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A B S T R A C T   

Despite the good results that have been achieved in unimodal segmentation, the inherent limitations of indi-
vidual data increase the difficulty of achieving breakthroughs in performance. For that reason, multi-modal 
learning is increasingly being explored within the field of remote sensing. The present multi-modal methods 
usually map high-dimensional features to low-dimensional spaces as a preprocess before feature extraction to 
address the nonnegligible domain gap, which inevitably leads to information loss. To address this issue, in this 
paper we present our novel Imbalance Knowledge-Driven Multi-modal Network (IKD-Net) to extract features 
from multi-modal heterogeneous data of aerial images and LiDAR directly. IKD-Net is capable of mining 
imbalance information across modalities while utilizing a strong modal to drive the feature map refinement of 
the weaker ones in the global and categorical perspectives by way of two sophisticated plug-and-play modules: 
the Global Knowledge-Guided (GKG) and Class Knowledge-Guided (CKG) gated modules. The whole network 
then is optimized using a joint loss function. While we were developing IKD-Net, we also established a new 
dataset called the National Agriculture Imagery Program and 3D Elevation Program Combined dataset in Cal-
ifornia (N3C-California), which provides a particular benchmark for multi-modal joint segmentation tasks. In 
our experiments, IKD-Net outperformed the benchmarks and state-of-the-art methods both in the N3C-California 
and the small-scale ISPRS Vaihingen dataset. IKD-Net has been ranked first on the real-time leaderboard for the 
GRSS DFC 2018 challenge evaluation until this paper’s submission. Our code and N3C-California dataset are 
available at https://github.com/wymqqq/IKDNet-pytorch.   

1. Introduction 

With the rapid development of sensors like optical cameras, radar, 
and 3D scanners, the era of big data has arrived; and multi-modal data 
for earth observation has emerged as a research frontier in remote 
sensing (RS), especially for land-cover semantic segmentation tasks 
(Ghamisi et al., 2019; Li et al., 2022a; Yang et al., 2021). Multi-modal 
data analysis is demonstrating that it can break through the perfor-
mance bottleneck of unimodal semantic segmentation by synthesizing 
the advantages of each data source in order to obtain more diverse 
feature information. 

Many past studies have focused on the joint use of three-dimensional 
(3D) airborne LiDAR point clouds and two-dimensional (2D) aerial im-
ages. To eliminate the structure difference between the two modalities, 
recent researchers mostly have mapped 3D point cloud data to 2D image 
spaces to get products like digital surface models (DSMs) or intensity 

images and then extracting the 2D features for analysis and classifica-
tion. CMGFNet (Hosseinpour et al., 2022) proposed a gated fusion 
network to achieve multi-level feature fusion between very high reso-
lution (VHR) images and DSM. GRRNet (Huang et al., 2019) stacked the 
NIR-Red-Green images and the normalized DSM (nDSM) as four-channel 
input and utilized five gated feature labeling units to fuse the features 
from the encoder and decoder. MultiModNet (Liu et al., 2022) extracted 
features from a NIR-Red-Green image and the nDSM with the pyramid 
attention and the gated fusion unit, which then were joined before 
placing them into the decoder. Although superior to unimodal methods, 
these cross-modal learning methods inevitably fail to fully explore the 
content of each modality because the prior operation of mapping the 
point cloud data from 3D to 2D does some irreparable harm to important 
characteristics, especially the geometric structure information. To the 
best of our knowledge, few researchers have focused on the issue of 
maintaining the complete information of the raw heterogeneous data in 
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the multi-modal land-cover semantic segmentation task. 
The information imbalance phenomenon also cannot be neglected in 

the joint analysis and semantic segmentation of multi-modal data. We 
use the 3DEP-QL1 LiDAR data (3D Elevation Program LiDAR of Quality- 
Level-1) and NAIP (National Agriculture Imagery Program) image data 
to demonstrate this issue in this paper. Each tile of 3DEP point cloud 
data (covering an area of about 0.6 km2) has a data size of about 120 M 
and satisfies the QL1 accuracy standards (Heidemann, 2012). Specif-
ically, the aggregate nominal pulse density (ANPD) is more than 8 pls/ 
m2 (8 points per square meter) and the aggregate nominal pulse spacing 
(ANPS) is less than 0.35 m. The absolute vertical accuracy (over the 
nonvegetated ground) is less than 0.1 m and the attributes of return 
number and intensity values always be included. The NAIP imagery 
covering the same area with the above point cloud tile has a data size of 
only about 5 M. It has a 0.6-meter ground sample distance (GSD) and 
affords RGB three-channel attributes. Also, the spatial resolution sat-
isfies the standard digital orthoimage standards (Rufe, 2014). Fig. 1 il-
lustrates the relationship of the amount of information that the two 
modalities provide in the joint analysis, where x1 and x2 stand for the 
modality of LiDAR and the imagery, respectively. Except for the mutual 
information I(x1, x2), there may be several orders of magnitude more 
unique information of LiDAR than imagery, namely, H(x1| x2) ≫ H(x2| 
x1). 

This phenomenon has attracted attention in multi-modal fusion, self- 
supervised learning, contrastive learning, and many other fields in the 
computer vision community. P4Contrast (Liu et al., 2020) leverages 
“pairs of point-pixel pairs” to provide extra flexibility in creating hard 
negatives and avoid the networks learning features only from the more 
discriminating one of different modalities. TupleInfoNCE (Liu et al., 
2021c) proposed a tuple disturbing strategy to prevent networks from 
largely ignoring weak modalities while only focusing on strong modal-
ities when learning multi-modal representation. However, most of these 
methods concentrate on reducing the influence of imbalanced infor-
mation between modalities during sample selection rather than 
exploiting them within network optimization. 

Despite the increasing interest in multi-modal learning, multi-modal 
datasets in the remote sensing community are scant (Yang et al., 2021), 
with just two widely used datasets containing point clouds and images 
(i.e., the ISPRS Vaihingen semantic dataset (Rottensteiner et al., 2014) 
and the GRSS DFC 2018 dataset (Xu et al., 2019)). Both datasets merely 
cover urban land in small areas and are insufficient to quantitatively 
evaluate multi-modal algorithms. Thus, large-scale multi-sensor data-
sets are urgently needed. To fill this gap, we presented our National 
Agriculture Imagery Program and 3D Elevation Program Combined 

dataset in California (N3C-California). The LiDAR in our dataset is 
from 3DEP public data and the aerial imagery is from NAIP public data. 
We performed geometric registration and cropping on the above data 
and published the corresponding four categories’ pixel-level labels, thus 
providing a quantitative evaluation of the algorithms in the field of 
multi-modal earth observation. The pixel-level labels were mapped from 
the classification attributes of the dense point clouds, which were 
manually annotated with very high precision. 

We synthesized the information discarded by previous methods in 
the preprocessing stage and fully exploited the inherent differences 
between modalities. To tackle the issues we discovered, we propose 
Imbalance Knowledge-Driven Multi-modal Network (IKD-Net) to en-
ables weak modality to get affluent information from stronger ones and 
promotes the modality synergy substantially. 

The main contributions of this paper can be summarized as follows: 

1. A specialized benchmark dataset called N3C-California for quanti-
tative evaluation in multi-modal joint segmentation tasks. N3C- 
California is the largest coverage area annotated LiDAR-imagery 
dataset to date.  

2. A novel efficient architecture called IKD-Net, which extracts features 
from raw multi-modal data directly rather than from their abridged 
derivatives. Its end-to-end disentangled dual-stream backbone helps 
to keep the information of heterogeneous modalities intact. The 
detailed ablation analysis and extensive comparative experiments in 
this paper on N3C-California and two other multi-modal datasets 
validated the design logic and superiority of IKD-Net.  

3. Two plug-and-play gated modules Global Knowledge-Guided (GKG) 
and Class Knowledge-Guided (CKG) that take advantage of the 
inherent imbalance information between two RS modalities. These 
modules provide new insight into multi-modal data interaction.  

4. A well-designed joint loss function that consists of two single-task 
loss functions and a pixel-wise similarity loss to maintain the bal-
ance of the parameter flow in each branch during network 
optimization. 

2. Related work 

2.1. Semantic segmentation for 3D LiDAR point clouds 

Point clouds are essentially low-resolution resamplings of the 3D 
physical world. The design of learning-based semantic segmentation 
methods for point clouds is closely related to the data structure of 3D 
representations (Guo et al., 2020). 

Some methods first convert 3D point clouds into intermediate reg-
ular structures and extract the features with mature 2D or 3D convolu-
tion thereafter. The segmentation results then are finally projected back 
to the original point clouds. These semantic segmentation methods are 
classified as projection-based and discrete-based. Projection-based ap-
proaches can be divided into multi-view representation (Audebert et al., 
2016; Boulch et al., 2017; Lawin et al., 2017; Tatarchenko et al., 2018) 
and spherical representation (Iandola et al., 2016; Milioto et al., 2019; 
Wu et al., 2018; Wu et al., 2019) according to the projection process. 
Discretization-based approaches convert point clouds into discrete rep-
resentations, which include dense discretization representation (Huang 
and You, 2016; Long et al., 2015; Meng et al., 2019; Tchapmi et al., 
2017) and sparse discretization representation (Choy et al., 2019; Gra-
ham et al., 2018; Rosu et al., 2019; Su et al., 2018). These methods 
unfortunately fail to take full advantage of the underlying geometric and 
structural information as the projection step inevitably leads to missing 
information. 

