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Semi-supervised Deep Learning via Transformation
Consistency Regularization for Remote Sensing

Image Semantic Segmentation
Bin Zhang , Yongjun Zhang , Yansheng Li , Yi Wan , Haoyu Guo, Zhi Zheng, and Kun Yang

Abstract— Deep convolutional neural networks have gotten a lot
of press in the last several years, especially in domains like computer
vision and remote sensing (RS). However, achieving superior per-
formance with deep networks highly depends on a massive number
of accurately labeled training samples. In real-world applications,
gathering a large number of labeled samples is time consuming
and labor intensive, especially for pixel-level data annotation. This
dearth of labels in land-cover classification is especially pressing in
the RS domain because high-precision high-quality labeled samples
are extremely difficult to acquire, but unlabeled data are readily
available. In this study, we offer a new semisupervised deep se-
mantic labeling framework for the semantic segmentation of high-
resolution RS images to take advantage of the limited amount of
labeled examples and numerous unlabeled samples. Our model uses
transformation consistency regularization to encourage consistent
network predictions under different random transformations or
perturbations. We try three different transforms to compute the
consistency loss and analyze their performance. Then, we present
a deep semisupervised semantic labeling technique by using a
hybrid transformation consistency regularization. A weighted sum
of losses, which contains a supervised term computed on labeled
samples and an unsupervised regularization term computed on
unlabeled data, may be used to update the network parameters in
our technique. Our comprehensive experiments on two RS datasets
confirmed that the suggested approach utilized latent information
from unlabeled samples to obtain more precise predictions and
outperformed existing semisupervised algorithms in terms of per-
formance. Our experiments further demonstrated that our semisu-
pervised semantic labeling strategy has the potential to partially
tackle the problem of limited labeled samples for high-resolution
RS image land-cover segmentation.

Index Terms—Consistency regularization, convolutional neural
network (CNN), semantic segmentation, semisupervised learning
(SSL), unlabeled data, remote sensing (RS) imagery.
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I. INTRODUCTION

IN IMAGE processing, semantic segmentation is a high-level
and challenging mission, whose purpose is to assign a se-

mantic class label to every pixel [1]. Semantic segmentation
has received considerable critical attention in the domain of
computer vision (CV) and remote sensing (RS). In the RS
domain, the classification and segmentation of RS images is
one of the research hot spots, and it can get a variety of land-
use and land-cover (LULC) classification maps for subsequent
RS research and applications, for example, long-term series of
land-use cover analysis [2], [3], [4], [5]. Traditional machine
learning (ML) approaches for image classification and detection
generally utilized prior knowledge of experts to select and extract
hand-crafted features, but their improvement potential is limited
by the ability of experts. Deep neural networks have been the
dominant methodology in recent years, thanks to fast advances
in deep learning techniques and hardware computing capac-
ity [6], and deep convolutional neural networks (CNNs) have
found tremendous success in CV. When massive labeled samples
are available, CNN models can extract high-level and abstract
feature representations and get an impressive performance on a
variety of datasets [7].

However, most of the current networks are data driven and
trained in a supervised way. Therefore, the performance of net-
works highly relies on massive labeled samples [8], which means
that more large-scale datasets need to be created. Unfortunately,
it is extremely lengthy and laborious for collecting numerous ac-
curately labeled samples, especially precise pixel-level annota-
tion [9]. Furthermore, labeling samples need certain professional
knowledge, and some forms of data are difficult to obtain due to
security or privacy considerations. In the domain of RS, although
recent advances in sensors and earth observation techniques have
given birth to explosive growth in RS data [10], a large number of
labeled samples are still not available for some applications. For
example, high-precision LULC data, which must be collected
and annotated by RS experts, are difficult to obtain [11], [12],
[13]. As a result, the widespread application and development
of deep network technologies have been limited in the domain
of RS to solve many practical problems due to the dearth of
sufficiently large labeled datasets [2], [3], [4], [14], [15]. In
this scenario, figuring out how to leverage the unlabeled data
to improve the performance of existing models is a formidable
challenge and the motivation.
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Fig. 1. Two types of ML methods: supervised learning and semisupervised learning. The probability value of each category after the softmax layer at the pixel
position of the red frame in the outcome of the deep network prediction is shown by the histogram in the final column. In the supervised learning part, since only
limited data are available, the classification result of the pixel in the red box is wrong. On the other hand, when more unlabeled data are supplied in the SSL section,
the classification result of the pixel in the red box is correct. Combining massive unlabeled samples with limited labeled samples has been found to boost model
performance [16].

Unlabeled data are relatively easy to obtain compared with
labeled data. Thus, semisupervised learning (SSL) is a promising
solution, which bridges the gap between unsupervised and super-
vised learning. The SSL method generally needs limited labeled
samples and massive unlabeled samples to train a classifier [16],
as shown in Fig. 1. It has been discovered that combining massive
unlabeled examples with limited labeled samples considerably
improves learning performance. And adding more unlabeled
samples can yield more inherent information and determine
more accurate decision boundaries. For supervised learning,
it is costly and laborious, and it is difficult to obtain massive
labeled samples. On the other hand, acquiring massive unlabeled
samples is relatively inexpensive. Thus, SSL has more extensive
application prospects in practical applications. Previous studies
of SSL have demonstrated that consistency training by lever-
aging different image transformations on unlabeled data is an
effective approach [17], [18], [19], [20], [21], [22].

