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A B S T R A C T

Optical remote sensing images are often contaminated by clouds and shadows, resulting in missing data,
which greatly hinders consistent Earth observation missions. Cloud and shadow removal is one of the most
important tasks in optical remote sensing image processing. Due to the characteristics of active imaging that
enable synthetic aperture radar (SAR) to penetrate cloud cover and other climatic conditions, SAR data are
extensively utilized to guide optical remote sensing image cloud and shadow removal. Nevertheless, SAR data
are highly corrupted by speckle noise, which generates artifact pollution to spectral features extracted from
optical images and makes SAR-optical fusion ill-posed to generate cloud and shadow removal results while
retaining high spectral fidelity and reasonable spatial structures. To overcome the aforementioned drawbacks,
this paper presents a novel hierarchical spectral and structure-preserving fusion network (HS2P), which can
recover cloud and shadow regions in optical remote sensing imagery based on the hierarchical fusion of optical
and SAR remote sensing imagery. In HS2P, we present a deep hierarchical architecture with stacked residual
groups (ResGroups), which progressively constrains the reconstruction. To pursue the adaptive selection of
more informative features for fusion and reduce attention to the features with artifacts brought by clouds and
shadows in optical data or speckle noise in SAR data, residual blocks with a channel attention mechanism
(RBCA) are recommended. Additionally, a novel collaborative optimization loss function is proposed to
preserve spectral features while enhancing structural details. Extensive experiments on the publicly open
dataset (i.e., SEN12MS-CR) demonstrate that the proposed method can robustly recover diverse ground
information in optical remote sensing imagery with various cloud types. Compared with the state-of-the-art
cloud and shadow removal methods, our HS2P achieves significant improvements in terms of quantitative and
qualitative results. The source code is publicly available at https://github.com/weifanyi515/HS2P.
. Introduction

Continuous monitoring of Earth’s surface has a vital role in un-
erstanding the world [1]. With the rapid growth of remote sensing
echnology, optical remote sensing images have gradually become the
ainstream way to monitor Earth’s surface. However, optical remote

ensing images are unavoidably contaminated by clouds, leading to
oncontinuous observations of Earth’s surface. According to the analy-
is of USGS data, the average global annual cloud coverage is approx-
mately 66% [2]. And the statistics of Landsat ETM+ data reveal that
5% of land areas are approximately covered by clouds [3]. Therefore,
loud cover substantially hinders the wide application of optical remote
ensing images, as clouds in optical remote sensing images tremen-
ously affect various Earth monitoring tasks, which involve seamless
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continuous observations. To assure the seamless observation of Earth’s
surface, cloud and shadow removal in optical remote sensing imagery
has become an urgent problem.

Generally, cloud and shadow removal in optical remote sensing
imagery is aimed at reconstructing the missed remote sensing image
data contaminated by clouds by leveraging the complementary infor-
mation. According to the difference in the auxiliary information type,
cloud and shadow removal approaches can be categorized into three
major clusters: single-image reconstruction approaches, multitemporal
fusion approaches and multimodal fusion approaches. Single-image
reconstruction approaches fill in the missing data regions with original
scene information from the remaining spatial parts or other spectra
[4–7]. These approaches assume that auxiliary clean spatial regions
or spectra exist and usually fail to reconstruct large or thick opaque
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cloud-covered scenes. Multitemporal approaches use the same scenes
from other periods to recover the missing ground information
[8–11]. The limitation of multitemporal approaches is the assumption
that there is a slight difference between the data acquired at different
periods. However, the temporal stability of land cover cannot be
ensured, which renders multitemporal cloud removal results to serve
fine-grained monitoring or change detection approaches [12]. In the
case of multimodal fusion approaches, cloud removal is supported by an
additional data source [13,14]. Different sensors have diverse imaging
principles, and the focus in describing the scene of the multimodal
images captured by them is significantly different [15–17]. Therefore,
multimodal fusion approaches can reconstruct obscured regions by
fusing complementary information in different modal images, which
exhibits excellent potential. One of the most concerning topics is the
fusion of synthetic aperture radar (SAR) data and optical data. SAR is an
all-weather sensor that records the intensity of the radar backscattering.
SAR is also capable of collecting ground information regardless of
clouds due to the advantage of strong penetrability, which offers
complementary contextual and structural information to adequately
compensate for the contaminated regions in optical images [18]. Based
on this property, cloud and shadow removal in optical remote sensing
imagery to exploit SAR data is considered in this paper.