Qi et al. (2017a) introduced the pioneering work PointNet, which 
directly processes irregular point clouds by extracting features point-by- 
point using a shared multilayer perceptron (MLP). Building upon this, 
PointNet++ (Qi et al., 2017b), PointSIFT (Jiang et al., 2018) and 
PointWeb (Zhao et al., 2019a) further enhance the ability to encode 

Fig. 1. Information diagram. The lilac circle x1 and light yellow circle x2 stand 
for LiDAR and the aerial imagery, respectively. H(x1|x2) and H(x2|x1) are the 
conditional entropy between the two modalities. I(x1, x2) is their mutual in-
formation. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.) 
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neighboring information in point clouds. VD-LAB (Li et al., 2022b) in-
tegrates three novel modules into the U-Net network structure, signifi-
cantly enhancing the model’s generalization ability. 

In addition to MLP, some studies have been devoted to specific point 
convolution operators. Hua et al. (2018) established a standardized 
approach for conducting convolution operations on point clouds. Wang 
et al. (2018) utilized a parametric continuous function to represent the 
convolution kernel, making it well-suited for unstructured point clouds. 
Thomas et al. (2019) introduced a deformable convolution kernel, called 
KPConv, which enables adaptive learning while minimizing memory 
consumption. Engelmann et al. (2020) extended the receptive field of 
point convolution operators by combining them with dilated 
convolutions. 

Some approaches have explored the use of recurrent neural networks 
(RNN) in point clouds. For instance, Huang et al. (2018) embedded a 
novel slice pooling layer and a slice unpooling layer into an RNN 
framework. 3P-RNN (Ye et al., 2018) effectively fuses context infor-
mation by sequentially employing pointwise pyramid pooling and two- 
direction hierarchical RNNs. DAR-Net (Zhao et al., 2019b) employs a 
convolutional-recurrent network to dynamically aggregate local and 
global features for improved performance. 

Additionally, some graph-based methods have been employed for 
point cloud analysis. Landrieu and Boussaha (2019) utilized the local 
cloud embedder and graph-structured contrastive loss to compute a 
point cloud oversegmentation. Wang et al. (2019) introduced the graph 
attention convolution, which dynamically learned attention weights for 
different nodes. PointGCR (Ma et al., 2020) employed an undirected 
graph representation to learn global contextual information across the 
channel dimension. AF-GCN (Zhang et al., 2023) captures local features 
and long-range contexts by graph convolutions and the Graph Attentive 
Filter (GAF), respectively. 

Most point cloud algorithms can handle only small ranges of point 
clouds, where the process of chunking may destroy the overall geometry 
of the point clouds. There are a few algorithms for large-scale point 
clouds, but they have computationally costly pre- or post-processing 
steps (Chen et al., 2019; Landrieu and Simonovsky, 2018; Rethage 
et al., 2018). RandLA-Net (Hu et al., 2020), on the other hand, adopted a 
random sampling strategy to continuously downsample large-scale point 
clouds, which greatly reduces the computational effort and preserves the 
complex geometric structure in large-scale point clouds using a local 
feature aggregation module. 

2.2. Multi-modality learning 

According to the time point of feature fusion, multi-modal learning 
can be roughly divided into three categories (early, middle, and late) 
which correspond to data-level, feature-level, and decision-level fusion, 
respectively. 

The early fusion strategy performs data fusion at the front end of the 
network and further inputs the merging layer into a single branch 
network for segmentation. Nahhas et al. (2018) concatenated three 
LiDAR-derived features (DSM, DEM, and nDSM), seven shape-derived 
features, three image-spectral-derived features, and eight image- 
texture-derived features together and then reduced the dimension by 
an autoencoder before using CNN to abstract the deep features. Huang 
et al. (2019) put the near-infrared (NIR), red, and green bands from 
images and nDSM from LiDAR into a modified residual learning network 
and a gated feature labeling (GFL) process to extract buildings. Gadzicki 
et al. (2020) conducted experiments showing that early fusion methods 
outperform late fusion methods in human activity recognition tasks. The 
above early fusion strategies only treat LiDAR data as supplementary 
information to images, however, and ignore the discrepancies between 
the two modalities. 

The middle fusion strategy focuses on the inter-feature combination 
and interaction. Fusion-FCN (Xu et al., 2019) employs a 1 × 1 conv to 
fuse three intermediate features extracted from the merging band of 

VHR image and LiDAR intensity raster data, nDSM, and high spectral 
data, respectively. HAFNet (Zhang et al., 2020) uses parallel structures 
to extract unimodal features from RGB and DSM. An attention-aware 
fusion block combines corresponding layer outputs for multi-modal 
feature learning. Zhang et al. (2017) proposed an improved FCN 
model with parallel encoders for images and 2D elevation features from 
LiDAR. The feature maps from both streams are fused after each 
convolution module and concatenated before feeding into the decoder of 
the FCN. MFNet (Sun et al., 2021) utilizes intra-modal, inter-modal, and 
multilevel feature fusion modules to integrate context information 
across modalities. S2ENet (Fang et al., 2021) enhances the interaction 
between hyperspectral data and LiDAR using spatial and spectral 
enhancement modules within the network. CMGFNet (Hosseinpour 
et al., 2022) employs a gated fusion module to combine features from 
VHR images and DSM, as well as a top-down strategy to fuse high-level 
and low-level features. MDL_RS (Hong et al., 2021) utilizes parallel Ex- 
Net to extract features from two modalities, followed by feeding the 
acquired results into the unified Fu-Net. Similarly, EndNet (Hong et al., 
2022) also utilizes parallel FE-Nets to extract features from hyper-
spectral and LiDAR data individually. Subsequently, the acquired results 
are fed into the unified F-Net, enabling efficient fusion of cross-modal 
information. He et al. (2023) used gating and self-attention modules 
to fuse features extracted from multispectral and SAR images at multiple 
stages for flood detection. However, middle-level fusion is a challenging 
direction. Besides abstracting discriminative unimodal features, the 
feature-level fusion strategies should be able to distinguish the inter- 
modal differences and balance each modality’s contribution to synthe-
size the high-level cross-modal features. 

The late fusion strategy generally uses individual branches to extract 
the features of each modality, and the results are fused directly in the 
decision phase. Marmanis et al. (2018) proposed the Holistically-Nested 
Edge Detection (HED) network to fuse the boundary prediction of the 
separate streams. Gialampoukidis et al. (2021) proposed a method to 
merge feature maps from K modalities into a K-order tensor for image 
retrieval. Despite having a high degree of flexibility, relatively little 
research has been done for late fusion because it discards cross-modal 
interactions and modalities cannot be adequately interrelated. 

2.3. Attention and gating mechanism 

It is commonly believed that the human eye can quickly locate the 
key things that are meaningful from a cluttered picture. Researchers 
apply this thinking in deep learning and in response have proposed the 
concept of attention mechanisms. Remarkable results have been ach-
ieved in natural language processing (NLP) (Galassi et al., 2020), speech 
recognition (Chorowski et al., 2015), and image perception (Fu et al., 
2019). In 2014, a Google Mind team (Mnih et al., 2014) used an 
attention mechanism based on reinforcement learning (RL) in a recur-
rent neural network (RNN), which not only looks at the image as a whole 
but also extracts the necessary information from the local area. Their 
approach achieved excellent performance on image classification tasks 
and was the beginning of a trend toward widespread application of 
attention mechanisms. Bahdanau et al. (2014) introduced the attention 
mechanism concept to the NLP field for the first time. Yin et al. (2016) 
suggested three alternatives for employing attention mechanisms in 
CNNs and conducted an early exploration of their application in CNNs. 
Hu et al. (2018) designed the squeeze-and-excitation (SE) block to 
generate a channel weight distribution vector to realign the correlation 
between feature channels. On this basis, using the selective kernel 
network (SKNet), Li et al. (2019) introduced lightweight multi-channel 
multi-scale channel attention to obtain channel-boosted features. With 
the convolutional block attention module (CBAM), Woo et al. (2018) 
sequentially applied the attention mechanism to the input feature map 
in both the channel and space dimensions to produce a refined feature. 
The dual attention network (DANet) (Fu et al., 2019) utilized two par-
allel branches to produce position and channel-enhanced feature maps, 
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which were summed and then convolved to derive the image segmen-
tation results. In conclusion, most of the existing attention mechanism 
approaches can obtain the weight distribution map from a single input 
and then act on the input itself. These methods are limited by the 
inherent ceiling on the amount of information in the input itself and can 
only fine-tune a feature map based on the contextual relationships be-
tween the pixels within the image. Our novel approach introduces multi- 
modal data into the process and uses strong modal point clouds to 
generate a weight distribution map to “teach” the feature redistribution 
of weak modality aerial images and thereby break the bottleneck of 
unimodal information. 

3. N3C-California dataset 

Despite the rapid development of earth observation methods for 
multi-modal data, there are unfortunately only a few LiDAR-imagery 
multi-modal datasets that are dedicated to remote sensing tasks, of 
which ISPRS Vaihingen (Rottensteiner et al., 2014) and GRSS DFC 2018 
(Xu et al., 2019) are the most commonly used. The ISPRS Vaihingen 
dataset provides aerial imagery in the 2D semantic labeling contest and 
LiDAR in the 3D semantic labeling contest. As it was not designed as a 
unified multi-modal benchmark, the number of categories of aerial im-
agery does not correspond to the number of LiDAR point clouds. The 
GRSS DFC 2018 dataset provides only 14 pairs of aerial imagery and 

Fig. 2. The coverage area (red grids) of the N3C-California dataset. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.) 

Fig. 3. Several samples in N3C-California, from top to bottom: aerial images, point clouds, DSM, and ground truth.  
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LiDAR data. Both of the above datasets cover a limited range of urban 
areas, and the landforms are relatively simple. 

