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A B S T R A C T

Multimodal image matching is a core basis for information fusion, change detection, and image-based
navigation. However, multimodal images may simultaneously suffer from severe nonlinear radiation distortion
(NRD) and complex geometric differences, which pose great challenges to existing methods. Although deep
learning-based methods had shown potential in image matching, they mainly focus on same-source images or
single types of multimodal images such as optical-synthetic aperture radar (SAR). One of the main obstacles is
the lack of public data for different types of multimodal images. In this paper, we make two major contributions
to the community of multimodal image matching: First, we collect six typical types of images, including optical-
optical, optical-infrared, optical-SAR, optical-depth, optical-map, and nighttime, to construct a multimodal
image dataset with a total of 1200 pairs. This dataset has good diversity in image categories, feature classes,
resolutions, geometric variations, etc. Second, we propose a scale and rotation invariant feature transform
(SRIF) method, which achieves good matching performance without relying on data characteristics. This is
one of the advantages of our SRIF over deep learning methods. SRIF obtains the scales of FAST keypoints by
projecting them into a simple pyramid scale space, which is based on the study that methods with/without scale
space have similar performance under small scale change factors. This strategy largely reduces the complexity
compared to traditional Gaussian scale space. SRIF also proposes a local intensity binary transform (LIBT) for
SIFT-like feature description, which can largely enhance the structure information inside multimodal images.
Extensive experiments on these 1200 image pairs show that our SRIF outperforms current state-of-the-arts by
a large margin, including RIFT, CoFSM, LNIFT, and MS-HLMO. Both the created dataset and the code of SRIF
will be publicly available in https://github.com/LJY-RS/SRIF.
1. Introduction

Image matching plays an important role in the fields of remote
sensing and photogrammetry. It is a fundamental problem for visual un-
derstanding and interpretation such as image fusion (Ma et al., 2019; Li
et al., 2022a), change detection (Tewkesbury et al., 2015; Parente et al.,
2021), and image localization and navigation (Mur-Artal et al., 2015).
However, due to the complexity of high-level remote sensing applica-
tions, the information richness of single-modality data is insufficient.
It is necessary to comprehensively utilize data of different modalities
to achieve complementary strengths, thereby improving the accuracy
and reliability of image understanding. Fortunately, with the rapid
development of sensor technology, imaging devices such as visible
cameras, infrared cameras, synthetic aperture radar (SAR), and lasers
are emerging, providing a variety of data sources for earth observation.
Therefore, how to effectively integrate multi-sensors, multi-resolution,
multi-temporal data and conduct in-depth analysis has become a re-
search hotspot, and multimodal image matching is one of the core
problems that need to be addressed urgently (Sui et al., 2022).

∗ Corresponding authors.
E-mail addresses: ljy_whu_2012@whu.edu.cn (J. Li), huqw@whu.edu.cn (Q. Hu), zhangyj@whu.edu.cn (Y. Zhang).

Multimodal image matching generally refers to the matching be-
tween multi-sensor images with different imaging mechanisms such as
optical-SAR and optical-depth (Li et al., 2020a). There are severe non-
linear radiation differences (NRDs) and complex geometric differences
such as scale, rotation, and perspective changes between images. These
differences make the matching a challenging task. In recent years,
many efforts have been made to try to solve this problem and many
multimodal matching algorithms have been proposed. These methods
can be grouped into two categories, i.e., area-based methods (e.g., his-
togram of orientated phase congruency (HOPC) Ye et al. (2017) and
channel features of orientated gradients (CFOG) Ye et al. (2019)) and
feature-based ones (e.g., radiation-variation insensitive feature trans-
form (RIFT) Li et al. (2020a) and locally normalized image feature
transform (LNIFT) Li et al. (2022b)). However, these methods mainly
focus on NRDs of multimodal images and are sensitive to complex ge-
ometric variances such as scale changes. Although co-occurrence filter
space matching (CoFSM) (Yao et al., 2022) and multi-scale histogram
of local main orientation (MS-HLMO) (Gao et al., 2022) claim that they
vailable online 12 September 2023
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achieve rotation and scale invariance, these two types of geometric
changes do not occur simultaneously on the same image pair in their
experiments.

Thanks to the great success of deep learning technology in the field
of computer vision, learning-based methods also have shown their po-
tential in image matching task. For instance, HardNet (Mishchuk et al.,
2017) and SuperPoint (DeTone et al., 2018) achieve higher match-
ing performance on same-source images than traditional hand-crafted
methods. However, these methods are limited by their generalization
ability and cannot be directly applied to multimodal images. Siamese
CNN show potential on optical-SAR matching task (Zhang et al., 2020;
Zhou et al., 2021). However, they are area-based matching methods
rather than feature-based ones. In addition, they cannot be applied to
other types of multimodal images such as optical-depth, optical-map,
and nighttime. An important factor hindering the successful application
of deep learning techniques in multimodal matching is the lack of
public data on different types of multimodal images. Each current
publicly available dataset usually contains only one type of multimodal
images, such as optical-SAR dataset (Huang et al., 2021; Xiang et al.,
2020) and optical-infrared dataset (Brown and Süsstrunk, 2011; Jia
et al., 2021).

To promote the development of multimodal image matching, es-
pecially learning-based techniques, we create and open a multimodal
image dataset with six typical types of images, i.e, optical-optical,
optical-infrared, optical-SAR, optical-depth, optical-map, and night-
time. This dataset contains a total of 1200 image pairs captured by
three different types of imaging platforms including aerial, satellite, and
close range. The images contain a rich set of features (e.g., buildings,
mountains, farmland, lakes, etc.) and the resolutions range from 0.04 m
to 30 m. Moreover, different geometric variations (rotation and scale)
with ground truth transformation are added to these images.

We also propose a scale and rotation invariant feature transform
(SRIF) method for multimodal image matching. First, an experiment
is performed to study the sensitivity of different methods (methods
with/without scale space) to small scale change factors. We present
a simple strategy to achieve scale invariance based on the conclusion
that methods with/without scale space have similar performance under
small scale change factors. We obtain the scales of keypoints by project-
ing them into a simple pyramid scale space, which largely reduces the
complexity. We then propose a local intensity binary transform (LIBT)
to enhance the structure information inside multimodal images, so that
feature descriptors have good distinguishability. We compare our SRIF
with seven baseline and state-of-the-art methods on 1200 image pairs.
The results show that SRIF outperforms them by a large margin.

