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QGORE: Quadratic-time Guaranteed Outlier
Removal for Point Cloud Registration

Jiayuan Li, Pengcheng Shi, Qingwu Hu, Yongjun Zhang

Abstract—With the development of 3D matching technology, correspondence-based point cloud registration gains more attention.
Unfortunately, 3D keypoint techniques inevitably produce a large number of outliers, i.e., outlier rate is often larger than 95%.
Guaranteed outlier removal (GORE) [1] has shown very good robustness to extreme outliers. However, the high computational cost
(exponential in the worst case) largely limits its usages in practice. In this paper, we propose the first O(N2) time GORE method,
called quadratic-time GORE (QGORE), which preserves the globally optimal solution while largely increases the efficiency. QGORE
leverages a simple but effective voting idea via geometric consistency for upper bound estimation, which achieves almost the same
tightness as the one in GORE. We also present a one-point RANSAC by exploring ”rotation correspondence” for lower bound
estimation, which largely reduces the number of iterations of traditional 3-point RANSAC. Further, we propose a lp-like adaptive
estimator for optimization. Extensive experiments show that QGORE achieves the same robustness and optimality as GORE while
being 1∼2 orders faster. The source code will be made publicly available.

Index Terms—Point cloud registration, outlier removal, correspondence, 3D matching, robust estimation.

F

1 INTRODUCTION

W ITH the development of high-precision sensor tech-
nology such as light detection and ranging (LiDAR),

point cloud has become the dominant format to describe
the 3D world [2]. However, due to the limitations of field-
of-view (FoV) and occlusions, current 3D sensors can only
capture a part of the scene in a single scan. Point cloud regis-
tration (PCR) is the technique that aligns multiple 3D scans
with overlaps to generate a large scene map [3]. Its core
problem is to establish an optimal 6D rigid transformation
between a scan pair, so that their corresponding parts can be
perfectly aligned. PCR has been widely applied in the fields
of computer vision, robotics, and photogrammetry, such as
3D reconstruction, 3D localization, pose estimation, etc.

Iterative closest point (ICP) [4] and its variants [5], [6],
[7], [8] are the most widely used methods for PCR, which
have become the standard approaches for industrial solu-
tions. However, ICP is a local method, whose performance
highly relies on the initialization. If the initial guess is not
good, ICP is likely to get stuck in a wrong local minimum.
Traditional methods usually adopt high reflection targets or
high-precision GNSS/INS systems to provide a good coarse
alignment, which are labor-intensive or expensive.

To overcome the limitation of ICP-type methods,
correspondence-based techniques [1], [3], [9], [10], [11], [12],
[13] gain more attention, since they are easier to achieve
the global optimality and can largely reduce the sizes of
point clouds. Correspondence-based PCR contains two ma-
jor steps: correspondence establishment and rigid transfor-
mation estimation. Benefit from deep learning, 3D feature

• Jiayuan Li, Qingwu Hu, and Yongjun Zhang are with the School of Re-
mote Sensing and Information Engineering, Wuhan University, Wuhan
430072, China.
Pengcheng Shi is with the School of Computer Science, Wuhan University,
Wuhan 430072, China. (Corresponding authors: Qingwu Hu; Yongjun
Zhang.)

matching technology has made great progress and many
excellent learning-based methods [14], [15], [16], [17] have
been proposed for correspondence establishment. However,
due to the problems of unorganized, nonhomogeneous den-
sity, texture-less, and structural occlusions in point clouds
(especially in large-scale LiDAR point clouds), these meth-
ods are still prone to produce a large number of outliers
(often > 95%). Random sample consensus (RANSAC) [18] is
the most straightforward algorithm for robust fitting. How-
ever, its required number of iterations grows exponentially
with the outlier rate. Moreover, RANSAC-type methods can
only obtain approximate solutions [19].

Recently, Bustos and Chin [1] presented a new way
to simplify the fitting problem, called guaranteed outlier
removal (GORE), which has shown very good robustness
to extreme outliers. The basic idea of GORE is to filter out a
portion of true outliers before model estimation, so that the
inlier rate largely increases and the fitting becomes much
easier. However, for the 6D registration problem, it may cost
exponential running time due to the usage of branch-and-
bound (BnB) [20].

In this paper, we propose a quadratic-time GORE
(QGORE) with the following properties: initialization-free,
high efficiency, globally optimal, and extremely high ro-
bustness. For tight lower bound, we present a one-point
RANSAC by exploring the concept of ”rotation correspon-
dence”. This strategy reduces the number of iterations
of 3-point RANSAC by 104 times at an outlier rate of
99% in theory. For tight upper bound, QGORE leverages
a voting idea based on geometric consistency that only
costs an O(N2) time. As confirmed by experiments, our
upper bound achieves almost the same tightness as the one
in GORE. QGORE only filters out true outliers and does
not recover the registration transformation. Hence, further
optimization methods (e.g., BnB or RANSAC) should be
adopted after QGORE. To balance the optimality (RANSAC
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is not optimal) and efficiency (BnB is slow), we propose a
lp-like adaptive estimator for transformation estimation. A
reasonable analysis of its high robustness is also provided
according to the influence function and influence interval.
Extensive simulated and real experiments demonstrate the
superiority of our QGORE.

The contributions of this paper are as follows:

• We propose an O(N2) time GORE method, called
QGORE, which to our knowledge is the first
polynomial-time GORE. QGORE proposes a novel
voting idea for tight upper bound estimation, which
reduces the time complexity of GORE from expo-
nential to quadratic. We also present a lower bound
estimation method based on one-point RANSAC,
which can be regarded as a good ”preprocessor” for
GORE-type methods.

• A lp-like (p <= 2) adaptive robust estimator is
proposed.

2 RELATED WORK

2.1 3D Keypoint Matching
3D feature matching consists of three major stages:

Feature detection: extract the most distinctive keypoints
inside local surfaces of a point cloud by detectors, such
as intrinsic shape signatures (ISS) [21], KeypointNet [22],
USIP [23], D3feat [24], RSKDD-Net [25], semantic keypoint
detection (SKP) [26], etc.

Feature description: descriptors distinguish different
keypoints from each other by encoding the 3D local patch of
each keypoint into a compact feature vector, e.g., fast point
feature histogram (FPFH) [27], RoPS [28], 3DMatch [14],
FCGF [29], D3feat [24], SpinNet [16], YOHO [17], etc.

Feature matching: establish one-to-one correspondences
according to matching scores between descriptor vectors.
Some commonly used strategies are the nearest neighbor,
nearest neighbor distance ratio [30], and chi-square test [21].

In the last five years, 3D feature matching technology
has made great progress because of the flourish of deep
learning. However, these methods are still prone to produce
correspondences with extremely high outlier rates, which
bring the main challenge for correspondence-based PCR.

2.2 Correspondence-based PCR
RANSAC-family. ”Correspondence + RANSAC”, perhaps,
is the standard method for 2D and 3D robust geometric
fitting. RANSAC alternates between minimal set sampling
and model estimation until a solution with predefined con-
fidence is obtained. It has many variants, which improve
the sampling (e.g., NAPSAC [31], PROSAC [32], Progressive
NAPSAC [33]), local optimization (e.g., LORANSAC [34],
FLORANSAC [35], GCRANSAC [36]), model testing (e.g.,
randomized RANSAC [37], [38] and optimal randomized
RANSAC [39]), and inlier/outlier threshold (e.g., contrario
RANSAC [40], MAGSAC [41], MAGSAC++ [42]) strategies
of the original RANSAC. Some methods simultaneously
improve multiple aspects of RANSAC, such as USAC [43],
USACv20 [44], and VSAC [45]. One common problem of
RANSAC-family methods lies in the time complexity, which
increases exponentially with the outlier rate or the size

of minimal sample set. As 3D matching is much more
difficult than its 2D counterpart (e.g., SIFT [30], RIFT [46],
LNIFT [47]), cases with extremely high outlier rates often
occur in large-scale LiDAR point clouds. Then, traditional 3-
point RANSAC-type methods become very slow (dozens of
minutes or hours), which prevents their usages in practice.

