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Abstract— Deep hashing networks have been successful in
retrieving interesting images from massive remote-sensing
images. There is no doubt that security and reliability are
critical in remote-sensing image retrieval (RSIR). Recent studies
about natural image retrieval have shown the vulnerability of
deep hashing networks to adversarial examples, but there are
no existing research studies about the attack and defense of
deep hashing networks in RSIR. Due to the large intraclass
difference and high interclass similarity of remote-sensing images,
the attack and defense methods on deep hashing networks
for natural images cannot be directly applied to the remote-
sensing images. Different from the widely adopted instance-aware
hash codes that often present the suboptimum performance of
the attack and defense on deep hashing networks, this article
recommends the usage of semantic-aware hash codes, which take
into account multiple samples in the given semantic categories,
in both attack and defense. To pursue the strongest attack on
RSIR, a novel semantic-aware attack with weights via multi-
ple random initialization (RWC) is proposed. To alleviate the
retrieval degradation caused by adversarial attacks, a new adver-
sarial training defense method on deep hashing networks with
the adversarial semantic-aware consistency constraint (ACN) is
proposed. Extensive experiments on three typical open remote-
sensing image datasets (i.e., UCM, AID, and NWPU-RESISC45)
show that the proposed attack and defense methods on various
deep hashing networks achieve better performance compared
with the state-of-the-art methods. The source code will be made
publicly available along with this article.

Index Terms— Adversarial examples, deep hashing network,
remote-sensing image retrieval (RSIR), semantic-aware attack
and defense.

I. INTRODUCTION

WITH the rapid development of remote-sensing science
and technology, the amount of data acquired by earth

observation remote-sensing sensors increases sharply. Human
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beings have entered the stage of remote-sensing big data
(RSBD) [1]. Remote-sensing image retrieval (RSIR) as a
means of discovering images is an important tool for mining
the value of RSBD. Given one query image, RSIR refers
to searching for interested images from a remote-sensing
image dataset [2]. With the explosive growth of remote-sensing
images, traditional RSIR methods are unable to meet the
requirements of the current image data scale for efficiency and
accuracy [3], [4], [5], [6], [7], [8], [9]. To improve retrieval
efficiency and accuracy, the latest methods usually use deep
neural networks [10], [11], [12], [13]. Due to the strong
low-dimensional representation ability of deep learning, deep
hashing methods have achieved great success in large-scale
RSIR [14], [15], [16], [17], [18], [19], [20].

However, recent studies have shown the vulnerability of
deep hashing networks [15], [21], [22], [23], [24]. By making
minor modifications to the original input examples or adding
elaborate malicious disturbances, the network often gives
wrong output results, and the modified examples are called
adversarial examples [25]. Compared with other networks,
learning adversarial examples on deep hashing networks
is much more difficult. The particularity brought by the
symbolization of the hashing network is the most obvious
difficulty. At present, the research on adversarial examples
of deep hashing networks, including adversarial attack and
defense, is mostly based on natural images. Some stud-
ies have shown that the use of adversarial examples can
increase the generalization ability of the model. Especially
on supervised small datasets [26], [27] and on semisuper-
vised large datasets [28], [29]. However, on large datasets
with supervised settings, adversarial examples usually cause
a decrease in the accuracy of the results [30], [31]. Therefore,
to reduce the threat of adversarial examples to the deep
hashing networks and improve the model’s robustness, more
and more adversarial defense methods have been proposed
[14], [28], [32], [33], [34], [35], [36], [37], [38]. Adversarial
examples are regarded as data augmentation and adversarial
examples participate in the training stage to improve model
performance.

There is a serious lack of research about attacks and
defenses on deep hashing networks in large-scale RSIR.
Compared with the natural image field, the tasks in the
remote-sensing image field have their own particularities.
Remote-sensing images are more complex. They have the
characteristics of a large intraclass difference and high
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interclass similarity. Remote-sensing scenes belonging to the
same semantic category may have significant appearance
variations due to different imaging conditions and spatial
resolutions. The existence of adversarial examples poses a
great threat in scenarios requiring high-security intensity. For
example, in the military battlefield, the enemy can conduct
adversarial attacks on the query images that need to extract
more similar information from the remote-sensing image
database through network attacks, so that we will get images
that do not meet the expectations and interfere with the
judgment. Therefore, to alleviate the vulnerability of deep
hashing networks in the massive RSIR scene, attention should
be paid to adversarial defense methods. However, there are no
studies in RSIR on deep hashing network attack and defense.

In particular, in many existing attacks and defenses on deep
hashing networks, the methods are completed using instance-
aware hash codes. The instance-aware attack only considers
the relationship between the adversarial sample and its cor-
responding original sample, which may lead to the problem
that the adversarial sample still maintains some similarity with
other samples of that category after the attack. The instance-
aware defense improves network robustness by maintaining
the similarity between the adversarial sample and the original
clean samples without considering the similarity between the
adversarial sample and its corresponding clean sample cate-
gory. Instead, the essence of defense on deep hashing networks
is to make the output hash codes of the adversarial sample after
the deep hashing network consistent with the original sample
hash codes in that category. Therefore, instance-aware hash
codes lead to poor attack and defense results on deep hashing
networks.