Over the years, various semantic segmentation and SSL ap-
proaches have been developed. Fully convolutional networks
(FCNs) have been widely used in RS images, such as FCN [23],
SegNet [24], [25], UNet [26], and DeepLabv3 [27]. However,
these methods can only perform well with a high amount of
training data, and reducing the number of samples can greatly
degrade the performance of the model. Some related works

employing unlabeled data have been introduced in LULC, such
as using multispectral data to boost the prediction performance
of hyperspectral images [28] and leveraging scene-level labels
for scene-level land-cover classification [29]. In addition, there
are also some methods that use unlabeled data in hyperspectral
image classification [30], [31], [32], SAR image classifica-
tion [33], and change detection [34]. Equally important, this
article focuses on the semisupervised semantic segmentation for
high-resolution RS images, which is a critical topic that must be
addressed.

In this study, we followed the spirit of consistency regu-
larization widely used in SSL [19], [20] and proposed a new
general framework of semisupervised semantic labeling for
high-resolution RS images. Our framework employed a trans-
formation consistency regularization (TCR) to make full use of
the information provided by unlabeled samples, which enforced
pixel-level consistency of the predictions by using different ran-
dom transforms or perturbations. Unlike previous consistency
regularisation methods, these methods mainly use a single sim-
ple image transformation as a perturbation, such as added noise,
dropout, etc. Specifically, we explored three different high-level
TCRs to compute the consistency loss and analyzed their perfor-
mance. Then, we presented a semisupervised semantic labeling
approach based on a hybrid transformation consistency
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regularization (HTCR). The weighted sum of a supervised term
calculated by labeled samples and a TCR loss computed by
unlabeled data may be used to update the parameters of our net-
work. On the DeepGlobe land-cover classification dataset [35]
and the Inria Aerial Image Labeling dataset [36], our semisu-
pervised segmentation framework outperformed state-of-the-art
semisupervised approaches in our exhaustive experiments. This
demonstrated that our semisupervised semantic segmentation
approach has the potential to partially tackle the problem of
limited labeled samples for land-cover classification of high-
resolution RS images.

The following are the major contributions of our suggested
method.

1) For limited labeled samples in high-resolution RS, we pro-
posed a generic framework for semisupervised semantic
segmentation. We employed a TCR in this framework to
fully use the underlying information offered by unlabeled
samples, which enforces the pixelwise consistency of the
predictions through using various random transforms or
perturbations.

2) We investigated three alternative transformations to com-
pute consistency loss and analyzed their performance. We
further proposed our HTCR-based semisupervised deep
semantic labeling approach.

3) The experiments we present in this article show that
the performance of semantic segmentation continuously
improved as the number of unlabeled samples grew. We
also demonstrated that our approach for semisupervised
semantic labeling is a potential and promising method
for addressing the issues of limited labeled samples for
high-resolution RS images.

The rest of this article is organized as follows. In Section II,
the recent related methods relevant to semantic segmentation and
SSL are briefly presented. Our proposed method is discussed in
Section III, and our experimental results are presented in Sec-
tion IV. The performance of our proposed approach is discussed
in Section V. Finally, Section VI concludes this article.

II. RELATED WORK

Recent work on semantic segmentation and SSL in the do-
mains of CV and RS is reviewed in this section.

A. Semantic Segmentation

In the domains of CV and RS, semantic segmentation has long
been a question of great interest. For semantic segmentation, the
FCN [37] was initially suggested. In pursuit of higher resolution
features, encoder–decoder architecture [38] and skip connection
were commonly used to recover the original size. To enhance the
capability of capturing contextual information, dilated convolu-
tions [39] and multiscale spatial pyramid pooling [40], [41] were
proposed to generate more discriminative features. Recently,
the self-attention mechanism [42] has become a research hot
spot to extract more high-level visual features. In the RS area,
Sherrah [23] proposed a network in which aerial images were
used as the input for a pretrained VGG network, and digital
surface model data were used for another FCN trained from

scratch. The feature maps from these two networks were then
concatenated to predict the label. Audebert et al. [24] proposed
an encoder–decoder with a multikernel layer for fusing the
predictions from multiple scales. Then, they developed a new
network by using multimodal and multiscale RS data for land-
cover classification [25]. Liu et al. [43] proposed a self-cascaded
encoder–decoder network, which combined a coarse-to-fine
refinement strategy to obtain fine predictions and a residual
correction module to correct the latent fitting errors.

B. Semisupervised Learning

SSL is a kind of ML technique that falls between supervised
and unsupervised learning. Because of its capacity to incorporate
labeled and unlabeled samples to train powerful models, SSL
has become an exciting new research topic. With the rise of
deep neural network technology, many novel SSL approaches
have emerged [8]. In this subsection, we review only the SSL
approaches related to deep learning, and for readers who want
more details about traditional approaches, we refer readers to
the literature [16].

The existing literature on SSL is extensive and focuses partic-
ularly on consistency regularization [17], [18], [19], [20], [21],
[22]. In the image classification task, one of the most simple
and effective methods introduced to deep neural networks is
the pseudo-labeling method [17]. Its core idea was that the
pseudo label of samples was generated by using the class having
the maximum probability. The π-model method [18], which
used the consistency regularization and input augmentation,
exploited the stochastic of perturbation and penalized the differ-
ence of the results under random different augmentation to the
input data [19]. The teacher–student framework was proposed
to minimize the difference between the predictions [20]. The
teacher network updated its parameters through the exponential
moving average (EMA) of the student model parameters to
obtain more stable predictions. Inspired by adversarial training,
virtual adversarial training [21] did not exploit the randomness
of the neural network but directly used a small noise to the
input data, which can greatly change outputs of the model.
Based on the mixup data augmentation technology [44], the
interpolation consistency regularization method enforced con-
sistent predictions at interpolations of unlabeled samples [22].
Recent studies (see, e.g., [45] and [46]) have shown that using
both pseudo-labeling and consistency regularization achieves
state-of-the-art performance on most classification datasets.