Our contributions are summarized as follows:

• We create an open multimodal image dataset with 1200 pairs,
which covers six typical types of images.

• We observe that methods with/without scale space have sim-
ilar performance under small scale change factors. Based on
this observation, we present a projection-based pyramid scale
space construction strategy, which largely reduces the complexity
compared to traditional Gaussian scale space.

• We propose a novel local intensity binary transform (LIBT) for
structure feature map generation, which can largely enhance the
structure information inside multimodal images. LIBT outper-
forms current state-of-the-art methods such as the local normal-
ized image (LNI) transformation (Li et al., 2022b).

• Based on the projection-based pyramid scale space and LIBT,
we propose a new scale and rotation invariant feature transform
(SRIF) method for multimodal image matching.

2. Related work

Multimodal image matching methods are usually classified into two
groups, i.e., area-based matching (also known as template matching
or patch matching) and feature matching (Li et al., 2020a; Bas and
Ok, 2021; Mohammadi et al., 2022). Each category can be further
78

subdivided into hand-crafted methods and learning-based methods.
2.1. Area-based methods

Area-based matching generally finds the optimal location of a tem-
plate image in the reference one via calculating their similarity based
on a sliding window strategy.

Hand-crafted: One of the most important things for hand-crafted
methods is to define the similarity measure. The sum of square dif-
ferences (SSD), cross-correlation, normalized cross-correlation (NCC),
and mutual information are commonly used measures, among which
mutual information and its variants are more robust to NRDs and
have been widely applied in multimodal image matching (Viola and
Wells III, 1997; Liang et al., 2013; Öfverstedt et al., 2022b). Apart from
measures in the spatial domain, phase correlation methods calculate
the similarity in the frequency domain via Fourier transform (Foroosh
et al., 2002), which have also been shown to be robust to non-uniform
illumination changes. To enhance the performance of Fourier transform
methods, several methods first convert the original images into feature
space before Fourier correlation, such as HOPC (Ye et al., 2017),
improved phase congruency model (Xiang et al., 2020), CFOG (Ye et al.,
2019), and angle-weighted oriented gradients (AWOG) (Fan et al.,
2021).

Learning-based: These methods automatically learn high-level in-
formation from a large amount of data without manual feature extrac-
tion. Considering the powerful feature extraction capabilities of deep
learning, some methods only utilize deep neural networks (DNN) to ob-
tain features and then apply traditional similarity metrics to search for
the best match (Zhang et al., 2020; Zhou et al., 2021; Fang et al., 2021).
In contrast, some methods perform the matching in an end-to-end
manner, which compute a similar score between two patches (Zhang
et al., 2019; Merkle et al., 2017; Hughes et al., 2018). Recently, several
approaches directly regress the transformation parameters for regis-
tration, which generally consist of a transformation prediction DNN,
a spatial registration network, and an optimizer to backpropagate the
DNN (Zhao et al., 2021; Ye et al., 2022). The limitations of learning-
based methods are that they rely on a wide variety of training datasets
and require a lot computational resources (Xiang et al., 2021).

Area-based matching is generally sensitive to geometric transfor-
mations. Although some methods have achieved rotation and scale
invariance based on a transformation optimizer (Öfverstedt et al.,
2022a,b), they are sensitive to local extrema and have high compu-
tational complexity.

2.2. Feature-based methods

Feature-based matching generally consists of three major stages,
i.e., keypoint detection, keypoint description, and feature vector match-
ing. First, keypoints such as corner points with high repeatability are
extracted by feature detectors (e.g., features from accelerated segment
test (FAST) (Rosten and Drummond, 2006), Harris detector (Harris
et al., 1988), SuperPoint (DeTone et al., 2018), etc.). These keypoints
are then encoded to feature vectors via descriptors (e.g., scale-invariant
feature transform (SIFT) (Lowe, 2004), RIFT (Li et al., 2020a, 2023),
HardNet (Mishchuk et al., 2017), etc.), so that the features have better
distinguishability. Finally, a one-to-one matching relationship between
two feature sets is established and outliers are removed by a robust esti-
mation technique or matching strategy (e.g., random sample consensus
(RANSAC) family (Fischler and Bolles, 1981; Li et al., 2017), robust
estimators (Li et al., 2021a,b, 2020b, 2016, 2023b), SuperGlue (Sarlin
et al., 2020), etc.)

Hand-crafted: Traditional same-source image matching methods
have achieved great success and become standard methods in many
commercial software, such as SIFT (Lowe, 2004), SURF (Bay et al.,
2008), and ORB (Rublee et al., 2011). However, the NRDs of mul-
timodal images pose great challenges to these methods. Many ef-
forts have been made to tackle this problem. For example, local self-

similarity descriptor (LSS) and its variants improve the robustness to
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illumination differences (Shechtman and Irani, 2007; Sedaghat and Mo-
hammadi, 2019; Xiong et al., 2021); partial intensity invariant feature
descriptor (PIIFD) is designed for retinal image matching (Chen et al.,
2010); position-scale-orientation SIFT (Ma et al., 2016), histograms of
directional maps (Fu et al., 2018), and LGHD (Aguilera et al., 2015)
are suitable for multispectral image matching; improved SIFT (Fan
et al., 2012), optical-SAR SIFT (OS-SIFT) (Xiang et al., 2018), and
rotation-invariant amplitudes of log-Gabor orientation histograms (RI-
ALGH) (Yu et al., 2021) are proposed to solve the optical-SAR matching
problem. However, these methods usually only work well on specific
image types and are not applicable to other types of multimodal images,
so they are not generalizable. Recently, Li et al. (2020a) proposed
a general multimodal feature matching method, called RIFT, which
achieves good performance on different types of images. Several vari-
ants improve the RIFT by adding a scale space stage, an area-based
fine-registration step, or modifying the maximum index map (Cui et al.,
2020; Fan et al., 2022; Yao et al., 2022; Gao et al., 2022). Further,
the LNIFT proposes a local image transform in the spatial domain to
achieve near real-time processing performance (Li et al., 2022b). How-
ever, these methods mainly focus on the NRDs, while the robustness to
complex geometric differences has not been fully evaluated.