In recent years, cloud and shadow removal methods based on the
fusion of SAR data and optical data have showed strong performance.
Nevertheless, SAR data are highly corrupted by speckle noise due
to coherent processing of backscattered signals [19], which brings
artifact pollution to spectral features extracted from the input opti-
cal images and makes SAR-optical fusion ill-posed to generate cloud
removal results while retaining high spectral fidelity and reasonable
spatial structures. Especially, the reconstruction of small or thin cloud-
covered optical images that provide a large amount of uncontaminated
spectral information is susceptible to speckle noise, which leads to the
generation of cloud removal results with fuzzy details. Although SAR-
optical fusion-based cloud and shadow removal methods have been
improved over the years, a majority of the existing methods ignored
the undesirable effect brought by speckle noise when utilizing SAR
data as auxiliary input information and directly stacked SAR data and
optical data for fusion [13,20,21]. In order to reduce attention to
channelwise features with artifacts produced by clouds and shadows in
optical images or speckle noise in SAR images while emphasizing more
informative features adaptively in SAR-optical fusion, we use residual
blocks with a channel attention mechanism (RBCA) to form the deep
network for cloud and shadow removal in this paper. Furthermore,
a few SAR-optical fusion-based methods focused on reconstructing
spectral information similar to the specified targets by elementwise
losses, while ignoring geometric structural information in cloud and
shadow removal results [21–23]. To tackle this limitation, we design
a collaborative optimization loss function that contains a spectral pre-
serving loss and structural preserving loss to operate our network to
reconstruct rich spectral and structural information.

With the aforementioned considerations, this paper proposes a hi-
erarchical spectral and structure-preserving fusion network (HS2P),
which can reconstruct cloud and shadow regions based on the fusion
of optical data and SAR data. The architecture of HS2P is designed
to progressively constrain the reconstruction with the stacked residual
groups (ResGroups) to guarantee the quality of cloud removal results on
multiple levels of the deep network. This architecture is also beneficial
to shallow feature delivery. To reduce artifacts in the cloud removal
results, we exploit RBCA as basic components of ResGroups to guide
the network to adaptively select more informative channelwise features
for fusion. In a further step, a novel collaborative optimization loss
function is developed to preserve spectral features while enhancing
structural details in cloud removal results. We conduct experiments
on the public large-scale dataset (i.e., SEN12MS-CR). The experimental
216

results show that our proposed method reconstructs diverse ground
information with higher spectral fidelity and richer structural tex-
tures in optical remote sensing imagery covered by various types
of clouds. Our method is also superior to the state-of-the-art cloud
and shadow removal methods in both quantitative evaluations and
qualitative evaluations.

Overall, the main contributions of this paper are summarized as
follows:

∙ This paper proposes a hierarchical spectral and structure-
preserving fusion network named HS2P, which progressively re-
constructs cloud and shadow regions.

∙ In HS2P, residual blocks with a channel attention mechanism
named RBCA are exploited as basic components. The embed-
ded attention module guides the network to emphasize more
informative features of multimodal imagery.

∙ We introduce a collaborative optimization loss, which enables
our HS2P to learn more powerful spectral and structural feature
representations and to enhance spectral fidelity and prominent
structural features in cloud removal results.

The remainder of this paper is organized as follows: Section 2 briefly
reviews the related work. In Section 3, we introduce our proposed
method in detail. Section 4 provides the experimental results, followed
by a discussion of the experimental critical parameters. The conclusion
is given in Section 5.

2. Related work

In this section, we review the related cloud and shadow removal
methods via deep learning. Generative adversarial learning-driven
methods and residual learning-driven methods are introduced in Sec-
tions 2.1 and 2.2, respectively. And Section 2.3 introduces some ad-
vanced methods that are embedded with attention mechanisms.

2.1. Generative adversarial learning-driven cloud and shadow removal

With the maturity of deep learning, approaches for cloud and
shadow removal have been constantly developed. Generative adver-
sarial networks (GANs) have experienced a massive rise in popularity
among deep learning-based methods. A GAN consists of a generator
and discriminator. The goal of the generator is to yield images that
the discriminator cannot recognize, and the discriminator’s goal is to
distinguish between actual images and generated images as accurately
as possible. The generator-discriminator game makes the GAN generate
images that are similar to the corresponding targets. Bermudez et al.
proposed a method to map cloud-free optical images from co-registered
SAR images based on the image translation capability of a conditional
generative adversarial network (cGAN), which reconstructed scenes
depending only on SAR data [24]. However, since SAR data lack
information in spectral aspect, it is hard to transform SAR images to
cloud-free multispectral images in good quality. In order to address the
above problem, methods that eliminated clouds and shadows by syn-
ergistically utilizing the complementarity of SAR data and optical data
were proposed. Grohnfeldt et al. developed a SAR-Optical-cGAN based
on the Pix2Pix model [25] and removed synthetic clouds with SAR data
fusion [13]. Gao et al. further considered the weak correlation between
SAR data and optical data, which converted SAR images into simulated
optical images with strong complementarity first and generated cloud-
free images using both simulated optical images, SAR images and
cloudy optical images [14]. Following this idea, Gao et al. advanced
to balance the global loss, local loss, perceptual loss and GAN loss in
their work [26]. The local loss makes the network pay more attention
on the reconstruction of missing regions and the perceptual loss leads
to results with better visual perception. For presenting more promising
cloud and shadow removal results, a spatiotemporal generator net-
work (STGAN) was proposed, which added addition multitemporal
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information as input [27]. However, it traded temporal resolution,
thus reducing the possibility of seamless monitoring. Subsequently,
Darbaghshahi et al. proposed two-stage GANs used for SAR to optical
translation and cloud removal respectively and improved vanilla U-net
architecture by utilizing dilated convolutions to increase receptive view
and prevent missing information, which made progress on removing
clouds in optical images consist of four bands (RGB and NIR) [20].
Furthermore, cycle-GANs were also applied for reducing dependence
on paired cloudy and cloud-free training data. A cycle-consistent GAN
was exploited for unpaired image translation [28]. Nevertheless, the
prevalent problem for GANs is the tendency to generate fake details
or unexpected artifacts because the generator and discriminator have
difficulty achieving the theoretical Nash equilibrium in the training
process [29,30].