To fill the gap, we introduce here our National Agriculture Imagery 
Program and 3D Elevation Program Combined dataset in California 

(N3C-California) to address the need for a benchmark specifically for 
multi-modal joint land-cover segmentation tasks. As shown in Fig. 2, 
N3C-California covers most of residential areas Santa Clara County, 
California and contains 1,212 pairs of LiDAR, DSM, and aerial image 
tiles. The DSM is obtained by projecting the elevation of the point cloud. 
To facilitate the downstream tasks of remote sensing, N3C-California 
provides four semantic categories (ground, tree, building, and others). 
Fig. 3 shows several samples from N3C-California. 

Table 1 presents an attribute comparison between N3C-California, 
ISPRS Vaihingen, and GRSS DFC 2018, highlighting the significant ad-
vantages of N3C-California in terms of quantity and coverage. Specif-
ically, our dataset contains over 36 times and 86 times more tiles than 
ISPRS Vaihingen and GRSS DFC 2018, respectively. Regarding LiDAR 
ANPD, our dataset is over twice larger than ISPRS Vaihingen and com-
parable to GRSS DFC 2018. However, the point cloud data of GRSS DFC 
2018 lacks most of the 20 classes shown in the corresponding images. 
Although the GSDs of the three datasets are 100, 9, and 5 cm/pixel, 
respectively, N3C-California is much more extensive than the other two 
datasets in terms of total area, as it covers not only urban areas but also 
rural regions. Our N3C-California dataset offers four semantic categories 
for remote sensing downstream tasks. However, there is a mismatch 
between the number of categories in the aerial imagery (6 classes) and 
the LiDAR point clouds (9 classes) in the ISPRS Vaihingen dataset. The 
point cloud data of GRSS DFC 2018 only contains 5 of the 20 object 
categories that appear in the imagery. As a result, the category mismatch 
in both ISPRS Vaihingen and GRSS DFC 2018 datasets makes them less 
suitable for multi-modal learning tasks. 

For the convenience of model training, we cropped the data into 
10,800 image patches with 512 × 512 pixels of 20 % overlaps. The 
training set, validation set, and test set were randomly divided according 
to the ratio of 8:1:1, as illustrated in Fig. 4. By contrast, the division of 
ISPRS Vaihingen (11 samples for training, five samples for validation, 
and 17 samples for testing) and GRSS DFC 2018 (four samples for 
training, none for validation, and 10 samples for testing) do not exactly 
correspond to the general setting of deep network training, as they are 
not specifically multi-modal deep benchmarks. 

Table 1 
Attribute comparison of N3C-California, ISPRS Vaihingen, and GRSS DFC 2018.   

N3C-California ISPRS Vaihingen GRSS DFC 
2018 

Number of tiles 1212 33 14 
LiDAR ANPD (pls/ 

m2) 
≥8 4 10 

Image dimension 
(px) 

1304 × 1304 (avg) 2493 × 2063 
(avg) 

11,920 ×
12,020 

GSD (cm/pixel) 100 9 5 
Coverage (km2) 725.72 (urban & 

rural) 
1.36 (urban) 5.01 (urban) 

Classes 4 6/9 (image/ 
LiDAR) 

20  

Fig. 4. Number of annotated pixels in N3C-California.  

Fig. 5. The workflow of IKD-Net.  

Y. Wang et al.                                                                                                                                                                                                                                   



ISPRS Journal of Photogrammetry and Remote Sensing 202 (2023) 385–404

390

4. Methodology 

4.1. Heterogeneous network 

As point clouds and aerial images belong to different dimensional 
spaces, the common strategy of combining the abridged 2D feature maps 
from LiDAR with images before insertion in the network will sacrifice 
the rich information of the former and fail to exploit the multi-modal 
features fully. To this end, we propose our novel Imbalance Knowl-
edge-Driven Multi-modal Network (IKD-Net), which can extract het-
erogeneous features from LiDAR point clouds and aerial image data in 
parallel. Fig. 5 presents the workflow of the disentangled dual-stream 
heterogeneous network. The two branches were crafted to be similar 
encoder-decoder structures, thereby making it possible to obtain similar 
size feature maps at the same branch depth. The LiDAR stream utilizes 
RandLA-Net (Hu et al., 2020) as the backbone network to extract 3D 
features, while the image stream utilizes UNet (Ronneberger et al., 
2015) for 2D feature extraction. Both branches can access individual 
knowledge, such as geometry in 3D space for LiDAR and texture and 
color information in 2D space for images. Unlike previous approaches 
that treat features from different modalities as homogeneous and design 
symmetric feature interaction modules, we exploit the affluent knowl-
edge of LiDAR (strong modality) to drive the refinement of feature maps 
from aerial images (weaker modality) with our Global Knowledge- 
Guided (GKG) gated module and Class Knowledge-Guided (CKG) gated 
module in the decoder parts. Four GKG gated modules obtain the global 
feature distribution from the LiDAR features at different resolutions to 
guide the image features at the same network depth to focus on the 
region of interest (ROI). The CKG gated module, which is applied at the 
end of the dual-stream architecture, provides the performance evalua-
tion of each category from a global perspective and achieves the coarse- 
to-fine segmentation. Before the feature interactions, a front-end pro-
jection transformation module called the Dimension Sensor (DS) is 

performed. 

4.2. Dual-stream feature extraction 

While the dual-stream network design aims to fully preserve the 
information of unimodal data and effectively leverage multi-modal 
features to facilitate feature interaction, the dual branches at the same 
time must obtain feature maps of the same size at the same depth of the 
network. If the input image size is 512 × 512, the number of input LiDAR 
points should be on the order of 2 × 105. Therefore, the 3D branch must 
have an exceptional ability to handle large-scale point clouds. To meet 
this need, we selected RandLA-Net as the 3D backbone and designed the 
corresponding encoder-decoder 2D network. In the encoder part, 
RandLA-Net first uses a linear transformation layer to expand the feature 
dimension to 8. The specially-designed local feature aggregation (LFA) 
and random sampling modules are repeated in the subsequent four 
downsampling layers. The LFA module consists of two crucial blocks 
(local spatial encoding and attention pooling). 

Local spatial encoding embeds the local geometric pattern for each 
individual point. Specifically, it first finds the K nearest points around 
each point with the k-nearest neighbors (k-NN) algorithm. Then, within 
the above K points, the information of the coordinates is aggregated. In 
this paper, K is set to 16. The aggregated calculation formula is as 
follows: 

rk
i = MLP

(
pi ⊕ pk

i ⊕
(
pi − pk

i

)
⊕
⃦
⃦pi − pk

i

⃦
⃦
)

(1) 

where ri
k represents the coordinate encoding value of the i-th point 

and its k-th neighbor point. MLP denotes the multilayer perceptron. The 
four terms in the outermost bracket are the coordinates of the center 
point, the coordinates of its k-th neighbor point, the relative coordinate 
difference, and the relative distance between the two points. ⊕ stands 
for concatenation. 

Fig. 6. The structure of the dimension sensor module. The dashed box illustrates an example where the number of channels is 1. In this case, the features of each 
point are projected onto the corresponding pixel by employing coordinate transformation and depth direction projection. This process produces a sparse 2D feature 
map. Afterwards, a dense 2D feature map is generated by applying dilation operations. 
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Fig. 7. Dilation operation.  
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Secondarily, the transformed encoding rk
i is concatenated with the 

corresponding feature fk
i : 

f̃
k
i = rk

i ⊕ f k
i (2) 

The attention pooling module further refines the feature encodings 

obtained in the previous step ̃Fi = {f̃
1
i ⋅⋅⋅̃f

k
i ⋅⋅⋅̃f

K
i }(i.e., the feature maps are 

multiplied at the pixel level with the weight distribution maps generated 
on them). Ultimately, the results are accumulated to obtain the aggre-
gated features f̂ i of the individual points. 

We use features from the strong modal point clouds in the decoder to 
guide the aerial images for feature map refinement. The refined images 
then use interpolation and convolution blocks to restore the image size, 
and the LiDAR stream does likewise. 

4.3. Dimension sensor 

We designed our plug-in DS module for the purpose of aligning the 
high-dimensional features to the low-dimensional ones, as shown in 
Fig. 6. The dashed box contains an example of a case where the number 
of channels is 1. First, we performed coordinate transformation and 
depth direction projection on each 3D point to produce a feature map in 
the same metric space as the image. However, there are bound to be 
pixels not covered by points in feature maps (i.e., hole pixels), which 
introduce significant inaccuracies when the images are superimposed. 
Thus, we executed a dilation operation with the trick of max pooling, 
which fills the hole pixels without increasing the complexity of the 
network, as depicted in Fig. 7. The principle of using max pooling to fill 
holes is fundamentally similar to the morphological dilation of binary 
images. The max pooling operation selects only the maximum value in 
each rectangular subregion, which represents the most responsive part 
of the feature map. Using the max pooling operation effectively elimi-
nates noise such as hole pixels, rather than being affected by it, and 
preserves as much useful information as possible. After passing through 
the DS, the point cloud features can be converted to the image space 
with a high degree of fit. 

4.4. Global knowledge-guided gated module 

Owing to the nature of spotlighting the neighborhoods of convolu-
tional kernels, the information flow in convolutional neural networks is 
restricted to local areas (Zhao et al., 2018). A spatial attention 

mechanism can generate an overall probability map to focus on the ROI, 
thereby extending the global contextual understanding of complex 
scenes. The probability distribution of the existing methods is derived 
from the input itself, but due to the limitation of unimodal data infor-
mation capacity, there is a ceiling to this refinement. To tackle this 
problem, we proposed a GKG gated module to provide a global proba-
bility distribution map utilizing feature maps from strong modality point 
clouds to guide the further refinement of the image feature map. The 
structure of our GKG gated module is shown in Fig. 8. 