Learning-based: Learning-based feature matching has achieved
great progress in same-source image matching, such as learned in-
variant feature transform (LIFT) (Yi et al., 2016), HardNet (Mishchuk
et al., 2017), SuperPoint (DeTone et al., 2018), D2-Net (Dusmanu et al.,
2019), LoFTR (Sun et al., 2021), etc. For multimodal images, Hughes
et al. (2020) developed a three-stage convolutional neural network
framework for optical-SAR registration; Quan et al. (2022) proposed a
self-distillation feature learning network called SDNet. However, each
of these methods can only applicable to one specific image type. As
aforementioned, the main obstacle is the lack of public data.

In this paper, we focus on both radiometric and geometric differ-
ences of multimodal images via the SRIF algorithm, and collect an
open dataset with different types of multimodal images to promote the
development of learning-based matching.

3. Multimodal image dataset

As aforementioned, an important factor hindering the successful
application of deep learning techniques in multimodal matching is the
lack of public data on different types of multimodal images. Here, we
collect and create a multimodal image dataset with six typical types of
images, i.e, optical-optical, optical-infrared, optical-SAR, optical-depth,
optical-map, and nighttime, and make it open to the community. We
hope it can promote the development of multimodal image matching.

3.1. Optical-Optical

We use the WHU building dataset (Ji et al., 2018) to produce our
Optical-Optical dataset, which consists of a set of pre-registered multi-
temporal aerial images covered over the Christchurch, New Zealand.
Since these images were captured in 2012 and 2016, the objects,
textures, and colors red changed dramatically between the two im-
ages of a matching pair. We found that the pre-registration is not
very accurate. Thus, we use a coarse-to-fine strategy, i.e., LNIFT +
CFOG, to refine the registration. These images are then cropped into
subimages of 512 × 512 pixels. We randomly generate a ground-truth
transformation with a rotation angle a ∈ [0◦, 90◦) and a scale factor
∈ [0.5, 2). This transformation is applied to the target image to obtain
ur Optical-Optical dataset.

.2. Optical-Infrared

We produce the Optical-Infrared dataset based on Ye et al. (2022),
n which the original images are obtained from Landsat-8 satellite im-
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ges covered over Chengdu Plain and surrounding hills and mountains.
In addition to the band differences (optical is band 2 and infrared is
band 5), there are also temporal differences in this dataset since optical
images were captured in 2020 while infrared ones were acquired in
2021. Optical and infrared images are accurately aligned based on
the geometric correction technique. For each pair, we add a random
rotation transformation to the target image, i.e., rotate the target image
counterclockwise by an angle a ∈ [0◦, 90◦) with the midpoint of the
target image as the rotation center.

3.3. Optical-SAR

The Optical-SAR dataset is created based on the dataset 2 of LNIFT,
in which the SAR image is acquired by the GaoFen-3 SAR satellite and
the optical image is obtained from Google Earth. This dataset covers
15 cities including Beijing, Rennes, Omaha, Dwarka, etc. Since there
is already a rotation change between each image pair, we only add a
random scale factor 𝑠 ∈ [0.5, 2) to each pair to get the final Optical-SAR
dataset.

3.4. Optical-Depth

The indoor DIML/CVL RGB-D (Cho et al., 2021) dataset is used to
produce our Optical-Depth dataset, which is acquired by a Microsoft
Kinect v2 camera. Image acquisition scenes mainly include offices,
bedrooms, shopping malls, and exhibition centers in South Korea. The
same as the Optical-Infrared dataset, we also add a random rotation
with an angle a ∈ [0◦, 90◦) to the target image.

3.5. Optical-Map

This dataset is collected by Ye et al. (2022), which is obtained
from the Google map service. The location is in Tokyo and the object
features are mainly buildings and streets. We also use a strategy of
LNIFT + CFOG to refine the registration. Then, the images are resized
to 400 × 400 pixels to get the final dataset. We do not add rotation
and scale differences due to the extremely large NRDs between optical
images and maps. Thus, the ground truth transformation of each image
pair is an identity matrix.

3.6. Nighttime

The Nighttime dataset is constructed based on the LLVIP (Jia et al.,
2021) dataset, whose images are captured by a binocular camera
from 26 different scene locations. It is not only affected by low-light
conditions (acquired at night), but also by sensor differences (a visible
camera and a thermal infrared camera). We also add random rotations
to this dataset.

Table 1 summarizes detailed information about each dataset, includ-
ing dataset size, image size, resolution, geometric changes, radiation
changes, etc. Fig. 1 shows example data for these six datasets.

4. Our SRIF

Before describing our SRIF algorithm in detail, we first introduce the
pyramid scale space strategy used by SRIF and provide experimental
support for this choice. Then, we give the definition and calculation
of LIBT. Because these two points are the key differences between the
proposed SRIF and existing methods such as RIFT and LNIFT.

4.1. Pyramid scale space

4.1.1. Small scale sensitivity
We conduct an experiment on our Optical-Optical dataset to reveal

the sensitivity of different matching methods to small scale changes. For
each optical image, we use itself as the reference image and its scaled
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Fig. 1. Sample data of our collected multimodal image dataset. Our dataset consists of six typical types of multimodal images, including optical-optical, optical-infrared, optical-SAR,
optical-depth, optical-map, and nighttime images.
Table 1
Detailed information of our multimodal image dataset.

Dataset Description Dataset size Image size Resolution NRDs Rotation change Scale change

Optical-Optical Aerial image 200 pairs 256 × 256 to 1024 × 1024 4 cm to 16 cm ✓ ✓ ✓

Optical-Infrared Satellite image 200 pairs 256 × 256 30 m ✓ ✓ ✕

Optical-SAR Satellite image 200 pairs 128 × 128 to 512 × 512 0.5 m to 2 m ✓ ✓ ✓

Optical-Depth Close range image 200 pairs 512 × 288 Unknown ✓ ✓ ✕

Optical-Map Satellite image 200 pairs 400 × 400 1 m ✓ ✕ ✕

Nighttime Close range image 200 pairs 320 × 240 Unknown ✓ ✓ ✕
image as the target one to construct a matching pair. The scale factor
is set to be {1, 1.1, 1.2, 1.3}. That is to say, any matching pair only
has a small scale difference, excluding other geometric and radiation
differences. We choose the SIFT, RIFT, and LNIFT for comparison, in
which SIFT has a scale space while others do not. SIFT is the most
widely used image matching algorithm. RIFT and LNIFT are the state-
of-the-art SIFT-like methods for multimodal image matching. These
three methods also offer access to the source code, thereby facilitating
experimental procedures. To eliminate the influence of other factors,
we first disable their dominant orientation calculation modules and set
the main orientation to 0, which is the true value; then, we remove
the nearest neighbor distance ratio strategy since it may discard true
matches. We use the correct matching ratio (CMR) as the evaluation
metric, which is the ratio of correct matches to total matches. The
results are displayed in Fig. 2.