To solve the above problems, adversarial examples on
deep hashing networks for large-scale RSIR are studied from
attack and defense aspects in this article. To the best of our
knowledge, it is the first time to propose an adversarial attack
and defense on deep hashing networks in RSIR. It reveals
the significance of the resistibility of networks when solving
large-scale RSIR tasks. We propose semantic-aware attacks
and defense. The semantic information presented by multiple
samples makes the attack and defense more effective. To reveal
the vulnerability of deep hashing networks in RSIR, a gradient-
based attack method that is a novel semantic-aware attack
with weights via multiple random initialization (RWC) is
proposed. The weight vector is used to optimize the resource
allocation during the attack, and similar to commonly used in
other attacks the global optimum is found by multiple random
initializations which is the first used for deep hashing network
attacks. The attack method uses semantic-aware hash codes
rather than instance-aware ones. To alleviate the vulnerabil-
ity and maintain a certain retrieval accuracy in the face of
adversarial examples, we study adversarial training methods
on deep hashing networks and propose an adversarial training
defense method for deep hashing networks with adversarial
semantic-aware consistency constraints (ACNs). By introduc-
ing adversarial examples in the training stage, the similarity
relationship between adversarial examples and original images
and the consistency relationship between adversarial exam-
ples and original category examples of network output is

maintained for defense. This adversarial training improves the
robustness of the network. Experiments are carried out on
three RSIR datasets UCM, AID, and NWPU-RESISC45 to
verify the superiority and effectiveness of the proposed attack
and defense methods on deep hashing networks. The main
contributions of this article are summarized as follows.

1) We propose the semantic-aware attack method (i.e.,
RWC) on deep hashing networks, which first adopts
multiple random initializations on deep hashing network
attack to ease gradient descent into local optimization,
adds the weight vector of hash bits to make the attack
focus on the hash bit that has a large impact on the
result and uses semantic-aware hash codes that take into
account the semantic information presented by multiple
samples in the class.

2) To alleviate the vulnerability of deep hashing networks,
we propose a new adversarial defense method (i.e.,
ACN) that adds adversarial examples in the training
stage and uses the proposed adversarial loss term, which
includes clean similarity loss, adversarial similarity loss,
and adversarial semantic-aware consistency, which keeps
the semantic information between multiple samples in
the class consistent with that between the adversarial
samples.

The rest of this article is organized as follows. Section II
describes in detail the adversarial attacks and defenses in exist-
ing deep hashing networks. Section III introduces our proposed
methods, including RWC and ACN. Section IV introduces
the information of the datasets used and experimental results.
Section V summarizes the article.

II. RELATED WORK

A. Deep Hashing Networks for RSIR

Hashing-based methods aim to construct binary codes for
each sample in a database, such that similar samples have
close codes [39]. Because hash code is very efficient in
binary computing and storage, it is widely used to accelerate
artificial neural network (ANN) retrieval [40]. Most existing
deep hashing methods can be divided into two categories:
1) unsupervised hashing, which learns deep features by pre-
serving the consistency between inputs and outputs without
using any semantic labels [3], [4] and 2) supervised hashing,
which uses semantic labels or pairwise similarities to supervise
feature learning.

Compared to unsupervised hashing, supervised hashing
can usually achieve more promising results and thus attract
more attention. The first supervised deep hashing is called
convolutional neural network hashing (CNNH), which adopts
two steps for hashing: hash code learning and hash func-
tion learning [41]. Recent work showed that learning
similarity-preserving binary code in an end-to-end manner
can improve retrieval performance. Deep pairwise-supervised
hashing (DPSH) proposes a pairwise loss function to map sim-
ilar data pairs to similar hash codes and dissimilar data pairs
to dissimilar hash codes [25]. Moreover, the quantization error
between real-value outputs and binary codes is also minimized.
HashNet learns exact binary hash codes via a continuation
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method with convergence guarantees [42]. Recently, a new
supervised hashing learning method was proposed, which
expresses hashing learning in the form of meta-learning [20].

In the field of massive RSIR, deep hashing neural networks
(DHNNs) introduced deep hashing into RSIR for the first time
and realized end-to-end image retrieval by combining a deep
feature learning module and a hash function learning module
[9]. Feature and hash learning (FAH) is further developed on
the basis of DHNNs. It contains a feature learning module
and an adversarial hash learning module. The feature learning
module extracts multiscale features of remote-sensing images
by feature aggregation, tries to emphasize the multiscale
by attention branching, and ultimately guarantees to extract
characteristics of dense mapping to discrete hash code, its
loss function, in addition to containing the basic similarity
constraint loss items in pairs and quantifying losses. It also
includes the loss item of semantic label classification and the
loss item of maintaining hash code distribution balance. FAH
has further improved the retrieval accuracy of remote-sensing
images based on DHNNs [14].

In RSIR, deep hashing networks improve retrieval speed and
accuracy. It makes full use of the strong feature extraction
ability of deep neural networks and the high retrieval and
storage efficiency of the hash method. However, in recent
years, many studies have demonstrated the vulnerability of
deep hashing networks in the face of adversarial example
attacks. The attack and defense on deep hashing networks for
RSIR have not been studied yet, so incremental analysis is
needed to fill the gap.