2.2. Residual learning-driven cloud and shadow removal

A deep residual network (ResNet) [31] exploits residual blocks
(ResBlocks) as basic components. Each ResBlock is composed of several
layers, and its output is the sum of its last layer and its input. In
this way, the layers within the ResBlock are forced to learn the dif-
ference between input and output, which usually corresponds to noise
corruption in a noisy image [22]. Residual learning can also quickly
optimize large and deep networks and stabilize performance [32]. It
has been reported that many vision tasks can be further improved
by simply replacing plain convolutional neural networks (CNNs) with
ResNets [33]. Hence, ResNets are utilized frequently to reconstruct
the contaminated areas in cloud and shadow removal tasks. Li et al.
introduced a deep residual symmetrical concatenation network (RSC-
Net), which was designed as a symmetrical architecture consisting of
multiple residual convolutional layers and residual deconvolutional lay-
ers [22]. The cloud-free details can be passed to the top layers directly
by symmetrical concatenations between the convolutional layers and
deconvolutional layers, thus alleviating the damage to the input cloud-
free regions. Meraner et al. implemented the similar idea by employing
a long skip connection in their DSen2-CR [21]. DSen2-CR not only han-
dled the presence of thin clouds, but also achieved superiority of cloud
removal for heavily occluded images. In addition to the conceptual
considerations, a used large dataset is also needed for promising the
generalization capability of the networks. For this, Meraner et al. re-
leased the globally sampled SEN12MS-CR dataset containing triplets of
cloudy Sentinel-2 optical images, cloud-free Sentinel-2 optical images
and Sentinel-1 SAR images, which promoted cloud removal researches
based on SAR-optical fusion. However, non-local features cannot be
effectively represented in the DSen2-CR model. To solve this problem,
a multiscale deep ResNet (MDRN) with the embedding of multiscale
convolution units was proposed [23]. Profitting from these units, the
MDRN has larger receptive fields to extract multiscale features. He
et al. proposed a deformable context feature pyramid (DCFP) module,
which replaced fixed filter receptive fields to an adaptive manner based
on the shapes and sizes of the clouds [34]. However, ResNets easily
yield unsatisfactory cloud and shadow removal results when handling
complex scenes [35], which deserves further improvement.

2.3. Attention mechanisms

Aimed at enhancing the representativeness of the extracted fea-
tures, using attention mechanisms is another choice. The attention
mechanisms are beneficial for image information reconstruction by
guiding the available processing resources to the most informative
input components [36]. A network composed of several dense spatial
attention blocks (DSAB) was designed [37]. The basic component of
DSAB is the convolution block attention module (CBAM), which con-
tains a channel attention module and spatial attention module [38].
The feature maps of the intermediate layers are refined in the channel
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and spatial dimensions to different degrees by the two sequential sub-
modules. Zhou et al. further integrated both channel attention blocks
and multiscale convolution blocks [39] in their multiple scale attention
ResNet (MSAR-Defognet). Moreover, the channel attention mechanism
was proved to be effective for restoring thin cloud-covered scenes [40].
In order to pay more attention to the recovery of cloudy areas, Xu et al.
designed an attention module which is able to generate attention maps
optimized by cloud masks in their attention mechanism-based GAN
(AMGAN-CR) [35]. Extended from graph neural networks (GNNs), a
spatiotemporal reasoning module (STeRe) was proposed to construct
long-range dependencies through a differentiable attention mechanism
while preserving spatial information of nodes in the graph, thus track-
ing blur or dense target objects effectively [41]. Recently, He et al.
advanced an idea of employing the transformer to capture long-range
dependencies between multimodal data and proposed an attentive
information aggregation mechanism to aggregate heterogeneous infor-
mation based on the self-attention mechanism [42]. Take advantages
of the transformer, Xu et al. presented a SAR-guided global context
interaction (SGCI) block in their global–local fusion-based cloud re-
moval method (GLF-CR). The SGCI block guides the reconstructed
regions to maintain consistent structure with cloud-free regions by SAR
features [43].

