO (Lim et al., 2023) adds a surrounding
environment checking module to adaptively adjust the parameters for scenes such as corridors, thus improving
the performance of the algorithm in degraded scenes. This type of method achieves high accuracy and efficiency.
However, since the loop closure constraint is not considered in the system, the problem of error accumulation
may be relatively obvious in large-scale scenes. To address this problem, HD-LIO (Wang et al., 2023) (Figure 12a)
and (Duan et al., 2023) add a LCD module and a factor graph optimization module after the IEKF module, but this
inevitably increases the computational complexity of the system.

The graph optimization methods incorporate LiDAR and IMU factors into a unified graph structure (usually
expressed as a factor graph or a pose graph), which is described as an MAP estimation problem and optimized
using tools such as GTSAM, Ceres, and G20. An early work, LIPS (Geneva et al., 2018), integrates plane con-
straints of LiDAR scans and IMU pre-integration constraints in the graph optimization. LIOM (Ye et al., 2019)
is based on edge and plane features and uses a local sliding window for smoothing. It also presents a rotation
constraint to refine the LiDAR pose. A more influential work is LIO-SAM (Shan et al., 2020), which combines
keyframes and local sliding window strategies to improve the real-time performance of LIOM and fuses four fac-
tors in graph optimization, namely LiDAR odometry factor, IMU pre-integration factor, loop closure factor, and
optional GPS factor. However, LIO-SAM relies on a high-frequency nine-axis IMU, which limits its popularization.
As depicted in Figure 11b, LiLi-OM (Li, Li, & Hanebeck, 2021) explores the tight coupling between solid-state
LiDAR and IMU. It designs a new feature extraction method based on the characteristics of solid-state LIDAR
and uses strategies such as sliding windows, local factor graphs, and global factor graphs for optimization. LIO-
vehicle (Xiao et al., 2022) is a SLAM method dedicated to vehicle trajectory estimation. It adds low-cost sensor
(e.g., wheel speedometer and steering angle sensor) observations and vehicle motion constraints to the LIO-
SAM framework to construct a more accurate factor graph. Similarly, GR-LOAM (Su et al., 2021) adds encoder
constraints to improve the robustness of ground robots in complex terrain scenes. The scan matching of the
above methods are all feature-based methods, in addition, there are some methods based on direct matching.
As stated by Xu, Cai, et al. (2022), direct methods have better registration accuracy. Koide et al. (2021b) used a
GPU-accelerated voxelized GICP (Koide et al., 2021b) to build a matching cost factor and fused local mapping
and global mapping to refine the results of LIO. The architecture of D-LIOM (Wang et al., 2022) is similar to
LiLi-OM, except that it directly registers the scans with probabilistic submaps to replace feature matching. As
described in Figure 12b, DLIO (Chen et al., 2023) combines the ideas of direct method and continuous-time
motion to achieve accurate distortion correction by considering the motion state estimation of each 3D point
within a single frame. In general, graph optimization achieves high performance, especially in error accumulation
suppression. However, these methods are computationally intensive, and strategies such as keyframes and local
sliding windows are usually used to achieve real-time operation. Keyframes mean that many LiDAR scans must

be discarded, which may cause information loss.

(a) HD-LIO [174] in Campus (b) DLIO [182] in Park

FIGURE 12 Mapping results of tightly coupled LI SLAM.
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LiDAR-visual (LV) fusion

Visual SLAM has the advantages of rich texture information and small data volume but suffers from light
sensitivity and scale drift. Moreover, maps built by visual SLAM methods are usually very sparse. In contrast,
LiDAR SLAM directly acquires dense 3D information at the real scale with illumination invariance, but it lacks
texture and the data is disorganized. It can be seen that there is a good complementary relationship between
them. Therefore, LV fusion can effectively improve the accuracy and reliability of the SLAM system, and a
dense 3D environment map with texture consistent with the real world can be obtained. Generally, LV fusion
methods can be categorized into LiDAR-assisted visual SLAM methods and LV coupled SLAM ones. Table 5

gives a summary of these methods.

LiDAR-assisted visual SLAM

These methods utilize the LIDAR sensor to provide depth information for a visual SLAM system, so that it has an
accurate scale factor, thereby improving the robustness of large-scale mapping applications (see Figure 13(a) for
an example). It can be seen that the core of this type of method is still visual SLAM, which can be divided into

TABLE 5 A summary of LiDAR-visual fusion LIDAR SLAM. These methods are organized based on coupled
types, method names, published years and code websites.

Type Feature Method Year Code
LiDAR-assisted Feature DEMO (Zhang et al., 2017) 2014 X
visual SLAM method LIMO (Graeter et al., 2018) 2018  https://github.com/johan
nes-graeter/limo
PL-LIMO (Huang et al., 2020) 2020 X
CamVox (Zhu et al., 2021) 2021 https://github.com/ISEE-
Technology/CamVox
H-VLO (Aydemir et al., 2022) 2022 x
RGBL (Sauerbeck et al., 2023) 2023 https://github.com/
TUMFTM/ORB_
SLAM3_RGBL
Direct method  DVL-SLAM (Shin et al., 2020) 2018 http://github.com/irapk