B. Adversarial Attacks on Deep Hashing Networks

Adversarial examples are usually crafted by adding small,
visually imperceptible perturbations to the original images that
can confuse the targeted neural networks and misclassify them.
The generation of adversarial examples has been extensively
studied, and they can be roughly divided into untargeted
attacks and targeted attacks. Targeted attacks trick the model to
output specific classes, but untargeted attacks trick the model
to output any unwanted classes. Since Szegedy et al. [1] dis-
covered the existence of adversarial examples, various attack
methods in image classification have been proposed to fool the
well-behaved dynamic neural network (DNN). For example,
the fast gradient sign method (FGSM), one of the most popular
and efficient attack algorithms, aims to maximize the loss of
the targeted model along the gradient direction in a single step
to learn adversarial examples [43]. Iterative FGSM (I-FGSM)
[44] and projected gradient decent (PGD) [45] is a multistep
variant of FGSM that updates adversarial perturbation in an
iterative learning strategy to obtain better performance. Xu
et al. proposed a new black-box adversarial attack method
Mixup-Attack that attacks the shallow features of a given
proxy model to find common vulnerabilities among different
networks, to generate transferable adversarial examples [46].

Adversarial examples for DNN-related tasks have been
studied, such as classification, semantic segmentation, natural
language processing, medical prediction, and so on. Recent
works on deep hashing networks have also confirmed the

vulnerability of DNNs to adversarial examples. The genera-
tion of adversarial examples for deep hashing networks can
be divided into untargeted attacks and targeted attacks. For
untargeted attacks, a deep hashing model can preserve the
semantic information well, which means that semantically
similar pairs will have similar hash codes, while semantically
dissimilar pairs will have dissimilar hash codes. Hash adver-
sary generation (HAG) modifies the adversarial examples to
make the hash codes of the adversarial examples dissimilar
to the original examples [30]. Smart deep hashing attack
(SDHA) employed a dimension-wise Hamming distance sur-
rogate function to improve the effectiveness of attack [47].
Recently, Yuan et al. [48] proposed a theoretically guaranteed
measure of discriminant learning called SAAT that can obtain
representative pillar codes. For targeted attacks, Bai et al. [49]
proposed two targeted hashing attack methods called point-to-
point (P2P) and deep hashing targeted attack (DHTA), which
is to make the hash code of the adversarial example similar to
the images of targeted images. Compared with them, DHTA
is more effective. Because DHTA determines the category
hash code from multiple examples in a given category, P2P
randomly selects only one example. Wang et al. [32] proposed
a neural network called PrototypeNet to generate hash codes
for specified category labels and achieved the optimal targeted
attack effect. Then Wang et al. [50] proposed a prototype
supervised adversarial network (ProS-GAN), which formulates
a generative architecture for efficient and effective targeted
attacks.

The above attack methods mainly focus on adversarial
examples of natural images, and there has been little research
in remote sensing in recent years. To comprehensively evaluate
the impact of adversarial examples on the remote-sensing
image scene classification, Chen et al. [51] tested eight state-
of-the-art classification DNNs on six remote-sensing image
benchmarks, which include both optical and synthetic-aperture
radar images of different spectral and spatial resolutions, and
the experimental result shows that the fooling of attacks is
over 98%. Studies have shown that DNNs on remote-sensing
images are more vulnerable to adversarial examples, and
adversarial examples on deep hashing networks for RSIR need
to be studied [52].

At present, the hash attack method based on gradient
descent is commonly used, but this method does not consider
three problems: the particularity of hash network symboliza-
tion, the local optimal problem caused by gradient attack,
and the hash code representation problem caused by using
instance-level hash code and P2P attack.

C. Adversarial Defense on Deep Hashing Networks

Since the discovery of adversarial examples for deep neural
networks, increasing efforts have been made to build systems
that are robust against adversarial examples. Currently, the
defenses against the adversarial examples are being developed
in three main directions: 1) using modified training during
learning or modified input during testing; 2) modifying net-
works; and 3) using external models as network add-ons when
solving unseen examples.
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The first direction does not directly deal with the learning
models. Goodfellow et al. [43] adopted adversarial training
to augment the training data of the classifier with adversarial
examples. The second direction is modifying networks, for
example, by adding more layers or subnetworks, changing the
loss or activation function, and so on. Papernot et al. [33] used
distillation techniques to train networks, which can greatly
reduce the magnitude of gradients used for adversarial example
creation. The last direction is using external models as network
add-ons to detect and remove malicious perturbations before
prediction. Carlini and Wagner [34] invested in ten recent
proposals for adversarial example detection and showed that
all of these defense methods are ineffective at dealing with
newly constructed loss functions.

There have been studies on remote sensing that show
that DNNs on remote-sensing images are more vulnerable
to adversarial examples, so the defense strategy on remote-
sensing images should be thoroughly investigated [52]. Wang
et al. [32] proposed a training framework designed to train
the classifier by introducing the examples generated during
the image reconstruction process. To achieve standardized
adversarial training, Yuan et al. [48] completed adversarial
training by minimizing the distance between the hash code
of the adversarial example and the body code.

In RSIR, the defenses of deep hashing networks are very
few, but they are very important in practical applications. For
example, in the military field, when remote-sensing images
are used to judge the terrain, it is necessary to be alert to the
judgment error caused by the adversarial example.

