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A B S T R A C T

Marine oil spills can cause severe damage to the marine environment and biological resources. Using satellite
remote sensing technology is one of the best ways to monitor the sea surface in near real-time to obtain oil spill
information. The existing methods in the literature either use deep convolutional neural networks in synthetic
aperture radar (SAR) images to directly identify oil spills or use traditional methods based on artificial features
sequentially to distinguish oil spills from sea surface. However, both approaches currently only use image
information and ignore some valuable auxiliary information, such as marine weather conditions, distances
from oil spill candidates to oil spill sources, etc. In this study, we proposed a novel method to help detect
marine oil spills by constructing a multi-source knowledge graph, which was the first one specifically designed
for oil spill detection in the remote sensing field. Our method can rationally organize and utilize various
oil spill-related information obtained from multiple data sources, such as remote sensing images, vectors,
texts, and atmosphere-ocean model data, which can be stored in a graph database for user-friendly query and
management. In order to identify oil spills more effectively, we also proposed 13 new dark spot features and
then used a feature selection technique to create a feature subset that was favorable to oil spill detection.
Furthermore, we proposed a knowledge graph-based oil spill reasoning method that combines rule inference
and graph neural network technology, which pre-inferred and eliminated most non-oil spills using statistical
rules to alleviate the problem of imbalanced data categories (oil slick and non-oil slick). Entity recognition is
ultimately performed on the remaining oil spill candidates using a graph neural network algorithm. To verify
the effectiveness of our knowledge graph approach, we collected 35 large SAR images to construct a new
dataset, for which the training set contained 110 oil slicks and 66264 non-oil slicks from 18 SAR images,
the validation set contained 35 oil slicks and 69005 non-oil slicks from 10 SAR images, and the testing set
contained 36 oil slicks and 36281 non-oil slicks from the remaining 7 SAR images. The results showed that
some traditional oil spill detection methods and deep learning models failed when the dataset suffered a severe
imbalance, while our proposed method identified oil spills with a sensitivity of 0.8428, specificity of 0.9985,
and precision of 0.2781 under those same conditions. The knowledge graph method we proposed using multi-
source data can not only help solve the problem of information island in oil spill detection, but serve as a guide
for construction of remote sensing knowledge graphs in many other applications as well. The dataset gathered
has been made freely available online (https://pan.baidu.com/s/1DDaqIljhjSMEUHyaATDIYA?pwd=qmt6).
1. Introduction

More and more scientific evidence shows that human society’s
activities have caused many environmental problems, wreaking havoc
on Earth’s ecosystems (Zhou et al., 2017). As one of the most harmful
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environmental problems, marine oil spills have attracted the attention
of environmental protection departments and governments of various
countries (de Moura et al., 2022). With the continuous growth of
world oil consumption and transportation, they are occurring more
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frequently. Oil spills into the ocean can result in a severe lack of oxygen
on the ocean surface and the death of a great number of fish, shrimp,
and marine birds. When the oil slick is swept up on the beach by the
waves, it will adhere to the sand, harming mariculture and coastal
tourism sites. Timely, accurate, and comprehensive monitoring of the
sea surface will help reduce the occurrence of this pollution.

Among the many available oil spill monitoring tools, Synthetic
Aperture Radar (SAR) satellite is one of the most powerful since it
can monitor marine oil spills continuously and in all weather condi-
tions (Marghany et al., 2009). It is unmatched by any other surveillance
tool. Spilled oil reduces the roughness of the ocean surface, causing the
Bragg waves to decay. This change typically presents as dark spots on
SAR remote sensing images. However, some atmospheric and oceanic
phenomena, such as low winds, upwelling, and abnormal chlorophyll-
a concentration, also increase the smoothness of the ocean surface and
show dark spots (named ‘‘lookalikes’’) on SAR images (Guo and Zhang,
2014). These lookalikes account for the great majority of dark spots,
posing a significant barrier to oil spill detection.

Generally, there are two kinds of approaches to detect oil spills
on the ocean surface. The first kind consists of deep learning meth-
ods, and the second is the traditional methods based on artificial
features. The traditional oil spill detection methods usually consist of
three stages: dark spot segmentation, feature extraction, and dark spot
classification (Mera et al., 2017). Dark spot segmentation is the basic
step, and its purpose is to perform high-precision segmentation of all
the dark spots on SAR images. A variety of fast or high-performance
dark spot segmentation algorithms have been developed over time,
including recurrent neural network (Topouzelis et al., 2006), Otsu
threshold + post-processing (Chehresa et al., 2016), an intelligent
hybrid detection system that integrates semi-automatic and automatic
procedures (Genovez et al., 2017), and Segnet (Guo et al., 2018). The
feature extraction process must first locate features for distinguishing
oil spills from lookalikes. A variety of types and quantities of features
suitable for oil spill detection were found in the literature. Solberg
et al. (1999) extracted 11 features; Keramitsoglou et al. (2006) used 14
features; Topouzelis et al. (2009) summarized the 25 most commonly
used features; Chehresa et al. (2016) used 74 features; and Mera et al.
(2017) used 52 features. Although the number of features may vary,
they can generally be classified into four categories: geometric features,
physical features, texture features, and context features. After feature
extraction, a suitable classifier then must be chosen to distinguish
between oil spills and lookalikes. Many classifiers have been proven
to achieve excellent classification results on some given datasets, such
as multi-layer perceptron (MLP) (Topouzelis et al., 2007), decision
tree (Vyas et al., 2015), Bayesian network with Naïve Bayes struc-
ture (Chehresa et al., 2016), and support vector machine (SVM) (Mera
et al., 2017). However, challenges still exist. On the whole, these
conventional techniques focus more on excavating and utilizing image
information to identify oil contamination. They ignore the power of
semantic relationships between dark spots and other entity objects,
resulting in the problem of information islands.

Different from traditional oil spill detection methods, deep learning
methods can directly identify oil spills from SAR images. In recent
years, they have experienced rapid development due to improvements
in SAR sensors. Yu et al. (2018) developed an oil spill detection method
via adversarial f-divergence learning, using the f-divergence to measure
the probabilistic difference between the ground truth and the generated
oil spill segmentation and then minimizing the f-divergence to detect
oil spills. Krestenitis et al. (2019) compared five classic neural networks
classifiers and found that the DeepLabv3+ model performed the best on
their dataset. Li et al. (2021b) proposed a multi-scale conditional adver-
sarial network for oil spill detection that can be used in limited-sample
situations. Fan et al. (2021) introduced a feature merged network,
using the original SAR images and high-frequency feature information
extracted by threshold segmentation as the input of the semantic seg-
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mentation network to improve the performance of oil spill detection.
Compared with traditional methods, deep learning technologies are
more intelligent. They can automatically identify oil spills based on the
information in the image, which includes various entity objects and
semantic relationships. However, they still only take remote sensing
images as the information source. Although some entity objects such as
ships, sea ice, coastlines, etc., can also be identified from the image to
help identify oil spills, as a whole, the amount of information available
is still limited. More auxiliary information about the oil spill, such as
oil pipelines, ship trajectories, and so on, needs to be considered, which
is usually difficult to obtain from remote sensing images. Furthermore,
problems such as lack of a semantic connection between information,
imbalanced training sets, and hard-to-find knowledge, continue to be
challenges for detecting oil spills (Topouzelis, 2008).

To improve the performance of oil spill detection methods, more
auxiliary information must be used, such as chlorophyll-a distribution,
sea temperature difference, rainfall distribution, distances from dark
spots to the ship’s trajectory, etc (Alpers et al., 2017). The recent devel-
opment of the knowledge graph is having enormous implications for a
wide variety of processes. Knowledge graphs use entities to represent
real-world things and relationships to denote the connections between
them. This unified knowledge description framework is very conducive
to sharing and utilizing knowledge. Some researchers believe that the
coupling of knowledge models and deep learning technology is an effec-
tive means to solve complex scene modeling (Reichstein et al., 2019).
Until now, knowledge graph technology has been implemented in
various industries, such as geoscience, medicine, and so on. It is closely
related to natural language processing (NLP). However, remote sensing
knowledge graph research is still in its infancy (Hao et al., 2021). To
facilitate the organization and management of data, Hao et al. (2021)
extracted concepts in the surveying and remote sensing domain to
construct a knowledge graph with 1024 nodes and 1295 relations. Li
et al. (2021a) constructed a remote sensing scene knowledge graph
containing 117 entities and 26 relationships and then combined it with
deep learning techniques to propose a method for zero-shot remote
sensing image scene classification. Recently, Li et al. (2022) combined
knowledge graph ontology reasoning with deep learning techniques in
a collaborative boosting framework that can improve the performance
of remote sensing image semantic segmentation. Nevertheless, the scale
of existing remote sensing knowledge graphs is limited, and the appli-
cations are relatively simple. Furthermore, their data sources remain
relatively single, consisting mainly of structured tables, unstructured
texts, and semi-structured data between structured and unstructured
data. Other types of data, such as remote sensing images, vector data,
and application model data, are underutilized (Hao et al., 2021), and
there is a relative lack of effective techniques for extracting knowledge
from them (Ge et al., 2022), resulting in significant information loss.
To the best of our knowledge, no one has yet used knowledge graph
technology to identify oil spills on the sea surface.

To meet the above challenges and provide a reference for the
construction of remote sensing knowledge graphs in the future, this
study explores for the first time using multi-source data, such as remote
sensing images, atmospheric and ocean model data, vector data, and
text, to build a knowledge graph for oil spill detection. Our knowledge
extraction techniques were no longer limited to NLP, but included
some remote sensing image processing techniques. Data sources for
oil spill detection were not limited to satellite remote sensing images.
Some oil spill-related information had been linked together by rational
organizations and no longer existed in isolation. With 172,684 entities,
9,873,312 relationships, and 274 attributes, our knowledge graph was
significantly larger in scale than existing remote sensing-type knowl-
edge graphs. All of the abbreviations used in this study were listed in
Table 1. The main contributions of this study are given as follows:

(1) We proposed a novel multi-source knowledge graph construction
method for oil spill detection. Expert knowledge was used to

design the semantic types and semantic relationships of the oil
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Table 1
Abbreviations used in this article.