Although substantial efforts have recently been made in de-
veloping semisupervised approaches in classification problems
with relatively small datasets, several of the current methods are
not easily extended to real-world semantic labeling tasks. There
has been an increasing amount of literature on semisupervised
semantic labeling tasks. Hong et al. [47] proposed a decoupled
CNN that exploited training data with image-level and pixel-
level class labels to train classification and segmentation models,
respectively. Souly et al. [48] proposed a method by using a gen-
erative adversarial neural network (GAN) architecture, whereby
labeled samples were fed to a discriminator network to obtain
class confidence score, and fake samples and unlabeled samples
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were also input to the discriminator to obtain the confidence
map of each class. Hung et al. [49] proposed a GAN model for
semantic labeling, where the difference between their approach
was that they designed a discriminator to discover reliable pixels
of unlabeled samples that could promote the training process.
Kalluri et al. [50] proposed a general semantic segmentation
framework that can be trained on several datasets of differ-
ent labels together. French et al. [51] proposed a consistency
regularization using CutMix augmentation techniques. Mittal
et al. [52] proposed to combine GAN and Mean Teacher in a
complementary manner. Mondal et al. [53] proposed to learn
a cycle-consistent regularization strategy between available la-
beled masks and unlabeled samples. Ke et al. [54] used two SSL
constraints based on the flaw detector to learn from unlabeled
data. Chen et al. [55] proposed cross consistency, which used two
segmentation networks perturbed with different initialization
to generate the pseudo labels to guide the other segmentation
network.

C. Semisupervised Deep Learning for Semantic Segmentation
in RS

SSL also has been well explored in the RS field for automatic
classification of RS images [56]. Before deep learning technol-
ogy became mainstream, a novel modified transductive SVM
was proposed to use unlabeled data for addressing ill-posed
classification problems [57]. In recent years, a lot of research
has begun looking into SSL methods on the basis of neural net-
works. Wu and Prasad [58] proposed a nonparametric Bayesian
clustering algorithm to produce high-quality pseudo labels, re-
sulting in improved initialization of the neural network. Zhang
et al. [59] proposed a semisupervised change detection method
that combined a novel multiscale feature and metric learning to
strengthen the contribution of the training samples that are easy
to classify and to weaken the contribution of training samples
that are hard to classify. Han et al. [60] introduced a generative
semisupervised solution consisting of a cotraining self-labeling
strategy for learning a classifier from unlabeled samples and
discriminative evaluation to enhance the classification of the
confusion classes with similar texture structures and visualized
features. Fang et al. [32] proposed a clustering algorithm to
gather features of the network to produce pseudo targets for mas-
sive unlabeled samples in the collaborative learning framework.
Hong et al. [61] used a cross-modal land-cover classification
framework including three well-designed modules to carry more
discriminative features from a hyperspectral image into the
classification task using the multispectral data or SAR data.
Recently, Zhang et al. [62] focused on semisupervised semantic
labeling on the basis of consistency regularization, and their
proposed method used unlabeled data to obtain promising results
by encouraging the consistency of the output by using random
transforms. For change detection in high-resolution RS images,
Peng et al. [34] used a dual discriminator model, which enforced
the consistency of features between segmentation maps and
entropy maps. Kang et al. [63] proposed a SSL framework for
building segmentation, which enforced pixelwise contrast and
consistency constraints. Wang et al. [64] used iterative training

to generate better pseudo labels to improve the segmentation
performance.

Although the existing related works have made amazing
progress, the majority of the available semisupervised ap-
proaches focused on change detection and hyperspectral im-
age classification. Semisupervised semantic segmentation for
high-resolution RS imagery has received insufficient attention,
despite the fact that it is a significant and meaningful direction
when dealing with realistic scenarios.

III. METHODS

The important principles of the SSL problem are initially de-
scribed in this part, followed by an illustration of our TCR-based
framework for semisupervised semantic labeling.

A. Preliminaries

We consider a collection of training samples, which can
be split to two folds: labeled samples DL and unlabeled
samples DU . The labeled data DL consist of NL sam-
ples, denoted as DL = {(xL

i , y
L
i )}NL

i=1, where xL
i ∈ XL :

{xL
1 , . . ., x

L
i , . . ., x

L
NL

} for all i ∈ [NL] : {1, . . ., NL}, yLi ∈
cardinal(C), and the number of categorizes is C. In the labeled
data, each sample represents a tuple of input data x and a
target value y. All the available training samples have ground
truth, and the aim is to learn a map in supervised training f :
X → cardinal(C) parameterized by θ by optimizing a generic
objective function

Ls(XL, YL; θ) =

NL∑

i=1

�s(fθ(x
L
i ), y

L
i ) (1)

where fθ(·) represents its model with parameters θ and the
supervised term �s is commonly written as the cross-entropy
(CE) function.

For SSL, one can access some labeled data DL and unlabeled
dataDU = {xU

i }NU

i=1, where the labels are unknown. The number
of unlabeled samples isNU , and a typical common assumption is
that unlabeled samples outnumber labeled samples. The purpose
of SSL is to obtain a function f by leveraging all the available
labeled and unlabeled samples, and the performance for the final
model is superior to supervised learning trained on labeled data
alone. Therefore, the objective function is commonly written as
a weighted combination, that is, a supervised term Ls computed
by labeled samples and a regularization term R computed by
unlabeled samples (or both):

L = Ls + λR(θ,DL,DU ) (2)

where λ is a nonnegative hyperparameter.
Because only a tiny percentage of training samples are la-

beled, the regularization term is critical in determining how to
employ unlabeled samples for training in order to improve the
performance of the model. SSL must rely on some assumptions
in order to make more accurate predictions while using unlabeled
data. Smoothness assumption, cluster assumption, and manifold
assumption are the three assumptions in general [16].