The global attention map from point cloud Fglobal(Xpc) is defined as: 

Fglobal
(
Xpc
)
= σ
(
g7×7( [AvgPool

(
Xpc
)
,MaxPool

(
Xpc
)] ) )

(3) 

The avg- and max-pooling operations generate compact feature 
representations in the spatial dimension. g7×7 is a sequence operation of 
7 × 7 conv, batch normalization, and ReLU. σ denotes the sigmoid 
function. By this sequential operation, the feature map of the strong 
modal point cloud is compressed into a spatial-wise weight distribution 
map. We drew inspiration from the spatial attention module of CBAM 
(Woo et al., 2018) and improved upon its framework by incorporating 
our knowledge-driven ideas. Specifically, the input and output of the 
original spatial attention module are based on the same feature map, 
while our GKG module is designed for multi-modal data. It obtains a 
spatial weight map from the strong modality and uses it to guide the 
optimization of the response values in the feature map of weak modality. 

Then, Fglobal(Xpc) is applied to drive the attention boosting of the 
weak modalities. The spatial attention-boosted feature map is obtained 
from the aerial image. Finally, the spatially enhanced image feature 
maps are concatenated with the point cloud feature maps. In summary, 
the output of the GKG gated module is: 

Xglobal =
[
Fglobal

(
Xpc
)
⊙ Ximg,Xpc

]
(4) 

where ⊙ represents multiplication along the channel. 
The GKG gated module leverages the higher-level semantic infor-

mation of the strong modality to provide guidance on the global dis-
tribution for the weak modality, refining the latter’s understanding of 
the global context. 

4.5. Class knowledge-guided gated module 

Besides global information, inter-class variability also plays an 
influential role in segmentation tasks. Assuming that there is a fixed- 
length encoding for each category (i.e., the theoretical class center), 

Fig. 8. The structure of the GKG gated module. +, ⋅ and S represent concatenation, multiplication along the channel, and sigmoid function, respectively.  
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all the pixels in the global scene belonging to that category should make 
a contribution (Zhang et al., 2019). Further, these encodings can in turn 
optimize the category attribution of each pixel in the scene. Accordingly, 
we added a coarse-to-fine structure called the CKG gated module at the 
output part of IKD-Net, as shown in Fig. 9. 

First, the CKG gated module distills the contextual information and 
generates the category probability map Fclass with the coarse segmen-
tation result Pcoarse from the point clouds and the feature map Ximg of the 
corresponding image. Each row of Fclass provides the performance 
evaluation of a category from a global perspective by converging the 
feature vectors of all the pixels belonging to the category. 

In detail, we put Ximg through a sequence operation g1×1 of 1 × 1 
conv, batch normalization, and ReLU to reduce the channel dimension 
from C to C’. Then, a reshape operation is applied to g1×1(Ximg) and 
Pcoarse respectively: 

g1×1(Ximg
)
∈ RC′×H×W →g1×1(Ximg

)
∈ RC′×HW (5)  

Pcoarse ∈ RN×H×W →Pcoarse ∈ RN×HW (6) 

where N is the category number. 
The category probability map Fclass ∈ RN×C′ is calculated as: 

Fclass = softmax
(

Pcoarse
(
g1×1(Ximg

) )T
)

(7) 

Second, taking the coarse class distribution of each pixel as the 
mediator, the attentional class feature vector of each pixel is obtained by 
multiplying the coarse segmentation result Pcoarse and the category 
probability map Fclass. The attentional class feature map is: 

Fig. 9. The structure of the CKG gated module. x stands for the matrix multiplication.  

Table 2 
Ablation study for different number of GKG gated modules. CAT represents the 
simple feature concatenation operations.  

Backbone #GKG #CAT OA Mean Acc Kappa mIoU 

UNet – –  86.35  67.17  77.22  59.43 
IKD-Net- – 1  87.07  84.87  79.17  63.45 
IKD-Net- – 2  90.59  87.02  84.46  68.38 
IKD-Net- – 3  91.67  89.20  86.38  70.81 
IKD-Net- – 4  92.18  90.77  87.30  71.97 
IKD-Net- 1 –  88.25  85.63  80.92  65.33 
IKD-Net- 2 –  91.00  88.06  85.25  69.49 
IKD-Net- 3 –  91.70  89.49  86.42  70.87 
IKD-Net- 4 –  92.75  91.42  88.22  72.89  

Table 3 
Ablation study for CKG gated module.  

Backbone CKG Loss OA Mean Acc Kappa mIoU 

IKD-Net- (GKG-4) – Limg  92.75  91.42  88.22  72.89 
IKD-Net- (GKG-4) ✓ Limg  92.35  90.75  87.54  72.07 
IKD-Net- (GKG-4) ✓ Limg + Lpc  93.19  91.36  88.86  73.47  

Table 4 
Ablation study for different loss functions.  

Backbone Loss OA Mean Acc Kappa mIoU 

IKD-Net Limg  92.35  90.75  0.88  72.07 
IKD-Net Limg + Lpc  93.19  91.36  0.89  73.47 
IKD-Net Limg + Lpc+ Lbi-kl  90.64  87.99  0.85  69.80 
IKD-Net Limg + Lpc+ Lkl (ours)  93.81  90.61  0.90  75.50  

Table 5 
Ablation study for different dilation functions.  

Backbone Dilation operation OA Mean Acc Kappa mIoU 

IKD-Net –  89.73  84.73  0.83  66.93 
IKD-Net Median interpolation  90.69  85.17  0.85  68.45 
IKD-Net Average interpolation  90.56  86.25  0.84  68.66 
IKD-Net Max interpolation  90.34  85.33  0.84  67.90 
IKD-Net Median pooling  88.49  84.20  0.81  65.49 
IKD-Net Average pooling  92.61  91.86  0.88  72.82 
IKD-Net 2D power-average pooling  93.13  91.98  0.89  73.43 
IKD-Net Max pooling (ours)  93.81  90.61  0.90  75.50  

Table 6 
Ablation study for different attention functions. K-G represents knowledge- 
driven mechanism.  

Backbone Attention module OA Mean 
Acc 

Kappa mIoU 

IKD-Net –  92.31  90.60  0.87  71.95 
IKD-Net SE layer  92.95  89.66  0.88  72.66 
IKD-Net SE K-G layer  93.12  89.79  0.89  73.04 
IKD-Net SK layer  92.69  88.86  0.89  73.38 
IKD-Net SK K-G layer  93.18  90.53  0.89  73.23 
IKD-Net Self-attention structure  92.80  86.90  0.88  72.14 
IKD-Net Self-attention K-G structure  92.94  88.28  0.89  72.62 
IKD-Net Spatial attention module  93.47  89.58  0.89  73.63 
IKD-Net Global K-G gated module 

(GKG)  
93.81  90.61  0.90  75.50  
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Fig. 10. Visualization of the feature maps after applying each module.  

Table 7 
Quantitative comparison of IKD-Net, the baseline methods, the multi-modal benchmark method, the visual classical semantic segmentation methods, and the SOTA 
multi-modal segmentation networks on N3C-California dataset.  

Method Input OA Mean Acc Kappa IoU 

Others Ground Tree Building Mean 

UNet (baseline) RGB  86.35  67.17  0.77  2.46  80.92  73.33  81.01  59.43 
RandLA-Net 

(baseline) 
LiDAR  87.49  85.78  0.82  40.06  88.32  84.19  69.98  70.64 

Hybri-UNet RGB + DSM  89.00  71.76  0.82  12.98  85.86  77.03  87.13  65.75 
UperNet RGB + DSM  85.74  78.90  0.77  10.58  90.34  51.20  86.80  59.73 
HRNet RGB + DSM  91.90  80.39  0.86  20.94  91.01  80.92  83.89  69.19 
vFuseNet RGB + DSM  86.11  75.47  0.75  49.73  81.99  57.58  77.43  66.68 
MultifilterCNN RGB + DSM + intensity 

+number returns + DoG  
88.97  76.44  0.82  25.77  84.33  77.63  82.63  67.59 

MFNet RGB + DSM 
+Slope angle + DoG  

91.00  74.85  0.86  14.29  87.36  82.09  89.87  68.40 

S2ENet RGB + DSM + intensity 
+number returns  

92.63  77.89  0.87  27.07  89.68  76.20  91.19  71.03 

MDL_RS RGB + DSM + intensity 
+number returns  

90.99  72.55  0.85  16.46  87.08  74.82  86.57  66.23 

JSH-Net RGB + DSM + intensity 
+number returns  

91.59  75.46  0.86  23.56  88.00  75.18  88.23  68.74 

EndNet RGB + DSM + intensity 
+number returns  

88.29  66.58  0.80  3.11  8.34  72.23  78.87  59.40 

CMGFNet RGB + DSM + intensity 
+number returns  

92.90  75.95  0.88  22.69  93.65  80.53  92.90  72.44 

IKD-Net (ours) RGB + LiDAR  93.81  90.61  0.90  30.68  93.11  82.35  95.87  75.50  
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Ffine = PT
coarseFclass (8) 

For the subsequent operation, Ffine is reshaped: 

Ffine ∈ RC′×HW →Ffine ∈ RC′×H×W (9) 

Finally, the concatenation of Ffine and Ximg is put into a 1 × 1 conv f1×1 

to obtain the class boosting feature map: 

Xfine = f 1×1[Ximg,Ffine
(
Pcoarse,Ximg

)]
(10) 

The CKG gated module guides each pixel in the high-level feature 
maps of an image (weak modality) to adaptively approach the theoret-
ical class centers according to the segmentation results of the point 
clouds (strong modality). 

4.6. Loss function 

In order to maintain the balance of the parameter flow in each 
branch during network optimization, we proposed a joint loss function, 
which consists of three types of supervision: two single-task loss func-
tions and a pixel-wise similarity loss. 