aist/dvl_slam

SelfCompDVLO (Song et al., 2021) 2022 https://github.com/Zhenb
oSong/SelfCompDV

LO-pytorch
CR-LDSO (Yuan, Cheng, & 2023 X
Yang, 2023)
LiDAR-visual Loose VLOAM (Zhang & Singh, 2015) 2015 X
coupled SLAM coupling DV-LOAM (Wang, Liu, Wang, 2021 https://github.com/kingg
et al., 2021) reat24/dv-loam
VLO-SCVB (Cai et al., 2023) 2023 x
SDV-LOAM (Yuan, Wang, 2023 https://github.com/Zikan
et al., 2023) gYuan/SDV-LOAM
Tight coupling  TVLO (Seo & Chou, 2019) 2019 X
ViLiVO (Xiang et al., 2019) 2019 X
TVL-SLAM (Chou & Chou, 2022) 2021 x
MMFC-TVL-SLAM (Shu & 2022 x
Luo, 2022)
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FIGURE 13 Two representative frameworks of LV fusion LiDAR SLAM. (a) and (b) are originally shown in
Zhang et al. (2017) and Zhang & Singh (2015), respectively.

(a) PL-LIMO [192] in Urban (b) DV-LOAM [200] in Campus

FIGURE 14 Mapping results of LV fusion LIiDAR SLAM.

feature-based methods and direct ones. Feature-based methods extract salient visual features from images and
use LIDAR to provide depth information to them, which is then fed into a visual SLAM system for localization and
mapping. Representative methods include algorithms based on point features such as DEMO (Zhang et al., 2017),
LIMO (Graeter et al., 2018), and CamVox (Zhu et al., 2021), and the ones that fuse point and line features such as
PL-LIMO (Huang et al., 2020) (Figure 14a). However, due to the sparsity of LIDAR point clouds, only a very small
number of visual features can be associated with effective depth information and interpolation errors will be in-
troduced during the association. To alleviate this problem, RGBL (Sauerbeck et al., 2023) complements the LiDAR
depth map to obtain an RGBD image, which is then fed into the ORB-SLAMS3 (Campos et al., 2021) system; H-VLO
(Aydemir et al., 2022) uses a deep neural network to perform LiDAR depth completion and monocular depth es-
timation at the same time and provides scale correction for the visual SLAM system through the registration of
LiDAR depth map and monocular depth map. However, the erroneous depth information in depth completion and
depth estimation will have an impact on the robustness of the SLAM system.

Direct methods can effectively deal with the problems of insufficient depth features and interpolation er-
rors. Instead of detecting features, they project LiDAR point clouds onto images and then feed the pixels with

depth information into the direct sparse odometry (DSO) (Engel et al., 2018) system for tracking. Since DSO
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directly minimizes a photometric error between images, any region containing pixel gradients in the image can
be used as the object tracked by DSO, such as white wall edges, intensity change areas, etc. Therefore, DSO is
more robust to weak/texture-less scenes. DVL-SLAM (Shin et al., 2020) is the first to introduce DSO to realize
LV fusion; CR-LDSO (Yuan, Cheng, & Yang, 2023) introduces cloud reuse strategy in DSO to solve the problem
of insufficient tracking pixels; SelfCompDVLO (Song et al., 2021) performs a LiDAR depth completion step and
replaces the photometric-metric error in DSO with feature-metric error. However, since the direct methods
achieve tracking based on pixel intensity information, they are prone to fail in situations where the illumination
changes dramatically.

LV coupled SLAM

Different from LiDAR-assisted visual SLAM, this type of method combines the LO factor and the visual odometry
(VO) factor to improve the accuracy and robustness of the system (see Figure 13b for an example). Again, these
methods contain both loosely and tightly coupled approaches. Loose coupling usually uses a cascade strategy to
combine the LO and VO modules. A pioneering work is VLOAM (Zhang & Singh, 2015), which uses a high-speed
VO module (running at 60 Hz) to obtain low-fidelity poses, and then refines the motion estimates and corrects
distortions in LiDAR scans through a low-speed (running at 1 Hz) LO module. It achieved the best accuracy at
that time on KITTI. VLO-SCVB (Cai et al., 2023), SDV-LOAM (Yuan, Wang, et al., 2023), DV-LOAM (Wang, Liu,
Wang, et al., 2021) (Figure 14b) are variant methods under the framework of VLOAM. To overcome the above-
mentioned interpolation error problem, VLO-SCVB first projects the LIDAR points onto images then selects key
points in the projected points, and fuses the results of ORB-SLAM2 (Mur-Artal & Tardés, 2017) and LOAM in a
loose coupling way. To address the problems of insufficient depth features and interpolation errors, SDV-LOAM
combines the advantages of feature-based methods and direct ones by using photometric consistency for ini-
tial tracking and then minimizing the reprojection errors of features for further refinement. It is a semi-direct
method. DV-LOAM replaces the feature-based approach in VLOAM with a direct one. Although loose coupling
has the advantages of simple system structure and high local accuracy, its robustness to large and complex
scenes is not high enough.

Tight coupling generally formulates the state estimation factors of LiDAR and vision observations as a joint op-
timization problem (Cao et al., 2023; Chou & Chou, 2022; Seo & Chou, 2019). TVLO (Seo & Chou, 2019) simultane-
ously constructs a LIDAR voxel map and a visual sparse map and integrates the residuals of LO and VO into the same
objective function for optimization to achieve accurate pose tracking. Similarly, TVL-SLAM (Chou & Chou, 2022) and
MMFC-TVL-SLAM (Shu & Luo, 2022) incorporate all LIDAR and visual observations into the factor graph of the SLAM
back end (including visual factors, LiDAR factors, compose factor, and LV factors), thereby achieving joint optimiza-
tion of LIDAR and visual residuals. ViLiVO (Xiang et al., 2019) proposes a concept of virtual LiDAR based on visual
images. Specifically, the free space in an image is extracted through a semantic segmentation model, and then the
contours of the free space are discretized to generate the scan lines of the virtual LiDAR. Tight coupling usually has
higher global accuracy and robustness, but the system structure is more complex and the computational complexity
is large.