5786 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

Fig. 2. Framework for semisupervised semantic segmentation. For the supervised branch, limited labeled imagesxL are fed into the student network that is trained
by using CE loss. To leverage the information supplied by the unlabeled samples, we apply a TCR between the student and teacher networks in the unsupervised
branch, which encourages consistent network predictions by utilizing distinct random transformations. The student network and teacher network are denoted as S
and T, respectively, where S = fθs and T = fθt.

B. Proposed Method

In this part, our general framework of semisupervised seman-
tic segmentation for high-resolution RS images is described first.

In this framework, we use a TCR to utilize the information
provided by unlabeled samples, which enforces the consistent
predictions under different random perturbations. Specifically,
three different transforms are used to compute consistency loss
in accordance with the characteristics of the RS images. Then,
we introduce our semisupervised semantic labeling method on
the basis of an HTCR. The weighted sum of a supervised term
and a regularization term can be used to update the parameters
of the network.

Our proposed framework uses a teacher–student network,
which has been widely used in network compression, knowledge
distillation, and SSL. The network structure of the student and
instructor networks is the same. The advantage of using a dual
network is that aggregating parameters of the model throughout
training stages leads to yield a more precise estimation, allow-
ing for better unlabeled data target construction. The student
network and the teacher network are denoted as S and T, re-
spectively. And their corresponding parameters are represented
as θs and θt, respectively. Since both labeled and unlabeled
data are provided, the entire framework can be divided into two
sections: the supervised branch and the unsupervised branch.
The proposed framework is depicted in Fig. 2.

1) Supervised Branch: Limited labeled images DL are fed
into the student network S in the supervised branch, and the

student network is trained in a supervised learning manner. Like
other semantic segmentation methods, we use pixelwise CE as
the loss function, denoted as LCE

LCE(XL, YL; θs) = −
∑

h,w,c

yLlogS(xL). (3)

2) Unsupervised Branch: For the unsupervised branch, we
use a TCR between the student and teacher networks to ex-
ploit the information provided by the unlabeled samples, which
encourages consistent network predictions by using different
random transforms or perturbations. We obtain unlabeled data
samplesDU = {xU

i }NU

i=1 and a random transform or perturbation
ϕ. Then, we carry out a transform on the unlabeled samples
x̃U = ϕ(xU ) and obtain the output feature map fθs(x̃

U ) by
using disturbance samples as input to the student network. In
the meantime, we obtain another output feature map fθt(x

U )
by feeding the original samples to the teacher network and
performing the same perturbation on another output feature
map ϕ(fθt(x

U )). Now, there are two output feature maps:
fθs(ϕ(x

U )) and ϕ(fθt(x
U )). Finally, the discrepancy between

the two output feature maps can be calculated by some distance
function d(·, ·) using (4)

Lu(XU ; θs) = d(fθs(ϕ(x
U )), ϕ(fθt(x

U ))) (4)

where the distance function d(·, ·) can use mean squared error
or the Kullback–Leibler (KL) divergence. In our article, we use
mean squared error as the distance function.
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Fig. 3. Examples for affine transformation, grid shuffle, and cutmix. (a) Affine transformation. (b) Grid shuffle. (c) Cutmix.

The optimization objective is to minimize this difference
under random perturbations. Intuitively, the student network is
encouraged to create the same feature maps as the teacher net-
work. As the training continues, the performance of the teacher
network consistently improves, and the prediction results of the
student network become more reliable. Gradient descent would
be used to adjust the parameters of the student model, while
the EMA is used to tune the parameters of the teacher model.
Since the weights of the teacher network average improve all
layer features, the teacher model has better intermediate feature
representations

θ′t = αEMAθt + (1− αEMA)θs (5)

where αEMA is a smoothing coefficient hyperparameter.
a) Transformation in our framework: Our framework uses

some common operations in image processing as random dis-
turbances, including pixel-level transformations and space-level
transformations. Pixel-level transforms mainly include image
filtering and image enhancement methods, such as blur, color
jitter, adding noise, histogram equalization, etc. Spatial-level
transforms mainly include flip, rotate, affine transform, per-
spective transform, elastic transformation, Cutout, CutMix, grid
shuffle, etc. Since space-level transformations can cause higher
dimensional disturbances, three spatial-level transformations are
used in this article. Next, we introduce three effective transforms
in our framework (see Fig. 3).

Affine transformation: Affine transformation is a type of 2-D
geometric transformation used in CV, which translates pixels to
new places utilizing a linear combining of translation, rotation,
scaling, and shearing operations. As a result, the affine transfor-
mation is frequently employed to rectify alignment that has been
twisted or deformed owing to camera flaws. Since convolution is
not invariant to scaling and rotation, it has also been used recently
for data augmentation during deep neural network training. The
affine transformation is used here as a random perturbation on
unlabeled data. In order to perturb sufficiently randomly, we use
the translation in the range (−0.2, 0.2) of the image size, zoom
inside the range (0.5, 1.5), and rotating in (−180◦, 180◦).

Grid shuffle: Grid shuffle is a data augmentation method that
splits an image into many small grid cells and shuffles them
randomly to generate a new image, as shown in Fig. 3(b). This
operation is often used to learn unsupervised feature representa-
tions by solving jigsaw puzzles [65]. Let x ∈ RW×H×C denote
an image and P = {x1, x2, . . ., xM×N} denote the set of small

local patches. The grid shuffle operation first divides the image
into M ×N grids and randomly shuffles the positions of these
small patches. The new image x′ is generated by merging these
small patches. The grid shuffle operation is formulated as

P = {x1, x2, . . ., xM×N} = split(x)

x′ = merge(shuffle(P )). (6)

In practice, we cut an image into nine patches, shuffle them,
and train the semantic network on the permuted images. This
operation introduces a strong perturbation into the framework,
allowing the model to acquire reliable feature embeddings from
local image regions.