Joint Loss. Serving as the whole objective function, the joint loss 
enables the network to be trained in an end-to-end manner, which is 

summarized as: 

Ltotal = LCE
(
P
(
ximg
))

+ LCE
(
P
(
xpc
))

+Lpi− SC
(
P
(
ximg
)
,P
(
xpc
))

(11) 

where ximg and xpc denotes the input image and LiDAR, respectively; 
P(*) represents the final probability distribution map; LCE is the seg-
mentation cross-entropy loss; and Lpi-SC is the pixel-wise similarity loss. 

Single-task Loss. For each branch of semantic segmentation, given 
predict P(x) and ground truth y, we use cross-entropy loss to optimize, 
which is as follows: 

LCE(P(x)) = −
∑N

i=1

∑M

c=1
yiclog(P(xic)) (12) 

where N represents the number of pixels or points and M denotes the 
number of categories. 

Pixel-wise Similarity Constraint. To make the convergence spaces of 
the images and point clouds of the same scene as close as possible, we 
straightforwardly add similarity constraints. Further, inspired by 
knowledge distillation (Hinton et al., 2015; Liu et al., 2019), we consider 
the class distribution of the point clouds (strong modality) P(xpc) as soft 
targets to guide the images (weak modality) P(ximg), thus improving the 
accuracy of 2D semantic segmentation. 

Fig. 11. Qualitative comparison of the baseline, the multi-modal benchmarks, the SOTA multi-modal segmentation networks, and IKD-Net (ours) on N3C-California.  
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We use Kullback-Leibler divergence to implement this pixel-wise 
similarity constraint, which is formulated as follows: 

Lpi− SC
(
P
(
ximg
)
,P
(
xpc
))

=
1

W × H
∑W×H

i=1
KL
(
Pi
(
ximg
)⃦
⃦Pi
(
xpc
))

(13) 

where 

KL
(
Pi
(
ximg
)⃦
⃦Pi
(
xpc
))

= Pi
(
ximg
)
log

(
Pi
(
ximg
)

Pi
(
xpc
)

)

(14)  

5. Experiments 

In this section, we explain the experimental setups and evaluation 
metrics. We conducted sufficient ablation studies to verify the ratio-
nality of our sophisticated modules and the overall structure of IKD-Net. 
We visualize the outcomes of each module here. Then, we compare our 
IKD-Net results with those of the state-of-the-art (SOTA) methods on the 
N3C-California, ISPRS Vaihingen, and GRSS DFC 2018 datasets. Finally, 
we demonstrate how our method achieved outstanding performance on 
all three datasets. The best values for each specific metric are high-
lighted in bold in the following tables. 

5.1. Experimental setting 

5.1.1. Implementation details 
All the experiments were conduct on a Linux PC equipped with an 

NVIDIA GeForce RTX 3090 24G GPU. The code of our own architecture 
and the code we reproduced are based on the PyTorch deep learning 
framework. During training, the batch size was set to 2 for the experi-
ments on all the datasets. Each epoch had 1,000 iterations, and the 
maximum number of epochs was always 50. On the N3C-California 
dataset, the Adam algorithm with a 0.001 learning rate was employed 

for optimization. For the other datasets, the SGD method with a 0.01 
learning rate, 0.0001 wt decay, and 0.9 momentum was chosen. The 
input images were 512 × 512 pixel in size. To ensure that point clouds 
cover as many pixels as possible and balance memory consumption, we 
randomly selected a total of 131,072 points from the LiDAR patch 
covering the same area and fed them into the networks simultaneously. 
This number of points represents half of the pixel-number of a 512 × 512 
image. 

5.1.2. Evaluation metrics 
The results were evaluated by overall accuracy (OA), mean accuracy 

(Mean Acc), Cohen’s Kappa (Kappa), mean intersection over union 
(mIoU) and F1 Score. 

OA is defined as the ratio of the number of correctly classified pixels 
pcorrect to the total number of pixels pall. 

OA =
pcorrect

pall
(15) 

OA is simple to calculate but is easily dominated by a large number of 
samples in the case of unbalanced samples, which can be addressed by 
three other metrics. 

We assume TPk, FPk, TNk, FNk represent the true positive number, the 
false positive number, the true negative number, and the false negative 
number for k-th class, respectively, in the confusion matrix. Accuracy 
and IoU for k-th class (Acck and IoUk) are defined as: 

Acck =
TPk

TPk + FPk (16)  

IoUk =
TPk

TPk + FPk + FNk (17) 

For total K categories, Mean Acc and mIoU are defined as: 

Mean Acc =
1
K

∑K

k=1

TPk

TPk + FPk (18)  

mIoU =
1
K

∑K

k=1

TPk

TPk + FPk + FNk (19) 

The formula for Kappa is: 

Kappa =
OA − pe

1 − pe
(20) 

where 

pe =

∑K
k=1(TPk

+ FPk)(TPk
+ FNk)

p2
all

(21) 

The F1 score is the harmonic mean of Acck and the recall rates. The 
F1 score for for k-th class (F1 score k) is calculated as follows: 

F1 - Scorek =
2 × Acck × recall

1
Acck +

1
recall

(22) 

where 

recall =
TPk

TPk + FNk (23)  

5.2. Results on N3C-California dataset 

In the ablation studies section, we marked the dual-stream backbone 
of our IKD-Net as IKD-Net-, which indicates that we discarded the GKG 
and CKG gated modules and it now was equipped only with one single- 
task loss function (the image segmentation loss function). 

5.2.1. Ablation study for GKG gated module 
The four structured GKG gated modules in the two-branch structure 

Table 8 
Quantitative comparison of IKD-Net, the baseline methods, the benchmark 
competitors, and the recent SOTA multi-modal segmentation networks on ISPRS 
Vaihingen dataset.  

Method OA F1 Score 

Imp 
surf 

Building Low 
veg 

Tree Car Mean 

UNet (baseline)  84.5  86.7  90.1  76.9  83.9  62.9  80.1 
RandLA-Net 

(baseline)  
85.5  87.6  92.4  78.5  83.7  00.2  68.5 

SVL_3  84.8  86.6  91.0  77.0  85.0  55.6  79.0 
HUST  85.9  86.9  92.0  78.3  86.9  29.0  74.6 
RIT  86.3  88.1  93.0  80.5  87.2  41.9  78.1 
UOA  87.6  89.8  92.1  80.4  88.2  82.0  86.5 
ADL_3  88.0  89.5  93.2  82.3  88.2  63.3  83.3 
DST_1  88.7  90.3  93.5  82.5  88.8  73.9  85.8 
DLR_8  89.2  90.4  93.6  83.9  89.7  76.9  86.9 
UFMG_4  89.4  91.1  94.5  82.9  88.8  81.3  87.7 
ONE_7  89.8  91.0  94.5  84.4  89.9  77.8  87.5 
CASIA2  91.1  93.2  96.0  84.7  89.9  86.7  90.1 
CCANet  91.1  93.3  94.3  82.0  88.6  86.6  89.0 
BANet  90.5  92.2  95.2  83.8  89.9  86.8  89.6 
HCANet  90.3  92.5  95.0  84.2  89.4  84.0  89.0 
HECR-Net  91.5  93.6  95.5  85.8  90.4  89.1  90.9 
MAResU-Net  90.2  92.2  94.8  79.1  90.0  85.9  88.5 
ESANet  90.6  91.4  95.7  77.2  90.5  85.5  88.2 
BoTNet  90.2  92.2  94.5  84.0  89.6  82.9  88.6 
MANet  91.0  93.0  95.5  84.6  90.0  89.0  90.4 
UNetFormer  91.0  92.7  95.3  84.9  90.6  88.5  90.4 
JSH-Net  91.4  93.3  96.3  85.0  90.0  90.4  91.0 
CMFNet  91.4  92.4  97.2  80.4  90.8  85.5  89.5 
HMANet  91.4  93.5  95.9  85.4  90.4  89.6  91.0 
MFNet  91.7  92.2  96.3  84.7  89.1  89.7  90.4 
SPANet  91.8  93.5  96.2  86.8  90.9  90.6  91.6 
LoG-CAN  91.9  93.7  96.6  85.9  90.9  90.2  91.4 
IKD-Net (ours)  92.1  96.1  90.5  87.2  92.0  92.5  91.6  
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provided multi-resolution weight redistribution maps for top-to-down 
weak modality feature map refinement under strong modality guid-
ance. To demonstrate the effect of the structured GKG modules, we 
gradually increased the number of GKG modules on the backbone IKD- 
Net-. The experimental results are shown in Table 2. In rows 2–5, we 
replaced the GKG gated modules with the simple feature concatenation 
operations at the same positions. 

At least four primary conclusions can be drawn from Table 2. First, as 
implied in rows 1–5, the supplemental feature maps from the LiDAR 
stream greatly improved the image segmentation, and the more infor-
mation that was provided from the former the greater the accuracy 
improvement. Simply overlaying four multi-resolution feature maps 
from the LiDAR stream (row 5), our IKD-Net- backbone outperformed 
UNet by nearly 0.06 in OA, over 0.23 in Mean Acc, over 0.1 in Kappa, 
and over 0.12 in mIoU. Second, upgrading the simple concatenation 
operations with GKG gated modules (row 2–5 vs. row 6–9) further 
enhanced the ability to jointly exploit the multi-modal features by 
driving the refinement of the feature distribution of the weak modality 
with the affluent knowledge from the strong modality. Third, as we 
gradually increased the number of GKGs, the accuracy steadily 
improved, indicating that the effects of our GKGs were cumulative. 
Eventually, IKD-Net- equipped with four structured stacked GKG gated 
modules (row 9) surpassed the baseline by over 0.06 in OA, over 0.24 in 

Mean Acc, 0.11 in Kappa, and over 0.13 in mIoU. 