III. ADVERSARIAL DEEP HASHING LEARNING FOR RSIR

In RSIR, there are many tasks about military and national
defense security, so it is very important to ensure the reliability
of the results. Although the image retrieval method of the
deep hashing network performs well in terms of retrieval
speed and accuracy, it still shows its vulnerability in the
face of adversarial examples. By adding small perturbations
to the image, the adversarial examples are imperceptible to
the human eye but can still deceive the deep neural net-
works, and the wrong classification results will be generated.
The existence of such adversarial examples will hinder the
development and practical application of RSIR. As a result,
determining how to repel the attack becomes a challenge. The
intuitive idea is to directly participate in model training with
adversarial examples as training examples so that the model
can learn this deception and make correct judgments when
faced with adversarial examples again. This section presents
the proposed attack and defense methods.

A. Adversarial Attack on Deep Hashing Networks

In general, a deep hashing model E(·) consists of a deep
model H(·) and a sign function, where H(·) consists of a
feature extractor followed by fully connected layers. Given an
image x , the hash code of this image can be calculated as

bi = E(xi ) = sign(H(xi )) s.t. bi ∈ {1, −1}
k . (1)

The deep hashing model will return a list of images that
are organized according to the hamming distances between

the hash code of the query and all images in the database.
To obtain the hashing method E(·), most of supervised hashing
methods are trained on dataset D = {(xi , yi )}

N
i=1 that contains

N examples collection labeled with C classes, where xi

indicates the retrieval image, and yi ∈ [0, 1]
C corresponds

to a label vector. The cth component of indicator vector
yc

i = 1 means that the example xi belongs to class c. Besides,
the sign(·) function is approximated and replaced by the
tanh(·) function during the training process in deep hashing
to alleviate the gradient vanishing problem. The output of the
image through deep hashing networks is

fi = F(xi ) = tanh(H(xi )). (2)

Given a benign query x with label yt , the image of attacks in
retrieval is to generate an adversarial example x ′, which would
cause the targeted model to retrieve objects with different
labels. So, we can make the output of adversarial example x ′

semantically irrelevant to the original label yt . The objective
can be achieved through maximization of the distance between
the hash code of the adversarial example x ′

i and the retrieval
objects with the target label yt

max
x ′

dH
(

F
(
x ′
)
, E(x)

)
(3)

where x ′ is the adversarial example of x and dH (·) is the
hamming distance metric.

Since RSIR does not need a clear target when a remote-
sensing image is attacked, the semantic-aware hash code can
be obtained by definition 1, to realize an untargeted attack.
The optimality of semantic-aware hash codes is verified in
Theorem 1.

Definition 1: Given a set of points A ∈ {−1, +1}
K , the

semantic-aware hash code of the set is defined as follows:

ha = sgn

(
1

|A|

∑
h∈A

h

)
= sgn

(∑
h∈A

h

)
. (4)

Theorem 1: Given a set of points A in {−1, +1}
K , the

problem of maximizing the Hamming distance between a point
and a set can be translated to the point and ha

h′
= argmax

h∈A

∑
hi ∈A

dH (h, hi )

= argmax
h∈A

dH

(
h,
∑
hi ∈A

hi

)
= argmax

h∈A
dH (h, ha). (5)

Due to the representative property of semantic-aware code
for the set of retrieval images with the target label yt , we can
choose the semantic-aware code (definition 1) as the hash code
to optimize

max
x ′

dH
(

F
(
x ′
)
, ha
)

s.t.
∥∥x ′

− x
∥∥

∞
≤ ϵ. (6)

Given a pair of binary codes hi and h j , since dH (hi , h j ) =

(1/2)(K − hT
i h j ), we can equivalently replace Hamming

distance with an inner product in the objective function. The
optimization objective is as follows:

min
x ′

La = hT
a F
(
x ′
)

s.t.
∥∥x ′

− x
∥∥

∞
≤ ϵ. (7)
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Fig. 1. Flowchart of the proposed RWC attack method on deep hashing networks. The deep hashing network has been pretrained with original examples.
The adversarial example is generated by adding perturbation to the original example. In the use of it for image retrieval to get the wrong classification results.

However, similar to [30], since continuous values F(x ′) will
be transferred to binary codes via a sign function, if F(x ′) and
ha already have different signs for some dimensions with a
large margin, continuing to optimize in these dimensions will
not change the final results; if F(x ′) and ha will have different
signs for some dimension with a small margin, enlarging
optimize in these dimensions will significantly enhance the
final results. To solve the problem, we add the weight of the
hash bits of the adversarial example. The objective can be
rewritten as

min
x ′

La = h
′T
a F ′

(
x ′
)

=
(
ω ⊙ hT

a

)
∗
(
ω ⊙ F

(
x ′
))

s.t.
∥∥x ′

− x
∥∥

∞
≤ ϵ (8)

where ha denotes the semantic-aware hash code. The operation
⊙ represents the dot product and ω denotes the weight of hash
bits for the adversarial example. We can obtain ω by

ωi =


0, if

∣∣Fi
(
x ′
)

− hai

∣∣ > 1 + t1
1 + p, if 1 >

∣∣Fi
(
x ′
)