LiDAR-inertial-visual (LIV) fusion

LiDAR can directly obtain dense 3D information and is invariant to illumination changes; IMU has a high output
frequency, which can effectively improve the accuracy in featureless scenes such as corridors; visual images con-
tain rich texture information, which makes feature extraction and LCD reliable. Therefore, integrating the advan-
tageous information of these different modalities can improve the system's ability to deal with complex scenarios.
Like LI fusion, loose coupling and tight coupling are the two most important coupling methods. Table 6 presents a
summary of LIV fusion LIDAR SLAM.
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Loosely coupled LIV SLAM

Loose coupling means that the state estimation factors of LiDAR, visual, and inertial are not jointly optimized. It
mainly contains two cases, whose system architectures are shown in Figure 15a,b, respectively. The first case is
that visual and inertial are loosely or tightly coupled to obtain the visual-inertial odometry (VIO) motion estimates
and provide them as initializations to a LO module for refinement (An example is provided in Figures 16a and 17a).
In this case, only the visual and inertial factors may have been jointly optimized, with the most representative work
being VI-LOAM (Zhang & Singh, 2018). However, VI-LOAM performs frame-to-frame motion estimation, which
is highly dependent on the previous frame and difficult to maintain global consistency. To improve global consist-
ency, VILO (Wang, Zhang, et al., 2019) adds LCD and back-end optimization modules in the VI-LOAM; VIL-SLAM
(Shao et al., 2019) implements a stereo camera version of VILO; VIO-LOAM (Khattak et al., 2020) introduces
thermal image information into the VIO module of VI-LOAM to improve its robustness in degraded scenes (such
as tunnels, mines and other low-light scenes). Although this coupling strategy is very simple to implement and has
high computational efficiency, it does not take full advantage of various types of observation factors.

The system architecture of the second case is shown in Figure 15(b), which contains two tightly coupled
modules, that is, the VIO and LIO modules. However, these two modules are fused in a loosely coupled way to
obtain the final motion estimation results (see Figure 16b for an example). Although this coupling strategy is more
‘tight’ than the previous one and is referred to as tight coupling in some papers (Lin & Zhang, 2022a, 2022b), the
state estimation factors of LiDAR, vision, and inertial are not jointly optimized under the same objective function.
Therefore, it is essentially a kind of loose coupling, with representative approaches such as MetroLoc (Wang, Song,
Zhang, et al., 2021), R3LIVE (Lin & Zhang, 2022a), and R3LIVE++ (Lin & Zhang, 2022b) (Figure 17b). MetroLoc
constructs an IMU-centric factor graph estimator, where its LIO is based on line and planar features, and its VIO
is built on the Vins-mono (Qin et al., 2018). The authors claim that the combination of tight and loose coupling is

able to merge the advantageous properties of both coupling strategies. R3LIVE and R3LIVE++ are filtering-based

Loosely/Tightly | ]
Coupled Pose
Visual-Inertial Odometry H LiDAR Odometry I
MAP
{ LiDAR ,‘
(a) Loosely coupled LIV SLAM with a single tightly coupled module
Visual Factor
Tightly . L
Loose Coupled Joint Optimization Pose
C(‘::;Te)(,l Inertial Factor +
Tightly Joint Optimization MAP
Coupled
LiDAR Factor
(b) Loosely coupled LIV SLAM with two tightly coupled module
Visual Factor
. Pose
g(;ﬁh:gi Inertial Factor Joint Optimization A
P MAP
LiDAR Factor

(c) Tightly coupled LIV SLAM

FIGURE 15 Three LIV system architectures.

s BusyoBued Aq 2621 10yd/TTTT OT/I0p/W00 A8 |1 Ake.q1jpul juo//:SANY Wiy popeojumoq ‘98T ‘v20Z ‘0EL61L5T

85U8017 SUOLLILLIOD dA1TE.D) 8]qeo! dde au Ag peueno a1e s9oiie VO !8sN J0 S8|NJ 0} A%iqiT8uljuO A1 UO (SUONIPUOD-PUR-SWUBIALIY A8 1M Ale1q 1 U1 |UO//SHNY) SUORIPUOD PUe SWIB | 8U188S " [1202/90/0T] Uo ARiq1T8uliuO A8|IM * AISIBAIUN UYNM -



ZHANG ET AL. 483

VIO Pose (IMU Rate)
I " Vienal Front-end ! T VIO Back-end : :' """""""""" ! LiDAR Lr i DAR Manning !