5.2.2. Ablation study for CKG gated module 
The CKG gated module simultaneously distilled the contextual in-

formation of the strong and weak modalities to obtain the category-wise 
feature map, the so-called class centers. The class centers were then 
exploited to guide the refinement of the feature maps of the weak modal 
images from coarse to fine. We observed the effect of adding the CKG 
gated module based on the optimal structure in the last section (marked 
as IKD-Net- (GKG-4)), as indicated in Table 3. 

Row 2 in Table 3 contains the results of IKD-Net- (GKG-4) with the 
addition of the CKG gated module. The accuracy decreased slightly with 
respect to simple IKD-Net- (GKG-4) (row 1) on all the metrics. This 
decrease may have been due to CKG depending largely on the coarse 
segmentation process, which is not fully optimized by the single image 
segmentation loss function because the backward-propagation route is 
too circuitous for the LiDAR stream. Therefore, we incorporated an 
additional cross-entropy loss function to the LiDAR stream, as shown in 
row 3. By adding the CKG gated module to IKD-Net- (GKG-4), it even-
tually exceeded its counterpart without CKG on three metrics. 

5.2.3. Ablation study for loss function 
The joint loss function Ltotal takes into account both the independent 

Fig. 12. Qualitative comparison of IKD-Net with the benchmark competitors on ISPRS Vaihingen dataset: (a) Imagery, (b) DST_1, (c) DLR_8, (d) UFMG_4, (e) ONE_7, 
(f) CASIA2, (g) IKD-Net (ours), and (h) Ground truth. 
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optimizations of each branch and the synergy between them. Table 4 
indicates the superposition effect of the three terms in Ltotal, which are 
the single image segmentation loss function, single point cloud seg-
mentation loss function, and pixel-wise similarity constraint. Addition-
ally, a comparison between the bi-directional K-L loss and the K-L loss 
using the point clouds coarse segmentation results as soft labels is 
presented. 

As explained in the last section, the joint use of two single-task loss 
functions facilitated the performance of the CKC module. Furthermore, 
the addition of a pixel-wise similarity constraint further promoted the 
improvement of image segmentation accuracy, thereby surpassing its 
counterpart with a single image segmentation loss of nearly 1.5 % in OA, 
over 2 % in Kappa, and over 3.4 % in mIoU. The use of bi-directional K-L 
loss significantly reduced the accuracy of the segmentation results. This 
could be attributed to the fact that using the weak modality image’s 
coarse segmentation result as a soft label to guide the redistribution of 
the strong modality point clouds’ feature map does not refine the latter. 
This confirmed the validity of our knowledge-driven mechanism. 

5.2.4. Ablation study for dilation functions 
In the dilation step of the DS module, we chose to use the max 

pooling operation to address the potential occurrence of hole pixels 
when projecting 3D points onto a 2D space with almost no increase in 
the complexity or computational load of the network. To further 
investigate the effectiveness of different interpolation and pooling 
methods, we conducted a comparison in Table 5, including three 

interpolation methods: median interpolation, average interpolation, and 
max interpolation, as well as four pooling methods: median pooling, 
average pooling, 2D power-average pooling, and max pooling. 

Table 5 illustrates that utilizing dilation methods other than median 
pooling yields higher final performance than without dilation (row 1), 
indicating that the dilation operation plays a crucial role in optimizing 
the feature map. Compared to interpolation methods (row 2–4), which 
employ the same filling value within the same channel, pooling methods 
(row 5–8) that employ filling values for each local area can better ac-
count for the differences between different sub-regions. This leads to 
performance improvements of approximately 2 %, 5 %, and more than 4 
% on 0A, Mean Acc, and mIoU, respectively. While the median pooling 
method (row 5) substantially weakens the impact of extreme response 
values, the average-based pooling method (row 6–7) is inevitably 
influenced by missing pixels in the local areas. As a result, the max 
pooling method (row 8) outperforms the others by eliminating noise 
such as missing pixels. 

5.2.5. Ablation study for attention modules 
The GKG module is built upon the spatial attention module of CBAM 

(Woo et al., 2018) and incorporates our proposed knowledge-driven 
mechanism. We also applied the knowledge-driven mechanism to 
other common attention modules, including SE (Hu et al., 2018), SK (Li 
et al., 2019), and Self-attention (Vaswani et al., 2017). Ablation exper-
iments are conducted, and the results are presented in Table 6. 

Table 6 demonstrates that all methods utilizing attention modules 
(row 2–9) exhibit improvements in OA, Kappa, and mIoU. Moreover, for 
each attention module (row 2–3, row 4–5, row 6–7, and row 8–9), the 
introduction of our knowledge-driven mechanism led to further im-
provements in accuracy across all indicators. This indicates that under 
the guidance of the knowledge-driven mechanism, the strong modality 
optimizes the redistribution of the feature map of weak modality. 
Notably, the GKG module, which incorporates the knowledge-driven 
mechanism into the spatial attention module, achieves the highest ac-
curacy across all four indicators. 

5.2.6. Visualization results of GKG and CKG gated modules 
In order to qualitatively analyze the effect of each module on the 

features, we visualized the feature maps after applying each module, as 
shown in Fig. 10. We took the mean value in the channel direction for 
the high-dimensional feature maps to normalize and stretch the 

Table 9 
Quantitative comparison of IKD-Net, the baseline methods, the top ranked teams, and the recent SOTA multi-modal segmentation networks on GRSS DFC 2018 dataset.  

class UNet 
(baseline) 

RandLA-Net 
(baseline) 

XudongKang Gaussian IPIU challenger AGTDA dlrpba CEGCN NLCaps 
-Net 

EB- 
CNN 

CAG CAGU IKD-Net 
(ours) 

1  88.36  72.27  –  –  –  –  –  –  61.30  28.24  51.50  –  –  80.37 
2  74.82  86.30  –  –  –  –  –  –  61.53  72.15  74.62  –  –  95.61 
3  00.74  –  –  –  –  –  –  –  63.71  6.78  21.87  –  –  99.61 
4  93.36  –  –  –  –  –  –  –  61.38  5.92  81.22  –  –  97.21 
5  60.89  –  –  –  –  –  –  –  61.38  12.04  24.05  –  –  94.02 
6  11.06  6.17  –  –  –  –  –  –  62.48  2.26  14.75  –  –  81.77 
7  10.48  80.23  –  –  –  –  –  –  59.02  0.45  72.01  –  –  99.88 
8  36.51  –  –  –  –  –  –  –  22.56  42.60  50.69  –  –  88.73 
9  84.19  –  –  –  –  –  –  –  33.08  86.22  90.64  –  –  82.07 
10  85.24  –  –  –  –  –  –  –  14.39  32.67  41.99  –  –  91.84 
11  71.78  –  –  –  –  –  –  –  9.32  20.68  45.93  –  –  85.05 
12  34.66  –  –  –  –  –  –  –  19.99  0.86  3.79  –  –  72.74 
13  1.56  –  –  –  –  –  –  –  11.73  30.91  55.71  –  –  28.54 
14  0.02  –  –  –  –  –  –  –  59.60  39.92  90.64  –  –  75.22 
15  95.52  –  –  –  –  –  –  –  60.30  18.07  31.53  –  –  95.12 
16  00.04  –  –  –  –  –  –  –  58.90  27.01  51.44  –  –  17.50 
17  0.0  77.27  –  –  –  –  –  –  58.56  1.29  1.34  –  –  48.81 
18  15.74  –  –  –  –  –  –  –  58.60  11.51  33.92  –  –  97.94 
19  18.95  –  –  –  –  –  –  –  60.38  9.86  87.16  –  –  92.67 
20  63.81  –  –  –  –  –  –  –  60.88  14.04  40.07  –  –  39.76 
AA  43.10  64.39  71.26  71.66  74.40  75.99  76.15  76.32  59.64  25.81  47.75  67.39  77.04  78.22 
OA  45.93  75.22  76.45  80.78  79.23  77.90  79.79  80.74  60.80  32.75  63.57  70.28  80.72  78.28 
Kappa  0.43  0.60  0.75  0.80  0.78  0.77  0.79  0.80  0.59  0.26  0.55  0.68  0.81  0.77  

Table 10 
Category numbers and the corresponding category names of GRSS DFC 2018 
dataset.  

# Class # Class 

1 Healthy grass 11 Sidewalks 
2 Stressed grass 12 Crosswalks 
3 Artificial turf 13 Major thoroughfares 
4 Evergreen trees 14 Highways 
5 Deciduous trees 15 Railways 
6 Bare earth 16 Paved parking lots 
7 Water 17 Unpaved parking lots 
8 Residential buildings 18 Cars 
9 Non-residential buildings 19 Trains 
10 Roads 20 Stadium seats  
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obtained single-channel 2D feature map to 0–255. Finally, we performed 
a pseudo-color transformation to obtain the feature maps that facilitated 
visual interpretation. The ground truth was generated by projecting the 
“classification” attributes of the LiDAR data onto a 2D space. However, 
due to the inherent distortion that occurs when projecting LiDAR 
patches from 3D to 2D, some areas along the edges of the final output 

may lack coverage. To address this, we filled the pixels without labels 
with dark gray in the “Result” and “Ground truth” images. 

As is evident from each row of Fig. 10, the segmentation results were 
progressively detailed after each module was applied. We observed that 
as the number of GKG modules increased, their effect of fusing global 
information became more pronounced, mainly in the Building category. 