− hai

∣∣ > 1 − t2
1, otherwise

(9)

where ωi denotes the i th element of the weight vector and
hai denotes the i th element of the semantic-aware code ha . t1
and t2 are thresholds to control the margin. When there is a
large gap in the hash code between the adversarial example
and the category, the disturbance can be stopped. Otherwise,
when the hash codes of the adversarial example and the
boundary are close, the disturbance weight is decreased by p.
In detail, we optimize x ′ with gradient iterative of T iterations
as follows:

x ′

T =

∏
ϵ

(
x ′

T −1 − α · sign
(
1x ′

T −1
La
))

x ′

0 = (x − ϵ, x + ϵ) (10)

where α is the step size of each iteration,
∏

ϵ clips x ′ to
ϵ-neighbor of x , and x ′

0 is the random initialization. The

adversarial examples after each iteration are truncated to
ensure that the disturbance range is always within the limit
range, as shown below

x ′
= min

{
255, x + ϵ, max

(
0, x − ϵ, x ′

)}
. (11)

In the end, following [30], to avoid the gradient vanishing
problem, we optimize the output of deep hashing networks as
follows:

F(x) = tanh(β H(x)) (12)

where β is first set at 0.1 and then gradually enlarged until
eventually becoming 1.

Based on the above description, the RWC method is pro-
posed. The detailed steps of RWC are shown in Algorithm 1
and Fig. 1.

B. Adversarial Defense on Deep Hashing Networks

Much discussion will revolve around an optimization view
of adversarial hashing robustness. Consider a standard hash
retrieval task with an underlying data D. Assume a suitable
loss function L(θ, xi , x j , si j ), where si j is the similarity infor-
mation of the original example xi and x j and θ ∈ R p is the set
of model parameters. The goal is to find model parameters θ

that minimize the risk E(x,y)∼D[L(θ, xi , x j , si j )] to preserving
the similarity relationship of original clean examples.

Although empirical risk minimization (ERM) can yield
excellent performance on the original clean examples, it often
does not yield models that are robust to adversarially
crafted examples. To reliably train models that are robust
to adversarial attacks, we modify the definition of the risk
E(x,y)∼D[L(θ, xi , x j , si j )] by incorporating the above adversar-
ial examples. Instead of feeding examples from the distribution
D directly into the loss L , we allow the adversarial examples
to train first. Accordingly, we formulate the following object:

min
θ

E(x,y)∼D
[
L
(
θ, xi , x j + δ, si j

)]
(13)
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Fig. 2. Flowchart of the proposed ACN defense training on deep hashing networks. First, the original examples are processed by a deep hashing network
and then the RWC attack method is used to generate adversarial examples. Then, the generated adversarial examples are used to pass through the network
and the joint loss function together with the original examples. The parameters of the deep hashing network model are updated through backpropagation,
to improve the network’s robustness in the training process.

Algorithm 1 Semantic-Aware Attacks With Weights Using
Multiple Random Initialization
Input: An original image (x, y), a deep hashing model E(·),

the number of random initialization N , the number of iter-
ations T , a sequence of values β0, and the hyperparameter
t1, t2, p.

Output: The adversarial example x ′.
Compute the category-level point ha of category y in the
database image set via Eq. (4)
for n = 0 to N do

• Random initialization x ′

0 = (x − ϵ, x + ϵ)

• for t = 0 to T do
β = βT

The adversarial example x ′
t passes through the

hashing network to obtain F(x ′
t )

Compute weight matrix ω via Eq. (9)
Compute x ′

t via Eq. (10)
Recompute x ′

t via Eq. (11)
end for

• if dH (F(x ′), ha) < dH (F(x ′
T ), ha)

x ′
= x ′

T
end if

end for

where xi denotes the original clean example and δ denotes
the crafted perturbation added to the original example x j . The
minimization problem seeks model parameters that preserve
the similarity relationship between the original clean and
adversarial examples. This is precisely the problem of training
a robust hash network using adversarial training techniques.
In practice, the models should be robust to adversarial crafted
examples, while also preserving the similarity order in the
original clean examples. We often train networks with a

mixture of adversarial examples and clean images

min
θ

E(x,y)∼D
[
L
(
θ, xi , x j , si j

)
+ L

(
θ, xi , x j + δ, si j

)]
. (14)

To enhance the robustness of deep hashing networks, except
for the similarity relationship between the original clean
examples and adversarial examples, and considering the con-
sistency relationship between the adversarial examples and the
semantic-aware code of the set with the same label proposed
in definition 1, we propose an external loss function called the
adversarial semantic-aware consistency (AAC) constraint, the
whole loss function LADV should be

LADV = LCSL + LASL + LAAC

= L
(
θ, xi , x j , si j

)
+ L

(
θ, xi , x j + δ, si j

)
+ L

(
θ, ha, x j + δ

)
(15)

where LCSL denotes the clean similarity loss, LASL denotes
the adversarial loss, and LAAC = L(θ, ha, x j + δ) =

γ D(ha, F(x j +δ)) denotes the distance constraint between the
network output of an adversarial example and the semantic-
aware code of the set. γ is the hyperparameter. The overall
adversarial training defense on deep hashing networks with
AAC constraint terms process is in Fig. 2.