3. Methodology

In this section, an introduction of our proposed HS2P is presented.
Section 3.1 overviews the proposed approach. Then, Section 3.2 ade-
quately introduces the deep hierarchical architecture. Next, we present
the detailed introduction of RBCA in Section 3.3. Moreover, the custom
loss is given in Section 3.4.

3.1. Overview of the proposed approach

To pursue the accurate reconstruction of regions covered by clouds
and shadows, we develop HS2P based on SAR-optical fusion, as shown
in Fig. 1. A data fusion module is employed in HS2P, which has a
concatenation layer followed by a convolution layer and an attention
module to fuse the input paired SAR image 𝑑𝑆𝐴𝑅 and optical image
𝑑𝑂𝑃𝑇 . In HS2P, there are 𝑁 stacked ResGroups that construct the deep
hierarchical architecture. The ResGroups at multiple levels of the HS2P
generate hierarchical outputs in both spectral term and structural term
during the training phase. For the interior of ResGroups, RBCA are the
basic components.

To reconstruct both spectral features and structural features with
high quality, we propose a new collaborative optimization loss function
to optimize our HS2P. Note that our approach adaptively reconstructs
the blocked regions without relying on accurate cloud and shadow
detection results. In the cloud and shadow removal domain, some
approaches utilize cloud masks to divide cloudy areas and clear areas in
optical remote sensing images [44,45]. Then, the masked regions were
regarded as blank regions for information reconstruction. However, the
visibility of ground covered by different thicknesses of clouds varies.
Thin and translucent clouds obscure only the spectral information and
abundant features can still be extracted from scenes in this circum-
stance, while optically thick clouds completely occlude the ground,
causing nearly all the ground information to be lost. Consequently, it
is better not to treat all cloudy areas as blank regions. The detailed
introduction of HS2P is described as follows:

3.2. Deep hierarchical architecture

As Fig. 1 shows, the stacked ResGroups form the trunk part of
HS2P. After 𝑁 ResGroups, the final output of HS2P is obtained. The
information flow of the ResGroups is formulated as:

( ) ( (

…𝑅𝐺
(

𝐹
)))

, (1)
𝐹𝑔 = 𝑅𝐺𝑔 𝐹𝑔−1 = 𝑅𝐺𝑔 𝑅𝐺𝑔−1 1 0
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Fig. 1. Architecture of HS2P. The top rectangle represents RBCA. The black arrow represents the information flow, the green arrow represents the spectral preserving function,
and the blue arrow represents the structural preserving function.
where 𝑅𝐺𝑔 represents the 𝑔th ResGroup, while 𝑔 = 1, 2…𝑁 and 𝑁
is the total number of ResGroups in HS2P. Feature maps generated
by the 𝑔th ResGroup are denoted by 𝐹𝑔𝜖𝑅𝑓𝑐×𝑊 ×𝐻 , where we discard
the batch dimension from our notations. 𝑓𝑐 represents the number of
feature maps in 𝐹𝑔 , and 𝑊 and 𝐻 represent the width and height,
respectively, of a feature map. It is remarkable that 𝐹0𝜖𝑅𝑓𝑐×𝑊 ×𝐻 is the
output of the data fusion module, which is formulated by Eq. (2).

𝐹0 = 𝐷𝐹
(

𝑑𝑆𝐴𝑅, 𝑑𝑂𝑃𝑇
)

, (2)

where 𝐷𝐹 represents the function of the data fusion module. 𝑑𝑆𝐴𝑅𝜖
𝑅𝑓𝑠×𝑊 ×𝐻 and 𝑑𝑂𝑃𝑇 𝜖𝑅𝑓𝑜×𝑊 ×𝐻 represent the input SAR data and input
optical data, respectively. Note that 𝑓𝑠 = 2 and 𝑓𝑜 = 13, which
is consistent with the original data bands. The ResGroups generate
hierarchical outputs in spectral and structural terms. Inspired by the
previous work [46], we use a short skip connection (SSC) in Res-
Groups to make it learn information at a coarse level and to stabi-
lize the training process. Then, a convolutional layer is applied after
each ResGroup to permute the dimensions of 𝐹𝑔 to its original format
(

𝑅𝑓𝑐×𝑊 ×𝐻 ⟶ 𝑅𝑓𝑜×𝑊 ×𝐻)

. There are 𝑁 clear images 𝑃𝑛 (1 ⩽ 𝑛 ⩽ 𝑁)
generated for each input 𝑑𝑆𝐴𝑅 and 𝑑𝑂𝑃𝑇 in the training process, which
are further utilized for loss computation with the corresponding real,
clear optical image 𝑇 . Auxiliary gradient information has an impor-
tant role in alleviating blurry geometric structures [47]. Therefore,
we obtain 𝑁 gradient maps ∇𝑃𝑛 (1 ⩽ 𝑛 ⩽ 𝑁) from the 𝑁 generated
clear images to represent textual features by computing the difference
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between adjacent elements in an image. Then, we utilize them for
loss computation with the real gradient map ∇𝑇 , which is extracted
from the corresponding 𝑇 . The hierarchical outputs of our HS2P are
formulated by Eq. (3).