No. Abbreviations Descriptions No. Abbreviations Descriptions

1 AIS Automatic Identification System 19 MERIS Medium Resolution Imaging Spectrometer
2 ASAR Advanced Synthetic Aperture Radar 20 MLP Multi-layer perceptron
3 BASS Bayesian Adaptive Superpixel Segmentation 21 MODIS Moderate-resolution Imaging Spectroradiometer
4 CMOD5 C-band model 5 22 NLP Natural Language Processing
5 DeeperGCN Deeper Graph Convolutional Neural Network 23 RDF Resource Description Framework
6 ECMWF European Centre for Medium-Range Weather Forecasts 24 SAR Synthetic Aperture Radar
7 ENVISAT Environmental Satellite 25 SeaWiFS Sea-viewing Wide Field-of-view Sensor
8 ESA European Space Agency 26 SDGCN Superpixel-based Deeper Graph Convolutional neural Network
9 FN False Negative 27 SNAP Sentinel Application Platform

10 FP False Positives 28 SVM Support Vector Machine
11 GAC Global Area Coverage 29 SVM-RFE Support Vector Machines Recursive Feature Elimination
12 GCN Graph Convolutional Neural Network 30 TN True Negative
13 GNN Graph Neural Network 31 TP True Positives
14 HELCOM Helsinki Commission 32 UNet Unity Networking
15 HH Horizontal Transmit, Horizontal Receive (antenna polarization) 33 VIIRS Visible Infrared Imaging Radiometer Suite
16 HYCOM HYbrid coordinate ocean model 34 VV Vertical Transmit, Vertical Receive (antenna polarization)
17 LAC Local Area Coverage 35 WSM Wide Swath Mode
18 MCAN Multiscale Conditional Adversarial Network
spill detection knowledge graph to guide its construction. All
the vectors, remote sensing images, and objects segmented from
SAR images were treated as identities; and the features extracted
from the remote sensing images and atmospheric ocean model
data were stored as dark spot entity attributes, with the vector
attributes directly taken as entity attributes.

(2) Thirteen new features for oil spill detection were extracted to
improve oil spill detection performance.

(3) An oil spill reasoning method was designed based on rule reason-
ing and a graph neural network algorithm, which mitigated the
impact of imbalanced classes in a dataset.

(4) We made public all of the data utilized in this research, includ-
ing 35 SAR images with detected oil spills and some processed
auxiliary data such as vector data, optical remote sensing image
products, atmospheric and ocean model data, and so on.

. Study region and dataset

In this section, we selected the Baltic Sea as our study area, where
il spills occurred frequently, and then provided a detailed introduction
o the datasets we used.

.1. Area of interest

The European Baltic Sea is a crucial waterway in Northern Europe.
t surrounds the landing ground on all sides and is located between the
ine countries of Sweden, Russia, Denmark, Germany, Poland, Finland,
stonia, Latvia, and Lithuania. With the development of industry and
hipping, the Baltic Sea has become strategically important. At the same
ime, the Baltic Sea’s marine environment and coastline ecology are
ontinually threatened by oil spills. During the period 1998–2017, 4525
il spills were observed during aerial surveillance flights by the Baltic
arine Environment Protection Commission – HELCOM Contracting

arties. According to Konik and Bradtke (2016), there were few oil
igs in the Baltic Sea, and the crude oil demand of countries around
he Baltic Sea must be met primarily through imports. Additionally,
ELCOM did not provide some relevant reports on natural seepages.

llegal oil discharges are most common in the central Baltic Sea and
long shipping routes and pipelines, as shown in Fig. 1. A large quantity
f oil pollution has caused severe economic losses to the Baltic Sea and
s destroying the living environment of marine organisms. Taking this
arine area as the research area, we constructed a novel knowledge

raph for monitoring marine oil spills.
3

2.2. Dataset

To construct our knowledge graph for oil spill detection, we col-
lected, in accordance with the oil spill information released by HEL-
COM from 2006 to 2011, 35 ASAR products with WSM in VV polariza-
tion from the ENVISAT satellite as a main information source. ENVISAT
ASAR was developed by ESA and operated in a variety of modes in
the C band. As shown in Table 2, the WSM we used was a superior
instrument for oil slicks on the ocean’s surface, providing an excellent
mix of radiometric quality and wide coverage. It had a swath width
of 405 km, a resolution of 150 m, and an incidence angle range of
15 to 45 degrees, making it ideal for detecting large-scale oil spills.
This mode provided two types of polarization: VV polarization and HH
polarization. According to Solberg (2012), VV polarization can generate
more backscatter from the ocean surface than HH polarization and is
frequently used in the detection of oil spills (Mera et al., 2017). We
only used VV polarization in this study. Fig. 2 shows the acquisition
date distribution for the ASAR products we used. As can be seen, more
than half of the images were collected between 2007 and 2008, with
2009 and 2011 having the lowest proportion. Furthermore, 85% of
the images were captured between April and October, with only a
few captured during the winter. Before being used, SAR images must
undergo preprocessing, which typically includes radiometric calibra-
tion, reprojection, and speckle filtering. These steps were carried out
using SNAP (Misra and Balaji, 2017), which is a common architecture
for ESA Toolboxes. The goal of radiometric calibration is to capture
pixels that accurately represent the reflecting surface radar backscatter.
After that, the calibrated images are then reprojected into a coordinate
system that is close to the real world. For speckle filtering, a 3 × 3
Lee filter (Mansourpour et al., 2006) was chosen. The Lee filter has
proved to be a very successful filter in the image processing of oil
spill detection (Genovez et al., 2017). Following preprocessing, we used
SDGCN (Liu et al., 2022) technique to detect dark spots. This method
can smooth SAR image noise and improve the segmentation perfor-
mance of some dark spots with weak borders and small regions (Liu
et al., 2022). Ultimately, we acquired 181 oil spill patches and around
170,000 lookalikes from 35 SAR images, constructing a dataset that
was extremely close to reality and challenging for spill identification.
Fig. 3 shows several different oil spills detected by these SAR images.
These oil spills vary in shape, size, and brightness due to the effects
of advection (Guo and Wang, 2009), evaporation (Reed et al., 1999),
emulsification (Xie et al., 2007), and the amount of leaking (Taravat
et al., 2013), making them more difficult to identify.

According to Alpers et al. (2017), we also collected important
auxiliary data, such as vector data, atmospheric ocean model data,
and a small amount of text data, to help distinguish between the oil

slicks and the lookalikes. Fig. 4 shows the various data we employed.
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Fig. 1. Oil spills in the Baltic Sea between 1998 and 2017. The data comes from the HELCOM map and data service (http://maps.helcom.fi/website/mapservice/index.html). The
amount of oil leakage is represented by the size and color of the dot. The blue triangles and magenta lines represent oil platforms and oil pipelines, respectively. Additionally,
gray rendering indicates the annual average AIS shipping density from 2006 to 2011.
Fig. 2. The acquisition dates of SAR images. The left panel shows the proportion of
SAR images acquired in various years, while the right panel displays the number of
SAR images acquired in different months.

Furthermore, Table 3 depicts the details of these data, such as their
source and resolution. The vector data, all provided by HELCOM,
included the Baltic coastline, as well as 515 pipelines, 23 oil terminals,
2 oil platforms, 16 oil and gas refineries, 320 ports, and 7 sub-basins in
this region. The wind speed data was acquired by inverting SAR images
using the CMOD5 model (Hersbach et al., 2007) and had the same
pixel size as the SAR image. Data on air-sea temperature differences,
convective rainfall rates, and chlorophyll-a concentrations were pro-
vided by ECMWF. They all used a horizontal regular latitude–longitude
grid that covered the whole globe. In the Baltic Sea, the former two
have a resolution of around 27.8 km × 13.9 km, whereas the latter
has a resolution of about 4.7 km × 2.3 km. The air-sea temperature
difference and convective rainfall rate data were hourly data, whereas
the chlorophyll-a concentration data consisted of daily composites of
merged sensor (MODIS Aqua, MERIS, VIIRS, SeaWiFS LAC & GAC)
products, which were only available over cloud-free and ice-free areas.
The sea surface speed data were available from HYCOM which had a
temporal frequency of 3 h. In the horizontal direction, it used a regular
latitude–longitude grid, with a resolution of around 4.4 km × 4.4 km in
4

Table 2
Main characteristics of the The ASAR Wide Swath Mode.

Mode Polarization Resolution Incidence Swath

Wide Swath VV 150 m 15–45◦ 405 km

the Baltic Sea region. Both the sandbank location data and the annual
AIS shipping density data were raster data available from HELCOM,
and their spatial resolutions were 1.6 km and 1 km, respectively. For
consistency, the atmospheric and oceanic model data were converted
into raster data format as well. Furthermore, the above data were
all sampled at the same resolution as the SAR images using bilinear
interpolation technology (Kirkland, 2010). This interpolation approach
was fast and had specific effects, so it was the most popular among
image researchers. Temporally, the air-sea temperature differential,
convective rainfall rate, and sea surface speed data were interpolated
by cubic interpolation to obtain the data at the same moment as
the SAR. Since chlorophyll-a concentration data was only available
when there was no ice or cloud cover, making temporal interpolation
difficult, so we kept the data in a daily format.