Cutmix: Cutmix is another data augmentation strategy and
has outperformed other advanced data augmentation strategies
on the ImageNet classification task. It cuts and pastes small
local patches among training images according to a mask image
to generate a new image [66], as shown in Fig. 3(c). Specifically,
here, we use two sample images xA, xB ∈ RW×H×C and their
labels yA, yB . The cutmix operation is defined as

x̃ = (1−M)� xA +M� xB

ỹ = (1− λ)yA + λyB (7)

where M ∈ {0, 1}W×H represents a binary array and � is ele-
mentwise multiplication. The hyperparameterλ is a combination
ratio derived from the β-distribution β(α, α). α is set to 1 in our
implementation.

The binary mask M is sampled by obtaining the bounding
box coordinates B from both the images, which indicates the
area to be cropped from both images. The area in xA is filled
with the small patch cropped from area in xB . The aspect ratio
for mask M is proportionate to the original image. The width
and height of box B are computed according to the following
formula:

rw = W
√
1− λ,where rx ∼ uniform(0,W )

rh = H
√
1− λ,where ry ∼ uniform(0, H) (8)

where rx and ry is width and height of the box, respectively.
Finally, the binary mask M is determined by filling with zero in
the bounding box B; otherwise, it is 1. Two unlabeled images
are required when this transformation is embedded in our frame-
work. If the task is semantic segmentation, the cutmix operation
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Algorithm 1: Training Process for TCR.

for the label image is the same as the sample image

ỹ = M� yA + (1−M)� yB . (9)

b) Hybrid transformation consistency regularization:
When compared to single perturbation, such as the above three
transformations, we believe that combining them can serve as
more effective and diverse perturbations. Hence, we proposed
an HTCR. Different combinations of the above three transfor-
mations were explored, and we verified their effectiveness on
our datasets. When three transformations were embedded in our
framework, the final training target L comprises four terms, i.e.,

L = Ls + λaLa + λgsLgs + λcLc (10)

where La, Lgs, and Lc are the corresponding consistency reg-
ularization terms, and λa, λgs, and λc are the weights that
influence the size of the corresponding loss term.

In summary, the proposed entire framework of deep semantic
semisupervised labeling can be described as Algorithm 1.

IV. EXPERIMENTAL RESULTS

A. Experimental Dataset

We performed extensive experiments to verify our pro-
posed semisupervised semantic segmentation approach on two
datasets: the DeepGlobe Challenge land-cover classification
dataset [35] and the Inria Aerial Image Labeling dataset [36].

1) DeepGlobe Land-Cover Classification Dataset: There
are 1146 high-resolution RS images from rural areas in this
dataset. The images have a pixel resolution of 50 cm and a

shape of 2448 × 2448 pixels. All the images are separated
into three parts: training set, validation set, and test set with
803, 171, and 172 images, respectively. As shown in Fig. 4, the
ground truth is classified into seven categories: urban land, farm
land, range land, forest land, water, barren land, and unknown
(such as clouds). The unknown class is ignored when calculating
accuracy. The DeepGlobe dataset is challenging because of the
variety and diversity of its land-cover types. Because the ground
truth for validation and the test set were not accessible, only
the training set was used as experimental data. As a result,
we picked 100 images at random as the validation dataset, 100
images as the test dataset, and the rest as the training dataset.
In the training set, training samples were divided into labeled
samples and unlabeled samples. Three distinct split methods
were applied, with the labeled samples partitioned into 20, 50,
and 100 images and the remaining training images regarded as
unlabeled samples.

2) Inria Aerial Image Labeling Dataset: This benchmark
dataset is composed of 360 orthorectified aerial photos, each
of which is 5000 × 5000 in size. The data were acquired from
ten cities over different urban areas. There are 36 images in
each city. The ground-truth data were created by rasterizing the
vectors of public domain building footprints. In our experiments,
we used the public images from five cities as the experimental
data because the ground truths for the other five cities were
unavailable. As with the previous dataset, we randomly selected
images from one city as the test dataset and divided them into 9,
18, and 36 images as the labeled data from the other four cities,
and the remaining images were treated as unlabeled data.

B. Implementation Details

We adopted the DeepLab-V2 [67] as the student and teacher
network, and the ResNet-50 model pretrained on the ImageNet
dataset [7] served as the backbone. Our model was trained using
the Adam optimizer with a mini-batch size of 4. The learning
rate was 3× 10−5 and the total iterations are 40 000. The random
flip was employed for the data augmentation approach. the small
patches were cropped to 513 × 513 in size finally. The weights
of the regularization loss component La, Lgs, and Lc were
set at 0.1, 1.0, and 1.0, respectively. The smoothing coefficient
hyperparameter αEMA was set at 0.99. In order to evaluate our
method accurately, each experiment was conducted three times
to calculate the mean values.

We compared our proposed method with the model trained
using just labeled samples (denoted as baseline) and the model
trained by all the labeled samples (denoted as full), which
served as the lowest and upper bounds for supervised learning
performance, respectively. To verify the effectiveness of our
approach, we compared it to the following six state-of-the-art
SSL algorithms.

1) AdvSSL [49]: This method proposed an adversarial model
for semisupervised semantic labeling. For the labeled data,
the higher structural information was learned from the
adversarial loss. The trustworthy regions of the unlabeled
samples generated by the discriminator model for the
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Fig. 4. Some examples of DeepGlobe land-cover classification dataset and Inria Aerial Image Labeling dataset. (a) Examples from the DeepGlobe land-cover
classification dataset. (b) Examples from the Inria Aerial Image Labeling dataset.

unlabeled data were used to refine the results of the seg-
mentation model.

2) CutMix [51]: This method was based on consistency
regularization, which encouraged similar predictions un-
der strong varied perturbations. Specifically, the authors
proposed to mix the unlabeled samples and corresponding
predictions and enforce consistency between the network
outputs of the mixed unlabeled samples and the mixed
predictions of unlabeled samples.