𝑃 (𝑑) ={{𝑃1(𝑑), 𝑃2(𝑑),… , 𝑃𝑁 (𝑑)},

{∇𝑃1(𝑑),∇𝑃2(𝑑),… ,∇𝑃𝑁 (𝑑)}},
(3)

where 𝑑 = [𝑑𝑆𝐴𝑅, 𝑑𝑂𝑃𝑇 ] represents the input. 𝑃1 to 𝑃𝑁 are the 𝑁
generated clear images in spectral space, and ∇𝑃1 to ∇𝑃𝑁 are the 𝑁
gradient maps in structural space. The hierarchical outputs are applied
to constrain the reconstruction of the cloud and shadow regions at
multiple levels of the network, which makes the restored information
repetitiously refined to avoid prominent distortion and to enhance the
quality and fidelity of the generated cloud-free results.

3.3. Residual block with channel attention mechanism

Hu et al. proposed an attention mechanism and confirmed that the
attention mechanism allows the network to perform feature recalibra-
tion, through which it can learn to use global information to selectively
emphasize informative features and suppress less useful features [36].
Inspired by this work, we exploit ResBlocks embedded with a channel
attention mechanism, which is named RBCA, to form ResGroups in the
proposed network. In RBCA, we employ a convolutional layer followed
by a ReLU layer and another convolutional layer to extract multimodal
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Fig. 2. Distributions of the training set, validation set and testing set. Red points represent the training set, Blue points represent the validation set, and Green points represent
the testing set. Some triplets are shown above the map.
features. A global average pooling layer and global maximum pooling
layer are then utilized in parallel to compress the extracted features
into channel descriptors, which balances both the mean and extreme
standards. The channel descriptors are then fed into two fully con-
nected (FC) layers, achieving the capture of channelwise dependencies
in a flexible and nonmutually exclusive way of learning. The average
channel descriptors and maximum channel descriptors produced by FC
are added, which will be further used to generate the final weight
of each channel by a sigmoid layer. We then adjust the feature maps
by the computed weights using multiplication. The last step in RBCA
is adding the input and adjusted feature maps to execute residual
learning. RBCA is defined as follows:

𝐹𝑏(𝑑) =𝐹𝑏−1(𝑑) +𝑊𝑏−1(𝑑)×

𝐶𝑜𝑛𝑣(𝑅𝑒𝐿𝑈 (𝐶𝑜𝑛𝑣(𝐹𝑏−1(𝑑)))),
(4)

where 𝐹𝑏 is the output of the 𝑏th RBCA and the input of the 𝑏+1th RBCA.
Similarly, 𝐹𝑏−1 represents the input of the 𝑏th RBCA. The produced
channelwise weights in the 𝑏th RBCA are denoted by 𝑊𝑏−1. 𝐶𝑜𝑛𝑣
and 𝑅𝑒𝐿𝑈 denote the convolution layer and ReLU layer, respectively.
With the embedding of the channel attention mechanism, RBCA can
adaptively recalibrate multimodal features in a channelwise manner
and facilitate the quality of the network representations. The same
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channel attention mechanism is also applied in the data fusion module,
which is displayed in Fig. 1. After the data fusion module, multimodal
features are extracted and discriminatively merged instead of being
simply concatenated channelwise.

3.4. Collaborative optimization loss

Generally, existing methods of cloud and shadow removal use 1
loss for information reconstruction, which disregards the structural
information. Inspired by the previous work [48], we design a col-
laborative optimization loss to retain spectral and structural informa-
tion, which is composed of a spectral preserving loss and structural
preserving loss. The custom loss is defined as:

𝑆2𝑃 =
𝑁
∑

𝑛=1
𝜆𝑛(𝑛

𝑆𝑃 + 𝛼𝑛
𝑆𝑇 )

=
𝑁
∑

𝑛=1
𝜆𝑛(‖𝑃𝑛 − 𝑇 ‖1 + 𝛼‖∇𝑃𝑛 − ∇𝑇 ‖1),

(5)

where 𝑛
𝑆𝑃 and 𝑛

𝑆𝑇 denote the spectral preserving loss and structural
preserving loss, respectively, of the 𝑛th (1 ⩽ 𝑛 ⩽ 𝑁) ResGroup. 𝑃𝑛 and
∇𝑃 are the generated clear image and gradient map, respectively, of
𝑛
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Fig. 3. Variation in average metrics with spectral bands.
the 𝑛th ResGroup. 𝛼 is a regularization constant to adjust the weight of
the two losses. 𝜆𝑛 is another regularization constant, which represents
the weight for different ResGroups.