3. Methods

The multi-source knowledge graph construction and knowledge
reasoning methods for oil leak detection we proposed are introduced in
this section, and Fig. 5 depicts the specific workflow. The subsections
that follow go through the various core techniques we used, such as oil
spill detection knowledge modeling, knowledge extraction from multi-
source data, knowledge storage, oil spill detection based on knowledge
graph reasoning, and specific experimental settings.

3.1. Oil spill detection knowledge modeling

Generally, there are four kinds of methods for building a knowledge
system: (1) the expert method (Zheng et al., 2021), (2) the reference
method (Yang et al., 2021), (3) the induction method (Hao et al., 2021),
and (4) the hybrid method (Yu et al., 2017).

http://maps.helcom.fi/website/mapservice/index.html
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Fig. 3. Different examples of SAR oil spill images. The top panel shows the location of all SAR images. In these images, the dark spots located in the red area are oil spills, while
the dark spots in the blue area are lookalikes. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Since the purpose of our work was simple and clear, we adopted
the expert method to design the semantic types and semantic relations
of the knowledge graph. Fig. 6 shows the design results. The semantic
types consist of two categories: entities and events. Entities are divided
into conceptual entities and physical entities. Conceptual entities in-
clude dark spots segmented from SAR images, types of dark spots, the
polarization mode of the SAR images, and the time of acquisition of the
5

SAR images. Physical entities mainly refer to real world things, such as
oil and gas refinery, oil platform, oil terminal, pipeline, sea, sea sub-
basin, satellite platform, and remote sensing imagery. Events comprise
phenomena and activities with the differences between them being that
the former refers to the appearance but not necessarily the participation
of multiple parties, and the latter must be multiparty. Phenomena
include platform oil spills, ship oil spills, biological oil spills, upwelling,
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Fig. 4. Research data used to construct the knowledge graph. Panels a to d display vector data from the HELCOM Map and data service. Panel e shows an example of the
ENVISAT ASAR imagery provided by ESA. Panel f exhibits wind speed inversion data derived using the CMOD5 geophysical model function. Panels g, i, and l respectively show
chlorophyll-a concentration data, convective rainfall rate data, and air-sea temperature difference data, all from ECMWF. Panel h is ocean water velocity data from the HYCOM
model. And panels j and k are derived from sandbank location data and AIS shipping density data provided by HELCOM.
Table 3
The primary data used in oil spill detection, as well as its type, source, time interval, and resolution.

Name Type Source Time interval Resolution (latitude–longitude grid)

coastline, pipeline, oil terminals, oil
and gas refineries, ports, sub-basin

vector data HELCOM – –

SAR image raster data ESA – 150 m × 150 m
wind speed data raster data CMOD5 – 150 m × 150 m
sandbanks data raster data HELCOM – 1.6 km × 1.6 km
AIS shipping density data raster data HELCOM 1 year 1 km × 1 km
chlorophyll-a concentration data model data ECMWF 1 day 2.3 km × 4.7 km
sea water velocity data model data HYCOM 3 h 4.4 km × 4.4 km
convective rain rate model data ECMWF 1 h 13.9 km × 27.9 km
air-sea temperature difference data model data ECMWF 1 h 13.9 km × 27.9 km
low wind speed, convective rain, and so on. Since our main focus is
on the oil spill detection function of the knowledge graph, no detailed
activities were designed. The semantic relations have five categories:
(1) spatial relations, (2) time relations, (3) functional relations, (4)
conceptual relations, and (5) physical relations. The spatial relations
describe the positional relationship between dark spots and dark spots,
dark spots and oil terminals, dark spots and pipelines, dark spots and
ports, etc., and include intersects, close to, is in, and is closest to. The time
relation describes the time sequence of satellite image capture and the
order of events that occurred, which include is before and was obtained
in. The functional relation mainly refers to the causal relationship, such
as what event caused the dark spot phenomenon, and the physical
relation is primarily the contained relationship, such as which basins
are contained in the Baltic Sea. The conceptual relation is comprised
of terms such as come from, belong to, is, and is polarized by (e.g., the
country to which a port belongs, the image the oil pollution comes
6

from, and the polarization mode of the SAR image). Although various
semantic types and relations are constructed, not all of them are used
in practice.

3.2. Knowledge extraction from multi-source data

The aim of our knowledge extraction process is to obtain knowledge
from massive data utilizing the information extraction method. The
subsections describe the knowledge extraction technique for our oil
spill detection knowledge graph, including entity extraction, attribute
extraction, and relation extraction.

3.2.1. Entity extraction
In the domain of remote sensing, the main data source is no longer

text but rather vectors and raster images, which requires image process-
ing technology to extract knowledge. In this study, vectors, including
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Fig. 5. The workflow of multi-source data-driven oil spill detection knowledge graph construction and application.
point features (oil terminals, harbors, oil and gas refineries, oil plat-
forms), line features (pipelines), and polygon features (basins), could
be directly used as separate entities without further processing. The
objects detected from the images by the interpretation method could
be taken as entities as well. Therefore, the segmented dark spots on
7

SAR images were used as oil spill candidate entities, which were ob-
tained using an intelligent segmentation method based on SDGCN (Liu
et al., 2022). The algorithm thus converted the images into graphs and
precisely extracted dark spots directly from the SAR images, and the
remote sensing images with dark spots detected also were considered as
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Fig. 6. Semantic type and semantic relationship.
entities. For convenience, the remaining few entities, such as country,
time, ocean, and polarization, were manually extracted direct from the
text data.

3.2.2. Attribute extraction
Attribute extraction is also an important component in knowledge

extraction. Its goal is to collect the attribute information of specific
entities from various data sources and can make the knowledge graph
more complete. In this study, the attributes of vectors such as seaports,
oil and gas refineries, oil terminals, oil platforms, pipelines, basins,
etc.,can be directly extracted and used as entity attributes. The entities
extracted from raster images, on the other hand, required additional
feature calculations. Previous works in the literature have offered many
kinds of features for oil spill detection. The 52 features (including 23
physical features, 27 geometrical features, and two textural features)
used by Mera et al. (2017) were extracted and used as the dark spot en-
tity attributes in this work. They were all acquired simultaneously with
the SAR images. All of these features are itemized in our supplementary
materials. In order to further enhance the identification of oil spills,
we extracted 13 new features as supplements, including six physical
features and seven contextual features, as shown in Table 4. Among
them, DC, DP, DH, DOGR, DT, and DOR were obtained by calculating
the distance between the dark spots on the SAR images and the actual
external objects, so they were also acquired at the same time as the SAR
images. Rm, Sm, and Tm were calculated from the convective rain rate
data, seawater velocity data, and air-sea temperature difference data,
respectively. These data had been interpolated to the same moment as
the SAR image before being used. Sp was calculated using the dark
spots on the SAR image and fixed sandbank position data. Both AISdm
and DAIS were calculated using SAR images and annual AIS shipping
density maps produced by HELCOM. By threshold segmentation, we
obtained ship routes from the annual density maps. DAIS represented
the distance between the dark spots on the SAR images and these ship
routes, while AISdm represented the mean annual shipping density of
these dark spot areas. Because optical sensors were limited by weather
conditions, the chlorophyll-a concentration data we used consisted of
daily composites of merged sensor products. Cam became the mean
daily chlorophyll-a concentration of the dark spot areas on the SAR
images as a result. Explanations for all the features we used can be
found in our supplementary materials and in Mera et al. (2017).
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3.2.3. Relation extraction
In a knowledge graph, relations are defined as the connections

between two or more entities. Relation extraction identifies the given
semantic relationships between entities. As shown in Fig. 7, the re-
lations between entities in this study were extracted by referring to
the designed semantic relations at the model layer. For dark spots
and their source images, a directional relationship called come from
was constructed between them. Then, the remote sensing images were
linked together by establishing time-series relationships. At the same
time, one relationship called was obtained in was built between the
remote sensing images and the year. Further, the relations between
the remote sensing image and the platform, as well as the remote
sensing image and the polarization mode were established, called come
from and is polarized by, respectively. Spatially, using a Python library
(geographiclib) to calculate distances and find the oil and gas refineries,
ports, oil terminals, pipelines, and oil platforms closest to dark spots,
the relationships between them called is closest to were established.
These distances then were stored as their attributes. In addition, when
oil pipelines intersected dark spots, intersection relationships were
established between them. Oil terminals, ports, and oil platforms com-
prised a relation called belong to with their countries, respectively. For
dark spots and basins, relations called is in were established for them
when some dark spots were in a given sea basin. Subsequently, the
contain relations between the Baltic Sea and sea basins were extracted.
The spatial relationship between dark spots on the same SAR image
was established as follows: (1) the shortest distance between any two
dark spots on the same image was calculated; (2) when the connecting
line with the shortest distance between two dark spots did not cross
other dark spots or land, a relationship named is close to was established
between them; and (3) the shortest distance and direction were taken
as attributes of this relation.

3.3. Oil spill detection based on knowledge graph reasoning

After the above work, a primary knowledge graph was established.
As shown in Table 5, this knowledge graph includes 172,684 entities,
9,873,312 relationships, and 274 attributes. Among them, 171,731
entities were dark spots, and 234 attributes were dark spot attributes.
Since the knowledge graph was too large, we visualized some nodes
and relationships in a knowledge subgraph constructed using one SAR
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Table 4
Seven contextual features and six physical features of dark spots proposed in this study.