3) s4GAN [52]: This method combined GAN and Mean
Teacher in a complementary manner to enhance the
consistency of outputs. A segmentation network and a
discriminator network were incorporated in the s4GAN
branch, which may leverage unlabeled inputs to enhance
the prediction quality. The image-level category labels
were predicted from the Mean Teacher branch to filter the
outputs of the S4GAN branch, which effectively removed
incorrect predictions of the segmentation network.

4) CCT [68]: This method proposed adding different per-
turbations to the outputs of the encoder to enforce con-
sistency over the main decoder and multiple auxiliary
decoders. The shared encoder is enhanced by using the
additional training loss calculated from multiple auxiliary
decoders.

5) CPS [55]: This technique offered a simple semisupervised
segmentation strategy that enforces the consistency be-
tween two networks with the same structure but differ-
ent initialization, by supervising the other network with
the one-hot pseudo segmentation map acquired from the
first.

6) S4Net [62]: This method utilized unlabeled samples by
consistency regularization, which ensures the pixelwise
consistency of predictions under random various transfor-
mations.

The overall accuracy, mean intersection over union (mIoU),
and F1-score were used as assessment metrics in this study. The
F1-score is defined as follows:

precision =
TP

TP + FP
, recall =

TP
TP + FN

(11)

F1 = 2
precision · recall

precision + recall
. (12)

C. Ablation Study

Ablation studies were performed on the DeepGlobe validation
dataset to verify the performance of our proposed semisuper-
vised semantic segmentation approach. The baseline results used
20 labeled images only. All of the semisupervised semantic
segmentation results below were obtained using 20 images as
labeled samples and the remaining images as unlabeled samples.

1) Impact of the Hyperparameter λ on Accuracy: In this part,
the hyperparameters of consistency regularization loss λa, λgs,
and λc were analyzed. Because it was impossible to try all
the possible values, six different values were used here: 0.1,
0.5, 1.0, 2.0, 5.0, and 10.0. The validation dataset was used
to evaluate the results of the various values, and the settings
and implementation details were the same as in the previous
experiments. As shown in Fig. 5, the three random transforms
improved the result remarkably. Compared with the baseline
result, the results of using affine transformation as the random
transformation were better than the baseline method. With an
increase in λa, the performance displayed a downward trend,
and this transform increased to 2.01 mIoU when λa = 0.1.
Meanwhile, employing grid shuffle as the random perturbation
outperformed the baseline with a large margin. When λgs = 1.0,
the method yielded results of 76.74 in accuracy and 53.43 in
mIoU. Likewise, the cutmix perturbation also achieved similar
experimental results. When we set λc = 1.0, the performance
improved to 52.60 mIoU. In the experiment below, if there
was no additional explanation, we set λa = 0.1, λgs = 1.0, and
λc = 1.0.

2) Impact of Combination of Different Transform: Com-
pared with single perturbation, we contend that combinations
of the above three transforms can serve as a more effective and
diverse perturbation. To verify our proposed HTCR, we tried
different combinations of the above three transforms. The results
were shown in Table I. When using 20 labeled images only,
the baseline method yielded 72.28, 46.36, and 59.56 in overall
accuracy, mIoU, and mean F1-score, respectively. Furthermore,
when we adopted single perturbation, the performance of using
affine transform, grid shuffle, and cutmix improved to 48.37
mIoU, 53.43 mIoU, and 52.60 mIoU, respectively. When we
combined two transforms, the combination of grid shuffle and
cutmix resulted in 54.18 mIoU, but the performance increase
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Fig. 5. Impact of the hyperparameter λ on accuracy for affine transform, grid shuffle, and cutmix. (a) Affine. (b) Grid shuffle. (c) Cutmix.

TABLE I
IMPACT OF COMBINATION OF DIFFERENT TRANSFORM ON ACCURACY

of the other two combinations was not apparent. Moreover,
integrating all three transforms also did not significantly enhance
the results, which indicated that affine transformation was not
compatible with other complex transforms, and using multiple
transforms at the same time did not always improve the results.
However, the combination of grid shuffle and cutmix improved
the baseline results remarkably with 7.82 mIoU. This shows that
the combination of grid shuffle and cutmix can serve as a more
diverse perturbation and is an effective way to apply consistency
regularization in SSL. If not explicitly stated below, our method
here forward uses a combination of these two transforms by
default.

3) Impact of the EMA Hyperparameter: Sensitivity exper-
iments were also conducted for EMA hyperparameters αEMA.
The progressive improvement in performance is plainly seen
in Fig. 6. From the graph above, we can see that the mIoU
of the proposed method is 50.65 when αEMA is equal to 0. At
this point, the parameter of the teacher network is exactly the
same as that of the student network, and the teacher network
does not provide guidance to the student network. Therefore, the
performance improvement mainly comes from the consistency
of the transformation. Averaging the parameters of the model
across the training phase, rather than utilizing the final weights
directly, produces a more accurate model as αEMA grows. It can
be seen that the highest mIoU is reached when αEMA is equal to
0.99. Therefore, in the experiments of this article, if not explicitly
stated, we set αEMA = 0.99.

Fig. 6. Impact of different EMA hyperparameter values on performance.

TABLE II
IMPACT OF THE CONSISTENCY DISTANCE FUNCTION

4) Impact of the Consistency Distance Function: Table II
compared the results obtained from the different consistency
distance function. Here, we used two distance functions: KL
divergence and MSE. When MSE was utilized as the dis-
tance function, the suggested approach produced the best re-
sults. Therefore, in the experiments of this article, if not
explicitly stated, we used MSE as the consistency distance
function.