Loop Closure

1
: ' ] 1 ' _ :
| Frame-to-frame || \ Feature ! || Visual Loop Detection |:‘T| LiDAR Scan | _
KLT Tracking 1 Stereo ! Screenin; VIO Pose | Sparse : Dewa ping 1 LlDAR
'Mmhes' | Camera '| Sparse ICP-refinement *Features | ! M:;;;s);ng
1

1 1
Stereo ORB : Fixed-lag : Rate H Scan to Map
Descriptor Matching |, Smoothin; ' I Global Pose Graph Optimization |%§: Registration | |
_____________ 1 [— _____l_________l_____ |
St Match ’—>
S Stitched Corrected
Maj Trajecto

(a) VIL-SLAM

. \ _ Retrieve :
{ T / Motion | Point to Plane
Compensation ,—l-» LIO Update 1 LiDAR Rate
: Append o 1
{ ] ! Geometry Structure S 0d
MU State Propagation =
Tracked Point Cloud Texture _§ (IMU Rate)

X .
/ Camera /- Frame-to-frame | | Perspective-n-Point Photometric Project L, Odometry
/| i VIO Update 1 \(Camera Rate

i
|

Optical Flow VIO Update : Render
1

Frame-to-Map 1

Frame-to-frame

(b) R3LIVE
] Global Map '
1

CRvT 1 1

/ LiDAR / Backwa.rd .Pomt to plane. ! kdTree h
Propagation Residual Computation | | :20~150Hz
i 2010,

1

1

1

1

Odometry)

=

1
. 1
/ MU / Forward Prior State  |Update] | |  Visual Global
Propagation Estimation | Estimation | New Scan: Map

VisualIM easurement

Z Outlier Sparse-Direct .
/ D Rejection Visual Alignment VAT SRR
t

Project I

(c) FAST-LIVO

FIGURE 16 Three LIV LiDAR SLAM methods. (a-c) are originally shown in Shao et al. (2019), Lin &
Zhang (2022a) and Zheng et al. (2022), respectively.

methods, whose LIO modules are built on the FastLIO2. Their VIO modules use a semi-direct method to combine
reprojection errors and photometric errors and apply the ESIKF (Qin et al., 2020; Xu & Zhang, 2021) for state

estimation. Generally, this type of coupling has higher accuracy and robustness than the previous one.

Tightly coupled LIV SLAM

The system architecture of tight coupling is shown in Figure 15c. Depending on the optimizer, tightly coupled
methods can be also classified into filtering-based methods and graph optimization-based ones. A typical early
filtering method is LIC-Fusion (Zuo et al., 2019), which incorporates the three types of observations using the
multi-state constraint Kalman filter (MSCKF) (Mourikis & Roumeliotis, 2007) framework. Subsequently, in order to
improve the efficiency, LIC-Fusion2 (Zuo et al., 2020) introduces a sliding-window plane-feature tracking module
under the framework of LIC-Fusion to process LiDAR point clouds. Similarly, R2LIVE (Lin et al., 2021) (Figure 17c)
replaces the MSCKF in LIC-Fusion with the ESIKF and adds a factor graph optimization module to further refine
the filtering results. As can be seen, R2LIVE is a hybrid method of filtering and factor graph optimization. To
reduce the amount of computation, FAST-LIVO (Zheng et al., 2022) (Figure 16c) directly registers original LiDAR

s BusyoBued Aq 2621 10yd/TTTT OT/I0p/W00 A8 |1 Ake.q1jpul juo//:SANY Wiy popeojumoq ‘98T ‘v20Z ‘0EL61L5T

85U8017 SUOLLILLIOD dA1TE.D) 8]qeo! dde au Ag peueno a1e s9oiie VO !8sN J0 S8|NJ 0} A%iqiT8uljuO A1 UO (SUONIPUOD-PUR-SWUBIALIY A8 1M Ale1q 1 U1 |UO//SHNY) SUORIPUOD PUe SWIB | 8U188S " [1202/90/0T] Uo ARiq1T8uliuO A8|IM * AISIBAIUN UYNM -



484 3D LiDAR SLAM: A SURVEY

*

(c) R2LIVE [214] in Campus (d) CLIC [221] in Campus

FIGURE 17 Mapping results of LIV SLAM. (a) and (b) are loosely coupled LIV SLAM, while (c) and (d) are
tightly coupled ones.

sample points in the LIO module and uses a semi-direct method for visual tracking in the VIO module, avoiding
the feature extraction and description process in the whole system. Like R2LIVE, it uses ESIKF for joint filtering.
LVI-SAM (Shan et al., 2021) is a typical factor graph optimization method, which contains a VIO module based
on Vins-mono and a LIO module based on LIO-SAM. Among them, LIO provides initializations for VIO, and VIO pro-
vides motion priors for the scan matching of LIO. LVI-SAM uses the iSAM2 to jointly optimize the IMU constraint,
VO constraint, LO constraint, and loop closure constraint in the factor graph. VILENS-LVI (Wisth et al., 2021)
extracts plane and linear features as registration primitives for LO constraints in the factor graph; VILENS (Wisth
et al., 2022) introduces leg odometry constraints on the basis of VILENS-LVI to improve the localization accuracy
of legged robots. Lvio-fusion (Jia et al., 2021) uses a stereo camera to replace the monocular camera in LVI-SAM
and introduces a GPS constraint factor to eliminate accumulated drifts, which has good robustness. CLIC (Lv
et al., 2023) (Figure 17d) expresses the trajectory based on the B-spline and derives a continuous-time fixed-lag
smoother to achieve continuous-time LIV SLAM. Super odometry (Zhao et al., 2021) provides a new idea that is
centred on IMU odometry. It associates VIO and LIO modules in a combination of tight and loose coupling and

uses a coarse-to-fine approach for motion estimation.
Summary
This section classifies the multi-sensor fusion SLAM into three categories, namely LI, LV, and LIV. It summarizes

the methods in each category and describes the representative algorithms in detail. Key observations are sum-

marized as follows:
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e LiDAR sensors directly acquire dense 3D information of the surrounding environment, with the advantages of
high measurement accuracy, illumination invariance, and no scale drift; IMU can measure observations such as
angular velocity and acceleration during the motion process, and its output frequency and local accuracy are
very high; visual images are direct 2D reconstructions of the real world, containing rich texture information
and strong comprehensibility. These sensors have a very good complementary relationship. Through the fusion
technology to synthesize the advantages of these different sensors, the system can improve its ability to deal
with complex scenarios. Multi-sensor fusion has shown higher accuracy and robustness in real applications,
which is one of the development trends of SLAM research.