No. Feature Code Feature type No. Feature Code Feature type

1 Distance to coastline DC Contextual 8 Mean convective rain Rm Physical
2 Distance to pipeline DP Contextual 9 Sea speed mean Sm Physical
3 Distance to harbor DH Contextual 10 AIS shipping density mean AISdm Physical
4 Distance to oil and gas refinery DOGR Contextual 11 Chlorophyll-a concentration mean Cam Physical
5 Distance to AIS ship track DAIS Contextual 12 Mean of air-sea temperature difference Tm Physical
6 Distance to oil terminal DT Contextual 13 Proportion of area occupied by sandbanks Sp Physical
7 Distance to oil platform DOP Contextual
Fig. 7. The model layer and instance layer of the knowledge graph.
Table 5
Statistics of entities and relationships in the knowledge graph of oil spill detection.

Entity types Entity numbers Relations Relation numbers

Seas 1 Belong_to 362
Year 6 Is_close_to 8680248
Remote_sensing_image 35 Come_from 161411
Polarization 4 Contain 7
Platforms 15 Intersect 2438
Pipelines 515 Is_before 34
Oil_terminals 23 Is_closest_to 857301
Oil_platforms 2 Is_in 171441
Oil_gas_refineries 16 Is_polarized_by 35
Harbors 320 was_obtained_in 35
Dark_spots 171731
Countries 9
Basin 7

image, as shown in Fig. 8. As can be seen, we linked multi-source
data together through a reasonable organization that no longer ex-
ists in isolation. There are rich semantic relationships between them.
To make application and management easier, we must select an ap-
propriate method to store it. Typically, there are two ways to store
knowledge graphs: (1) a RDF (Wylot et al., 2018) format storage and
(2) a graph database. RDF format stores data in the form of triples
(subject, predicate, object). While this method is simple and easy to
implement, the search efficiency of triples is relatively low. Compared
9

to RDF format storage, graph databases are more straightforward. At
present, the most typical open-source database is Neo4j (Hao et al.,
2021). Neo4j has a complete graph query language and supports most
graph mining algorithms, such as PageRank, Label Propagation, and
Minimum Weight Spanning Tree. As a result, we chose the Neo4j graph
database to store our constructed knowledge graph. However, due to
the incompleteness of data in some cases, a knowledge graph has the
phenomenon of missing knowledge. Therefore, knowledge reasoning is
necessary for discovering implicit knowledge and perfecting it. Previous
research in the literature has classified such reasoning methods into
three categories (Chen et al., 2020): (1) rule-based reasoning, (2)
neural network-based reasoning, and (3) distributed representation-
based reasoning. Although rule-based reasoning can simulate human
reasoning, the reasoning rules are difficult to define (Chen et al., 2020).
Neural network-based reasoning exhibits strong reasoning ability but
poor interpretability (Ji et al., 2021). Distributed representation-based
reasoning can make the best of structural information in a knowledge
graph, but it lacks the consideration of deeper information (Chen et al.,
2020). Generally, these three approaches are complementary and can
be used jointly in inference tasks.

Our main reasoning task was to discriminate oil spill entities (i.e.,
entity classification). The following problems eventually were encoun-
tered (Topouzelis, 2008): missing oil spill data and unbalanced labels in
the dataset (the number of oil spill dark spots was small, and the non-oil
patches accounted for the vast majority of the dark spots). We decided
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Fig. 8. Visualization of parts of nodes and relations in oil spill detection knowledge graph.
to use an oil spill reasoning method based on our knowledge graph,
which combined rule inference and GNN algorithms. This method was
expected to alleviate the impact of label imbalance in the dataset and
consisted of three steps: (1) distinguishing obvious lookalikes based on
features, (2) inference of lookalikes based on the distances between
entities, and (3) classification of the remaining dark spots. The first
two steps were rule inference, and the third step was graph neural
network inference. The specifics were detailed in Algorithm 1 and in
the following subsections.

Algorithm 1. Oil spill reasoning method based on the knowledge
graph.
Input: The constructed oil spill detection knowledge graph;
Output: Class of dark spots entities;
1: Set feature thresholds and a distance threshold 𝒅𝒎𝒊𝒏 using statistical

methods;
2: Set an empty collection 𝑨, rely on feature thresholds to identify

parts of lookalikes in advance from dark spot entities, and add them
to set 𝑨 (step 1);

3: Set 𝒕 = 𝟏, and set 𝑩 as the collection of oil spill candidate entities
to be identified;

4: while 𝒕 ≠ 𝟎 do
5: 𝒕 = 𝟎
6: for all 𝒂 in 𝑨 do
7: for all 𝒃 in 𝑩 do
8: if distance between 𝒃 and 𝒂 < 𝒅𝒎𝒊𝒏 then
9: Take 𝒃 out of 𝑩 and add it to 𝑨, 𝒕 = 𝒕+ 𝟏

10: end if
11: end for
12: end for
13: end while
14: Utilize graph neural network technology to classify oil spill

candidate entities in set 𝑩 (step 3)

3.3.1. Rule-based reasoning
Generally, some lookalikes display distinct differences in some char-

acteristics compared to oil slicks. For example, too large or too small
10
dark spots are not oil slicks. Likewise, dark spots on the sea surface
where winds exceeding a certain range are unlikely to be oil slicks,
as are dark areas away from the source of the oil spill. Relying on
these differences, we made a preliminary classification of dark spots
by setting simple feature thresholds. According to the statistics of 4000
oil slicks detected from SAR images between 1992 and 2015, Najoui
et al. (2017) found that 95% of the oil slicks could be detected when
the wind speed ranged from 2.09 m/s to 8.33 m/s, but they could
not be detected when the sea wind speed was too high or too low.
Therefore, they inferred that those dark spots with high or low wind
speed were lookalikes. Other authors have conducted similar work; for
example, Mera et al. (2017) eliminated the dark spots caused by low
wind speeds from their dataset before oil spill detection, which reduced
the number of dark spots that needed to be distinguished. We also
made some inferences based on location information. Since oil spills
mainly occur in some areas close to leak sources, such as ship tracks,
oil terminals, ports, oil pipelines, and oil platforms, we inferred those
dark spots in regions away from leak sources as lookalikes. In addition,
according to the amount of oil spilled, we inferred those dark spots
with excessively large or small areas were not oil slicks. Previous work
in the literature also directly removed small areas of dark spots before
identifying oil slicks (Taravat et al., 2013).

Table 6, based on the above inferences, shows the division of the
dark spots into six categories according to their distance from different
leakage sources and six collections (𝑪𝟏, 𝑪𝟐, 𝑪𝟑, 𝑪𝟒, 𝑪𝟓, 𝑪𝟔) are
set to store them. These collections are not likely the whole source
of oil spills in the Baltic Sea, but we believe that most of them are
covered here. The main sources of oil spills in this sea are known
to be ships (Konik and Bradtke, 2016). The thresholds for the first
step inference include the maximum oil spill area, the minimum oil
spill area, and the maximum distance from the oil spill to the leak
source for each category. In addition, we also determined the maximum
wind speed threshold 𝒘𝒎𝒂𝒙 and the minimum wind speed threshold
𝒘𝒎𝒊𝒏 to separate more lookalikes. The inference rules are listed as
Eq. (1) through 7 below, which are the first step of our inference
algorithm, where 𝒓𝒖𝒍𝒆𝟏 to 𝒓𝒖𝒍𝒆𝟔 are used to infer lookalikes from six
different categories of dark spots while 𝒓𝒖𝒍𝒆𝟕 is used to infer lookalikes
depending on the wind speed thresholds. In these formulas, 𝒊, 𝒋, 𝒌, 𝒍, 𝒎,
𝒏, and 𝒐 denote dark spots in different sets and 𝒐𝒘 is the wind speed
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Table 6
Sets and feature thresholds required for rule inference.

Categories Sets Maximum distance from
oil spill to leak source

Maximum oil spill area Minimum oil spill area

The dark spots closest to ship trajectories 𝒊 ∈ 𝑪𝟏 𝒅𝟏𝒎𝒂𝒙 𝒂𝟏𝒎𝒂𝒙 𝒂𝟏𝒎𝒊𝒏
The dark spots closest to oil pipelines 𝒋 ∈ 𝑪𝟐 𝒅𝟐𝒎𝒂𝒙 𝒂𝟐𝒎𝒂𝒙 𝒂𝟐𝒎𝒊𝒏
The dark spots closest to harbors 𝒌 ∈ 𝑪𝟑 𝒅𝟑𝒎𝒂𝒙 𝒂𝟑𝒎𝒂𝒙 𝒂𝟑𝒎𝒊𝒏
The dark spots closest to oil terminals 𝒍 ∈ 𝑪𝟒 𝒅𝟒𝒎𝒂𝒙 𝒂𝟒𝒎𝒂𝒙 𝒂𝟒𝒎𝒊𝒏
The dark spots closest to oil gas refineries 𝒎 ∈ 𝑪𝟓 𝒅𝟓𝒎𝒂𝒙 𝒂𝟓𝒎𝒂𝒙 𝒂𝟓𝒎𝒊𝒏
The dark spots closest to oil platforms 𝒏 ∈ 𝑪𝟔 𝒅𝟔𝒎𝒂𝒙 𝒂𝟔𝒎𝒂𝒙 𝒂𝟔𝒎𝒊𝒏
𝒎
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of the dark spot 𝒐. 𝒊𝒅 , 𝒋𝒅 , 𝒌𝒅 , 𝒍𝒅 , 𝒎𝒅 , and 𝒏𝒅 represent the distance of
the remaining dark spots from their nearest oil spill source, while 𝒊𝒂,
𝒋𝒂, 𝒌𝒂, 𝒍𝒂, 𝒎𝒂, and 𝒏𝒂 refer to their areas. Relying on the above rules
and thresholds, we pre-identified some obvious lookalike entities and
stored them in set 𝑨, while unidentifiable entities were saved in set 𝑩.
All of these feature thresholds need to be determined using statistical
methods.
𝒓𝒖𝒍𝒆𝟏 =¬((𝒊𝒅 < 𝒅𝟏𝒎𝒂𝒙) ∧ (𝒊𝒂 < 𝒂𝟏𝒎𝒂𝒙)