Fig. 13. Classification map over the entire scene of GRSS DFC 2018 dataset: (a) Imagery, (b) AGTDA, (c) dlrpba, and (d) IKD-Net (ours).  
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Intuitively, in terms of the global scene, the characteristics of the 
buildings became more distinct compared to the ground and trees. 
Columns 3–6 show that the scattered buildings gradually became more 
distinguishable from the other categories as the boundaries became 
increasingly more precise. After the fourth GKG module (column 6) was 
applied, a large area of trees now has clear demarcation lines from the 
ground. The CKG module performed class-weighted refinement on the 
feature maps, which improved the inter-class difference and intra-class 
similarity, as illustrated in column 7. It further subdivided the large 
areas that were misclassified into the same type by the previous mod-
ules, and the boundaries between the trees (orange) and buildings 
(turquoise) also became sharper. 

5.2.7. Comparing with SOTA methods 
Finally, we compared the complete IKD-Net with the baseline 

method (UNet (Ronneberger et al., 2015), RandLA-Net (Hu et al., 
2020)), the multi-modal benchmark method (Hybri-UNet (Sherrah, 
2016)), the visual classical semantic segmentation methods (HRNet 
(Wang et al., 2020) and UperNet (Xiao et al., 2018)), and the SOTA 
multi-modal segmentation network in RS field (vFuseNet (Audebert 
et al., 2018), MultifilterCNN (Sun et al., 2018), MFNet (Sun et al., 2021), 
S2Enet (Fang et al., 2021), MDL_RS (Hong et al., 2021), JSH-Net (Zhang 
et al., 2022), EndNet (Hong et al., 2022), and CMGFNet (Hosseinpour 
et al., 2022)). The same experimental hyperparameters were used for all 
the methods. The results are shown in Table 7. If the original methods 
included instructions on the type of input data, we followed those 

Table 11 
Multi-class semantic segmentation on N3C-California dataset. IoU is calculated for each category.  

Backbone Strong modality OA Mean Acc Kappa IoU 

Others Ground Tree Building Mean 

IKD-Net –  93.22  91.06  0.89  29.02  91.17  79.46  95.55  73.80 
IKD-Net Image  90.90  85.99  0.85  25.58  88.39  67.91  94.54  69.10 
IKD-Net (ours) LiDAR  93.81  90.61  0.90  30.68  93.11  82.35  95.87  75.50  

Fig. 14. The area where the building is obstructed by trees in imagery and LiDAR.  

Table 12 
Binary semantic segmentation of individual class on N3C-California dataset.  

Class Backbone Strong modality OA Mean Acc Kappa IoU 

Background Foreground Mean 

Ground IKD-Net –  96.12  96.05  0.92  91.58  93.28  92.43 
IKD-Net Image  94.65  94.62  0.89  88.64  90.80  89.72 
IKD-Net (ours) LiDAR  96.34  96.30  0.93  92.05  93.63  92.84 

Tree IKD-Net –  96.44  95.32  0.88  95.70  82.77  89.24 
IKD-Net Image  94.25  89.23  0.80  93.25  72.14  82.69 
IKD-Net (ours) LiDAR  96.83  95.56  0.90  96.17  84.37  90.27 

Building IKD-Net –  96.93  95.79  0.90  96.29  84.85  90.57 
IKD-Net Image  98.67  97.68  0.96  98.26  94.60  96.43 
IKD-Net (ours) LiDAR  98.90  98.59  0.97  98.56  95.61  97.08  

Table 13 
Multi-class semantic segmentation on ISPRS Vaihingen dataset. F1 Score is calculated for each category.  

Method Strong modality OA F1 Score 

Imp surf Building Low veg Tree Car Mean 

IKD-Net –  85.4  79.1  85.2  61.7  71.7  55.2  70.6 
IKD-Net Image  83.7  75.1  81.5  60.1  71.3  37.5  65.1 
IKD-Net (ours) LiDAR  92.1  96.1  90.5  87.2  92.0  92.5  91.6  
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guidelines. If no specific limitations were mentioned, we opted for input 
data consisting of RGB, DSM, intensity, and number of returns. 

For each method in Table 7, the IoU of the Others category was much 
lower than the other three categories, which was caused by two factors. 
First, the Others category contained three subcategories (low vegeta-
tion, water, and road surface), which made it more difficult to obtain a 
unified feature description. Second, the number of pixels belonging to 
the Others category was only about five percent of the other classes, 
making it very difficult for networks to learn the discriminative features. 

Compared to the multi-modal benchmark method Hybri-UNet, the 
visual classical semantic segmentation method UpperNet didn’t exhibit 
significant advantages, and in fact, the accuracy in OA and Kappa in-
dicators even decreased. This suggests that visual classical semantic 
segmentation methods may not always be applicable to RS data. 

Most of the multi-modal methods exceeded the baseline method 
UNet in OA, Mean Acc, Kappa, and mIoU, indicating that introducing 
the other modality indeed improved the effect of 2D semantic segmen-
tation. However, almost none of them achieved a higher mIoU than the 
baseline method RandLA-Net, which may have been due to their inev-
itable information loss when mapping the 3D point cloud data to the 2D 
image space in the preprocessing stage. 

Our IKD-Net significantly surpassed the current SOTA multi-modal 
segmentation methods in all the metrics. In particular, our IoU in the 
Building category reached over 0.95, laying a better foundation for the 
downstream RS tasks. The excellent outcome of IKD-Net mainly can be 
attributed to its heterogeneous networks and well-designed feature 
interaction module that directly extract features from the raw data 
source and utilize the imbalance information between them. It is worth 
noting that the 2D products from 3D point cloud data (DSM, intensity 
image, etc.) are generated from dense point clouds with approximately 
2 × 106 points in every LiDAR patch while our IKD-Net randomly 
selected only 131,072 points from each LiDAR patch for a compromise 
with the computer memory. Nevertheless, even the relatively sparse 
point clouds still provided a powerful knowledge-driven effect for the 
aerial images, dramatically improving the segmentation accuracy. 

Fig. 11 displays the qualitative comparison results on six scenes. The 
unimodal method, UNet, barely distinguished the Others category, 
which revealed that multi-modal data offers a distinct advantage in the 
segmentation of the more ambiguous categories. For the second scene, it 
is evident that IKD-Net outperformed the other SOTA multi-modal 

strategies in terms of completeness and edge conformity for building 
segmentation. Furthermore, our method accurately outlines the edges of 
the two connected buildings on the right side of the third scene, effec-
tively restoring their connected form. Although the edges of the Tree 
category in all six scenes were very irregular and had many scattered 
small areas, IKD-Net outstandingly reconstructed its rough boundary 
lines. 

5.3. Results on ISPRS Vaihingen dataset 

As shown in Table 8, we compared our IKD-Net with the baseline 
methods (UNet, RandLA-Net), the benchmark competitors (SVL_3 
(Gerke, 2014), HUST (Quang et al.), RIT (Piramanayagam et al., 2016), 
UOA (Lin et al., 2016), ADL_3 (Paisitkriangkrai et al., 2015), DST_1 
(Sherrah, 2016), DLR_8 (Marmanis et al., 2018), UFMG_4 (Nogueira 
et al., 2019), ONE_7 (Audebert et al., 2016), and CASIA2 (Liu et al., 
2018)), and the recent SOTA multi-modal segmentation networks in RS 
field (CCANet (Deng et al., 2021), BANet (Wang et al., 2021), HCANet 
(Zhang et al., 2022), HECR-Net (Liu et al., 2021b), MAResU-Net (Li 
et al., 2021a), ESANet (Seichter et al., 2021), BoTNet (Srinivas et al., 
2021), MANet (Li et al., 2021b), UnetFormer (Wang et al., 2022), JSH- 
Net (Zhang et al., 2022), CMFNet (Ma et al., 2022), HMANet (Niu et al., 
2022), MFNet (Sun et al., 2021), SPANet (Hou et al., 2023), and LoG- 
CAN (Ma et al., 2023)) using the ISPRS Vaihingen dataset. The bench-
mark competitors on the challenge evaluation website were measured 
only on their OA and F1 score rounded to three decimal places so we 
indicate the same criteria in Table 8. The best value under a certain 
metric is bolded. 

Our IKD-Net ranked first among all the excellent methods on the OA 
and the mean F1 and achieved the best F1 score in four of the five cat-
egories. We believe the superiority of IKD-Net is due to its ability to treat 
the two modalities distinctly and then leverage the strong modality to 
drive the feature learning of the weak modality. 

When using RandLA-Net for point cloud single-modal classification, 
the accuracy of the car category is close to 0. However, multi-modal 
classification using our IKD-Net can increase single-image classifica-
tion accuracy by about 30 %. The LiDAR data of ISPRS Vaihingen dataset 
is acquired through row scanning, resulting in a sparse distribution with 
very few points belonging to the Car category, making it challenging to 
determine this category. Nevertheless, our approach of point clouds 
guide image feature redistribution can still improve remote RS seg-
mentation accuracy, even when the point cloud quality is relatively 
poor. This is due to the relatively large amount of information contained 
in each single point in LiDAR data. 

Fig. 12 displays the qualitative results of IKD-Net and five excellent 
benchmark methods on the ISPRS Vaihingen dataset. All the methods 
delivered exceptional performance, while our IKD-Net excelled in 
integrity and accurately identified the boundaries of buildings. More-
over, only IKD-Net was able to separate the tree objects of the third scene 
while the other methods joined them together. 

5.4. Results on GRSS DFC 2018 dataset 

In this section, we review our experiments on the GRSS DFC 2018 
dataset to further demonstrate the superiority of our method. The GRSS 
DFC 2018 dataset was provided by the Image Analysis and Data Fusion 
Technical Committee for the 2018 IEEE GRSS Data Fusion Contest 
(DFC). Table 9 lists the baseline methods (UNet, RandLA-Net), the best 
ranked teams in the data fusion classification challenge track (Xu et al., 
2019), and the recent SOTA multi-modal segmentation networks in RS 
field (CEGCN (Liu et al., 2021a), NLCaps-Net (Lei et al., 2021), EB-CNN 
(Lu et al., 2022), CAG (Cai and Wei, 2022), and CAGU (Lin et al., 2022)). 
The best value under a certain metric is bolded. Table 10 shows the 
category numbers and corresponding category names. 