M-like estimators. M-like robust estimators penalize
outliers by assigning small weights to eliminate their influ-
ence on the energy function. Traditional estimators such as
Cauchy, Welsch, and Tukey cannot handle cases with more
than 50% of outliers [48], [19], which limits their usages in
correspondence-based PCR. Recently, researchers adapted
graduated non-convexity [49], [9], [50] or lq-norm (0 <
q < 1) [51] to improve the robustness to high outlier rates.
Although these estimators are able to tolerate 70% ∼ 80%
of outliers, it is still not enough for real LiDAR registration.
To simplify the full 7D/6D registration problem, several
methods [52], [10], [13] decompose it into scale, rotation, and
translation subproblems. Then, permutation-like strategy,
truncated least-squares, RANSAC-variants, and improved
robust estimators are introduced for solving these subprob-
lems. These methods have yielded very promising results,
i.e., as reported, they can handle up to 99% of outliers.
However, they suffer from either the optimality problem or
exponential worst-case time.

2.3 Point-based PCR

ICP-family. ICP [4] is a technique that simultaneously estab-
lishes correspondences and performs alignment. It is widely
used in industrial solutions and has almost become the
standard method for PCR. Compared with correspondence-
based methods, ICP has one more step for dynamic corre-
spondence update. Many variants are designed to improve
the sampling (e.g., Voxel Grid filtering [53] and octree
compression [54]), distance metric (e.g., point-to-plane [55],
plane-to-plane [56], symmetric point-to-plane [6]), outlier
rejection (e.g., trimmed ICP [57], anisotropic ICP [58], sparse
ICP [5], robust ICP [7], robust symmetric ICP [8]), efficiency
(e.g., EfficientVarICP [59], Anderson-accelerated ICP [60],
Fast ICP [7]) of the original ICP algorithm. However, these
variants are local methods, which are sensitive to the ini-
tializations. They tend to get stuck in local minima when
the initial guesses are poor. GO-ICP [61] achieves global
optimality by introducing a nested BnB algorithm. How-
ever, as aforementioned, the worst-case complexity of BnB
is exponential.

Probabilistic-based registration. Probabilistic-based
PCR has also attracted widespread attention and becomes
an important branch of registration methods. This type of
method transfers the Euclidean distance minimization of
two point clouds to a probability density function esti-
mation problem. Representative methods include normal
distributions transform (NDT) [62], coherent point drift
(CPD) [63], [64], Gaussian mixture models (GMM) [65], [66],
etc. As pointed out by [67], probabilistic-based methods are
more robust to poor initializations compared with ICP-type
registration. However, the limitation is that their results are
not predictable.

Learning methods. Learning-based registration gener-
ally predicts the transformation matrix in an end-to-end
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manner. According to [2], learning methods can be cate-
gorized into two groups: (1) using regression-based neu-
ral networks for registration, e.g., relativeNet [68], deep-
VCP [69], 3DregNet [70]; (2) combining traditional optimiza-
tion methods with deep networks, e.g., PointNetLK [71],
DeepGMR [72], PointDSC [73], HRegNet [74].

2.4 GORE-type Methods

GORE [1] provides a new way for PCR. It does not di-
rectly perform registration on the whole correspondence set
H = {I∗,O∗}, where I∗ and O∗ represent the optimal true
inlier set and true outlier set, respectively. The basic idea of
GORE is to reject a portion of outliers O ⊆ O∗ from H to
obtain a small correspondence subset H′ = {I∗,O∗\O}.
GORE achieves this goal based on the bound theorem,
which rejects true outliers by the conflict between lower
and upper bounds. As shown, GORE only filters out true
outliers and H′ preserves the optimal inlier set I∗. It has
two important properties: (1) the global optimal solution on
H′ is the same as the one on H; (2) the inlier rate of H′ is
much higher than the one of H. Thus, GORE can greatly
simplify the registration problem without compromising
the optimality of the solution. Current GORE methods cost
exponential worst-case time complexity due to the usage
of BnB. To increase the practicability, we have proposed
a polynomial-time variant for bound estimation based on
correspondence matrix and augmented correspondence ma-
trix in our previous work [3]. However, this method does
not guarantee that the optimality of the solution is not
harmed. In this paper, we propose the first O(N2) time
GORE method for PCR.

3 METHODOLOGY

3.1 Problem Formulation

Registration Problem. Given a 3D correspondence set H=
{(xi,yi)}N1 with outliers and noise, the correspondence-
based registration satisfies a rigid model,

yi = Rxi + t+ oi + εi (1)

where R ∈ SO(3) and t are a rotation matrix and a trans-
lation vector of the rigid model, respectively. εi represents a
3×1 noise vector. oi = 0 if (xi,yi) ∈ I∗ (inlier); otherwise,
it is a nonzero arbitrary vector. The goal is to recover the
optimal R∗ and t∗ fromH. This robust registration problem
can be formulated as a maximum consensus problem or a
robust estimation problem.

Maximum consensus. The optimal model (R∗, t∗) of
registration problem corresponds to the optimal inlier set
I∗ with the largest size up to a noise bound ε (‖ εi ‖<
ε, ∀εi). Instead of minimizing the registration error, maxi-
mum consensus maximizes the number of inliers,

max
R,t,I⊆H

|I|
s.t. ‖ yi − (Rxi + t) ‖< ε, ∀(xi,yi) ∈ I

(2)

where I is an inlier set; |I| is the size of set I ; ‖ · ‖ represents
the l2-norm.

Robust estimation. Using robust estimators, registration
problem can be reformulated as minimizing the registration
residuals,

min
R,t

N∑
i=1

ρ(ri) (3)

where ri =‖ yi − (Rxi + t) ‖ is the residual of (xi,yi); ρ(·)
denotes a robust function, which can be the Huber, Cauchy,
Tukey functions, etc. Directly optimizing problem (3) is
difficult. Fortunately, according to the Black-Rangarajan du-
ality [49], the robust statistics can be viewed as an outlier
rejection process and reformulated as,

arg min
R,t,wi∈[0,1]

N∑
i=1

wir
2
i + Ψ(wi) (4)

where w(r) = ψ(r)
r = ∂ρ(r)

∂r

/
r is a weight function;

ψ(r) = ∂ρ(r)
∂r is an influence function; ∂ρ(r)∂r is the derivative

of ρ w.r.t. r, and Ψ(wi) is an outlier penalty function whose
expression depends on the function ρ or ψ. Then, problem
(4) can be easily optimized via the iterated reweighted least-
squares (IRLS) [75].

3.2 Our Quadratic-time GORE (QGORE)
GORE suffers from high computational cost (exponential
in the worst case), which largely limits its usages in real
applications. Here, we propose the first quadratic-time
GORE method, called QGORE. We use the by-product
of 3D feature matching, i.e., ”rotation correspondence”,
to simplify traditional 3-point RANSAC into a one-point
RANSAC for lower bound estimation, which reduces the
number of iterations by 2 ∼ 4 orders. We leverage a simple
but efficient and effective voting idea based on geometric
consistency for tight upper bound seeking, which achieves
the same tightness as the one based on BnB in GORE.
Since the calculation of our one-point RANSAC algorithm
(abbreviated as 1-ptRS) is independent of the subsequent
QGORE pruning, our whole pruning process is actually
a 1-ptRS+QGORE pipeline. Hereafter, we use QGORE to
represent the pipeline of 1-ptRS+QGORE as long as 1-ptRS
has operating conditions (i.e., ”rotation correspondence” is
available).