e Loose coupling and tight coupling are the two main means to realize multi-sensor information fusion. Loose
coupling can separate different modules of the SLAM system, thereby reducing the computational load, and
has the advantages of running efficiently, easy to implement, and easy to expand. However, loose coupling
cannot maximize the advantages of each sensor. In contrast, tight coupling optimizes various types of obser-
vation factors such as LiDAR, IMU, visual, loop closure, etc. in an objective function, which exhibits better per-
formance in complex scenarios with higher accuracy and robustness, and thus is more popular in multi-sensor
fusion.

e Tight coupling can be divided into filter-based methods and graph optimization methods. The filtering methods
construct state models and measurement models based on sensor observations to realize fusion, which can
achieve good real-time performance while fully utilizing each LiDAR scanning frame. However, filtering meth-
ods do not consider loop closure constraints, and the error accumulation is relatively obvious in large-scale
scenes. Graph optimization usually expresses the observation factors as factor graphs and describes them as
a MAP problem for optimization. Graph optimization has better performance in error accumulation suppres-
sion. However, it is computationally intensive and requires the use of keyframes to obtain real-time operation.
Keyframes mean that many LiDAR scans have to be discarded and there may be information loss.

e Theoretically, the more types of sensors, the richer the information that the SLAM system can utilize, and
the higher the accuracy and robustness it can achieve. However, more sensor types also mean that the SLAM
system is more complex and less scalable. How to characterize the quality of different sensor data? How to
adaptively detect erroneous observations in the fusion system and adjust the weights of different types of

observations? And which fusion mechanism to use? These are the core issues that need to be addressed.

BENCHMARK

Datasets

Numerous teams have curated datasets for perception, localization, mapping, and tracking evaluation to
advance autonomous driving. Table 7 compiles several notable LIDAR SLAM datasets with their published
year, platform, type, sensor, and website. To assess SLAM performance across various challenging conditions,
mainstream datasets frequently employ autonomous vehicles (Barnes et al., 2020; Caesar et al., 2020; Chang
etal., 2019; Chen et al., 2018; Choi et al., 2018; Geiger et al., 2012, 2013; Geyer et al., 2020; Huang et al., 2018;
Jeong et al,, 2018, 2019; Liao et al., 2023; Nguyen et al., 2022; Pandey et al., 2011; Pitropov et al., 2021;
Ramanishka et al., 2018) for data collection in expansive urban (Barnes et al., 2020; Caesar et al., 2020; Chang
etal., 2019; Chen et al., 2018; Choi et al., 2018; Geiger et al., 2012, 2013; Geyer et al., 2020; Huang et al., 2018;
Jeong et al., 2018, 2019; Liao et al., 2023; Pandey et al., 2011; Pitropov et al., 2021; Ramanishka et al., 2018)
and campus environments (Choi et al., 2018; Nguyen et al., 2022; Pandey et al., 2011). Several sequences
(Carlevaris-Bianco et al., 2016; Geiger et al., 2012, 2013; Liao et al., 2023; Pandey et al., 2011) incorporate
closed trajectory to investigate the impact of loop detection modules on the overall algorithm. For indoor

applications, some datasets employ low-speed robots (Carlevaris-Bianco et al., 2016; Lee et al., 2021) or
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handheld devices (Ramezani et al., 2020). Giubilato et al. (2022) and Li, Wu, et al. (2023) additionally introduce
a specialized helmet dataset encompassing indoor, urban, and forest environments, while Ros et al. (2016)
presents a synthetic dataset. These datasets encompass a range of LiDAR sensor densities, including 16-
line (Carlevaris-Bianco et al., 2016; Jeong et al., 2018; Lee et al., 2021), 32-line (Caesar et al., 2020; Chang
et al., 2019; Pitropov et al., 2021), 64-line (Geiger et al., 2012, 2013; Ramezani et al., 2020; Zhang et al., 2021),
solid-state (Li, Wu, et al., 2023), and dual LiDARs (Chen et al., 2018; Jeong et al., 2019; Nguyen et al., 2022).
To facilitate comparisons with pure vision, LiDAR-vision, and IMU-LiDAR solutions, diverse camera (Barnes
et al., 2020; Caesar et al., 2020; Chang et al., 2019) and IMU (Choi et al., 2018; Giubilato et al., 2022; Nguyen

et al., 2022) set-ups were integrated into the mobile platform.