As shown, when the scale varies between 1 and 1.2, SIFT performs
comparable to LNIFT, while RIFT even outperforms SIFT. However,
once the scale difference reaches 1.3, the CMRs of RIFT and LNIFT
are lower than that of SIFT. Therefore, we can infer a conclusion that
when the scale factor is small, such as less than 1.2, the Gaussian scale
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space has very limited improvement in matching performance. This
also motivates us to achieve scale invariance through the downsam-
pling process without multi-scale Gaussian filtering. It is just that the
downsampling factor must be small. In fact, this conclusion coincides
with the scale space idea of ORB (Rublee et al., 2011) algorithm.
Moreover, the default downsampling factor of the ORB algorithm is
also 1.2. The differences between our projection-based scale space and
the one of ORB are: First, we only construct a scale space for the
target image while keeping the reference image unchanged. Second,
we only detect keypoints in the original images and project them
onto the layers of the pyramid scale space. Moreover, we provide the
rationality of projection-based scale space based on experiments. While
the above conclusion is important, it is also important to understand
the reasons behind the conclusion. For example, artificial intelligence
scholars regard the interpretability of deep learning as one of the
important problems to be solved.

4.1.2. Projection-based scale space
Fig. 3 shows the details of the scale invariance strategy of our SRIF.

It can be seen that SRIF only constructs the pyramid scale space for
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Fig. 2. The sensitivity of SIFT, RIFT, and LNIFT to small scale variances.

the target image. The pyramid layers are obtained via simultaneously
upsampling and downsampling the original target image. To some
extent, our method has some similarities with SI-PIIFD (Du et al.,
2018), MS-PIIFD (Gao and Li, 2021), and MS-HLMO (Gao et al., 2022),
because these methods are all improved on the basis of Gaussian scale
space framework. Different from MS-PIIFD (Gao and Li, 2021) and MS-
HLMO (Gao et al., 2022), we omit the multiscale Gaussian filtering and
difference operation steps, while they preserve the full Gaussian scale
space. Although both our method and SI-PIIFD (Du et al., 2018) can be
considered as sampling-based methods, SI-PIIFD is based on additive
operations while our method is based on multiplicative operations.
In addition, our method only constructs pyramid scale space on the
target image while these three methods construct scale spaces on both
the reference and the target images. Assuming that the number of
upsampling/downsampling operations is 𝐾, the scale factor is 𝑠, and
the image size of the original target image is [ℎ,𝑤], then, the pyramid
contains a total of 2𝐾 + 1 layers and the image size of the 𝑖th (𝑖 ∈
{1, 2,… , 2𝐾 + 1}) layer is [𝑤𝑖, ℎ𝑖],

[𝑤𝑖, ℎ𝑖] = 𝑠𝐾+1−𝑖 [𝑤, ℎ] (1)

Note that the first layer is at the bottom of the pyramid. Different
from the ORB and SIFT, we only detect keypoints in the original
target image and project these keypoints onto the pyramid layers to
obtain multiscale keypoints. For downsampled pyramid layers, we only
project some randomly selected features. The purpose of this is to avoid
that the distances between features are too small, resulting in large
overlaps between local image patches used for feature description and
thus interfering with the subsequent matching process. The number of
projected keypoints of each layer 𝑁𝑖 is,

𝑁𝑖 =

{

𝑁 𝑖 ≤ 𝐾 + 1
𝑁

𝑠2(𝑖−𝐾−1) 𝑖 > 𝐾 + 1 (2)

where 𝑁 is the number of keypoints in the original target image.
To adapt to our scale space strategy, SRIF also modifies the tradi-

tional nearest neighbor matching strategy. Traditional matching strat-
egy first merges the feature points on each pyramid layer to obtain
the total feature set. Then, for a feature in the reference image, the
matching strategy searches for the best match in the total set. In
contrast, we do not perform a merge operation. We first search for the
best match for the feature in each layer of the pyramid scale space
of the target image, and then search for the best match among these
2𝐾 + 1 features as the correspondence for that feature. This two-level
matching strategy can effectively reduce the matching search space. At
the same time, due to the reduced search space, the possibility of match
ambiguity is also reduced.
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Fig. 3. The projection-based scale space of SRIF.

4.2. Local Intensity Binary Transform (LIBT)

Compared with conventional matching, the bottleneck of multi-
modal image matching lies in the severe NRDs. Although commonly
used intensity and gradient information are sensitive to NRDs, fortu-
nately, numerous studies have shown that structural and shape features
are very important information for multimodal image matching (Hein-
rich et al., 2011; Li et al., 2015; Ye et al., 2017, 2019; Li et al.,
2020a), since they are preserved across different modalities and rel-
atively independent of radiation changes. Therefore, the core idea of
this paper is to enhance the structural information in the image through
some transformations, and then use a structural descriptor such as the
HOG-like or SIFT-like descriptor for feature description.

4.2.1. LIOT
Recently, Shi et al. (2022) proposed a local intensity order trans-

formation (LIOT) to enhance the structures of an image. LIOT uses
the relative intensity order to characterize the intrinsic properties of
the curvilinear structures without relying on absolute intensity values.
Thus, it not only enhances the structure information, but also has good
contrast invariance. Experimental results show that LIOT can effectively
improve the performance of state-of-the-art methods for tasks such as
retinal vessel segmentation and crack segmentation.