3.2.1 GORE Theory Revisit
Instead of directly solving problem (2), GORE [1] reformu-
lates it as a set of subproblems,

max
(xk,yk)∈H

pk (5)

where pk = |I∗k| + 1 represents the biggest inlier size of
subproblem Pk,

max
Rk,tk,

Ik⊆H\{(xk,yk)}

|Ik|+ 1

s.t. ‖ yi − (Rkxi + tk) ‖< ε, ∀(xi,yi) ∈ Ik
‖ yk − (Rkxk + tk) ‖< ε.

(Pk)

Subproblem Pk is a maximum consensus problem with
constraints, where correspondence (xk,yk) must obey the
model (Rk, tk). There are a total of N subproblems. Then,
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Fig. 1. Number of iterations T required by RANSAC with different subset
sizes m and outlier rates η.
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Fig. 2. Local reference frames of xi and yi.

we can reject true outliers from O∗ based on the following
bound confliction theorem.

Theorem 1. Let l ≤ |I∗| be a lower bound of problem (2) and
uk ≥ pk be an upper bound of problem Pk, if uk < l, then
(xk,yk) ∈ O∗ is a true outlier [1].

The core of GORE is to estimate a tight lower bound
l for problem (2) and a tight upper bound uk for each
subproblem Pk.

3.2.2 Lower Bound of QGORE
Any suboptimal solution to the problem (2) provides a rea-
sonable lower bound l [1]. Hence, a popular way that gives
rise to l is to use approximate methods such as RANSAC.
For the 6D registration problem, the size of minimal subsets
sampled by RANSAC is m = 3. The number of samples
needed to be drawn is calculated as follows,⌈

log(1− c)
log(1− (1− η)

m
)

⌉
(6)

where η represents the outlier rate; d·e is a ceiling function;
and c is the probability that at least one good minimal subset
(only contains inliers) exists in all samples, which is set to
0.99. Fig. 1 displays the number of iterations T required by
RANSAC under different outlier rates η and subset sizes
m. As shown, T increases exponentially with η and m. For
correspondence-based PCR, η is generally very high (often
> 95%). Hence, a possible way that can largely improve the
efficiency of RANSAC is to reduce m. For example, at an

outlier rate of 99%, T (m = 1) is only 1
10000 of T (m = 3).

According to this idea, we propose a one-point RANSAC
(m = 1).

”Rotation correspondence”. Inspired by the concept of
”affine correspondence” [76], [77], [78], [79] in 2D image
matching, ”rotation correspondence” can also be used for
the reduction of degree-of-freedoms (DoF) of PCR. In 3D
feature description, local reference frame (LRF) is generally
used to achieve rotation invariance. Similar to ”dominant
orientation” in image matching, LRF can be regarded as
the relative rotation to the ”dominant orientation” of 3D
local surface.Ideally, if (xi,yi) ∈ I∗, xi and yi should
have the same ”dominant orientation”. As shown in Fig.
2, xi−XxiYxiZxi and yi−XyiYyiZyi are the LRFs of xi
and yi, respectively. Since LRF has rotation and translation
invariance, point xj in the LRF xi−XxiYxiZxi and point yj
in the LRF yi−XyiYyiZyi should have the same coordinates,
where (xj ,yj) is an inlier. Therefore, we must have,

Lxi
(xj − xi) = Lyi

(yj − yi) (7)

where Lxi
and Lyi

are LRF rotation matrices of xi and yi,
respectively. Lxi

(Lyi
) is a 3 × 3 orthogonal matrix formed

by three orthogonal unit vectors. Generally, the normal of
the local surface centered at a feature is selected as the
first axis of LRF and the other two lie in the tangent plane.
Considering Eq. (1), we have (yj − yi) = R(xj −xi) (noise
is not considered for ideal case). Then, we can deduce the
rotation between xi and yi,

Ri = Lyi

TLxi (8)

The subscript i in R indicates that each correspondence
can obtain a rotation matrix. LRFs are the by-products of
many 3D descriptors, which do not introduce any additional
computation overhead. Actually, Ri is also the rotation of
H. Then, the 6-DoF rigid registration is simplified as a 3-
DoF translation estimation problem and a single correct
correspondence gives rise to a solution of t.

One-point RANSAC. We adopt the GCRANSAC [36]
framework for suboptimal registration. In each iteration, we
draw a single sample (xi,yi) with an assigned rotation
matrix Ri and calculate a translation vector ti. Then, a
consensus set that is consistent with ti is used for graph-
cut based local optimization. The size of largest consensus
set is accepted as our lower bound l.

3.2.3 Upper Bound of QGORE

Suppose condition C gives rise to an upper bound to prob-
lem (2), then, we must have that all inliers in I∗ should
obey condition C. Moreover, the more outliers conflicted
with condition C, the tighter the bound. Our goal is to seek
a reasonable condition C.

Geometric consistency. Although geometric consistency
has been used for transform decomposition [10], [13] and
correspondence grouping [80], [81], [82], it has never been
adapted for bound determination. Given two correspon-
dences (xi, yi) ∈ H and (xj , yj) ∈ H, we can construct
a line correspondence (~xij = xi − xj , ~yij = yi − yj).
According to equation (1), we have,

~yij = R~xij + ~oij + ~εij (9)
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where ~oij = oi − oj and ~εij = εi − εj . Obviously, the
length of ~xij is an invariant to rotations. Then, the following
constraint is deduced based on the triangle inequality,

|‖ ~yij ‖ − ‖ ~xij ‖| ≤‖ ~εij + ~oij ‖ (10)

Case 1: If both (xi, yi) and (xj , yj) are inliers, then,
~oij = 0, equation (10) becomes

|‖ ~yij ‖ − ‖ ~xij ‖| ≤‖ ~εij ‖ < 2ε (GCC)

which is called geometric consistency constraint (GCC). All
inlier pairs must obey the GCC.

Case 2: If at least one of (xi,yi) and (xj ,yj) is an outlier,
i.e., (xi,yi) ∈ O∗ or/and (xj ,yj) ∈ O∗, then, the length
residual dij =‖ ~yij ‖ − ‖ ~xij ‖ is an arbitrary since
(~xij , ~yij) is an outlier. Actually, the length residuals dij is a
random variable. Without loss of generality, we assume that
|dij | are identically distributed within [0, D] , where D is
the range of |dij |. The probability density function PDF of
|dij | is,

PDF (|dij |) =
1

D
, 0 ≤ |dij | ≤ D (11)

Hence, the probability that (~xij , ~yij) satisfies the constraint
(GCC) is,

P = PDF (0 ≤ |dij | < 2ε) =
2ε

D
, ε� D (12)

As analyzed, all inlier line correspondences satisfy the
(GCC) while most of outliers conflict with it. Note that we
take the identical distribution as an example for computa-
tional convenience. The same conclusion can also be drawn
under normal distribution assumption. Thus, the (GCC) can
provide a reasonable condition C.

Voting. Now, let’s see the subproblem Pk. Correspon-
dence (xk,yk) can form N − 1 line correspondences with
H\(xk,yk). If (~xki, ~yki) formed by (xk,yk) and (xi,yi) ∈
H\(xk,yk) satisfies the constraint (GCC), then, we regard
that (xk,yk) gets one vote from (xi,yi). If (xk,yk) ∈ I∗ is
a true inlier, the constructed line correspondences consist
of (1 − η)N − 1 inliers and ηN outliers: (1) it obtains
(1 − η)N − 1 = |I∗| − 1 votes from inlier set I∗ based
on the analysis in Case 1, where η is the outlier rate;
(2) it gets ηPN = 2εηN

D votes from O∗ according to the
analysis in Case 2. Then, the total number of votes is
vk = |I∗| + ηPN − 1. Since pk = |I∗| and ηPN ≥ 0, we
must have vk + 1 ≥ pk = |I∗| > l. Thus, vk + 1 can be an
upper bound of pk, and it is guaranteed that any inlier will
not be rejected by Theorem 1.