D. Comparison With State-of-the-Art Methods

On the test sets of the DeepGlobe dataset and the Inria dataset,
we compared the proposed method to current semisupervised
semantic labeling methods in this part.

1) Results for DeepGlobe Dataset: Following common prac-
tice, we compared the results of our proposed semisupervised
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TABLE III
EXPERIMENTAL RESULTS FOR THE DEEPGLOBE LAND-COVER CLASSIFICATION DATASET

TABLE IV
EXPERIMENTAL RESULTS FOR THE INRIA AERIAL IMAGE LABELING DATASET

semantic segmentation method HTCR to those of other methods
in the case of four different data partitions. The results of our
proposed method were superior than the baseline method by
a considerable margin in four distinct scenarios, as shown in
Table III. Especially, when there were only 20 labeled images,
our method improved by 5.98 mIoU compared to the baseline
method, while the existing methods AdvSSL and s4GAN have
limited improvement. Both of these two methods were based on
the GAN model. We believed that when labeled data were sparse,
the GAN model lacked sufficient supervision signals, which
led to unstable training. Although the CCT method employed
consistency regularization in the higher dimensional space, its
performance on RS datasets was insufficient. Compared with
the CutMix method and S4Net, our proposed method combined
multiple transformations, so it is a more diverse perturbation.
Compared with the baseline method, the CPS method only
improved by 0.42 mIoU, which may be because in the early
stage of training, the prediction results of the two models were
poor, and mutual supervision provided more invalid gradient
updates. Furthermore, our results were 8.11% higher than the
results of supervised learning when all the images were handled
as labeled data and unlabeled data at the same time, proving the
usefulness of our proposed HTCR. We also discovered that the
results of our method using 20 labeled images were superior
to the results of supervised learning using 50 labeled images,
demonstrating that our SSL method is very effective when the
number of labeled samples is small and that good results can be
achieved only by adding unlabeled images.

Fig. 7 depicts a visual comparisons between the results pro-
vided by our proposed approach and the other methods. The
graphic shows that our approach obtained better visual results
than the other methods, demonstrating that the overall semantic
content of an image can be better predicted by our model
with fewer false detection compared to the other methods. In

addition, our SSL method produced better details, integrity, and
correctness, while the results of other methods often had
checkerboard artifacts.

2) Results for Inria Dataset: To validate our method further,
we also compared our method to the current methods on the
Inria dataset. Using this dataset to extract buildings is more
difficult than using the DeepGlobe dataset since it is a binary
classification issue with significantly imbalanced positive and
negative samples. When just a few annotated images were
available, our results were superior to the other approaches, as
shown in Table IV. For example, when there were only four
labeled images, our accuracy was 4.52% higher than the results
of supervised learning. With the exception of Cutmix and S4Net,
the results of the existing methods were even worse than the
baseline results. It is noteworthy that the CPS method obtained
poor results when only a small number of labeled samples were
available. When all the images were considered as annotated
samples and unlabeled samples at the same time, our results were
7.12% higher than the results of supervised learning. Similarly,
we also found that the results of our method using nine labeled
images were better than the results of supervised learning using
18 labeled images, which also indicates that our method may
be effective even when there is a limited amount of labeled
data.

Fig. 8 depicts a visual comparison of the results generated
by our method and the other methods. The ground truth and
corresponding segmentation results for five original large im-
ages from the test set are displayed. Our method achieved better
visual results compared with the other methods. Our results were
better than other methods in both small dense buildings and large
buildings, with fewer false detections, better integrity, and more
accurate edges of the buildings, while CCT easily connected
small dense buildings together and CPS basically gives incorrect
classification results. To better show the details of the results, we
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Fig. 7. Visual comparison of segmentation result on the DeepGlobe land-cover classification dataset. (a) Images. (b) GT. (c) Baseline. (d) AdvSSL. (e) CutMix.
(f) s4GAN. (g) CCT. (h) CPS. (i) S4Net. (j) HTCR.

also compared the results of local patches (shown in red boxes)
in the next row of each large image.

V. DISCUSSION

In this part, in order to further confirm the effectiveness of the
proposed approach, we explored the sensitivity of the proposed
method to different amounts of unlabeled data, the sensitivity
of the semantic segmentation network used, and qualitatively
visualized the assumptions contained in the proposed method.
All these experiments were still performed on the DeepGlobe
dataset, and all the semisupervised semantic segmentation re-
sults below were obtained using 20 images as labeled samples
and the remaining images as unlabeled samples.

A. Sensitivity Analysis of the Amount of Unlabeled Data

As can be observed from the preceding experiments, our
approach outperformed the baseline model by a significant
margin. However, previous experiments did not carefully study
the influence of the number of unlabeled images on SSL. These
experiments conducted in this subsection show that a key factor
for the success or failure of SSL may be the number of unlabeled
images. It is conceivable that accuracy was scarcely improved

with only a few unlabeled images, while it was higher when the
number of unlabeled images was large. We, therefore, further
explored the impact of the amount of unlabeled data. In this
experiment, we trained the baseline model using 20 labeled
images. Fig. 9 depicts the model performance as a function of the
amount of unlabeled samples, demonstrating that the accuracy of
the proposed SSL method improves as the number of unlabeled
images grows. Furthermore, when we used all the remaining
images as unlabeled data, our model then achieved the highest
performance. Therefore, we believe that using more unlabeled
images likely will further improve accuracy.