Here, we briefly describe the basic idea of LIOT. As shown in
Fig. 4(a), for a pixel 𝑝 of an image 𝐼 (the red pixel in the figure), LIOT
compares the intensity 𝐼(𝑝) with intensities of its 8 neighboring pixels
{

𝑞𝑐𝑖 |𝑖 = 1,… , 8
}

along one of the four directions 𝑐 ∈ {𝑙, 𝑟, 𝑢, 𝑏}, where
𝑙, 𝑟, 𝑢, 𝑏 represent left, right, up, and below, respectively. Each direction
can generate an 8-bit 2D image 𝐼𝑐 , where the intensity 𝐼𝑐 (𝑝) is calcu-
lated based on the binary code obtained by the intensity order between
𝐼(𝑝) and 𝐼(𝑞𝑐𝑖 ). Formally, the calculation equation is as follows,

𝐼𝑐 (𝑝) =
8
∑

𝑖=1
1[𝐼(𝑝) > 𝐼(𝑞𝑐𝑖 )] ⋅ 2

𝑖−1 (3)

where 1[𝑥] is an indicator function that returns 1 if event 𝑥 is true and
0 otherwise.

It can be seen that LIOT is highly correlated with orientations,
while rotation invariance is an important property for feature matching.
Furthermore, LIOT generates a four-channel image, while only a single-
channel image is required for feature description. These prevent LIOT
from being used for the image matching task.

4.2.2. LIBT
To address the above two issues, we propose a variant of LIOT,

called LIBT. The illustration of LIBT is shown in Fig. 4(b). We discard
the orientation-dependent pixel order strategy of LIOT, and directly
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Fig. 4. Illustration of LIOT and LIBT. Both LIOT and LIBT use relative intensity to encode a new image, which are robust to contrast changes and can effectively enhance the
structure information. LIOT converts an image into a 4-channel one and is sensitive to rotation changes. LIBT overcomes the limitations of LIOT and converts an image into a
single-channel normalized one. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 2
Image similarity comparison based on the LPIPS↓ measure. Bold fonts denote the
best.

Dataset Method

Original image LNI LIBT

Optical-Optical 0.37 0.35 0.26
Optical-Infrared 0.47 0.39 0.22
Optical-SAR 0.65 0.51 0.36
Optical-Depth 0.63 0.43 0.46
Optical-Map 0.78 0.61 0.49
Nighttime 0.51 0.44 0.33

compare the intensity 𝐼(𝑝) with all pixels in its circular region 𝛷𝑝 to
generate a binary code. Then, the proportion of non-zero elements is
counted as the normalized intensity value of 𝐼(𝑝). Obviously, both the
circular region and the proportion of non-zero elements are rotationally
invariant. Thus, the formula of our LIBT is as follows,

𝐼(𝑝) = 1
|

|

|

𝛷𝑝
|

|

|

∑

𝑖∈𝛷𝑝

1[𝐼(𝑝) > 𝐼(𝑞𝑖)] (4)

where |

|

|

𝛷𝑝
|

|

|

is the total number of pixels in the region 𝛷𝑝.
As aforementioned, we hope to enhance the structural information

through LIBT, thereby reducing the difficulty of multimodal image
matching. Generally, the similarity between images is inversely propor-
tional to the matching difficulty. The matching difficulty here mainly
refers to the severity of NRDs. Therefore, if LIBT can effectively reduce
the matching difficulty, the similarity of the transformed images should
be higher. To verify this conclusion, an experiment on our collected
multimodal dataset with 1200 image pairs is conducted. In this exper-
iment, we use the ground-truth transformation to accurately register
each image pair for a more convenient image similarity comparison. We
use the learned perceptual image patch similarity (LPIPS) (Zhang et al.,
2018) as an evaluation metric, which is used to measure the difference
between two images. A lower value of LPIPS means that the two images
are more similar. LPIPS is more in line with human perception than
traditional methods, such as the structural similarity index measure
(SSIM) (Wang et al., 2004), correlation coefficient, feature similarity
index measure (FSIM) (Zhang et al., 2011), etc. Table 2 reports the
LPIPS results of original images without any transformation, with local
normalized image (LNI) transformation (Li et al., 2022b), and with
the proposed LIBT transformation. From the results, we can draw
the following conclusions: (1) the LPIPS metric can truly reflect the
similarity between images. For example, the LPIPS values of Optical-
SAR, Optical-Depth, and Optical-Map are larger than others, which is
very consistent with our human perception, because the differences
between these three types of images are significantly larger than those
of the other types. (2) Both LNI and our LIBT can improve the similarity
of original images, and LIBT is much better than LNI. As can be seen,
LIBT achieves the best results in five out of the six datasets and is only
slightly worse than LNI in the Optical-Depth dataset. The average LPIPS
values of original images, LNI, and our LIBT are 0.57, 0.46, and 0.35,
respectively.
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Fig. 5. The main framework of our SRIF.

4.3. Main framework of SRIF

The main framework of our SRIF is given in Fig. 5, which also con-
tains three main stages, including feature detection, feature description,
and matching. In this paper, we only focus on the first two stages.

4.3.1. Feature detection
We first convert original images into transformed ones based on

the proposed LIBT and detect FAST features. As pointed out by Li
et al. (2022b), FAST features are prone to aggregation. Thus, to obtain
evenly distributed keypoints, we also use an adaptive non-maximal
suppression strategy to suppress clustered features. We then project
the features of the target image into a pyramid scale space to achieve
scale invariance. It can be seen that we first detect feature points and
then perform scale-space projection, which is completely opposite to
the steps of traditional methods. Finally, we achieve rotation invariance
in the same way as SIFT. Specifically, we use the gradient orientation
histogram technique to obtain the histogram maximum and local ex-
trema, and all local extrema greater than 80% of the maximum are
taken as the main orientation of a feature. Based on the experimental
conclusion in Section 4.2.2, we can replace LIBT with LNI to achieve
better results on the Optical-Depth dataset.

4.3.2. Feature description
Similarly, we also perform feature description on the LIBT-trans-

formed images. First, SRIF computes the gradient maps of the LIBT
images and normalizes the orientations into [0◦, 180◦) since multimodal
images often have reversed orientations. Then, local image patches
corresponding to the feature points are cropped. The reference patches
only need to be rotated, while the target patches need to be rotated
and scaled at the same time. All local patches are resized into the same
size to facilitate subsequent feature description. Then, we use a SIFT-
like descriptor for feature vector encoding. The descriptor first divides
a local patch with 𝐽 × 𝐽 pixels into 𝑁 ×𝑁 grids. We compute a
𝑔𝑟𝑖𝑑 𝑔𝑟𝑖𝑑
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Table 3
Detailed settings of compared algorithms.