Natekin et al. indicated that the 1 loss can provide robustness to
outliers [49]. Therefore, we use the 1 loss as the spectral preserving
loss 𝑆𝑃 and structural preserving loss 𝑆𝑇 . The underlying idea of
𝑆𝑃 is to enhance the similarity in the spectral term between the
predicted images and the target images. The gradient maps represent
the gradient lengths, considered the gradient intensity, which are ad-
equate to reveal the sharpness of local regions in a given image. By
calculating the 1 loss between the two given gradient maps ∇𝑃𝑛 and
∇𝑇 , 𝑆𝑇 helps the model learn from the gradient space and capture
the structure dependency, which makes the predicted cloud-free images
have textures similar to the targets. With our custom loss, the network
is optimized in both spectral aspects and structural aspects to generate
cloud removal results with not only a fine appearance but also explicit
outlines. In addition, it is commonly recognized that the deeper layers
of the network are accompanied by stronger nonlinear representations.
In this regard, the value of 𝜆𝑛 is designed to increase as 𝑛 increases,
which means that the outputs of deeper ResGroups are allocated to
larger weights. In practice, we design a monotone increasing function
for 𝜆𝑛 utilizing the sigmoid function.

4. Experimental results

Section 4.1 introduces the experimental data, including the descrip-
tion and distribution of the adopted dataset SEN12MS-CR. The metrics
for quantitative evaluations are also introduced in Section 4.1. The
experimental setup of this paper is given in Section 4.2 in detail. From
the prediction perspective, Section 4.3 quantitatively and qualitatively
reports the cloud removal results of our method and the state-of-the-
art cloud and shadow removal methods. Section 4.4 further explains
our ablation study to confirm the effectiveness of our contributions.
Next, we analyze the experimental critical parameters in Section 4.5,
including the ResGroups number and the weight of our collaborative
optimization loss. Finally, Section 4.6 presents the application of the
proposed HS2P on large-scale scenes.
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4.1. Experimental data and evaluation metrics

4.1.1. Dataset description
To fully show the effectiveness of the presented method, we con-

duct experiments on the public large-scale dataset named SEN12MS-
CR [50], which contains triplets of cloudy Sentinel-2 optical images,
cloud-free Sentinel-2 optical images and Sentinel-1 SAR images. The
publicly released SEN12MS-CR contains 175 nonoverlapping regions of
interest (ROIs), each of which is cut into several small patches with a
size of 256 × 256 pixels and strides of 128 pixels. There are 122,218
triplets with 10 m spatial resolution in total. These patches are sampled
over Earth’s land mass and four meteorological seasons. We divide
all the patches into three subdatasets according to ROIs, namely, the
training set, validation set and testing set. We also ensure that every
subdataset is distributed across the four meteorological seasons. The
distributions of our three subdatasets are shown in Fig. 2, where red
points symbolize the training set, blue points symbolize the validation
set and green points mark the locations of the testing set. In particular,
such a division implements regional nonoverlapping among the three
subdatasets, which guarantees the global universality of our approach.

In SEN12MS-CR, Level-1C top-of-atmosphere reflectance products
are selected as Sentinel-2 data. For Sentinel-1 data, the Sentinel-1
IW Level-1 GRD products are chosen, and the values are backscatter
coefficients that have been transformed into dB scales. To reduce
the temporal difference that may be caused by building changes or
vegetation, all triplets from the same scenes are guaranteed to be
acquired within the same meteorological season. In our experiments,
both polarization channels (VV and VH) in Sentinel-1 SAR data are
utilized. To fully exploit the spectra, we use all 13 bands (B1, B2, B3,
B4, B5, B6, B7, B8, B8a, B9, B10, B11, and B12) in the Sentinel-2 optical
data.