There are an infinite number of upper bounds for pk, but
only tight ones can be effectively applied for true outlier
removal. For example, if we have an upper bound uk and
it is larger than l even for (xk,yk) ∈ O∗, this bound is not
a tight one and Theorem 1 cannot be applied. To check the
tightness of bound vk + 1, let’s see the case that (xk,yk) ∈
O∗ is a true outlier, where all N−1 line correspondences are
outliers. Thus, the total number of votes is vk = P (N−1) =
2ε(N−1)

D . If we want to reject most of the true outliers, vk + 1
should be smaller than l in most cases (Please note that it
does not need to guarantee that vk + 1 < l is always hold,
since the theory of GORE is only to reject a portion of true

outliers, not all). We first calculate the ratio λ between vk+1
and |I∗|,

λ =
vk + 1

|I∗|
=
PN + (1− P )

(1− η)N
≈ P

1− η
(13)

Empirically, the lower bound l obtained by RANSAC is
generally larger than 80% of |I∗|, i.e., l

|I∗| > 80%.
As known, the resolutions of 3D point clouds captured

by structured light and high-precision LiDARs (e.g., Faro
and Riegl LiDARs) are centimetres, millimetres, or even sub-
millimetres. The noise bound ε is generally set to be 2 ∼ 3
times of the resolution. For these high-precision sensors, the
probability 2ε

D is smaller than 1
1000 , i.e., λ < 10% when the

outlier rate is 99%. Even for the sparse KITTI dataset, in
which ε is generally set to 0.5m and D ≈ 200m is about the
twice of the measure range, the probability P ≈ 0.005 and
the ratio λ ≈ 50% at an outlier rate of 99%. Thus, vk + 1
is generally a tight bound and most true outliers can be
removed.

Even in extreme cases, where λ > 80% due to unsatisfied
identity distribution assumption of |dij |, high noise levels,
and extreme outlier ratios, we can still perform a second
order GCC voting on the concensus set of subproblem Pk
to obtain a tight upper bound. We will further compare its
tightness with the original one of GORE in the experimental
section.

3.3 Our lp-like Robust Estimator

QGORE is an outlier pruning algorithm. Hence, a robust
model fitting algorithm should be applied for accurate reg-
istration. The BnB [83] algorithm is generally adopted to
obtain the globally optimal solution. However, BnB is still
very slow after pruning. Therefore, this paper also proposes
a local optimal method (adaptive lp estimator) for choice,
which is several orders of magnitude faster than BnB and
more accurate than RANSAC-type methods.

Least-squares versus M-estimators. Influence function
ψ(r) = ∂ρ(r)

∂r can intuitively reflect the impact that an
observation has on the energy cost. Fig. 3(a) plots the
influence functions of least-squares and M-estimators (An-
drews, Welsch, and Tukey estimators). As shown, least-
squares has a linear relationship with the residual. Large
residuals have more impact on the solution. Thus, least-
squares is not a robust cost and very sensitive to outliers.
In contrast, the influence functions of M-estimators are
bounded redescending functions. Observations with large
residuals almost have no impact on the energy. Hence,
M-estimators have good robustness. However, the disad-
vantage of traditional M-estimators is that their influence
interval is small. As illustrated in Fig. 3(a), influence interval
is the residual range that has a large impact on the energy
cost. For example, only observations with residuals |r| < π
will participate in the optimization of Andrews estimator.
In the cases with high outlier rates, initial models may
greatly deviate from the ground truth, resulting in large
residuals for inlier observations. These inlier observations
will be ignored by the optimization at the beginning, which
makes the optimization diverge. Least-squares, on the other
hand, has the characteristic of a large impact interval, i.e., all
observations have an impact on the optimization. Therefore,
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(a) Least-squares versus M-estimators

 

 

 

 

 

 

 
 

(b) lp (Least-power) estimator

 

 

 

 

 

 

 

 

(c) Our improved lp cost

Fig. 3. Influence functions. Least-squares is a linear function; M-estimators are bounded redescending functions; both lp estimator and our improved
lp cost are a family of cost functions with a robustness-control parameter.

an ideal robust cost should have the advantages of both
the least-squares and M-estimators: (1) the influence interval
decreases from wide to narrow along with iterations; (2) the
influence function gradually changes from an unbounded
function to a bounded redescending function (robustness
increases from low to high).

lp (Least-power) estimator [84]. The influence function
of lp cost is ψ(r) = sgn(r)|r|p−1, which is essentially a
family of cost functions. Specifically, it is a least-squares
with p = 2, a l1 cost with p = 1, and a Schatten p-norm
cost with 0 < p < 1. It has no robustness when p ≥ 2.
The l1 cost has a certain degree of robustness since it is
a bounded function (Fig. 3(b)). However, large residuals
have the same influence as small ones. Schatten p-norm gets
better robustness than l1 as its curve is descending (Fig.
3(b)). As shown, the robustness of lp estimator increases
as the value of p decreases. Therefore, if we decrease p
along with iterations with an initial value of 2, the influence
interval gradually decreases and the robustness increases,
which perfectly satisfies the characteristics of an ideal robust
cost summarized in the above. However, many difficulties
are encountered when p < 1 due to the troublesomeness
arose from zero residuals. Moreover, inliers with residuals
around 0 have too much influence on the energy compared
to inliers with relatively large residuals, which will bias the
solution.

Our improved lp cost. First, we use r2 to eliminate the
absolute value in lp cost and add a constant to avoid division
by zero. Then, our lp-like ψ-type robust cost is,

ψ(r) = r(1 + r2)p−1 (14)

The same as lp cost, it is also a family of functions. When
p = 1, it is an ordinary least-squares; when p = 0.5, it is
a l1-l2 cost; it becomes a Cauchy function if p = 0; and
it yields a Geman-McClure estimate when p = −1 (Note
that our lp-like adaptive robust cost is in ψ-type instead
of ρ-type). As shown in Fig. 3(c), the cost function can be
gradually changed from the least-squares to M-estimators
by controlling the parameter p, which fills the robustness
and influence interval gaps between least-squares and M-
like costs. Compared with the Adaptive loss consisted of
four pieces [85], our proposed lp-like cost does not suffer
from any singularity, resulting in a more concise and elegant
robust estimate.

Algorithm 1: Our proposed QGORE algorithm

Input: A correspondence set H with LRFs.
Output: Subset H′ with much higher inlier rate.

// ε: three times of noise level
1 Initialization: ε = 3 ∗ σ; H′ = H.

// Use one-point RANSAC to seek l;
// lo: local optimization;
// GC: graph-cut;

2 l = 1-ptRANSAC(H,m = 1, c = 0.99, lo = GC);

// Seek uk for each Pk based on GCC;
// k represents (xk,yk), uk = vk + 1;

3 for each k ∈ H do
// geometric consistency voting

4 vk = GCC voting(H\k, 2ε);
5 if vk + 1 < l then k ∈ O∗, H′ = H′\k ;
6 end

7 return H′

IRLS Optimization. We reformulate our cost as a Black-
Rangarajan duality problem based on Eq. (4), where the
penalty function Ψ of our ψ is,

Φ(wi) = wi −
p− 1

p
w

p
p−1

i (15)

We use an adaptive IRLS strategy to optimize problem (4).
There are three main steps at each inner iteration t of the
adaptive IRLS:

1) Variable update: optimize δ(t) = (R(t), t(t)) with
fixed weights w(t−1)

i in Eq. (4),

δ(t) = arg min
δ

n∑
i=1

w
(t−1)
i r2i (16)

where the second term in (4) is a constant with a
given w(t−1)

i and is dropped. This is a simple WLS
problem, which can be solved globally using non-
minimal solvers.
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TABLE 1
Comparison of the tightness of upper bounds.