∧ (𝒊𝒂 > 𝒂𝟏𝒎𝒊𝒏)), 𝒊 ∈ 𝑪𝟏
(1)

𝒓𝒖𝒍𝒆𝟐 =¬((𝒋𝒅 < 𝒅𝟐𝒎𝒂𝒙) ∧ (𝒋𝒂 < 𝒂𝟐𝒎𝒂𝒙)
∧ (𝒋𝒂 > 𝒂𝟐𝒎𝒊𝒏)), 𝒋 ∈ 𝑪𝟐

(2)

𝒓𝒖𝒍𝒆𝟑 =¬((𝒌𝒅 < 𝒅𝟑𝒎𝒂𝒙) ∧ (𝒌𝒂 < 𝒂𝟑𝒎𝒂𝒙)
∧ (𝒌𝒂 > 𝒂𝟑𝒎𝒊𝒏)), 𝒌 ∈ 𝑪𝟑

(3)

𝒓𝒖𝒍𝒆𝟒 =¬((𝒍𝒅 < 𝒅𝟒𝒎𝒂𝒙) ∧ (𝒍𝒂 < 𝒂𝟒𝒎𝒂𝒙)
∧ (𝒍𝒂 > 𝒂𝟒𝒎𝒊𝒏)), 𝒍 ∈ 𝑪𝟒

(4)

𝒓𝒖𝒍𝒆𝟓 =¬((𝒎𝒅 < 𝒅𝟓𝒎𝒂𝒙) ∧ (𝒎𝒂 < 𝒂𝟓𝒎𝒂𝒙)
∧ (𝒎𝒂 > 𝒂𝟓𝒎𝒊𝒏)), 𝒍 ∈ 𝑪𝟓

(5)

𝒓𝒖𝒍𝒆𝟔 =¬((𝒏𝒅 < 𝒅𝟔𝒎𝒂𝒙) ∧ (𝒏𝒂 < 𝒂𝟔𝒎𝒂𝒙)
∧ (𝒏𝒂 > 𝒂𝟔𝒎𝒊𝒏)), 𝒍 ∈ 𝑪𝟔

(6)

𝒓𝒖𝒍𝒆𝟕 = (𝒐𝒘 < 𝒘𝒎𝒊𝒏)∨(𝒐𝒘 > 𝒘𝒎𝒂𝒙), 𝒐 ∈ 𝑪,

𝑪 = 𝑪𝟏 ∪ 𝑪𝟐 ∪ 𝑪𝟑 ∪ 𝑪𝟒 ∪ 𝑪𝟓 ∪ 𝑪𝟔
(7)

𝒓𝒖𝒍𝒆𝟏 ∨ 𝒓𝒖𝒍𝒆𝟐 ∨ 𝒓𝒖𝒍𝒆𝟑 ∨ 𝒓𝒖𝒍𝒆𝟒 ∨ 𝒓𝒖𝒍𝒆𝟓
∨ 𝒓𝒖𝒍𝒆𝟔 ∨ 𝒓𝒖𝒍𝒆𝟕∨ ⇒ 𝑨

(8)

Empirically, two close-together dark spots on one image have the
same labels, and are thought to be similar to a label propagation
algorithm (Wang and Zhang, 2008). According to this rule and relying
on the entities in set 𝑨, we performed the second step of reasoning to
identify more lookalikes. Likewise, we needed to use statistical methods
to set the distance threshold 𝒅𝒎𝒊𝒏. Using the knowledge graph, we
retrieved the dark spots in set 𝑩 whose distance to the entities in set 𝑨
less than the threshold 𝒅𝒎𝒊𝒏, and added them to set 𝑨. We performed
iterative calculations until the distance between all entities in set 𝑩 and
the entities in set 𝑨 was greater than 𝒅𝒎𝒊𝒏.

3.3.2. GNN-based reasoning
Since the entities in set 𝑨 were all inferred to be non-oil patches,

we only needed to classify the entities in set 𝑩. Firstly, we must
lower the dimensionality of the dark spot features to minimize the
complexity of the learning job. Similar to the work of Mera et al.
(2017), we used the SVM-RFE feature selection algorithm to find the
best feature combination for oil spill detection. The F1 score (Aftab
et al., 2022), which is the harmonic mean of precision and recall, was
used to assess the performance of various feature combinations. This
metric considers both precision and recall and has been widely used
to assess classification accuracy (Zeid et al., 2021). To fully exploit
the entity characteristics in set 𝑩 as well as the relationship properties
between these entities, we reconstructed a graph 𝑮 = (𝑽 ,𝑬), where
𝑽 = {𝒗𝟏, 𝒗𝟐,… , 𝒗𝒊, 𝒗𝒊+𝟏,… , 𝒗𝑵 } and 𝑬 ⊆ 𝑽 ×𝑽 were the sets of vertices
and edges in set 𝑩, respectively. The node 𝒗𝒊 represented the graph’s 𝒊th
entity, and the edge 𝒆 = (𝒗 , 𝒗 ) ∈ 𝑬 indicated that the entity 𝒗 was
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𝒊,𝒋 𝒊 𝒋 𝒊 s
connected to 𝒗𝒋 . Following that, the DeeperGCN model (Li et al., 2020),
a state-of-the-art graph neural network model, was used for graph node
classification. This model employs certain neighborhood aggregation
functions to aggregate node features, neighbor node features, and
relationship features in graph data into higher-level features layer by
layer to improve the performance of graph node classification. The
formula (9)–(11) describes the particular aggregation process of each
layer (Li et al., 2020),

𝒎(𝒍)
𝒗𝒖 = 𝑹𝑬𝑳𝑼

(

𝒉(𝒍)𝒖 + 𝟏
(

𝒉𝒆(𝒍)𝒗𝒖
)

⋅ 𝒉𝒆(𝒍)𝒗𝒖
)

+ 𝜺,

𝒖 ∈ 𝑵(𝒗)
(9)

(𝒍)
𝒗 = 𝜻 (𝒍)

({

𝒎(𝒍)
𝒗𝒖|𝒖 ∈ 𝑵(𝒗)

})

(10)

(𝒍+𝟏)
𝒗 = 𝑴𝑳𝑷

(

𝒉(𝒍)𝒗 + 𝒔 ⋅ ‖‖
‖

𝒉(𝒍)𝒗
‖

‖

‖𝟐
⋅𝒎(𝒍)

𝒗 ∕ ‖

‖

‖

𝒎(𝒍)
𝒗
‖

‖

‖𝟐

)

(11)

here 𝒉(𝒍)𝒗 and 𝒉(𝒍)𝒖 are node features of nodes 𝒗 and 𝒖 in layer (𝒍),
espectively. The edge features of node 𝒗 to 𝒖 in layer (𝒍) are denoted
y 𝒉𝒆(𝒍)𝒗𝒖. 𝑵(𝒗) represents the set of neighbor nodes of 𝒗. 𝑹𝒆𝑳𝑼 (.)
enotes the rectified linear unit (Hara et al., 2015), while 𝟏(.) denotes
he indicator function, which is 1 when the edge feature occurs and
otherwise. 𝑴𝑳𝑷 (.) is a multi-layer perceptron (Longstaff and Cross,

987), 𝜺 is a tiny constant with a value of 10–7, and 𝒔 is a learnable
caling factor. 𝜻(𝒍) is a differentiable message aggregation function,
uch as 𝑺𝒐𝒇𝒕𝑴𝒂𝒙, 𝑷𝒐𝒘𝒆𝒓𝑴𝒆𝒂𝒏 (Li et al., 2020). All layers are linked
ogether using a variant of residual connections (res+), and finally,

linear layer is used to output the model classification results. The
ross entropy loss function 𝑳 (Zhu et al., 2021) is chosen as the model
ptimization function, and all the above learnable parameters can be
pdated by the back-propagation algorithm.

= −𝟏∕𝑵
𝑵
∑

𝒊=𝟏

(

𝒚𝒊 𝐥𝐨𝐠 𝒑𝒊 +
(

𝟏 − 𝒚𝒊
) (

𝟏 − 𝐥𝐨𝐠 𝒑𝒊
)) (12)

here 𝒚𝒊 is the ground-truth label and 𝒚𝒊 ∈ (𝟎, 𝟏), while 𝒑𝒊 is the
redicted probability of being an oil spill object 𝒊. 𝑵 is the number
f dark spots. Compared with existing oil spill detection methods, this
raph neural network technology can more effectively combine other
nformation other than dark spot features to help detect oil slicks.

.4. Experiment settings

This subsection describes the specific experimental setup for oil spill
etection inference, including dataset splitting, evaluation metrics, and
mplementation details.

.4.1. Dataset splitting
To make it easier to compare oil spill detection algorithms, we

plit our dataset into three categories. Among the 35 SAR images,
8 were randomly selected as the training set, 7 as the test set, and
0 as the validation set. There were 110 oil slicks discovered in the
raining set, 36 in the test set, and 35 in the validation set. The ratio of
etected oil slick patches was about 6:2:2. Table 7 lists the statistics of
ookalikes and oil slicks in the different sets. The ratio of oil spill pixels
o lookalike pixels was about 6:10,000, and the number of lookalikes in
ach set considerably outnumbered the number of oil spills. We called
he dataset consisting of all 35 SAR images the ‘‘initial dataset’’. Unless
therwise noted, all oil spill detection experiments in the following

ections were based on this dataset.
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Table 7
Ground truth in the training set, validation set, and test set.