Most of the categories in the images of the GRSS DFC 2018 dataset do 
not have corresponding points in the point cloud data, which poses a 

Table 14 
Multi-class semantic segmentation on GRSS DFC 2018 dataset. Accuracy is 
calculated for each category.   

Method IKD-Net IKD-Net IKD-Net (ours) 
Strong modality - Image LiDAR 

1 Healthy grass  68.17  77.09  80.37 
2 Stressed grass  98.66  95.71  95.61 
3 Artificial turf  90.38  80.11  99.61 
4 Evergreen trees  78.71  82.94  97.21 
5 Deciduous trees  70.42  73.34  94.02 
6 Bare earth  71.77  85.68  81.77 
7 Water  98.85  98.98  99.88 
8 Residential buildings  73.08  87.56  88.73 
9 Non-residential buildings  52.18  79.6  82.07 
10 Roads  57.64  63.64  91.84 
11 Sidewalks  79.56  66.81  85.05 
12 Crosswalks  80.50  51.43  72.74 
13 Major thoroughfares  79.97  57.38  28.54 
14 Highways  17.39  64.60  75.22 
15 Railways  72.25  91.77  95.12 
16 Paved parking lots  6.73  11.86  17.50 
17 Unpaved parking lots  18.21  0.0  48.81 
18 Cars  85.69  71.89  97.94 
19 Trains  49.39  44.76  92.67 
20 Stadium seats  30.15  56.83  39.76  

AA  63.99  67.10  78.22  
OA  62.14  73.75  78.28  
Kappa  0.57  0.68  0.77  

Y. Wang et al.                                                                                                                                                                                                                                   



ISPRS Journal of Photogrammetry and Remote Sensing 202 (2023) 385–404

401

great challenge to multi-modal learning. As indicated in Table 9, our 
IKD-Net ranked highest on Mean Acc and achieved comparable results 
on OA and Kappa to that of the best performing approaches. It is worth 
noting that all the best ranked teams adopt post-processing and some of 
them further employ object detection techniques, which boosted their 
accuracy by around 15 %. However, we still achieved higher scores than 
the previous winners of the competition and has been ranked first in the 
real-time leaderboard for the challenge evaluation until this paper’s 
submission. We therefore conclude that our IKD-Net has shown that it is 
extremely efficient in information utilization and is able to extract deep 
features from raw multi-modal data and jointly use them according to 
their inherent characteristics. 

Fig. 13 shows the imagery and the classification results of the two 
winning teams and our IKD-Net. Our method excelled in the connec-
tivity of the longest highways (dark-brown), as depicted in the 
enlargement on the right. There was less confusion between the roads 
(red) and major thoroughfares (reddish-brown) on our results while 
team AGTDA and team dlrpba were unable to discriminate these two 
categories very well, as depicted in the enlargement on the left. There 
were also two obvious minor differences in our approach compared to 
the top two methods. First, some of the pixels located in the non- 
residential buildings (lavender) were misclassified as roads (red); and 
second, some pixels of paved parking lots (yellow) were confused with 
those of cars (pink). 

6. Discussion 

We conducted class-based experimental analysis and discussion on 
the proposed knowledge-guided mechanism using the N3C-California, 
ISPRS Vaihingen, and GRSS DFC 2018 dataset. 

Firstly, we performed ablation assessments on an individual class 
basis in the N3C-California dataset from two perspectives: multi-class 
and binary semantic segmentation. 

The results of multi-class semantic segmentation are presented in 
Table 11, where IoU is calculated for each category. The first row dis-
plays the results of replacing all GKG and CKG modules in IKD-Net with 
direct concatenation. In the second row, we replaced the guidance 
modality in the GKG and CKG modules with aerial imagery. Finally, the 
third row shows the segmentation result of the IKD-Net with LiDAR as 
the guidance modality. 

Table 11 demonstrates that, across all four categories, the results of 
LiDAR guidance strategy are better than direct concatenation and im-
agery guidance strategies, and the magnitude of improvement is class 
dependent. For the Ground category, the IoU of LiDAR guidance 
strategy is still nearly 2 % higher than the direct concatenation strategy 
even when their accuracy both exceeds 90 % and nearly 5 % higher than 
the imagery guidance strategy. For the Tree category, the IoU of imagery 
guidance strategy is much lower than the direct concatenation strategy. 
This indicates that for Tree category the image not only fails to refine the 
feature map distribution of the point cloud modality but even has a 
detrimental effect. The underlying reason may be that the Ground 
category exhibits spectral features that are very similar to vegetation. 
However, when observed through LiDAR modality, the Ground and Tree 
categories reveal distinct structural characteristics. In the case of Tree 
category, point clouds undergo multiple reflections, enabling the cap-
ture of the blade’s shape outline. Conversely, the Ground category 
typically involves only a single reflection. Regarding Building category, 
the advantage of the LiDAR guidance strategy is not so significant 
compared to the imagery guidance strategy. One possible reason is that 
the multi-modal segmentation accuracy of the Building category is 
already high, leaving limited room for improvement. Another reason 
could be that point clouds and images offer different recognition benefits 
for the Building category. For example, in regions where buildings are 
obstructed, point clouds can penetrate occluding objects like trees, 
whereas images can provide more detailed information about the planar 
shape of buildings, as shown in Fig. 14. Consequently, even if the 

material properties of Building category are highly distinctive in the 
point clouds, the advantages of using LiDAR guidance may be less 
apparent. 

Table 12 presents the results of binary semantic segmentation, which 
demonstrate the difference in the role played by the knowledge-guided 
mechanism in different categories without interference from other cat-
egories. For each class, the other three classes are merged into Back-
ground category and the same three experiments as those in Table 11 are 
conducted. 

The results of binary semantic segmentation on individual classes 
and multi-class semantic segmentation are largely consistent, indicating 
that the role of the knowledge-guided mechanism is on class dependent. 
Overall, LiDAR data plays a positive role as the strong modality. 
Compared to the imagery guidance strategy, the LiDAR guidance strat-
egy provides a more significant improvement in the Ground and Tree 
categories. However, in the Building category, the advantage of the 
LiDAR guidance strategy is still relatively small. 

We conducted class-based experiments on two datasets with a rela-
tively large number of categories: ISPRS Vaihingen (5 categories) and 
GRSS DFC 2018 (20 categories). Table 13 and Table 14 show the results 
of multi-class semantic segmentation using IKD-Net with direct 
concatenation strategy, IKD-Net with imagery guidance strategy, and 
IKD-Net with LiDAR guidance strategy on ISPRS Vaihingen and GRSS 
DFC 2018 dataset, respectively. 

IKD-Net with LiDAR guidance strategy still demonstrates a clear 
advantage on the ISPRS Vaihingen dataset. For Car category, the accu-
racy of the direct concatenation strategy and the imagery guidance 
strategy are relatively low. However, our IKD-Net still greatly improves 
the accuracy. 

There are many missing categories in the LiDAR data of GRSS DFC 
2018 dataset. Nevertheless, IKD-Net with LiDAR guidance strategy 
shows a large and stable improvement in most of the 20 categories. This 
may be due to the fact that even if some types of points are missing in the 
LiDAR data, each point contains more information than a single pixel, 
providing rich additional information for category judgment. However, 
for two categories, major thoroughfares and stadium seats, the accuracy 
of the imagery guidance strategy far exceeds that of the LiDAR guidance 
strategy. 

In summary, we believe that the LiDAR guidance strategy is superior 
to the direct concatenation and imagery guidance strategies in terms of 
effectiveness, with the extent of improvement varying across different 
classes. Specifically, the LiDAR guidance strategy demonstrates sub-
stantial enhancements on most of categories. In the case of rare cate-
gories that may exhibit lower accuracy, targeted post-processing can be 
employed to further improve results. Compared to the performance 
optimization achieved by IKD-Net, the cost is very small. 

7. Conclusion 

In this paper, we proposed a novel end-to-end heterogeneous dual- 
stream architecture network called IKD-Net for multi-modal land- 
cover segmentation. Unlike the current mainstream multi-modal ap-
proaches in remote sensing, our dual-stream architecture extracts the 
features from raw multi-modal heterogeneous data directly rather than 
their abridged derivatives to retain the intact information of both mo-
dalities. Our two GKG and CKG plug-and-play gated modules then utilize 
the strong modal (LiDAR) to drive the feature map refinement of the 
weak modality (aerial image) in the global and categorical perspective. 
The whole network is finally optimized by a sophisticated joint loss 
function. In the course of our work, we also established a new dataset 
called N3C-California to provide a particular benchmark for multi- 
modal joint segmentation to address the lack of large-scale annotated 
LiDAR-imagery datasets dedicated to remote sensing tasks. We con-
ducted not only sufficient ablation studies of the above modules and 
visualized their effects in this paper but conducted additional experi-
ments as well that demonstrated IKD-Net’s ability to exceed the 
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benchmarks and the SOTA methods on the N3C-California and ISPRS 
Vaihingen datasets. Furthermore, IKD-Net has been ranked first in the 
real-time leaderboard on the GRSS DFC 2018 challenge evaluation until 
this paper’s submission. 

The biggest limitation of our IKD-Net is that both aerial image and 
LiDAR require labeling for network optimization, and labeling point 
clouds can be particularly challenging. In subsequent works, we plan to 
address this limitation by introducing semi-supervised or contrastive 
learning strategies to extract features from a limited quantity of labeled 
data and a larger amount of unlabeled data, thereby alleviating the 
burden associated with data labeling. Moreover, we aim to enhance the 
synergy of multiple modalities by designing multi-task networks. 
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