Method Main parameters Implementations Rotation invariance Scale invariance

SIFT Keypoint number: 5000;
patch size: 15

√

2 scale; contrast threshold: 0.001;
number of grids: 4 × 4; orientation bins: 8

C++ code: https://www.vlfeat.org/overview/sift.html ✓ ✓

OS-SIFT Harris function threshold: 0.001;
Keypoint number: 5000; patch size: 24 scale;
number of circle grids: 8; orientation bins: 8

MATLAB code: https://sites.google.com/view/yumingxiang ✓ ✓

RIFT Keypoint number: 5000;
patch size: 96; FAST threshold: 0.001;
number of grids: 6 × 6; orientation bins: 6

MATLAB code: https://ljy-rs.github.io/web/ ✓ ✕

3MRS Template window size: 101;
standard deviation of 2D Gaussian kernel: 0.5

C++ code: https://github.com/ZhongLi-Fan/3MRS ✕ ✕

CoFSM Co-occurrence filter window size: 5;
scale layers: 4; feature threshold: 500;
number of grids: 19; orientation bins: 8

MATLAB code: https://github.com/yyxgiser/CoFSM ✓ ✓

LNIFT Keypoint number: 5000; patch size: 96;
FAST threshold: 0.001;
number of grids: 8 × 8; orientation bins: 4

C++ code: https://ljy-rs.github.io/web/ ✓ ✕

MS-HLMO Keypoint number: 5000; patch size: 96;
pyramid octaves: 3; pyramid layers: 4;
number of grids: 12 × 12; orientation bins: 12

MATLAB code: https://github.com/MrPingQi ✓ ✓

Our SRIF Keypoint number: 5000; patch size: 96;
FAST threshold: 0.001; 𝐾 = 3;
number of grids: 8 × 8; orientation bins: 4

C++ code: https://github.com/LJY-RS/SRIF ✓ ✓
𝑁𝑏𝑖𝑛-histogram for each grid and obtain a total of 𝑁𝑔𝑟𝑖𝑑 × 𝑁𝑔𝑟𝑖𝑑 his-
tograms. These histograms are then concatenated together to get a
feature vector with length 𝑁𝑔𝑟𝑖𝑑 × 𝑁𝑔𝑟𝑖𝑑 × 𝑁𝑏𝑖𝑛, which is then nor-
malized to improve the robustness to illumination changes. Actually,
our description method is the same as LNIFT, but the layers used for
description are different. We use LIBT while LNIFT uses LNI. Therefore,
we use the same parameters as LNIFT, i.e., 𝑁𝑔𝑟𝑖𝑑 = 8 and 𝑁𝑏𝑖𝑛 = 4.

5. Experiments

Here, we comprehensively evaluate the proposed SRIF on our col-
lected multimodal datasets with a total of 1200 pairs. Our SRIF is
compared with seven baseline or state-of-the-art algorithms, i.e., SIFT
(Lowe, 2004), OS-SIFT (Xiang et al., 2018), RIFT (Li et al., 2020a),
3MRS (Fan et al., 2022), CoFSM (Yao et al., 2022), LNIFT (Li et al.,
2022b), and MS-HLMO (Gao et al., 2022). The official implementation
of each method is used in the experiments. For a fair comparison,
we set the maximum number of features to 5000 and apply the same
matching strategy (using brute force searching to establish one-to-
one correspondence without a nearest neighbor distance ratio (NNDR)
test) for all compared methods except 3MRS, CoFSM, and MS-HLMO,
since 3MRS, CoFSM, and MS-HLMO only provide binary code and
are difficult to modify. Table 3 summarizes the parameter settings,
implementation details, and invariance properties of each method.

Three measures are used for quantitative evaluation, i.e., correct
matching number 𝑛, root mean square error (RMSE) 𝑟, and success rate
𝛾. Note that we do not apply RANSAC-like methods or local geometric
constraints to filter outliers before evaluation for all methods, since
our goal is to evaluate local descriptors while these outlier removal
methods may discard some true inliers. The definitions of these three
measures are as follows:

• Correct match number 𝑛: The number of correct correspon-
dences in an image pair. If the residual of a correspondence under
ground truth transformation is smaller than 𝜀 pixels (𝜀 = 3), it is
accepted as a correct one.

• Success rate 𝛾: If the correct match number of an image pair
satisfies 𝑛 ≥ 10, the image pair is considered to have been
successfully matched, since a too small 𝑛 will cause subsequent
model fitting failure.
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• RMSE 𝑟: Suppose
{(

𝒙𝑖, 𝒚𝑖
)}𝑛

1 are correct correspondences of an
image pair, 𝑇 (⋅) represents its ground truth transformation, the
RMSE is computed by,

𝑟 =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1

(

𝒚𝑖 − 𝑇 (𝒙𝑖)
)2, (5)

For those images that failed to match (𝑛 < 10), we set their RMSEs
to 20 pixels.

5.1. Qualitative evaluations

The first pair of each type of multimodal images displayed in Fig. 1
is used for comparison. The first image pair suffers from temporal,
scale, and rotation changes; the second pair has band and rotation
differences; the third pair suffers from severe speckle noise, scale, and
rotation changes; the fourth one has a huge difference in imaging
mechanism and a rotation change; the map of the fifth pair is not
really an image; and the last one suffers from low-light condition,
sensor difference, and a rotation change. Fig. 6 shows the result of each
compared algorithm.

As can be seen, SIFT and OS-SIFT achieve successful matching only
on the Optical-Optical pair, but the correct match number is very low.
SIFT uses gradients for description, which has been shown to be very
sensitive to NRDs. OS-SIFT is designed for Optical-SAR matching and
not suitable for other types of multimodal images with severe NRDs.
RIFT and LNIFT perform well on image pairs without scale changes
since they do not achieve scale invariance. 3MRS has the worst results,
i.e., it fails to match on all pairs. 3MRS uses a coarse-to-fine strategy
for registration, which is not robust to either scale or rotation change.
Hence, 3MRS performs very badly when an image pair suffers from
large geometric changes such as rotation, scale, perspective, etc. CoFSM
and MS-HLMO perform well only on the first pair. Although these
methods achieve good results on some datasets, they perform poorly
on our collected dataset. One possible reason is that our dataset is
more difficult. For example, the scale and rotation changes do not
appear simultaneously on the same image pair in their experiments.
In contrast, our SRIF achieves the best results on all image pairs. Our
correct match number 𝑛 is much larger than other methods such as RIFT
and LNIFT.