Method |H| l |I∗| |H′| Time (s)

GORE
10000 88.42 96.96

100.59 43.47
Our QGORE 101.10 2.72

2) Weight update: optimize weights w(t) = {w(t)
i }N1

based on Eq. (4) with fixed δ(t),

w(t) = arg min
wi∈[0,1]

n∑
i=1

wi

(
r
(t)
i

)2
+ Ψ(wi) (17)

where r(t)i is a constant with a given δ(t). Essentially,
the solution of (17) is equivalent to,

w
(t)
i =

(
1 +

(
r
(t)
i

)2)p−1

(18)

3) p update: change the weight/cost function via de-
creasing parameter p by a step-size τ , i.e., p(t) =
p(t−1) − τ .

Our adaptive IRLS is similar to the traditional IRLS. The
only difference is that the adaptive IRLS has one more step
of p update, so that the robustness of cost function can be
gradually increased.

3.4 Main Algorithm and Complexity
Algorithm 1 summarizes our proposed QGORE method.
Given a set of ”Rotation correspondences” H, QGORE first
seeks a reasonable bound l for problem (2) by using one-
point RANSAC and a tight upper bound uk for each sub-
problem Pk based on geometric consistency voting. True
outliers O ⊆ O∗ are rejected by the bound confliction
theorem, obtaining a subset H′ with a much higher inlier
rate. Then, our adaptive lp-like estimator (abbreviated as
Ada lp) is adapted on the result of QGORE to estimate the
final registration transformation.

In our whole QGORE+Ada lp pipeline, one-point
RANSAC costs O(T1N) time, where T1 is the number
of iterations of RANSAC; The “for” loop (Line 3∼6)
costs O(N2) time since it needs to calculate pairwise dis-
tances between correspondences; lp-like estimator consumes
O(T2N), where T2 is the number of iterations of IRLS. As
aforementioned, T1 = 459 even if the outlier rate reaches
99%. It is generally smaller than N . The maximum number
of iterations of IRLS is set to 50, i.e., T2 ≤ 50. Thus, our total
time complexity is approximate O(N2).

4 EXPERIMENTS AND EVALUATIONS

In this section, we first compare the tightness of the up-
per bound of QGORE with the one in GORE on simu-
lated data; then, we qualitatively and quantitatively eval-
uate our registration accuracy on both simulated and real
datasets; finally, we develop a 3D laser odometry based on
our QGORE+Ada lp pipeline and show the potentials of
our method in the simultaneous localization and mapping
(SLAM) task. All the following experiments are performed
on a laptop with a i7-8550U @ 1.8GHz CPU, and 8 GB of
RAM.

 

 

 

 

 

 

 

 
(a) Number of inliers after pruning

 

 

 

 

 

 

 

 
(b) Subset size |H′| after pruning

Fig. 4. Comparison results of outlier pruning.

4.1 Tightness of Upper Bound

We first randomly generate N 3D points X = {xi}N1 by
using a normal distribution generator N (0, 1002). The true
correspondence set Yt of X is obtained via transformation
yti = Rtxi + tt, where Rt represents the ground truth
rotation generated within [−π/2, π/2] and tt is the ground
truth translation generated within [-100, 100]. Given an out-
lier rate η (Note that our method does not require η as
an input. It is just to show how difficult situations our
method can cope with.), we randomly select dηNe points
from Yt to add gross errors generated by N (0, (100σ)2)
and the other points are added Gaussian noise N (0, σ2),
where σ = ε

3 is the standard deviation of noise, obtaining
contaminated correspondences Y and H = {X ,Y}. In this
experiment, we set N = 104, η = 99%, and ε = 0.6. We
test GORE and our QGORE for 100 independent runs. To
fairly compare the tightness of upper bound, we fix the
lower bound of QGORE to be the same as that of GORE. In
each run, we record the following measures: lower bound
l, consensus size of global solution |I∗|, the number of
remained correspondences |H′|, and running time.

The results are reported in Table 1. As shown, both
GORE and QGORE can reject more than 99.9% true out-
liers, i.e., |O||O∗| > 99.9%. Our QGORE achieves comparable
tightness with GORE while being 15 times faster.

4.2 Registration Performance Evaluation

Here, we comprehensively evaluate the registration
performance of our method on both simulated and real
datasets. We compare our QGORE/QGORE+Ada lp
with 11 algorithms/pipelines, including RANSAC [18],
FLORANSAC [35], GCRANSAC [36], MAGSAC++ [86],
GORE [1], 4DOFReg [87], GORE+FLORANSAC,
GORE+Ada lp, 1-ptRS+Ada lp, QGORE+lp estimator,
and QGORE+Cauchy, where Cauchy is the Cauchy M-
estimator. For a fair comparison, we apply our 1-ptRS
as a ”preprocessor” for GORE as long as 1-ptRS has
operating conditions. Settings for each compared method
are summarized in Table 2. We record rotation error
ER, translation error Et, and running time metrics for
quantitative evaluations. The computational formulas of
ER and Et are as follows,{

Et =‖ tt − te‖
ER = arccos tr(R

t(Re)T )−1
2

(19)
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TABLE 2
Detailed settings of the compared algorithms (MNI represents maximum number of iterations).

Method Parameters Implementations

RANSAC m = 3; confidence: 0.99; MNI: 105. MATLAB code; single thread
https://www.peterkovesi.com/matlabfns/index.html

FLORANSAC m = 3; confidence: 0.99; LO size: 21; LO iterations: 50; MNI: 105. MATLAB code; single thread
https://zhipengcai.github.io

GCRANSAC m = 3; confidence: 0.99; spatial weight: 0.14;
number of neighborhoods: 20; LO iterations: 50; MNI: 105.

C++ code; single thread
https://github.com/danini/graph-cut-ransac

MAGSAC++ m = 3; confidence: 0.99; maximum threshold: 50; MNI: 105. C++ code; single thread
https://github.com/danini/magsac

GORE Lower bound: 0; repeat?: true. C++ code; single thread
https://cs.adelaide.edu.au/ aparra/project/gore

4DOFReg Lower bound: 0; gap: 0; enforceOneToOne?: false. C++ code; single thread
https://github.com/ZhipengCai/

lp estimator p(0) = 2; τ = 0.1; MNI: 100; convergence threshold: e−4.
MATLAB code; single thread

https://ljy-rs.github.io/web

Cauchy Tuning: c = 2.385; MNI: 100; convergence threshold: e−4. MATLAB code; single thread
https://ljy-rs.github.io/web

QGORE m = 1; confidence: 0.99; lo = GC; MNI: 1000. MATLAB code; single thread
https://ljy-rs.github.io/web

Ada lp p(0) = 1; τ = 0.1; MNI: 100; convergence threshold: e−4.
MATLAB code; single thread

https://ljy-rs.github.io/web
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Fig. 5. Registration results on simulated data. Subfigures (a), (b), and (c) plot the angular error ER, translation error Et, and running time,
respectively.

where te and Re are estimated rigid model parameters; and
tr(X) represents the trace of X.

4.2.1 Simulations

The simulation process is similar to Section 4.1. Differently,
we fix the number of inliers (d(1− η)Ne = 100) instead of
N and increase the standard deviation of noise σ = 0.5. Be-
cause it is difficult to simulate the LRFs of sparse keypoints,
1-ptRS can not be applied. we use our previous work [3]
for lower bound calculation in this simulation experiment.
The 4DOFReg is not included for comparison since it is not
suitable for 6-DoF registration simulated in this section.