4.1.2. Quantitative evaluation metrics
In our experiments, we utilize several common metrics to quan-

titatively evaluate the performance of our proposed model. These
metrics include the mean absolute error (MAE), root-mean-square
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Fig. 4. Cloud and shadow removal results classified by cloud types. The first row shows the Sentinel-1 SAR images, the second row shows the cloudy Sentinel-2 optical images,
the third row shows the cloud-free Sentinel-2 optical images, the fourth row shows the results of the DSen2-CR model, the fifth row shows the results of the GAN-CR model, the
sixth row shows the results of the AMGAN-CR model, the seventh row shows the results of the GLF-CR model and the last row shows the results of the HS2P model.
error (RMSE), peak signal-to-noise ratio (PSNR), spectral angle mapper
(SAM) [51] and structural similarity (SSIM) [52]. Both MAE and
RMSE are commonly utilized elementwise error indicators. Distinc-
tively, RMSE calculates the square of the error first, which magnifies
large deviation. The lower values of MAE and RMSE indicate the higher
precision of the evaluated images. The PSNR is another elementwise
metric used to assess the quality of recovered images. The PSNR values
are proportional to the quality of the predictions. The SAM is an
imagewise metric that treats spectra as high-dimensional vectors and
quantifies the similarity between two given images by calculating the
angle between the vectors. The lower the values of SAM are, the
higher the similarity between targets and predictions. The SSIM is also
imagewise and is designed to capture structural similarity by means
221
of quantifying differences between two images in terms of luminance,
contrast and structure. The SSIM values are within the range of [0, 1],
positively correlating to the structural quality of the predicted images.
For multispectral images, SSIM is calculated by taking the average of
separate calculations for each band.

4.2. Experimental setup

The proposed model is trained within 30 epochs on a NVIDI GeForce
GTX 1080 Ti. For data preparation, we create patches with the op-
erations of sort shuffling, size clipping (128 × 128 pixels), random
rotations and flipping. The input optical data are clipped into the range
of [0, 10, 000], while the clipping ranges are [−25, 0] and [−32.5, 0] for
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Table 1
Average quantitative results of different methods.

Method MAE (↓) RMSE (↓) PSNR (↑) SAM (↓) SSIM (↑)

DSen2-CR [21] 0.0289 0.0412 28.3537 8.5748 0.8766
GAN-CR [20] 0.0306 0.0447 28.0835 9.9437 0.8667
AMGAN-CR [35] 0.0315 0.0464 27.4809 9.9841 0.8490
GLF-CR [43] 0.0308 0.0446 27.7344 10.9992 0.8648
Our HS2P 0.0265 0.0376 29.3851 7.8649 0.8896

VV polarizations and VH polarizations, respectively, of SAR data [21].
In addition, all the bands of Sentinel-2 data are divided by 2000 to
guarantee numerical stability [53]. Analogously, a scaling operation
is applied to Sentinel-1 SAR data to match the distribution of optical
data [21]. During the training process, we use the validation set to
evaluate the trained model every epoch and select the model with
the best performance. Since PSNR and SSIM are the most extensively
utilized image objective evaluation metrics, the best performing model
is determined by using them to evaluate the validation set after each
epoch in the training phase. Specifically, the model with the highest 𝑃𝑆
i.e., 𝑃𝑆 = 𝑃𝑆𝑁𝑅+𝑆𝑆𝐼𝑀 ×10.0) on the validation set will be selected
or testing. In the testing phase, the predictions are compared with the
argets to assess the performance of the trained model. To visualize the
loud removal results, the predicted images are multiplied by 2000 to
evert to their original range [0, 10, 000]. Then, we synthesize the RGB
mage for a given Sentinel-2 image by concatenating its B4, B3, and B2
pectra. Due to the polarization imaging mode of Sentinel-1 SAR data,
rayscale images of the single VV band are used for demonstration.

.3. Comparison with the state-of-the-art methods

As representative methods of cloud and shadow removal, DSen2-
R [21], GAN-CR [20], AMGAN-CR [35] and GLF-CR [43] are selected

or comparison in our experiments. Specifically, Table 1 presents the
verage quantitative experimental results of different methods. The
ptimal values are marked in bold, similar to the following table.

The average quantitative results show that our HS2P can obtain
he optimal values on all the metrics, which proves the superiority of
ur method in a straightforward way. In particular, our method makes
ignificant promotion on MAE/RMSE/SAM by ∼8∕9∕8% compared with
Sen2-CR. For comprehensively evaluating the reconstruction of each
and in multispectral images, we compare the variation in the average
etrics with spectral bands as displayed in Fig. 3. Due to SAM is a
etric for multispectral data, it is not compared in Fig. 3 by band.

t is seen that the proposed method prominently performs in the vast
ajority of comparisons, and only relatively poor results are observed

n B10.
Figs. 4 and 5 present the cloud and shadow removal results of the

Sen2-CR model, GAN-CR model, AMGAN-CR model, GLF-CR model
nd the proposed model. Fig. 4 shows the results classified by cloud
ypes, in which Columns 𝑎 and 𝑏 are almost clear scenes, Columns
− 𝑓 are small cloud-covered scenes, and Columns 𝑔 and ℎ are large
loud-covered scenes. The proposed method can handle various types
f clouds and reconstruct significant features even when clouds almost
ompletely block the ground. In general, the results of our model show
lear borders and sharp textures, while the other comparative models
end to generate more ambiguous results which can be observed obvi-
usly in Columns 𝑒 and 𝑓 of Fig. 4. Fig. 5 shows the results classified
y land cover, in which Columns 𝑎 and 𝑏 are mountains, Columns 𝑐 and
are waters, Columns 𝑒 and 𝑓 are croplands, and Columns 𝑔 and ℎ are

rban areas. The comparative models easily generate results with fuzzy
round objects. There are even artifacts left in some scenes, as Columns
, 𝑑, 𝑔, and ℎ of Fig. 5 display. Due to the AMGAN-CR model relies
olely on cloudy optical images, it suffers more from the generated
uzzy features than the other multimodal cloud removal methods as
222

ow 6 of Fig. 5 shows. Furthermore, Columns 𝑓 and 𝑔 of Fig. 5
Table 2
Ablation study on different modules in HS2P.