https://www.vlfeat.org/overview/sift.html
https://sites.google.com/view/yumingxiang
https://ljy-rs.github.io/web/
https://github.com/ZhongLi-Fan/3MRS
https://github.com/yyxgiser/CoFSM
https://ljy-rs.github.io/web/
https://github.com/MrPingQi
https://github.com/LJY-RS/SRIF
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Fig. 6. Qualitative comparison results on the first pair of each type of sample data in Fig. 1. Keypoints are shown as red circles and green crosshairs; correct correspondences are
represented as yellow lines. If the matching fails, its RMSE is denoted by 𝑟 = ∞. We only display no more than 200 correspondences in each pair for better visualization. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
5.2. Quantitative evaluations

The quantitative results are reported in Table 4, including correct
match number 𝑛 (higher is better), RMSE 𝑟 (lower is better), and
success rate 𝛾 (higher is better). As shown, SIFT is only suitable for
optical images, which have less NRDs. Its success rate is close to 0 on
other types of multimodal datasets. This is predictable since the SIFT
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algorithm is commonly used for same-source image matching. OS-SIFT
performs slightly better than SIFT, since it modifies the calculation
of gradients to improve the robustness to speckle noise. However, it
gets very poor performance on the Optical-Infrared and Optical-Map
datasets since the major matching difficulty of these datasets is not
speckle noise. Even on the SAR-Optical dataset, the performance of OS-
SIFT is still far from good. The main reason is that OS-SIFT does not
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Table 4
Quantitative evaluation results. Each value is the average result.

Data Metric Method

SIFT OS-SIFT RIFT 3MRS CoFSM LNIFT MS-HLMO Our SRIF

Optical-Optical
RMSE 𝑟 (pixels)↓ 6.03 5.03 5.65 18.04 4.54 6.56 5.03 2.05
Success rate 𝛾 (%)↑ 77.5 83.5 80 11 84 75 83 100
Correct match number 𝑛 ↑ 30 44 127 39 144 56 109 415

Optical-Infrared
RMSE 𝑟 (pixels)↓ 20 20 3.20 16.62 19.55 2.52 18.94 2.07
Success rate 𝛾 (%)↑ 0 0 93.5 18.5 2.5 97.5 6 100
Correct match number 𝑛 ↑ 1 2 72 91 2 77 2 185

Optical-SAR
RMSE 𝑟 (pixels)↓ 20 15.96 9.62 18.66 15.34 7.36 14.26 2.07
Success rate 𝛾 (%)↑ 0 22.5 58 7.5 25.5 70.5 32.5 100
Correct match number 𝑛 ↑ 1 7 32 16 13 59 14 309

Optical-Depth
RMSE 𝑟 (pixels)↓ 19.63 13.44 2.51 16.81 15.71 2.00 13.15 1.92
Success rate 𝛾 (%)↑ 2 36 97 17.5 23.5 100 38 100
Correct match number 𝑛 ↑ 2 10 227 265 28 194 18 378

Optical-Map
RMSE 𝑟 (pixels)↓ 20 19.19 2.30 14.10 19.73 2.07 19.28 1.99
Success rate 𝛾 (%)↑ 0 1.5 98 33 4.5 100 4.5 100
Correct match number 𝑛 ↑ 0 3 130 15 4 78 3 332

Nighttime
RMSE 𝑟 (pixels)↓ 19.46 18.02 2.85 14.95 15.38 2.08 14.96 2.04
Success rate 𝛾 (%)↑ 3 11 95.5 28 25.5 100 28.5 100
Correct match number 𝑛 ↑ 2 5 119 169 34 225 9 488

Average
RMSE 𝑟 (pixels)↓ 17.52 15.36 4.36 16.53 14.94 3.77 14.27 2.02
Success rate 𝛾 (%)↑ 13.75 25.75 87 19.25 27.58 90.5 32.08 100
Correct match number 𝑛 ↑ 6 12 118 99 38 115 26 351
Table 5
The results of ablation study.

Pipeline Baseline Baseline* Rotation invariance Scale invariance RMSE Success rate Correct match number
(BL) (BL*) (RI) (SI) 𝑟 (pixels)↓ 𝛾 (%)↑ 𝑛 ↑

BL ✓ ✕ ✕ ✕ 11.44 47.50 89
BL+RI ✓ ✕ ✓ ✕ 4.56 85.83 161
BL+SI ✓ ✕ ✕ ✓ 10.25 60.33 141
BL*+RI+SI (SRIF_LNI) ✕ ✓ ✓ ✓ 2.83 95.50 262
BL+RI+SI (our SRIF) ✓ ✕ ✓ ✓ 2.02 100 351
attenuate the NRDs between optical and SAR images. 3MRS does not
achieve more than a 40% success rate on any one dataset. The reason
is that it does not consider rotation and scale changes between images,
while most image pairs in our dataset suffer from rotation variance or
scale change. We also observe that despite its low success rate, 3MRS
still has a high average correct match number. For example, it ranks
second on the Optical-Infrared and Optical-Depth. This is because 3MRS
uses a dense template matching method to refine the coarse feature
matching results. CoFSM and MS-HLMO perform well on the Optical-
Optical dataset and are comparable to OS-SIFT on other datasets. The
unsatisfactory performance of CoFSM and MS-HLMO may be due to the
high matching difficulty of our dataset. In the original papers of CoFSM
and MS-HLMO, they were only tested on small-scale datasets without
complex geometric changes. RIFT and LNIFT achieve very high success
rates (>90%) on the datasets without scale changes. Even on datasets

ith scale variance such as the Optical-SAR dataset, their success rate
s still higher than 50%. As shown in Section 4.2.2, although RIFT and
NIFT do not construct a scale space, they still have a certain ability to
esist scale changes, especially for small scale factors. In our datasets,
he scale factor is between 0.5 and 2, which is not very large. Our SIRF
ets a success rate of 100% and more than 300 correct matches. There
re two main reasons why our SRIF performs so well: first, our method
chieves rotation and scale invariance, so it can cope with complex
eometric differences; second, we propose the LIBT transformation
o enhance the structural information in the images, thereby greatly
educing the NRDs. LIBT outperforms LNI, which enables SRIF to obtain
etter matching results than LNIFT.