We first compare the outlier pruning performance of
our QGORE with that of the RANSAC-type methods and
GORE. From Fig. 4(a), we can see that only GORE and
our QGORE preserve all inliers after pruning. RANSAC-
type methods compromise the global optimality of the
solution, since some true inliers are rejected by them. Actu-
ally, RANSAC-type methods can only obtain approximate
solutions [19]. As shown in Fig. 4(b), the subset size |H′| of
QGORE is almost the same as the one of GORE.

Figure 5 plots the comparison results. As shown,
RANSAC-type methods cannot tolerate with 99% of out-

TABLE 3
Detailed information of the ETH dataset

Info Arch Courtyard Facade Office Trees

Overlap 30%∼40% 40%∼70% 60%∼70% >80% ≈50%
Np 8 28 21 8 10
Nk 5808 4084 2273 1487 10404
Nc 7569 9915 4408 3194 14535
η 99.33% 96.14% 95.09% 98.23% 99.55%

liers with 105 iterations. RANSAC and FLORANSAC only
obtain approximate solutions, so their registration accu-
racies are worse than our QGORE+Ada lp. GCRANSAC
and MAGSAC++ use graph cut or M-estimation for fur-
ther model refinement. Hence, they are comparable to our
pipeline at low outlier rates. Once the outlier rate reaches
90%, their registration accuracies largely decrease. GORE-
type pipelines are still robust even at an outlier rate of 99%.
Comparison of GORE+FLORANSAC and GORE+Ada lp,
we can infer that the proposed adaptive lp estimator has
better fitting accuracy than RANSAC variants. Since the
outlier rate after QGORE pruning is very low (< 1% as
shown in Section 4.1), traditional lp estimator and Cauchy
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(a) Arch: N = 6807, η = 99.63%; |H′| = 57, η = 56.14%; ER = 0.04◦, Et = 0.03m
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12283  97.81%                              312  13.78%                    ER=0.01°，ET=0.03m 

 

4143  92.32%                              554  42.59%                   ER=0.03°，ET=0.02m 

 

3006  98.77%                              73  49.32%                    ER=0.53° ET=0.05m 

 
15249   99.09%                      328        57.62%               ER=0.05°   ET=0.01m 

(b) Courtyard: N = 12283, η = 97.81%; |H′| = 312, η = 13.78%; ER = 0.01◦, Et = 0.03m

 
6807  99.63%                              57  56.14%                    ER=0.04°，ET=0.03m 
 

 

12283  97.81%                              312  13.78%                    ER=0.01°，ET=0.03m 

 

4143  92.32%                              554  42.59%                   ER=0.03°，ET=0.02m 

 

3006  98.77%                              73  49.32%                    ER=0.53° ET=0.05m 

 
15249   99.09%                      328        57.62%               ER=0.05°   ET=0.01m 

(c) Facade: N = 4143, η = 92.32%; |H′| = 554, η = 42.59%; ER = 0.03◦, Et = 0.02m

 
6807  99.63%                              57  56.14%                    ER=0.04°，ET=0.03m 
 

 

12283  97.81%                              312  13.78%                    ER=0.01°，ET=0.03m 

 

4143  92.32%                              554  42.59%                   ER=0.03°，ET=0.02m 

 

3006  98.77%                              73  49.32%                    ER=0.53° ET=0.05m 

 
15249   99.09%                      328        57.62%               ER=0.05°   ET=0.01m 

(d) Office: N = 3006, η = 98.77%; |H′| = 73, η = 49.32%; ER = 0.53◦, Et = 0.05m

 
6807  99.63%                              57  56.14%                    ER=0.04°，ET=0.03m 
 

 

12283  97.81%                              312  13.78%                    ER=0.01°，ET=0.03m 

 

4143  92.32%                              554  42.59%                   ER=0.03°，ET=0.02m 

 

3006  98.77%                              73  49.32%                    ER=0.53° ET=0.05m 

 
15249   99.09%                      328        57.62%               ER=0.05°   ET=0.01m 

(e) Trees: N = 15249, η = 99.09%; |H′| = 328, η = 57.62%; ER = 0.05◦, Et = 0.01m

Fig. 6. Our qualitative results on the ETH dataset. Left column: initial correspondence set H, where green lines and red lines represent inliers and
outliers, respectively. Middle column: results of our QGORE pruning. Right column: final registration results of our QGORE+Ada lp pipeline.
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TABLE 4
Average angular error (ER ↓), translation error (Et ↓), and running time (↓) results on the ETH dataset. Bold fonts denote the first place.

Method
Arch Courtyard Facade Office Trees

ER

(°)
Et

(m)
time
(s)

ER

(°)
Et

(m)
time
(s)

ER

(°)
Et

(m)
time
(s)

ER

(°)
Et

(m)
time
(s)

ER

(°)
Et

(m)
time
(s)

RANSAC 28.53 7.03 178.81 0.20 0.08 108.60 0.46 0.09 62.85 1.65 0.13 99.81 68.02 9.45 166.32
FLORANSAC 34.89 6.88 181.32 0.11 0.05 108.38 0.28 0.06 55.64 0.83 0.07 103.08 68.27 9.34 168.28
GCRANSAC 60.15 7.42 32.94 0.04 0.04 30.75 0.12 0.02 4.72 0.43 0.04 11.82 56.61 6.78 55.15
MAGSAC++ 3.03 1.32 8.85 0.41 0.24 9.44 1.16 0.23 2.40 2.43 0.30 3.24 4.02 1.58 20.08

GORE 0.53 0.12 26.59 0.13 0.07 24.81 0.32 0.08 51.32 0.51 0.06 13.44 0.24 0.09 271.31
4DOFReg 0.17 0.14 3.17 0.06 0.05 3.98 0.15 0.07 1.29 1.46 0.13 0.80 0.23 0.13 11.04

GORE+FLORANSAC 0.31 0.09 34.89 0.04 0.04 25.06 0.25 0.05 51.38 0.43 0.05 13.97 0.22 0.05 279.02
GORE+Ada lp 0.17 0.05 26.62 0.04 0.03 24.83 0.07 0.02 51.33 0.29 0.02 13.46 0.17 0.05 271.35
1-ptRS+Ada lp 0.38 0.05 0.92 0.04 0.04 1.49 0.12 0.03 0.25 0.37 0.04 0.22 0.26 0.07 2.47

QGORE+lp estimator 1.58 0.96 3.71 0.04 0.04 7.21 0.39 0.09 1.75 5.14 0.38 0.80 0.53 0.09 10.51
QGORE+Cauchy 2.49 1.43 3.90 0.04 0.03 7.17 0.19 0.04 1.69 5.84 0.59 0.77 0.34 0.10 10.93
QGORE+Ada lp 0.18 0.04 3.95 0.04 0.03 6.74 0.07 0.02 1.88 0.28 0.02 0.84 0.13 0.04 10.66

TABLE 5
The lower bound l and subset size |H′| of GORE and QGORE.

Data |I∗| 1-ptRS+Ada lp GORE QGORE
|I| l |H′| l |H′|

Arch 55 46 54 461 47 327
Courtyard 338 326 332 448 326 402

Facade 216 184 212 392 186 505
Office 44 40 42 137 40 162
Trees 75 64 68 352 65 224

M-estimator are comparable to our adaptive lp estimator in
this experiment.

From Fig. 5(c), we can see that GORE+Ada lp and GORE
have similar running times, which indicated that GORE-
type methods can effectively remove most of the outliers
and greatly improve the efficiency of traditional methods.
Moreover, our QGORE+Ada lp (implemented in MATLAB)
is 15+ times faster than GORE+Ada lp (GORE is imple-
mented in C++) at an outlier rate of 99%. Compared with
RANSAC-type methods, our advantage is very obvious in
cases with high outlier rates. For example, QGORE+Ada lp
is about 10 times faster than GCRANSAC and MAGSAC++
(both of them are implemented in C++) at an outlier rate of
99%.