C. Experiment Details

The dataset division is consistent with previous work [14].
In three datasets, 10% of the images are sampled as a query
set, and the rest of the samples are used as a database.
20%, 60%, or 80% of the images for each scene category
are randomly chosen from the database as a training set.
In addition, we resize all images into 224 × 224 × 3.
Implementation details for different stages are as follows.
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1) In Attack Stage: We adopt Alexnet pretrained on
ImageNet as the backbone network, which is simple but
mainstream to extract features in datasets and then replace
the last fully connected layer of SoftMax classifier with the
hashing layer. We set the training epochs at 100 and the
batch size at 32. When generating the semantic-aware hash
code, we choose examples from images in the database with
the query label to form the hash code set. α and T of our
attack method are set to 1/255 and 100, the perturbation ϵ

is 8/255, and the number of random initializations N is 5.
The hyperparameters t1, t2, and p of weight vector are set
0.5, 0.05, and 0.2. Following [30], the parameter β is set
as 0.1 during the first 50 iterations and is updated every ten
iterations according to [0.2, 0.3, 0.5, 0.7, 1.0] during the last
50 iterations.

2) In Defense Stage: α and T of our attack method are set
2/255 and 7. The perturbations ϵ and N are also 8/255 and
5, and the semantic-aware hash codes are generated from
mini-batch training examples. We set a batch size of 64 to
generate category center hash codes with more images of the
same category in a small batch of examples during adversarial
training. The other setting is the same as the attack stage.
Compared with HashNet and FAH, the loss value is smaller
and more sensitive to datasets with different data volumes on
DPSH. The hyperparameter γ on UCM, AID, and NWPU-
RESISC45 with DPSH is set to 12, 13, and 19, respectively.
The hyperparameter γ is set to 1 on all datasets with HashNet
and FAH.

IV. EXPERIMENTAL RESULTS

Section IV-A is mainly about the introduction of remote-
sensing image scene datasets used in experiments. The adopted
evaluation index is used for RSIR. Section III-C consists of
two parts, including experimental implementation details such
as the proportional division of the training set and test set, the
related experimental configuration, and so on. Section IV-B
demonstrates the excellence of our proposed attack method
RWC through experiments. Finally, Section IV-C demonstrates
the excellence of our proposed defense method ACN through
experiments.

A. Datasets and Evaluation Metrics

To evaluate the performance of our proposed method for
the attack and defense on deep hash neural networks for the
CBRSIR tasks, we conduct extensive experiments on three
benchmarks: the UC Merced Land Use Dataset (UCM), the
AID dataset, and the NWPU-RESISC45 dataset.

1) UCM Dataset [53]: The images are manually extracted
from the USGS National Map Urban Area Imagery col-
lection for various urban areas around the country. This
dataset consists of 2100 overhead scene images, includ-
ing 21 land-use classes. Each class contains 100 aerial
images measuring 256 × 256 pixels, with a spatial
resolution of 0.3 m/pixel in red–green–blue color space.

2) AID Dataset [54]: The images are extracted from
Google Earth, and AID is a multisource. Compared
with UCM, it has more challenges. This dataset is

composed of 30 scene categories, and each category
contains 200–420 image scenes with a size of 600 ×

600 pixels. It has 10 000 images. The pixel resolution
of this public-domain imagery is 0.5 to 8 m.

3) NWPU-RESISC45 Dataset [55]: The images are
extracted from Google Earth, like an AID dataset. The
dataset has 31 500 within 45 scene categories. This
category contains 700 image scenes with a size of 256 ×

256 pixels. The pixel resolution of this public-domain
imagery is 0.2–30 m.

In the article, the performance of RSIS attack methods and
defense methods is evaluated using the widely adopted mean
average precision (MAP). More specifically, the MAP score
can be computed from

MAP =
1

|Q|

|Q|∑
i=1

1
Ri

n∑
j=1

Precision
(

r j
i

)
δ
(

r j
i

)
(16)

where qi ∈ Q denotes the inquiry image, |Q| denotes the
volume of the inquiry image dataset, and Ri is the number of
ground-truth neighbors of the query image qi in the database
image dataset, n is the number of all the entities in the database
image dataset, Precision(r j

i ) denotes the precision of the top
j retrieval entities, and δ(r j

i ) = 1 in the j th retrieval entity is
a ground-truth neighbor, and otherwise, δ(r j

i ) = 0.
Note that, for a retrieval method, the satisfactory output is

that more similar images can be ranked in the top positions.
Therefore, we use the top 1000 retrieved images to count the
MAP values in the following experiments.