The average success rates of these eight compared algorithms on
hese six datasets are 13.75%, 25.75%, 87%, 19.25%, 27.58%, 90.5%,
2.08%, and 100%, respectively. Our SRIF gains a growth rate of 10%
ompared with the second best method, i.e., LNIFT. In terms of correct
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atch number 𝑛, the results of SIFT, OS-SIFT, RIFT, 3MRS, CoFSM,
LNIFT, MS-HLMO, and our SRIF are 6, 12, 118, 99, 38, 115, 26, and
351, respectively. Our correct matches are three times that of RIFT and
LNIFT, and about 10 times that of CoFSM and MS-HLMO. Our RMSE
is around 2 pixels at an inlier threshold of 3 pixels. It is slightly better
than LNIFT on the Optical-Depth, Optical-Map, and Nighttime datasets,
on which the success rates of LNIFT are also 100%. This matching
accuracy is sufficient for many remote sensing applications. As known,
the matching accuracy of template-based methods is generally better
than feature-based ones. If we want to use it in applications that require
very high geometric accuracy, a template-based matching algorithm
such as the CFOG can be applied to further refine our results.

5.3. Ablation study

To demonstrate the effectiveness of the key novel steps in the
proposed SRIF algorithm, we conduct an ablation experiment on our
multimodal image dataset. This experiment compares five different
pipeline settings (BL, RI, SI represent baseline, rotation invariance
module, and scale invariance module, respectively):

• BL: Remove the rotation invariance and scale invariance modules
from our SRIF algorithm;

• BL+RI: Only remove the scale invariance module from our SRIF
algorithm;

• BL+SI: Only remove the rotation invariance module from our
SRIF algorithm;

• BL*+RI+SI: Only replace the LIBT in our SRIF algorithm with the
local normalized image (LNI) to generate structural feature maps;

• BL+RI+SI: The proposed SRIF algorithm.

The average quantitative experimental results on the 1200 image

pairs are reported in Table 5. As shown, (1) comparing BL+RI (or
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Table 6
Running time analysis.

Method Image size (pixel)

256 × 256 512 × 512 768 × 768 1024 × 1024

SIFT 0.22 0.82 1.97 3.90
OS-SIFT 0.50 3.39 11.12 28.43
RIFT 2.94 21.16 33.40 49.78
3MRS 0.76 2.45 3.46 4.91
CoFSM 4.55 9.02 24.13 54.23
LNIFT 0.36 0.39 0.44 0.48
MS-HLMO 27.86 169.10 191.54 203.71
SRIF 3.06 3.13 3.17 3.19

BL+SI) with BL, we can see that rotation invariance module and scale
nvariance module can improve the success rate and correct match
umber by a large margin; (2) comparing BL+RI+SI (our SRIF) with

BL*+RI+SI (SRIF_LNI), we can see that the LIBT can generate much
better structural feature map than LNI. The success rate increases by
4.5 percentage points, and the correct match number increases by more
than 30%.

5.4. Computational time

An experiment is conducted to compare the computational time
performance of these methods on the Optical-Depth dataset. The images
are resized to 256 × 256, 512 × 512, 768 × 768, and 1024 × 1024 pixels
to produce four datasets with different image sizes. This experiment is
performed on a PC with a 3.6 GHz, 8 cores, i9-10850K CPU, and 64 GB
of RAM, and the results are reported in Table 6.

The computational time of our SRIF is less dependent on the image
size because the computational complexity of LIBT is very low com-
pared to feature detection and description, which is very similar to
LNIFT. Actually, the computational time of SRIF and LNIFT is mainly
affected by the number of features, however, we fix it to 5000 and
thus the computational time of SRIF is similar on images of different
sizes. From the results, our SRIF runs much more efficiently than RIFT,
CoFSM, and MS-HLMO when the image size is large. For example, SRIF
is about 7 times faster than RIFT, 3 times faster than CoFSM, and 53
times faster than MS-HLMO on a 512 × 512 image. It ranks fourth and
is only slower than SIFT, 3MRS, and LNIFT. When the image size is
1024 × 1024, SRIF is 15 times, 17 times, and 63 times faster than
RIFT, CoFSM, and MS-HLMO, respectively, and ranks second among
all 8 methods.

5.5. Limitations

The limitations of our SRIF mainly lie in twofold:

• The computational complexity of SRIF is high compared with
LNIFT, which makes it unsuitable for real-time/near real-time
matching tasks. Due to the way we construct the scale space, the
number of features after projection on the target image is high.
Furthermore, 𝐾 = 3 can only cover the scale changes between
0.5 and 2. However, when the scale variation between images
is large, we need to increase the value of 𝐾, but this will also
increase the number of projected features and further reduce the
efficiency of the algorithm. One possible solution is to use a coarse
ground sample resolution prior to reduce the variance of scales or
use GPU implementation for acceleration.

• The correct matching ratio is low, which is a common limita-
tion of current multimodal feature matching methods. Although
our SRIF can obtain many correct correspondences in the above
experiments, it is based on extracting a large number of feature
points, i.e., 5000 before projection. In fact, our correct matching
ratio is still very low, mostly less than 10%. Thus, in practice, we
need to increase the number of features to guarantee the matching
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performance, which will increase the computational complexity
of SRIF. One possible solution is to learn a LIBT-like or a LNI-like
image, which extracts the common features between multimodal
images based on the powerful feature extraction capability of
deep learning.

6. Conclusions

In this paper, we create a multimodal image dataset with six typ-
ical types of images, i.e, optical-optical, optical-infrared, optical-SAR,
optical-depth, optical-map, and nighttime, and make it open to the
community. This dataset contains a total of 1200 image pairs with good
diversity in image categories, feature classes, resolutions, geometric
variations, etc. We hope it will make a small contribution to the
advancement of multimodal image matching, especially learning-based
techniques. we also propose a scale and rotation invariant feature trans-
form (SRIF) method for multimodal feature matching. We introduce
a simple scale space construction strategy based on the analysis of a
small scale sensitivity experiment. To enhance structural information to
resist NRDs of multimodal images, we propose a local intensity binary
transform (LIBT) for feature description and verify its effectiveness
based on the LPIPS metric. By comparing with seven baseline and state-
of-the-art algorithms on 1200 image pairs, we can see that our SRIF
outperforms them by a large margin, i.e., our method gains a success
rate of 10% and obtains three times of correct matches compared to
the second best method. Our future work will focus on learning-based
LIBT-like image generation and learning-based feature description.
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