B. Robust Analysis of the Proposed Method

Because our framework does not rely on a specific network
model, we replace the DeepLab-V2 with three current semantic
segmentation networks (FCN, PSPNet, and DeepLab-V3) to
confirm the stability of our proposed approach. Other segmenta-
tion networks in our architecture also improved accuracy, as seen
in Table V. In particular, using DeepLab-V3 in our framework
resulted in a mIoU that was 5.07% higher than the results of
the supervised learning model, demonstrating the outstanding
performance and robustness of our proposed approach.
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Fig. 8. Visual comparison of segmentation result on the Inria Aerial Image Labeling dataset. (a) Images. (b) GT. (c) Baseline. (d) AdvSSL. (e) CutMix. (f)
s4GAN. (g) CCT. (h) CPS. (i) S4Net. (j) HTCR.

Fig. 9. Sensitivity of the number of unlabeled data on accuracy.

TABLE V
PERFORMANCE BY USING OTHER SEGMENTATION NETWORKS

C. Assumption in SSL

When we compared our SSL method to supervised learning in
previous trials, we obtained more precise predictions by consid-
ering the unlabeled samples. However, an important prerequisite
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Fig. 10. Using t-SNE to visualize the features of the intermediate layer.

is that the unlabeled data must be able to help elucidate the
distribution of examples [16]. There were two assumptions in
this process. The first was the smoothness assumption, which
states that if two points are close, then the corresponding outputs
also should be close. The manifold assumption stipulates that
high-dimensional data lie approximately on a low-dimensional
manifold. Based on the above two assumptions, our method
followed a modification of the smoothness assumption in deep
learning, supposing that if two example points are close in a
high-density region or low-dimensional manifold, then the two
examples should have corresponding outputs. To validate this,
we employed t-SNE [69] to plot four intermediate features of
our deep network, as shown in Fig. 10. Our results show that the
deeper features of the same category were closer compared to
the shallow features. Every pixel in the image may be thought
of as a point in a low-dimensional manifold, with the deep net-
work attempting to learn its function by mapping data samples
to high-dimensional features in the manifold. The distribution
of the sample was not clearly and completely depicted when
just a limited number of labeled samples were available. We
employed a TCR to fully use the underlying information offered
by unlabeled data, allowing the model to learn more precise
decision boundaries by exploring a more realistic and accurate
distribution of instances.

D. Difference Between the Proposed Method and Existing
Methods

The main differences between the proposed method and ex-
isting methods are as follows.

1) Compared with GAN-based methods, such as AdvSSL,
s4GAN, etc., the proposed method used the teacher–
student framework to avoid training instability due to
adversarial training, and the model converged faster than
GAN-based methods.

2) Compared with consistency-based methods, such as Cut-
Mix, CCT, CPS, etc., the proposed method explored three
different transforms to compute consistency loss and an-
alyzed their performance. To make perturbations more
effective and diverse, we further proposed our semisuper-
vised semantic segmentation method based on an HTCR.
Different combinations of the above three transformations

were explored, and we verified its effectiveness on our
datasets. However, methods in CV do not perform opti-
mally on RS data, especially the CPS method performs
poorly on binary classification problems with imbalanced
samples.

3) Although the existing related works have made amaz-
ing progress, most of the existing semisupervised meth-
ods focus on change detection and hyperspectral im-
age classification. Insufficient research has been con-
ducted on semisupervised semantic segmentation for
high-resolution RS imagery, which is also an important
and meaningful direction when facing realistic scenes. The
proposed method has been tested on two high-resolution
datasets to verify its effectiveness.

Compared with S4Net, although both the methods use consis-
tent regularization, the previously proposed network is different
from the one proposed in this method. The previous framework
uses UNet as the segmentation network, and the labeled and
unlabeled samples are input to the same segmentation network,
and the weights of the two networks are the same, whereas in
the framework proposed in this method, a dual network is used,
i.e., a student network and a teacher network, and the weights
of the two networks are different. In the previous framework,
the unlabeled samples are transformed twice, and then, both are
input to the network for consistency regularization comparison,
while in the proposed framework, the unlabeled samples are
transformed once and then both are input to the network with
the original samples, then the same transformation is done on
the output of the original samples, and finally the consistency
regularization comparison is done. The previous framework,
after getting the output of the network, needs to do the inverse
transform to restore the position of each pixel first, which is trou-
blesome when using some other transforms and makes the whole
framework inflexible. The advantage of the proposed framework
in this method is that only one transformation is done without
inverse transformations, which can improve the flexibility of the
framework by embedding arbitrary transformations.

VI. CONCLUSION

In this article, a novel general framework was introduced for
semisupervised semantic segmentation of high-resolution RS
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images. In this framework, three different TCRs were used for
encouraging consistent network predictions by using different
random transforms or perturbations. Then, we proposed an
HTCR method that combined different transforms. We con-
ducted extensive experiments on the DeepGlobe dataset and
the Inria dataset and found that our semisupervised semantic
segmentation framework for high-resolution RS images outper-
formed other state-of-the-art semisupervised semantic segmen-
tation approaches, especially when the labeled samples were
scarce. Our experiments further demonstrated that our method
for land-cover classification is promising to address the issue of
scarce labeled samples. This feature of the method in this article
is suitable for most RS image users. With the accumulation
of annual or quarterly RS data, the method in this article can
continuously improve the accuracy of the classifier without
supplementing the labeled data.

A limitation of this study is that the two datasets used in
this article are not dedicated to semisupervised RS semantic
segmentation. More research using controlled trials is needed
to use larger and especially designed for SSL dataset, such as
MiniFrance dataset [70]. In spite of its limitations, the study
certainly adds to our understanding of the SSL in RS. We believe
future work can explore the following topics. It can embed more
effective transforms into our framework to enforce pixel-level
consistency. An interesting future line of research is using
pseudo labels. It can use a model to generate pseudo labels, then
use pseudo labels and real labels to train a new model, and iterate
repeatedly. This is complementary to our method. In addition,
unsupervised pretraining can also be used. It can train the model
in an unsupervised fashion by using unlabeled data, such as
self-supervised pretraining and fine-tuning it with labeled data.
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