B. Experimental Results of Deep Hashing Networks With
Adversarial Attack

The overall attack performance of different methods is
shown in Table I, where None and Gaussian Noise are to
query with original clean examples and noisy examples by
adding random noise from the uniform distribution U (−ϵ, +ϵ)

to original clean examples. HAG is the method proposed in
[30]. SAAT is the method proposed in [48]. RWC is the
attack method we proposed. It can be observed that deep
hashing networks can yield good performance querying with
the original clean examples for all three datasets, and the
MAP values of Gaussian noise are only slightly less than
the original clean examples, which shows that adding random
noise cannot bias the outputs of the deep hashing network.
However, when confronted with crafted adversarial examples
(i.e., HAG, SAAT, and RWC), all the deep hashing networks
fail to yield satisfactory performance, and the MAP drops to
less than 1.5%, which fully demonstrates the vulnerability of
deep hashing networks for RSIR. Even FAH, which currently
obtains the best performance for RSIR, cannot defend against
crafted adversarial examples. In addition, the proposed RWC
attack method achieves the best attack performance. Especially
on UCM, the MAP of HashNet is approximately 0, confronted
with adversarial examples produced by RWC, which means
that all the images retrieved by HashNet are irrelevant.

The example of a query result in HashNet under 64-bit code
length with original clean images and adversarial samples is
shown in Figs. 3–5. As is shown, the results querying with
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Fig. 3. Example of adversarial samples retrieval of attack methods on the UCM dataset with HashNet under 64-bit code length.

TABLE I
MAP (%) OF DIFFERENT DEEP HASHING METHODS ON THE THREE DATASETS

original clean images and Gaussian noise adversarial samples
are the most semantically relevant images, and the results
querying with HAG and RWC adversarial samples are the most
semantically irrelevant images, especially on AID and NWPU-
RESISC45. Because there are only 100 images in the UCM
retrieval category selected, the images in the lower position
are all retrieval errors.

Perceptibility is also an important criterion for evaluating
the quality of adversarial examples. Following [30], given

an original clean example x , the perceptibility of an adver-
sarial example x ′ can be calculated by ((1/n)∥x ′

− x∥
2
2)

1/2,
where n is the number of image pixels and the pixel val-
ues of x and x ′ are normalized to [0, 1]. The higher the
perceptibility, the worse the visual quality of adversarial
examples. The results of HashNet with 64 bits on three
datasets are shown in Fig. 6, indicating that these distur-
bances are very small and undetectable. The disturbances
shown in Figs. 3–5 also verify this view. Original and
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Fig. 4. Example of adversarial samples retrieval of attack methods on the AID dataset with HashNet under 64-bit code length.

RWC adversarial samples are indistinguishable to the naked
eye.

Moreover, to visually show the comparison effect of attacks,
Fig. 7 shows the topN curves, which is the accuracy of the first
N retrieved images, of HAG and RWC attacks on HashNet.
As shown in the figure, the MAP of the HashNet attacked
by the RWC is always lower than that of HAG. The MAP
is basically zero when confronted with adversarial examples
produced by RWC. This fully demonstrates the advanced
nature of the RWC attack method.

As described in Section III-A, the proposed RWC is com-
posed of three parts: random initializations, weight vectors,
and semantic-aware hash codes. When the three parts are
used separately, we present the results to demonstrate the
effectiveness of each part.

The attack effect of the three parts in HashNet with 64 bits
is shown in Fig. 8, where None is the gradient attack method
introduced in Section III. Rand is the random initialization.
To better display the random initialization effect, the number
of random initializations N is set to 5. Weight is the vector
of added weight. Semantic is the objective function of the
semantic-aware hash code. It is clear that rand, weight, and
semantic have all improved their roles. Among them, Rand
achieves a better attack effect by avoiding falling into the
local optimal value through multiple starts. Weight achieves
a better attack effect by assigning different attack weights to
hash codes on different hash bits. Semantic selects a more
category-based image hash code as the target attack function

through semantic-aware, to obtain a better attack effect. The
superposition of these three components also determines the
advanced nature of RWC. However, the point pair setting
method that plays a decisive role is semantic.

The parameter analysis for the number of random initial-
izations N is shown in Table II. Different numbers of random
initialization were added on the basis of the original gradient
attack to conduct experiments. The experiments were all
carried out on HashNet with 64 bits. N = 0 indicates that the
adversarial examples were initialized directly to the original
examples. It can be seen from the table that a better attack
effect is achieved in the case of a random initial iteration.
When the number of iterations is 0, the result has no significant
change with the increase in the number of random initializa-
tions, which indicates that only when the attack method is used
together with random initialization, the result be improved.
In the case of 100 iterations near convergence, the random
initialization achieves a better attack effect, which indicates
that the global optimum in the disturbance space can be
found with greater probability when approaching convergence
through multiple random initializations, and multiple local
optimals can be found through multiple random initializations.
Then choose the best result as the global optimum. In addition,
except that the result after 100 iterations of the UCM dataset
is 0, AID and NWPU show a trend toward better attack effects
as the number of iterations increases. To make reasonable use
of resources, N = 7 has no obvious impact on the results
compared with N = 5, so N = 5 is selected.

Authorized licensed use limited to: Wuhan University. Downloaded on March 08,2024 at 07:28:53 UTC from IEEE Xplore.  Restrictions apply. 



5627214 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 61, 2023

Fig. 5. Example of adversarial samples retrieval of attack methods on the NWPU-RESISC45 dataset with HashNet under 64-bit code length.

TABLE II
MAP (%) UNDER DIFFERENT NUMBER OF RANDOM INITIALIZATIONS

Fig. 6. Examples of attack images and perceptibility score (×10−4) on three
datasets with HashNet under 64-bit code length.