Evaluation metrics

Numerous metrics are available for assessing SLAM performance. Here, the top three commonly employed
metrics in LiDAR-based SLAM are illustrated, accompanied by visual representations and mathematical

expressions:

Relative pose error (RPE)

As shown in Figure 18(a), RPE (Sturm et al., 2012) gauges the precision of relative poses, also known as odom-
etry, within a SLAM trajectory. RPE is insensitive to the specific timing of estimation errors. It encompasses
both translational and rotational errors, playing a pivotal role in ensuring the accuracy of map construction,
updating, and sensor motion determination in the environment. As Geiger et al. (2012) suggest, RPE is calcu-
lated as:

1 A A=
RPE(F)=— D

ijeF

where RPE,; and RPE,,, demote the relative rotation error (RRE) and relative translation error (RTE), respec-
tively. F is a set of frames (i,j). T and T denote the estimated and true poses, respectively. z[-]is the rotation

angle.

— {rajectory segment dy Estimate X Estimate X

RE
{6di}iss

Aligned Estimate X/

~— Trajectory Alignment

Trajectory Alighment

Groundtruth X

od; Groundtruth X

(a) RPE (b) ATE

FIGURE 18 RPE andATE. (a) and (b) are originally shown in Zhang & Scaramuzza (2018).
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Absolute trajectory error (ATE)

Figure 18(b) illustrates that ATE (Zhang & Scaramuzza, 2018) quantifies absolute position and attitude errors relative
to ground truth, while relative pose error computes average errors within sub-trajectories, potentially underestimat-
ing loop closing effects. Nonetheless, ATE facilitates a holistic comparison of entire trajectories, considering absolute

error assessments modified by loop closing. As Zhang & Scaramuzza (2018) suggest, ATE is calculated as:

ATE o = (% Yo [<(RR) 2>; (@)
1
ATE = (% Yo [(rm<(RR)B)) D

demote the rotation and translation component of ATE, respectively. R and ﬁl are true

where ATE,; and ATE,
and aligned rotation, respectively. p is the position of the system. i means the scan index and N is the scan

ra

quantity.

Running frequency

The running time in LIDAR SLAM is a critical factor that impacts mapping efficiency and overall robot product
cost. Handcrafted methods involve time-consuming processes like segmentation, feature extraction, inter-frame
matching, and mapping optimization. Learning-based methods require training and inference, further adding to

the computational demands.

Results

To help researchers grasp the performance of contemporary LIDAR SLAM methods and gauge the current state
of this field, comprehensive experimental evaluations on public datasets from various sources are compiled. The
relative translational and rotational errors on KITTI odometry (Geiger et al., 2012) are summarized in Tables 8 and

9, respectively. These statistical results lead to the following conclusions:

e The emergence of numerous learning-based LIiDAR SLAM methods in recent years underscores the growing
interest in this field within computer vision. Researchers are actively exploring diverse solutions to address
autonomous driving challenges.

e Statistical results reveal that among current LIDAR SLAM solutions, traditional methods exhibit superior trans-
lational and rotational accuracy. This superiority may be attributed to their comprehensive modules encom-
passing odometry, optimization, and mapping, whereas learning-based methods primarily emphasize front-end
odometry, resulting in slightly reduced accuracy.

e Regarding position accuracy, MULLS-SLAM (Pan et al., 2021), IMLS-SLAM (Deschaud, 2018), and CT-ICP
(Dellenbach et al., 2022) rank among the top three in three sequences, whereas MULLS-LO (Pan et al., 2021)
and SDV-LOAM achieve top-three rankings in five and eight ones, respectively. When considering the average
of 11 sequences, SDV-LOAM (Yuan, Wang, et al., 2023), MULLS-SLAM (Pan et al., 2021), and ELO (Zheng &
Zhu, 2021) hold the first (0.47%), second (0.49%), and third places (0.50%), respectively.

e We also tally the top three angular accuracy rankings, with MULLS-SLAM (Pan et al., 2021) outperforming all
others. Specifically, MULLS-LO (Pan et al., 2021), ELO (Zheng & Zhu, 2021), and reference (Koide et al., 2021a)
achieve the top three on 11, six, and three sequences, respectively. MULLS-SLAM (Pan et al., 2021) secures the
first position (0.13°) in average accuracy, followed by MULLS-LO (Pan et al., 2021) in the second (0.16°) and ELO
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(Zheng & Zhu, 2021) in the third (0.18°).

Commercial SLAM

To help industry units make better equipment selections, Table 10 summarizes representative commercial SLAM
solutions and their associated companies, countries, sensor types, application scenarios, and websites.

LiDAR-only solutions

Kaarta develops mobile mapping and localization technology (LOAM) (Ji & Singh, 2017; Zhang & Singh, 2014)
based on advanced robotics and delivers it as software as a service (SaaS) and integrated systems. Kitware's ver-
satile library takes a LiDAR frame as input and outputs a pose, which allows researchers to freely replicate/modify
into commercial and non-commercial projects under an Apache 2 licence. It is incorporated into a ParaView plugin
and offered as a ROS package. SLAMTec's SLAMKit, embedded in a robot's controller through software licensing,
enables the robot to map and localize autonomously. Users can effortlessly customize robot applications using
standardized software interfaces. GoOSLAM commits to delivering a superior user experience in mobile 3D laser
measurement systems, which excel in self-localization and incremental 3D mapping across various indoor and
outdoor environments. 3irobotix's Robot+Egomobile platform merges Al technology, advanced sensors, and chip
processing, substantially boosting the perception and cognition of mobile robots. It delivers outstanding solutions
for various robot scenarios. Michael Baker's wearable LiDAR expedites data collection and seamlessly captures

indoor and outdoor environments to create comprehensive views of an entire airport.