4.2.2 Real LiDAR experiment
Dataset: We use the challenging large-scale ETH LiDAR
dataset1 with ground truth for a real experiment, which
consists of five scan categories:

• Arch: acquired around a Roman arch. The scans
suffer from low overlap and moving objects.

• Courtyard: acquired in an ancient tomb courtyard.
The scans lack of very low vertical variations.

• Facade: an urban scene with typical structural fea-
tures. The scans contain many moving objects.

• Office: a representative indoor dataset of an office
room, which suffers from self-similar structures.

• Trees: a forest scene with a large amount of under-
wood, which suffers from repeated texture.

1. http://www.prs.igp.ethz.ch/research/completed projects/autom
atic registration of point clouds.html

To reduce the size of LiDAR scans, we downsample the
resolution to 0.1m and set ε = 0.3. We use ISS [21] and
FPFH [27] to extract features, and establish initial correspon-
dence set H based on the top-5 nearest search. The LRF of
each feature inH is also estimated via the method described
in [28]. The detailed information is summarized in Table 3,
including overlap ratio, number of scan pairs Np, number of
keypoints Nk, number of correspondences Nc, and outlier
ratio η.

Qualitative Result: Figure 6 shows our qualitative re-
sults, where one LiDAR pair is selected from each category
for evaluation. Our QGORE reduces the average number of
correspondences from |H| = 8298 to |H′| = 265, i.e., more
than 95% of correspondences are removed. Importantly,
these rejected correspondences are guaranteed to be true
outliers. Thus, it does not compromise the optimality of the
solution. After pruning, the average outlier rate is reduced
from 97.52% to 43.89%, which greatly simplifies the PCR
problem.

Arch suffers from low overlaps; Courtyard lacks of verti-
cal variations; Facade contains many moving objects; Office
contains self-similar structures; and Trees is full of repeated
texture. Although registration on these scan pairs is very
challenging, our QGORE+Ada lp pipeline still yields very
good results, i.e., the worst angular error is smaller than 1◦.

Quantitative Comparison: Table 4 summarizes the av-
erage quantitative results. As shown, RANSAC-type algo-
rithms perform well on cases with relatively low outlier
rates (e.g., Courtyard and Facade), while getting poor results
on Arch and Trees whose outlier rates are higher than 99%.
This is consistent with the simulation results, in which
RANSAC-type methods break down at 99% of outliers.
1-ptRS+Ada lp is less accurate than our QGORE+Ada lp,
since 1-ptRS does not preserve the global solution. GORE-
type methods (GORE, 4DOFReg, GORE+FLORANSAC,
GORE+Ada lp, and our QGORE+Ada lp) achieve surpris-
ing robustness. They can successfully register all scan pairs.
GORE itself only finds a suboptimal solution (by-product),
which results in low registration accuracy. Fortunately, it
only takes a few seconds to refine the results by FLO-
RANSAC or lp-like estimator after GORE pruning. Compar-
ing GORE+FLORANSAC with GORE+Ada lp, our lp-like
estimator achieves much better registration accuracy than
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TABLE 6
Comparison against GORE with a global optimiser BnB.

Data |H| η (%)
GORE QGORE GORE+BnB QGORE+BnB

l |H′| time (s) l |H′| time (s) |I∗| time (s) |I∗| time (s)

Bimba 535 94.02 29 127 4.49 28 116 0.53 32 278.69 32 158.80
Children 530 95.09 23 124 2.33 20 104 0.43 26 385.47 26 131.95
Dragon 645 93.95 36 103 4.21 36 112 0.65 39 164.18 39 219.42
Angle 668 94.61 32 150 3.26 32 102 0.57 36 3547.06 36 265.31
Bunny 555 93.87 29 78 1.93 29 83 0.36 34 67.31 34 78.18

(a) sequence 00 (b) sequence 01 (c) sequence 02 

(d) sequence 03 (e) sequence 04 (f) sequence 05 (g) sequence 06 

(h) sequence 07 (i) sequence 08 (j) sequence 09 (k) sequence 10 

2S STD 2Scan ScanM

2Scan Submap 2S SMTD M

2Submap Map PoseOverlap

M Feature matching

D Feature extraction

Overlap Overlap region segmentation

LIDAR scan

Submap

Map
Relative transformation

Pose
Registration Pose in world frame

Legend
Thread 1

Scan-Scan registration

Thread 2

Scan-Submap registration

Thread 3

Submap-Map registration

Fig. 7. The framework of the proposed laser odometry, which contains three threads, i.e., scan-to-scan, scan-to-submap, and submap-to-map
registration threads.

FLORANSAC. GORE+Ada lp and QGORE +Ada lp obtain
the best registration performance, whose angular errors are
smaller than 0.5°and translation errors are better than 0.1m.
The reasons are twofold: First, GORE-type methods pre-
serve the global solution inH′. Second, our lp-like estimator
has high robustness and is not easy to fall into local minima.
Traditional lp estimator and Cauchy M-estimator perform
much worse than our Ada lp. For example, QGORE+lp-
estimator and QGORE+Cauchy get the worst performance
on the Office category among 12 compared pipelines. In
this experiment, the outlier rate after QGORE pruning is
still very high compared with the one in Section 4.2.1.
Traditional lp estimator and Cauchy M-estimator become
unreliable at such high outlier rates.

Another advantage of our QGORE+Ada lp is the high
computational efficiency. 1-ptRS+Ada lp is the fastest; how-
ever, it breaks the global solution. 4DOFReg ranks the
second, since it only solves a 4-DoF registration problem
(1-DoF rotation + 3-DoF translation), which largely reduces
the parameter space. However, this also greatly limits its ap-
plication scenarios. Our QGORE+Ada lp is 15+ times faster
than GORE+Ada lp on the whole dataset. This difference
in computational efficiency is even more pronounced in
difficult cases, which is determined by the possible expo-
nential complexity of GORE. For example, in Trees with
η = 99.55%, GORE+Ada lp is 25+ times slower than our
QGORE+Ada lp.

Table 5 compares the outlier pruning performance of
GORE and QGORE on the ETH dataset, which reports the
average size of optimal true inlier set |I∗|, lower bound
l, and the size of remaining correspondences |H′| on each
category. As can be seen, our |H′| is much smaller than
the one of GORE except for Facade. The average |H′| of
QGORE on the whole dataset is 374, while GORE remains
|H′| = 388 correspondences. Our weakness is that the
tightness of lower bound is not as good as GORE due to the

noise of LRF estimation. This is the reason why our QGORE
remains more correspondences than GORE on the Facade
dataset.

4.3 Comparison against GORE with a BnB optimiser
As aforementioned, our QGORE outlier pruning algorithm
does not harm the globally optimal solution. To show its
effectiveness, we compare QGORE against GORE with a
global BnB optimiser [83] here. Since GORE+BnB is very
slow on the ETH dataset (the first registration instance of
Arch takes more than 12 hours on our laptop), we use an
easier dataset, i.e., the FGR dataset [9], for evaluation. The
FGR dataset contains five point cloud models with par-
tial overlaps, including Bimba, Children, Chinese Dragon,
Angle, and Bunny. Each model category has five point
cloud pairs. For each registration instance, we record the
following measures: lower bound l, number of remaining
correspondences after pruning |H′|, consensus size of global
solution |I∗|, and running time. The results are summarized
in Table 6.

As shown, QGORE+BnB yields the same global solution
|I∗| as GORE+BnB, while being almost 5 times faster than
GORE+BnB. This benefits from the good outlier pruning
performance of our QGORE, i.e., the number of remaining
correspondences after QGORE is smaller than the one of
GORE (116 versus 103 in average). Moreover, our QGORE
is 6 times faster than GORE on this dataset.