Finally, the hyperparameter p in (9) is analyzed experimen-
tally. The results on HashNet under 64-bit code length are
shown in Table III. To eliminate other distractions, the attack
method includes only the weight part. The experimental results

TABLE III
MAP (%) UNDER PARAMETER ANALYSIS OF p

show that the optimal behavior is achieved at p = 0.2 on all
three datasets.

C. Experimental Results of Deep Hashing Networks With
Adversarial Defense

The results of the defense experiment are as follows. The
general defense performance of different methods is shown
in Table IV, where None means the original deep hashing
network in the face of attacks. BLT [32] is to add a specified
loss term on the basis of the original training loss term to
improve the network’s robustness. Its related parameters are
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Fig. 7. TopN curves of HAG and RWC attack HashNet method. (a) UCM dataset with 64 bits. (b) AID dataset with 64 bits. (c) NWPU-RESISC45 dataset
with 64 bits. (d) UCM dataset with 96 bits. (e) AID dataset with 96 bits. (f) NWPU-RESISC45 dataset with 96 bits.

TABLE IV
MAP (%) OF ADVERSARIAL TRAINING DEFENSE WITH ACN LOSS TERMS

Fig. 8. MAP (%) of the different components in the RWC attack method.

consistent with the original text. SAAT [48] is to take the
mainstay code as a label to guide the adversarial attack. Our
ACN is a deep hashing network adversarial training defense

method with ACNs proposed by Section III-B. As can be
seen from Table IV, the result of the network in the face of
adversarial examples is significantly improved after the adver-
sarial defense. However, the results of the defense method
BLT and SAAT in the three deep hashing network methods
are all worse than the ACN, especially in HashNet and FAH
methods, because HashNet contains the weighted loss term of
similar image pairs, and FAH contains the semantic constraint
term. Therefore, the method of giving a single loss term will
have a poor effect when the form of the loss term is quite
different. On the basis of the robustness analysis of the original
hashing network, ACN makes full use of the similarity rela-
tionship between adversarial examples and original examples
and the consistency relationship between adversarial examples
and original class hash codes, to achieve a better defense
effect.

Authorized licensed use limited to: Wuhan University. Downloaded on March 08,2024 at 07:28:53 UTC from IEEE Xplore.  Restrictions apply. 



5627214 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 61, 2023

TABLE V
ABLATION EXPERIMENT OF LOSS ITEMS FOR THE PROPOSED DEFENSE METHOD

TABLE VI
MAP (%) OF DIFFERENT ATTACK METHODS AFTER ADVERSARIAL TRAINING BY OUR ACN

To demonstrate the effect of the proposed defense loss
items, an ablation study is performed. The results are shown
in Table V, where natural represents the retrieval accuracy
of the network on the original clean image. Adversarial
represents the retrieval accuracy of the network in the face
of the adversarial example attack, and OA Gap is the dif-
ference between the retrieval accuracy of the network on
the original examples and adversarial examples. LCSL is the
clean example similarity constraint loss term of the original
hash network, LCSL + LASL is the addition of the proposed
adversarial example and clean example on the basis of the
original loss term, LCSL + LASL + LAAC is the addition of
the similarity constraint loss term between the adversarial
example and clean example and the adversarial semantic-
aware consistency loss term. The results show that both
LCSL + LASL and LCSL + LASL + LAAC improve the robustness
of the network. LCSL + LASL + LAAC further improves the
robustness of the network on the basis of LCSL + LASL, but
the retrieval accuracy on the original clean examples will be
slightly decreased. This involves a tradeoff between network
generalization and robustness. The experiment proves that
adding adversarial examples on the training stage can effec-
tively improve the robustness of the network by maintaining
a similar relationship between adversarial examples and orig-
inal clean examples and adding the consistency relationship
between the hash codes of adversarial examples and original
category examples can further improve the network defense
effect.

To further reveal the advanced nature of ACN, Table VI
shows the retrieval accuracy of the network in the face of
different attack methods, where ST represents the original
training method and ACN is the defense method proposed in
this article. To fully demonstrate the effectiveness of the attack
method and the defense method, all attack methods adopt the
same parameters as in the attack stage. After the adversarial
training, the network robustness is greatly improved, and
it is effective against all attack methods, which proves the
advanced nature of the proposed defense method and its
ability to resist the current network attack methods with good
performance.

V. CONCLUSION

In this article, we propose adversarial semantic-aware attack
and defense methods to mitigate the malicious attack on
deep hashing networks for RSIR. To begin, we propose a
gradient-based attack, which is a semantic-aware attack with
weights via multiple random initializations, in light of the
shortcomings of existing hash gradient attack methods. The
experimental results show that the deep hashing network
with excellent performance in the RSIR field is vulnerable
to an adversarial example attack and the advanced nature of
the proposed attack method. The adversarial semantic-aware
defense method is then investigated on deep hashing networks.
Experiments show that adversarial training is a simple but
effective method to improve network defense performance,
which improves the robustness of the RSIR system in the
face of adversarial example attacks. Ablation experiments and
visualization demonstrate the effectiveness of the proposed
modules. Furthermore, it is necessary to continue studying the
adversarial examples in future work. We intend to optimize the
deep hashing network and optimize the loss function consid-
ering class semantic information, to improve the robustness of
the model.
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