LI solutions

Google's Cartographer serves as a standalone C++ library in the ROS repository and provides a real-time 2D or
3D solution across multiple platforms and sensor configurations. CRISO's Wildcat SLAM works in conjunction
with IMU and LiDAR sensors with the option to add other sensors such as chemical, radiological, gas, GPS, and
Wi-Fi. FARO's GeoSLAM develops continuous-time SLAM technology that uses continuous sensor trajectory to
generate accurate and detailed 3D maps of a scanned environment. Kolida SLAM-K120 handheld 3D laser scan-
ner integrates advanced LiDAR and IMU in the industry and operates independently of GNSS. It enables a 360°

rotation, boasts a 285° FOV, and facilitates effortless acquisition of high-precision point clouds during movement.

LV solutions

GreenValley offers diverse high-precision mapping methods like PPK-SLAM, RTK-SLAM, and pure SLAM, swiftly
acquiring point cloud data with absolute coordinates. Paired with the proprietary software LiFuser-BP, LIDAR 360,
and LiDAR 360MLS software, it effectively addresses challenges in diverse scenarios such as surveying, mining,
forestry, and road component census. FEIMA SLAM100 integrates an industry-level SLAM algorithm with versa-
tile external interfaces and facilitates connections to devices like panoramic cameras, GPS modules, cars, UAVs,

and more. It enhances data collection diversity and adaptability across various application scenarios.
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LIV solutions

Kudan's GrandSLAM accepts a wide range of sensor data such as camera, ToF, LiDAR, IMU, GNSS, and wheel
odometry for maximum performance. It integrates all the sensor information into one system rather than just
‘filtering’ them with accurate time synchronization. XGRIDS introduces Lixel L1 and L2, handheld real-time 3D
reconstruction devices, which seamlessly combine visual modules, LiDAR, IMU, and high-performance computer
modules. With a user-friendly design, they offer straightforward operation and instant usability. DASPATIAL's
R100 and S100, incorporating LiDAR, IMU, and panoramic cameras, operates in handheld and backpack modes
for comprehensive data collection. It facilitates continuous collection without pauses, eliminates waiting times at

building corners, and supports auxiliary data collection on low-speed vehicles.

FUTURE DIRECTIONS

Multimodal SLAM

Event camera

It is a biomimetic vision sensor that records event streams in time-position-polarity form (Gallego et al., 2020). As a
dynamic vision sensor, the event camera has the following advantages compared with traditional cameras: no mo-
tion blur, sub-millisecond time delay, and ultra-high dynamic range. These advantages make it have a wide range
of application prospects in SLAM. For example, event cameras with extreme motion capture capabilities enable
real-time dynamic obstacle avoidance and provide a reliable means for nighttime SLAM. As a new type of sensor,
the event camera has attracted extensive attention in the fields of computer vision, robot vision, etc. It has been
applied in feature tracking (Kueng et al., 2016), optical flow (Benosman et al., 2013), 3D reconstruction (Matsuda
etal., 2015), and SLAM (Censi & Scaramuzza, 2014; Zhou, Gallego, & Shen, 2021; Zihao Zhu et al., 2017). However,
due to the uniqueness of event cameras, the processing of noise, spatial-temporal information, and polar data
are difficult problems that traditional cameras have never encountered, and all task-level algorithms need to be
re-designed (Gallego et al., 2020). Therefore, all existing studies are in the preliminary stage and far from mature,

with both challenges and opportunities.

Unconventional sensors

Current SLAM research mainly focuses on sensors such as vision, LiDAR, and IMU. However, signals such
as smell, sound, and geomagnetism can also provide important observations for navigation and localization,
which have been widely confirmed in nature (Cadena et al., 2016). For example, homing pigeons use their
internal geomagnetic sensing cells to determine directions by sensing the Earth's magnetic field. Bees’ eyes
sense changes in the polarization of sunlight, and their olfactory glands leave odours in their flight paths.
Therefore, bees use a combination of vision and smell to achieve precise homing. Bats use echoes to locate
and avoid obstacles even in high-speed flights. In addition, Wi-Fi and 5G are also important signal sources
for indoor localization. How to build a multi-modal signal source fusion SLAM model? How to judge the
confidence of various navigation information sources? And how to automatically identify the noise and
outliers of various sources in the back-end optimization? These are the core issues that SLAM urgently
needs to break through.
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Learning-based SLAM

In 2012, AlexNet (Krizhevsky et al., 2012) won the image recognition championship of ImageNet by a huge mar-
gin, and the era of deep learning has come since then. Deep learning has achieved great success in image clas-
sification, recognition, segmentation, and other fields, raising the accuracy to an unprecedented level (He, Zhang,
et al., 2016; Krizhevsky et al., 2012; Vaswani et al., 2017). Similarly, it has also shown potential in SLAM. For
example, new methods have emerged in image matching (DeTone et al., 2018; Xu et al., 2023), point cloud regis-
tration (Wang & Solomon, 2019a), semantic segmentation (Milioto et al., 2019), LCD (Cattaneo et al., 2022), and
pose estimation (He et al., 2020). In addition, there are even SLAM methods that directly employ end-to-end deep
networks (Li et al., 2019; Teed & Deng, 2021). These all prove that deep learning has injected new vitality into the
SLAM community, but this does not mean that traditional methods have died. At present, learning-based SLAM
methods cannot reach the accuracy and reliability of traditional methods, let alone surpass them. Learning-based
SLAM methods have the following problems or trends:

Online learning

This capability is crucial for long-term SLAM systems. Existing deep networks are trained offline on some fixed
scene datasets in a closed world. However, SLAM operates in an open environment, and it will constantly encoun-
ter new objects, new scenes, and new events, requiring lifelong learning capabilities.