Category Number of images Number of oil slick Number of lookalikes Number of oil slick pixels Number of lookalike pixels

Training set 18 110 66264 116291 91504249
Validation set 10 35 69005 10666 102662699
Test set 7 36 36281 28416 40996854
3.4.2. Evaluation measures
To assess the effectiveness of oil spill detection, we chose three

pixel-level metrics: Sensitivity (Seydi et al., 2021), Specificity (Yekeen
t al., 2020), and Precision (Mera et al., 2017), which are frequently
sed in oil spill detection algorithm evaluations. Sensitivity denotes the

algorithm’s ability to correctly identify oil spills, Specificity refers to the
algorithm’s ability to accurately identify lookalikes, and Precision refers
to the eventual oil spill detection accuracy. These metrics are defined
as follows (Mera et al., 2017):

𝑺𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚 = 𝑻𝑷∕ (𝑻𝑷 + 𝑭𝑵) (13)

𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒄𝒊𝒕𝒚 = 𝑻𝑵∕ (𝑻𝑵 + 𝑭𝑷 ) (14)

𝑷 𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 = 𝑻𝑷∕ (𝑻𝑷 + 𝑭𝑷 ) (15)

In the above equations, 𝑻𝑵 (True Negatives) and 𝑻𝑷 (True Positives)
represent the number of pixels with correctly identified lookalikes and
oil spills, respectively. 𝑭𝑷 denotes False Positives (the number of pixels
at which lookalikes are identified as oil spills) and 𝑭𝑵 represents False
Negatives (the number of pixels at which oil spills are identified as
lookalikes).

3.4.3. Implementation details
We used the Adam optimizer with an initial learning rate of 0.0001

to implement the DeeperGCN model based on PyTorch Geometric. The
batch size was 1, the hidden channel size was 384, and the dropout
was 0.1. The number of GCN layers was 3. The message aggregation
function was 𝒔𝒐𝒇𝒕𝒎𝒂𝒙_𝒔𝒖𝒎.

4. Results

In this section, we first describe the results of rule inference based
on the knowledge graph, then the results of graph neural network
inference based on the knowledge graph, and deep mining of oil spill
information.

4.1. Superiority verification of the rule-based reasoning module

By counting the distances of the 4525 oil spills detected in the Baltic
Sea region published by HELCOM from 1998 to 2017 to the nearest
spill sources, we determined that 96% of the oil spills were nearest to
ship trajectories, 1% were nearest to harbors and oil terminals, and
3% were nearest to oil pipelines. Our statistical results as shown in
Fig. 9 a to c, most of the oil spills closest to ship trajectories were
within 1100 m, and their largest oil spill area was 240 km2. All the
oil spills nearest to oil pipelines occurred within 900 meters of them,
with the largest oil spill area of about 3 km2. The remaining oil spills
were closest to oil terminals and harbors and were within 850 meters
from them, with the largest oil spill area of about 4.14 km2. Since the
area published by HELCOM may not be the final area detected on the
SAR imagery, it was not accurate to use them as inference thresholds.
Typically, evaporation, emulsification, and other processes gradually
altered the nature of the oil spill until it eventually reached a stable
emulsified state that was several times larger than its original size.
For our purposes, we set this value at 3.5 times and multiplied it by
the maximum areas published by HELCOM to obtain the maximum
area thresholds for different categories, as shown in Table 8. We tested
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these area thresholds using 181 oil patches segmented from 35 SAR
images between 2006 and 2011; and as shown in Fig. 9, all of the oil
patches were within the thresholds. In addition, we set the minimum
area threshold at six pixels to filter out small areas of dark spots. Panel
f in Fig. 9 showed the frequency distribution of the wind speeds in the
181 oil slick regions. As can be seen, the wind speeds were between
0.98 m/s and 11.2 m/s so we set the 𝒘𝒎𝒊𝒏 and 𝒘𝒎𝒂𝒙 values to 0.98 m/s
and 11.2 m/s, respectively.

Likewise, distance threshold 𝒅𝒎𝒊𝒏 was obtained by statistical meth-
ods. As shown in Fig. 10, we tested different thresholds ranging from
500 to 2000 at intervals of 50. When the distance threshold exceeded
1100 m, we found that oil spills were added to set 𝑨, so we set its
value to 1100 m. Relying on the feature thresholds, 55,274 lookalike
patches were first separated and added to set 𝑨. Then, using distance
threshold 𝒅𝒎𝒊𝒏, an additional 78,186 lookalikes were identified and
added to set 𝑨. Through this pre-recognition, 133,460 lookalikes were
filtered out, and the remaining 38,271 oil slick candidates required
further identification by GNN-based reasoning.

4.2. Feature selection and GNN-based inference

Following attribute extraction, each oil spill candidate got a vector
with 234 feature values related to the feature space specified in Sec-
tion 3.2.2 (including 52 features reported by Mera et al., 2017 and 13
new features presented in this study). To reduce the learning complex-
ity, the SVM-RFE method was employed to find the best combination
to distinguish the remaining dark spots. It works by training an SVM
classifier iteratively, ranking the scores of each feature value based on
the SVM weights, removing the feature value with the lowest score,
and finally selecting the feature values required. The 13 features we
proposed are ranked as follows: DAIS, Rm, DT, Cam, Sm, Sp, DOGR,
DOP, DH, DP, DC, Tm, and AISdm. Fig. 11 depicts the F1 score change
of the SVM algorithm after sequentially adding them to the previous
52 features. The F1 score was zero when using only 52 features, which
was due to the extreme label imbalance in our dataset. When DAIS
was incorporated, the F1 score increased to 9.3%. Following that,
adding the four features of Rm, DT, Cam, and Rm in turn, the F1
score increased to 13.3%. We continued to add Sp and DOGR, and
the corresponding F1 score rose again to 21.28%. When we added
the remaining features in sequence, the corresponding F1 score did
not change significantly. Obviously, the top seven features among the
13 we proposed were the most beneficial for oil spill detection. After
that, we assessed the performance of various feature combinations and
eventually determined that 114 feature values had the highest F1 score.
These corresponding features were taken as the optimal feature subset,
as shown in the supplementary material.

Table 9 shows the quantitative results of graph neural network in-
ference with various feature inputs, including the 52 features reported
by Mera et al. (2017), all 65 features (52 features utilized by Mera
et al., 2017, and 13 features presented in this study), and the optimal
subset of features proposed. We discovered that when employing the
52 features, 11 out of 36 oil spills were accurately inferred, whereas 7
lookalikes were mistakenly classified as oil spills. However, after adding
13 new features we proposed, 17 oil spills were successfully detected,
whereas 13 lookalikes were misidentified. Furthermore, 21 oil spills
were correctly identified and 16 lookalikes were misclassified when
using optimal feature subset we suggested for reasoning. Obviously,
using the optimal subset of features for oil spill inference was obviously
the best choice, followed by the 65 and 52 features. 13 new features

we proposed considerably increase the capacity to detect oil spills.
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Fig. 9. Determination and verification of feature thresholds. Panels a to c show the frequency distribution of the distance from oil slicks to the nearest ship tracks, the frequency
distribution of the distance from oil slicks to the nearest oil pipelines, and the frequency distribution of the distance from oil slicks to the nearest harbors or oil terminals,
respectively. Panels d and e show the frequency distribution of the area of oil slicks closest to different oil spill sources. Panel f shows the frequency distribution of the wind
speeds for 181 oil slick regions segmented from 35 SAR images.
Table 8
Features thresholds for segregating some lookalikes.

Name Value Name Value (m) Name Value (pixel) Name Value (pixel)

𝑪𝟏 𝑪𝟏 ≠ ∅ 𝒅𝟏𝒎𝒂𝒙 1100 𝒂𝟏𝒎𝒂𝒙 37334 𝒂𝟏𝒎𝒊𝒏 6
𝑪𝟐 𝑪𝟐 ≠ ∅ 𝒅𝟐𝒎𝒂𝒙 900 𝒂𝟐𝒎𝒂𝒙 470 𝒂𝟐𝒎𝒊𝒏 6
𝑪𝟑 𝑪𝟑 ≠ ∅ 𝒅𝟑𝒎𝒂𝒙 850 𝒂𝟑𝒎𝒂𝒙 644 𝒂𝟑𝒎𝒊𝒏 6
𝑪𝟒 𝑪𝟒 ≠ ∅ 𝒅𝟒𝒎𝒂𝒙 850 𝒂𝟒𝒎𝒂𝒙 644 𝒂𝟒𝒎𝒊𝒏 6
𝑪𝟓 𝑪𝟓 = ∅ 𝒅𝟓𝒎𝒂𝒙 – 𝒂𝟓𝒎𝒂𝒙 – 𝒂𝟓𝒎𝒊𝒏 –
𝑪𝟔 𝑪𝟔 = ∅ 𝒅𝟔𝒎𝒂𝒙 – 𝒂𝟔𝒎𝒂𝒙 – 𝒂𝟔𝒎𝒊𝒏 –
Fig. 10. The effect of different distance thresholds on dark spots recognition.

Additionally, the optimal feature subset can further improve oil spill
detection performance with fewer input characteristics. All subsequent
graph neural network inferences took the optimal feature subset as
input.
13
Fig. 11. Importance measure of our proposed 13 new features.

4.3. Deep information mining of detected oil spills

A large number of oil spill patches are effectively identified through
knowledge reasoning. To make our knowledge graph complete and use
it to mine some hidden information related to these oil spill patches,
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Fig. 12. Harbors, pipelines, oil and gas refineries, oil terminals, and oil platforms closest to the oil spill patches detected from different images in 2007.
Table 9
Quantitative results of oil spill detection based on knowledge graph.