4.4 SLAM Experiment on KITTI
To show the potential of our QGORE in the SLAM task,
we develop a 3D laser-based odometry. As shown in Figure
7, there are three threads in our framework. In the first
thread, a scan-to-scan registration is performed to estimate a
relative rigid transformation TS2S between two consecutive
laser frames. Thread 2 uses the transformation TS2S to guide

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2023.3262780

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Wuhan University. Downloaded on April 11,2023 at 10:54:43 UTC from IEEE Xplore.  Restrictions apply. 



12

(a) sequence 00 (b) sequence 01 (c) sequence 02 

(d) sequence 03 (e) sequence 04 (f) sequence 05 (g) sequence 06 

(h) sequence 07 (i) sequence 08 (j) sequence 09 (k) sequence 10 

00 01 02 03 04 05 06 07 08 09 10 mean 

LOAM 0.78 1.43 0.92 0.86 0.71 0.57 0.65 0.63 1.12 0.77 0.79 0.84 

IMLS-SLAM 0.50 0.82 0.53 0.68 0.33 0.32 0.33 0.33 0.80 0.55 0.53 0.52 

MC2SLAM 0.51 0.79 0.54 0.65 0.44 0.27 0.31 0.34 0.84 0.46 0.52 0.52 

SUMA++ 0.64 1.60 1.00 0.67 0.37 0.40 0.46 0.34 1.10 0.47 0.66 0.70 

LO-Net 0.78 1.42 1.01 0.73 0.56 0.62 0.55 0.56 1.08 0.77 0.92 0.83 

MULLS 0.51 0.62 0.54 0.61 0.35 0.28 0.24 0.29 0.80 0.48 0.63 0.49 

Ours (HMLO) 0.49 0.61 0.55 0.64 0.28 0.23 0.19 0.33 0.82 0.41 0.48 0.46 

Fig. 8. Qualitative evaluation on the KITTI dataset, where blue lines correspond to our estimated trajectories and red ones are the ground truth.

TABLE 7
Quantitative evaluation (metric: ATE(%)↓) on KITTI Dataset. Bold fonts denote the first place.

Method
KITTI sequence ID

00 01 02 03 04 05 06 07 08 09 10 Mean

LOAM 0.78 1.43 0.92 0.86 0.71 0.57 0.65 0.63 1.12 0.77 0.79 0.84
IMLS-SLAM 0.50 0.82 0.53 0.68 0.33 0.32 0.33 0.33 0.80 0.55 0.53 0.52
MC2SLAM 0.51 0.79 0.54 0.65 0.44 0.27 0.31 0.34 0.84 0.46 0.52 0.52
SUMA++ 0.64 1.60 1.00 0.67 0.37 0.40 0.46 0.34 1.10 0.47 0.66 0.70
LO-Net 0.78 1.42 1.01 0.73 0.56 0.62 0.55 0.56 1.08 0.77 0.92 0.83
MULLS 0.51 0.62 0.54 0.61 0.35 0.28 0.24 0.29 0.80 0.48 0.63 0.49

Ours 0.49 0.61 0.55 0.64 0.28 0.23 0.19 0.33 0.82 0.41 0.48 0.46

the feature matching stage since it provides accurate motion
information. In this thread, every K consecutive laser scans
are regarded as a group. A scan-to-submap registration is
performed to merge laser scans into submaps and esti-
mate the relative transformation TS2SM between consec-
utive submaps. The transformation TS2SM is then passed
to the thread 3 to segment overlapping regions. Finally,
a submap-to-map registration is performed to recover the
final poses of laser scans and the 3D scene map. The scan-
to-scan and scan-to-submap registrations are based on our
QGORE algorithm, which takes 3D feature correspondences

as inputs. The submap-to-map registration takes TS2SM as
the initialization and uses ICP for fine registration.

The proposed odometry is evaluated on the KITTI train-
ing dataset2, which contains 11 laser sequences with a total
of 23,201 scans captured by a Velodyne HDL-64E LiDAR.
KITTI covers three typical scenarios, including country
scenery, unban scenery, and highway. Each sequence is
associated with a ground truth pose file measured by a high
precision GPS-INS equipment. The same as in [88], [89], we
use the average translation error (ATE) as the evaluation

2. http://www.cvlibs.net/datasets/kitti/eval odometry.php
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Number of scans: 271    Number of scans: 2761    Number of scans: 1101 

Trajectory length: 393m  Trajectory length: 2210m Trajectory length: 1236m  

Localization error: 0.28%  Localization error: 0.23%  Localization error: 0.19% 

(a) KITTI sequence 04 (b) KITTI sequence 05 (c) KITTI sequence 06 

Number of scans: 1101    Number of scans: 1591     Number of scans: 1201 

Trajectory length: 694m  Trajectory length: 1705m  Trajectory length: 918m 

Localization error: 0.33%  Localization error: 0.41%   Localization error: 0.48% 

(d) KITTI sequence 07 (e) KITTI sequence 09 (f) KITTI sequence 10 

Fig. 9. Our reconstructed 3D scene maps on the KITTI dataset. The color of point clouds is rendered by height. The black line inside each subfigure
is our estimated trajectory of the vehicle. Sequence 04, 06, and 09 have been rotated for better visualization.

metric. Our method is compared with six state-of-the-art
laser odometry methods, i.e., lidar odometry and mapping
(LOAM) [88], implicit moving least squares SLAM (IMLS-
SLAM) [89], motion compensation SLAM (MC2SLAM) [90],
semantic surfel-mapping (SUMA++) [91], lidar odometry
net (LO-Net) [92], and multi-metric linear least square
(MULLS) [93]. Figure 8 provides our estimated trajectories.
As shown, our method obtains globally consistent results,
which are very close to the ground truth. The quantitative
results are reported in Table 7, where the results of LOAM,
IMLS-SLAM, MC2SLAM, SUMA++, LO-Net, and MULLS
are obtained from their original papers. Our method ranks
the best on 7 sequences, the second on 3 sequences, and the
fourth on one sequence. We achieve the best ATE on these
11 sequences, i.e., 0.46%. Figure 9 gives our reconstructed
3D scene maps. The results are impressive and there is
no obvious ghost phenomenon. KITTI also provides a test
dataset for online evaluations, which contains 11 laser se-
quences without open ground truth. In the leaderboard, our
proposed method named FBLO currently ranks the sixth
among all pure laser SLAM algorithms. It achieves an ATE

accuracy of 0.62% and an average rotation error (ARE) of
0.0014 °/m.

4.5 Limitations

The limitations of our method are as follows:

• LRF estimation is relatively sensitive to sparse point
density. Hence, if point sets are too sparse, our one-
point RANSAC algorithm may not work well.

• Although QGORE reduces the efficiency from ex-
ponential to quadratic, it is still far from real-time
operation and difficult to be applied in SLAM.

• QGORE is not suitable for photogrammetric point
cloud pairs, which suffer from scale changes.

5 CONCLUSION

In this paper, we propose the first quadratic-time guar-
anteed outlier removal (QGORE) method for point cloud
registration. QGORE introduces the ”rotation correspon-
dence” to establish a one-point RANSAC for lower bound

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2023.3262780

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Wuhan University. Downloaded on April 11,2023 at 10:54:43 UTC from IEEE Xplore.  Restrictions apply. 



14

estimation and proposes the geometric consistency voting
for tight upper bound seeking. We also present a lp-like
robust estimator for transformation fitting and provide a
QGORE+Ada lp pipeline. Extensive experiments demon-
strate that our QGORE (QGORE+Ada lp) is superior to
state-of-the-arts: compared with RANSAC-type methods,
QGORE+Ada lp achieves better robustness and registration
accuracy; compared with GORE, QGORE decreases the
computational complexity from exponential to quadratic;
compared with our previous work [3], QGORE can guar-
antee the optimality of the solution.
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