Few-shot learning

Existing deep networks usually rely on a large amount of labelled data and cannot adapt well to challenges from the
open world (Cadena et al., 2016). For SLAM, the labelled data required for tasks such as image matching, point cloud
registration, LCD, and semantic segmentation are different. Therefore, learning-based SLAM methods are highly

dependent on data richness and have a high labelling workload. It is urgent to develop Few-shot learning techniques.

Large models

Nowadays, the research of large models is in full swing, and a number of excellent models have emerged, includ-
ing GPT (Brown et al., 2020), CLIP (Radford et al., 2021), SAM (Kirillov et al., 2023), etc. Large models have the
advantages of strong data processing ability, complex problem-solving ability, high accuracy, and performance.
Therefore, the SLAM large model may be one of the ways to solve the above two problems. However, large models
require massive data and massive computing resources, which may restrict the development of the SLAM large
models.

In short, the current dominance of deep learning in SLAM is weak. How to deeply tap the potential of neural
networks in feature expression, function fitting, and scene recognition may be the key to breaking through the
bottleneck of SLAM technology.

Multi-robot collaborative SLAM

The scene map is the basis of multi-robot collaborative work, which is a high-precision abstraction and represen-

tation of the environment. In a multi-robot system, the scene map acts as a ‘smart brain’ and provides important
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decision support and navigation information for robots. Currently, the technology of 3D mapping based on a
single robot is becoming mature. However, limited by the endurance time of a single robot, the efficiency of ac-
quiring 3D information is low and the range is small; limited by the working mode, it is difficult for a single robot
to conduct comprehensive real-time analysis of complex structures and scene information; and due to the error
accumulation characteristics of SLAM, it is difficult to guarantee the accuracy of long-term and large-scale map-
ping, which can be solved by dividing a large scene into multiple small scenes.

Unmanned swarms refer to the overall system in which several different forms of intelligent robots cooperate
to complete complex tasks within a certain time and space according to the division of tasks (Atanasov et al., 2015;
Kegeleirs et al., 2021; Lajoie & Beltrame, 2023; Zhong et al., 2022). It has incomparable advantages over a single

robot, but it also faces the following challenges.

Collaborative work

Multi-robots obtain their own swarm poses in a stand-alone and inter-machine collaborative manner and per-
form path planning and task division so that the robots can share map information and avoid repeated map

building.

Data fusion

Unmanned swarms collaborate to explore the environment and build their own local maps. Ultimately, the local maps

created by each other need to be globally fused to ensure the consistency and completeness of the environment map.

Dynamic update

Changes may occur at any time in the real environment, such as the movement of obstacles, changes in the envi-
ronment, etc., requiring timely map updates.

Scholars can start from these challenges to break through the difficulties of cooperative localization, environ-
ment sensing, and dynamic updating in multi-robot SLAM, so as to dramatically improve the efficiency, mapping
accuracy, stability, and robustness of the single-robot SLAM.

Quantum SLAM

Quantum information science is an emerging frontier discipline based on the theory of quantum mechanics and in-
terdisciplinary integration with communication science, computer science, and other multidisciplinary disciplines
(Liu & Hersam, 2019). In 2022, three pioneers of quantum information won the Nobel Prize in Physics, which
indicates that quantum information may trigger a new round of technological revolution in the future. Quantum
information science has shown great potential in quantum computing, quantum communication, and quantum
measurement.

First, quantum computers can break through the computing power limit of classical computers. In the quantum
era, SLAM will not be limited by computing resources, and truly realize ultra-large-scale real-time localization and
mapping. Quantum communication uses the quantum entanglement effect and superposition state principle to
realize information transmission. Its communication speed has an absolute advantage over traditional communi-

cation techniques, laying the foundation for multi-robot real-time data sharing. Quantum precision measurement
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has a higher anti-interference ability, so it has great advantages in measurement accuracy and stability. Accuracy
and stability are the key indicators of SLAM, and SLAM in the quantum era will present unprecedented geometric
precision.

In order to actively embrace the future quantum era and grasp the great opportunities, SLAM researchers can

plan in advance from the algorithm and hardware level:

e Algorithm: Developing SLAM algorithms based on quantum computing. Quantum computing has attracted the
attention of scholars in the field of computer vision, and its applications in tasks such as robust estimation (Chin
et al.,, 2020; Doan et al., 2022) and network structure design (DiAdamo et al., 2021; Zhou, Lv, et al., 2022) have
been explored.

e Hardware: Developing quantum SLAM sensors, such as quantum LiDAR and quantum camera, to build a com-

plete SLAM ecosystem with software and hardware.

CONCLUSIONS

This paper offers a comprehensive survey dedicated to LIDAR SLAM, addressing a critical gap in this domain. It
extensively discusses the background, encompassing the framework, challenges, and its relation to prior surveys.
It provides a comprehensive method taxonomy, briefly outlining their pros and cons. Additionally, it compiles
noteworthy open-source LiDAR SLAM datasets, evaluation metrics, experimental performances, and commercial
SLAM solutions. Eventually, it highlights promising future directions.
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