Methods Sensitivity Specificity Precision

Knowledge Graph Reasoning with 52 features 0.6760 0.9984 0.2259
Knowledge Graph Reasoning with 65 features 0.8293 0.9981 0.2358
Knowledge Graph Reasoning with the optimal feature subset 0.8428 0.9985 0.2781
Table 10
The distance between oil spill patches, nearest oil terminals and harbors, etc. and countries to which this oil terminals,
harbors, and oil platforms belong.

Oil spill patches Distance (m) Terminals Harbors Oil platforms Countries

Dark_3220_298 48824.551 Rostock – – Germany
Dark_3220_298 18546.653 – Gedser – Denmark
Dark_3220_298 431019.108 – – Baltic Beta (SQRT) Poland
Dark_3105_2247 578274.250 – – MLSP D-6 Rig Russia
Dark_3105_2247 48420.794 Porvoo – – Finland
all reasoning results must be integrated into the knowledge graph by
knowledge completion. In this study, we constructed two new entities
with the label ‘‘types of dark spots’’ in the knowledge graph, named
‘‘oil slicks’’ and ‘‘lookalikes’’, respectively. If dark spots were inferred
to be lookalikes, created a is classified as relationship between them
and the lookalikes entity; otherwise, added a is classified as relationship
between them and the oil slicks entity. Because inference errors are
inevitable, the knowledge graph must also be corrected after the on-
site inspection and verification. Furthermore, we inferred that the dark
spots with speeds less than 𝒘𝒎𝒊𝒏 were caused by the slow wind speed,
and we added these inferences to the knowledge graph by constructing
new entities with the low wind speed label while establishing cause
relationships between the low wind speed entities and the dark spot
entities. For other causes of dark spots, we could not infer due to the
lack of labeled data, thus leaving them to future work.

The completed knowledge graph can provide numerous users with
convenient oil spill knowledge query and knowledge service capabil-
ities. Fig. 12, Tables 10, and 11 show several knowledge retrieval
examples, respectively. Fig. 12 shows the search for oil spill patches
14
Table 11
Number of oil spill patches in various sea basins in 2007.

Sea basins Count Sea basins Count

Danish Straits 1 Gulf of Finland 22
Baltic Proper 11 Kattegat 10

detected from different images in 2007 and our query of their nearest
harbors, pipelines, oil and gas refineries, oil terminals, and oil platforms
that may be sources of oil spills. Table 10 indicates the distances of
each oil spill patch to the nearest harbors, oil platforms, oil terminals,
etc., and retrieves the countries to which these ports, oil platforms, and
oil terminals belong. If the distance was very close, the corresponding
pipelines, oil platforms, and oil and gas refineries needed to be further
inspected for damage or oil discharge. Based on these query results,
it also was possible to contact the corresponding country and then
dispatch ships from closer ports for clean-up. Table 11 shows the
number of oil spill patches found in each sea basin in a given year.
It can reflect the degree of threat of oil spills in different areas, which
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Table 12
Comparison of our method with several excellent oil spill detection methods on different datasets. The pixel ratio of oil spills to lookalikes in
the initial dataset is 6:10000, while it is 1:5.5 in the new dataset.

Methods Initial dataset New dataset

Sensitivity Specificity Precision Sensitivity Specificity Precision

SVM with 6 features (Mera et al., 2017) 0 1 – 0.5781 0.99997 0.9758
UNet (Krestenitis et al., 2019) 0 1 – 0.7415 0.84654 0.3925
DeepLabv3+ (Krestenitis et al., 2019) 0 1 – 0.6025 0.94800 0.5791
MCAN (Li et al., 2021b) 0 1 – 0.0131 0.99982 0.2781
SDGCN (Liu et al., 2022) 0 1 – 0.2052 0.97572 0.4826
Our Knowledge Graph Reasoning 0.8428 0.9985 0.2781 0.9114 0.99991 0.9607
is beneficial to managers for developing different strategies to monitor
and manage various sea areas. More knowledge queries are available
in the supplementary material.

5. Discussion

In this Section, we discuss the performance of our knowledge graph-
based oil spill detection techniques against existing methods, as well
as the benefits and future work of the knowledge graph for oil spill
detection.

5.1. Comparison with the baselines

Five existing representative oil spill dark spot detection methods,
including SVM with six selected feature values (Mera et al., 2017),
UNet (Krestenitis et al., 2019), DeepLabv3+ (Krestenitis et al., 2019),
MCAN (Li et al., 2021b), and SDGCN (Liu et al., 2022), were compared
to our knowledge graph-based approach. Although SDGCN was pre-
viously used for dark spot segmentation in our knowledge graph, we
retrained it on the oil spill dataset and used it to detect oil spill patches
in SAR images here.

Table 12 shows the quantitative results of various oil spill detection
algorithms. Experiments demonstrated that, although exhibiting good
performance on their own datasets, these state-of-the-art baseline ap-
proaches failed to recognize any oil slicks in our initial dataset and
labeled all samples as lookalikes. The main reason for this problem
was the extreme class imbalance in our initial dataset (the ratio of
oil spill pixels to lookalike pixels was about 6:10,000), which led to
poor performance of other methods. We reviewed their research and
discovered that Mera et al. (2017) employed 92 dark spots in their ex-
periment, 47 of which were oil spots and 45 of which were lookalikes,
with a pixel ratio of roughly 1:2; Krestenitis et al. (2019) employed a
dataset with a pixel ratio of 1:5.5 for oil spill patches to lookalikes;
and Li et al. (2021b) used only four images of 256*256 pixels to train
their proposed MCAN model, and more than 80% of the dark spots
in the images were oil spills. The pixel ratio of oil spill patches to
lookalikes appears to be very ideal in previous datasets, but the reality
is nowhere near as high as they describe. Typically, non-oil patches
outnumber real oil spill patches. The imbalance of sample labels is still
an unavoidable problem. Since our method uses a knowledge graph-
based rule inference approach, 78% of the lookalikes were identified in
advance and eliminated from the dataset, thus attenuating the effect of
class imbalance. After graph node classification, 21 of the 36 oil slicks
in the test set were correctly identified, whereas 15 were missed and 16
lookalikes were identified as oil spots. More than half of the oil spills
were correctly detected. Fig. 13 shows several oil spills detected by our
method as well as missed oil spill patches. In terms of detection results,
although they are not ideal due to the dataset, our technique can detect
oil spills even under such extreme label imbalance conditions.

To further illustrate the differences between the above comparison
methods, we performed another assessment on a new dataset of 95
images of 512 × 512 pixels. They were all cropped from the original
35 images, with 56 randomly chosen as the training set, 20 as the test
set, and 19 as the validation set. The training set included 110 oil
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spills and 323 lookalikes; the test set consisted of 97 lookalikes and
36 oil spots; and the validation set contained 35 oil spills and 199
lookalikes. The new dataset’s pixel ratio of oil spill patches to lookalikes
is approximately 1:5.5, which is consistent with the ratio employed
by Krestenitis et al. (2019). It is important to note that this ratio is
relatively ideal. Because the majority of the dark spots on SAR images
may be false non-oil spots, the pixel ratio of detected oil spills to non-oil
patches can rarely reach 1:5.5 or higher.

The quantitative results of various oil spill detection algorithms on
the new dataset are still shown in Table 12. In addition, Fig. 14 depicts
the visualized results of oil spill patches by these methods. In terms of
Sensitivity, our knowledge graph reasoning technique significantly out-
performed other methods. A total of 30 out of 36 oil spill patches were
detected, and eight lookalikes were mistaken for oil spills. In terms of
Specificity and Precision, the SVM with the six feature values proposed
by Mera et al. (2017) slightly outperformed the method we proposed,
but not significantly. This algorithm only considered differences in dark
spot features and ignored the effect of dark spot spatial relationships, so
the number of identified oil spills was restricted. Statistics showed that
it correctly detected 19 oil spills, while two lookalikes were mislabeled
as oil spills. Nonetheless, this method still outperformed the remaining
four deep learning-based oil spill detection techniques in terms of Preci-
sion metrics. The reason for this is that the excellent SDGCN model (Liu
et al., 2022) improves the performance of dark spot segmentation,
which leads to an improvement in the quality of feature extraction
and, ultimately, improves the accuracy of the SVM algorithm for dark
spot classification. However, as shown in Table 12 and Fig. 14, directly
training the SDGCN model for oil spill detection does not appear to
be ideal. This algorithm was developed for dark spot segmentation on
SAR images. It segmented SAR imagery into superpixel patches and
classified them based on handcrafted features extracted from them.
Superpixel segmentation of SAR images and features extracted from
superpixels were not particularly useful in detecting oil spills, according
to experimental results. The UNet and DeepLabv3+ models were highly
influenced by SAR image speckle noise, making identification of oil spill
boundaries challenging. Through further comparison, we found that
the UNet model had a larger Sensitivity value and DeepLabv3+ had a
higher Precision metric, indicating that UNet performs better in oil spill
identification and DeepLabv3+ performed better overall, which was
consistent with the findings of Krestenitis et al. (2019). Furthermore,
on this new dataset, the MCAN model continued to underperform. In
previous work, Li et al. (2021b) did not assess this model’s performance
on the labeled unbalanced dataset. This model appeared to be more
suited for determining the outlines of oil spills by removing small dark
spots surrounding oil spill areas rather than recognizing oil slicks in
datasets with unbalanced labels.

Table 13 quantifies the time consumption of different methods on a
representative SAR image with a size of 12119 × 7117 pixels, includ-
ing 904 dark spots. We can see that UNet, DeepLabv3+, and MCAN
took significantly less time than other methods, with UNet taking the
shortest time. The reason is that they can identify oil spills directly
from images without too many processing steps. The remaining three
methods required more steps and extracted more manually designed
features, resulting in longer processing time. Since our method needed
to construct knowledge graph first, it took the longest. The SDGCN

algorithm also spent a long time, because it must convert the image into
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Fig. 13. Oil spill detection results based on knowledge graph. The top panel shows the location of all images. The red patches in the other panels indicate oil spills. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
a graph structure with superpixels as nodes before classifying the graph
nodes. The BASS algorithm with the higher performance was chosen to
complete this step. Even though this algorithm supported GPU acceler-
ation, it still took a long time to complete the superpixel segmentation
of a SAR image with 12119 × 7117 pixels. The segmented image
16
was transformed into graphs with 321878 superpixel nodes. Then, for
each superpixel, a vector with 137 feature values was extracted, which
also increased the processing time. Since both dark spot segmentation
and entity extraction used the SDGCN algorithm, these two processes
also became time-consuming. Furthermore, attribute extraction and
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Fig. 14. Oil spill detection results on the new dataset. The top panel shows the location of all images. The red patches in the other panels indicate oil spills. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Table 13
Time-consuming of different models to complete oil spill detection.

Method Time

Our Knowledge Graph Reasoning

Entity extraction 6.8 h
Attribute extraction 5.2 h
Relation extraction 7.7 h
Rule reasoning 0.9 s
GNN-based reasoning 2.5 s

SVM with six feature values (Mera et al., 2017)
Dark spot segmentation (Liu et al., 2022) 6.8 h
Feature extraction 14.2 s
Dark spot classification 0.02 s

UNet (Krestenitis et al., 2019) 20.4 s

DeepLabv3+ (Krestenitis et al., 2019) 26.7 s

MCAN (Li et al., 2021b) 43.4 s

SDGCN (Liu et al., 2022)

BASS (Uziel et al., 2019) 5.7 h
Superpixel feature extraction 5.0 h
Superpixel relation extraction 1.5 min
Graph node classification 20.7 s
relation extraction also consumed a lot of time because there were a
large number of entity attributes and relationships between entities
to be extracted to complete the construction of our knowledge graph.
However, the reasoning of oil spill identification based on knowledge
graphs did not take too much time.

5.2. The superiority of constructing a knowledge graph to detect oil spills

Although SAR satellites are considered an effective tool to detect
oil slicks, some satellite sensor factors, such as radar band Najoui et al.
(2018), polarization (Najoui et al., 2017), and incident angle (Espedal,
1999), can affect oil spill imaging. Due to the different amounts of
oil that may be spilled, the oil slicks reside on the sea surface for
different times. These retained oil slicks are subjected to advection (Guo
and Wang, 2009), evaporation (Reed et al., 1999), and emulsifica-
tion (Guo and Wang, 2009) to varying degrees, which can change
the characteristics of the oil slicks and may also show image differ-
ences. Furthermore, some oceanic and atmospheric phenomena, such
as rain cells (Nystuen, 1990), oceanic internal waves (Klemas, 2012),
upwelling (Sipelgas and Uiboupin, 2007), low wind speed areas on the
sea surface Najoui et al. (2018), and sea currents (Ochadlick Jr. et al.,
1992), may show similar characteristics to oil slicks on SAR images.
Of all dark spots, more than 99% are likely to be non-oil films rather
than oil slicks. The imbalance of labels is a long-standing problem in
oil spill detection (Topouzelis, 2008). Although some researchers have
demonstrated that deep learning technologies improve the effect of oil
spill detection algorithms (Shaban et al., 2021), it is not enough to
rely only on deep learning technologies and remote sensing images.
First of all, the amount of information obtained only from images is
limited, and some valuable information, such as oil pipeline location,
ship trajectory, sea temperature difference, and rainfall distribution,
may not be considered by the deep learning model. To reduce the
memory burden, most models need to take cropped images as input for
training, which destroys the shape of dark spots in the image. However,
the shape is the most beneficial feature for oil spill identification (Mera
et al., 2017). In addition, image cropping also breaks the relationship
between dark spots, making them isolated, which is not conducive
to oil spills detection. Finally, in practice, the non-oil patches far
outnumber the oil slicks in terms of numbers, which often leads to a
poor generalization of the trained model and is prone to overfitting. The
above situations are why some of the excellent deep learning models
in Section 5.1 fail.

The Multi-source knowledge graph for oil spill detection we con-
structed can accurately describe complex oil spill detection scenes.
Some objects, such as oil pipelines, oil terminals, oil and gas refineries,
oil platforms, harbors, countries, seas, dark spots segmented from SAR
images, satellite platforms, and polarization modes, were extracted and
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regarded as entities, while rich attributes were extracted for them.
Additionally, through semantic computing, the relationships between
entities were established so all the information no longer existed in
isolation. Our knowledge graph could be stored in the graph database,
which provided a solution for the storage of historical oil spill data.
Relying on rich entity attributes and semantic relationships would make
it easy to query the information that users need as well as uncover some
hidden information from the existing entries. Another advantage of our
knowledge graph was that it supported efficient reasoning, and the
inference results could supplement and improve it. Overall, knowledge
graph technology based on multi-source data can be beneficial to the
organization and management of new information and knowledge in
remote sensing big data. It also can provide convenient remote sensing
knowledge query and knowledge service capabilities to many users and
can help to comprehensively improve the application capabilities of
massive multi-source remote sensing observations.

5.3. Limitations and future work

Since our knowledge graph is aimed at oil spill detection, no ad-
ditional semantic types, such as the type of oil (Wang et al., 1999),
were designed in the model layer. We focused on whether there is an
oil leak, no matter what type of oil it is. In addition, some oil spill
emergency responses (Krohling and Rigo, 2009), such as the release of
oil booms (Cumo et al., 2007), oil slick recovery (Tian et al., 2020), and
spraying of anti-oil spill chemical reagents (Niu et al., 2021), are also
not considered. We leave them for future work. Since the main data
used are remote sensing images, text data occupies only a small part.
For convenience, we employed a manual approach to extract knowl-
edge from text data, which is a limitation of the work in this paper.
In terms of dark spot features, although we have extracted hundreds
of them, it is hard to construct a relatively complete feature set. In
the feature subset we proposed, geometric features accounted for the
highest proportion, which is consistent with previous studies (Chehresa
et al., 2016). Furthermore, we found that the contextual features also
occupied a high proportion, indicating that they also played a crucial
role in oil spill identification. To improve the performance of oil spill
detection, new features that are beneficial to oil spill identification need
to be constantly sought in the future. Because it takes a long time to
extract knowledge from multi-source data, an accelerated algorithm
must also be developed to improve the speed of knowledge extraction
in future work. In knowledge reasoning, there is an extreme imbalance
between the oil and non-oil labels, which makes it difficult to identify
some oil entities. While we used a rule-based reasoning method to
eliminate the great majority of non-oil entities in advance, some rule
thresholds were set relatively loosely due to the lack of sufficient
statistics. According to Fingas (2018), when oil spills onto the sea
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surface, it was subjected to evaporation, emulsification, etc., and finally
reached a stable emulsion within an area two to five times larger
than its original size. In this study, we set this value at 3.5 times.
Moreover, we set the 𝒘𝒎𝒊𝒏 and 𝒘𝒎𝒂𝒙 values to 0.98 m/s and 11.2 m/s,
respectively. However, Najoui et al. (2018) found that 95% of the oil
slicks could be detected when the wind speed ranged from 2.09 m/s
to 8.33 m/s. In future work, more data should be employed to acquire
more accurate rules. Furthermore, due to the limited labeled data we
used, it was not possible to obtain some other inference rules that could
lead to lookalikes phenomena by statistical means, and we therefore
will address this limitation in future work as well.

6. Conclusions

In this study, we presented our novel construction of a series of re-
lated researches to construct a knowledge graph based on multi-source
data to solve the problem of information islands in oil spill detection.
Our knowledge graph is the first one specifically designed for oil spill
detection in the remote sensing field. Based on expert knowledge,
we designed the model layer of the knowledge graph and guided the
following knowledge extractions, including entity recognition, attribute
extraction, and relation extraction. Then, using multi-source data (vec-
tors, remote sensing images, text, and atmospheric and ocean model
data), we extracted valuable knowledge to complete the preliminary
building of the knowledge graph. We proposed our knowledge graph
to treat a single vector as an independent entity, and its properties
can be directly regarded as entity properties, whereby actual objects
detected from remote sensing images can be considered entities. This
strategy can be used to guide the development of future remote sensing
knowledge graphs. We also proposed 13 new dark spot features to
help identify oil spills, and experimental results showed that these new
features significantly improved oil spill detection performance. After
the knowledge graph was constructed, all oil spill-related information
was organized together reasonably and no longer existed in isolation.
For application convenience, our constructed knowledge graph is stored
in the popular Neo4j graph database. Following that, we also proposed
a knowledge reasoning method combining rule reasoning and a graph
neural network algorithm to differentiate oil slicks from lookalikes. On
a dataset with a pixel ratio of oil spills to lookalikes of about 6:10,000,
we found that some of the existing oil spill detection methods cannot
detect any oil spills, while our technology can identify oil spills under
the same conditions with a sensitivity of 0.8428, a specificity of 0.9985,
and a precision of 0.2781. Additional experiments revealed that the
label imbalance in the dataset was the primary cause of the contrastive
methods failing, as well as the high specificity but low sensitivity
and precision in knowledge reasoning. Our technique was proven to
alleviate the label imbalance problem. After knowledge inference, all
inference results can be integrated into the knowledge graph, allowing
the knowledge graph to evolve iteratively. Our knowledge graph cur-
rently can be used only for oil spill detection; but our future work will
explore remote sensing object segmentation methods for applications
such as sea ice and ocean internal waves (Barbat et al., 2021), which
then could also be incorporated into our knowledge graph to help
identify oil spills. In addition, we also plan to study the construction
of oil spill response knowledge graphs.
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