Module MAE (↓) RMSE (↓) PSNR (↑) SAM (↓) SSIM (↑)

RBCA HSP HST

✘ ✘ ✘ 0.0299 0.0443 27.9997 8.5905 0.8770
✔ ✘ ✘ 0.0307 0.0433 28.1990 8.8448 0.8748
✔ ✔ ✘ 0.0289 0.0402 28.6080 8.4505 0.8840
✔ ✔ ✔ 0.0265 0.0376 29.3851 7.8649 0.8896

prominently demonstrate that HS2P is superior in continuous features
generation, which means that HS2P tends to recover complete ground
objects corrupted by clouds. As our proposed model utilizes RBCA to
adaptively select more informative features instead of concatenating
them directly in the channel dimension compared to DSen2-CR and
considers the enhancement on the reconstruction of structural details
compared to GAN-CR and GLF-CR, it alleviates undesirable artifacts
that break consistent structure of the cloud removal results, thus sig-
nificantly outperforming the comparative models across a variety of
challenging terrains (i.e., mountains with complex textures and urban
areas with numerous ground objects) and visually demonstrating good
results.

The absolute error maps of the cloud and shadow removal results
containing different cloud types and land cover, which are shown in
Fig. 6, verify the effectiveness of our method in a further step. Rows 2−6
f Fig. 6 display the cloud and shadow removal results of the DSen2-
R model, GAN-CR model, AMGAN-CR model, GLF-CR model and the
roposed model with their absolute error maps. We observe from the
elected scenes that the proposed model largely retains the proper fea-
ures of the ground truth. Generally, our method generates lower error
n detail, but the other methods are more prone to generate artifacts
esulting in poor perceptual quality. Overall, the comparative experi-
ental results displayed above indicate that our method surpasses the

ther selected state-of-the-art methods with several quantitative and
ualitative contrasting approaches, which confirms the effectiveness
nd superiority of the proposed HS2P.

.4. Ablation study of the presented HS2P

To further demonstrate the effectiveness and necessity of our con-
ributions, we conduct an ablation study on the proposed model. The
nfluence of our contributions is explained here.

To show the effect of the applied channel attention mechanism in
BCA, we obtain feature maps before and after the attention module
f the last RBCA in HS2P and convert them to heatmaps. There are

not enough clear boundaries and outlines extracted before the channel
attention module, which is shown on the second row of Fig. 7. How-
ever, important features that are similar to the corresponding target are
emphasized by the attentional module, as the third row of Fig. 7 shows.
Note that the regions in red boxes show relatively blurry features, and
regions in yellow boxes show the enhanced sharp features. This finding
confirms that the channel attention mechanism can enhance the critical
feature representations.

We also conduct an ablation study to quantitatively evaluate the
factors benefiting the reconstruction of cloud-occluded regions, which
are explained in Section 3. In this study, we consider the baseline
results as the results from our proposed HS2P without RBCA, which
means that we use a scaling layer to replace the attention module in
RBCA and bypass the hierarchical outputs to directly obtain the final
output 𝑃𝑁 . The attention module in the data fusion module is also
discarded. Next, RBCA is incorporated in the second model. The third
model develops on the second model with the hierarchical spectral
outputs, which is trained with the spectral preserving loss. The last
model is our complete model HS2P with all improvements, which
has hierarchical outputs and is trained with the custom collaborative
optimization loss. The quantitative results of this study are presented
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Fig. 5. Cloud and shadow removal results classified by land cover. The first row shows the Sentinel-1 SAR images, the second row shows the cloudy Sentinel-2 optical images,
the third row shows the cloud-free Sentinel-2 optical images, the fourth row shows the results of the DSen2-CR model, the fifth row shows the results of the GAN-CR model, the
sixth row shows the results of the AMGAN-CR model, the seventh row shows the results of the GLF-CR model and the last row shows the results of the HS2P model.
in Table 2, where HSP and HST denote the hierarchical spectral out-
puts and hierarchical structural outputs, respectively. As shown in
Table 2, the proposed HS2P significantly improves the baseline results
on MAE/RMSE/PSNR/SAM/SSIM by ∼11∕15∕5∕8∕1.4%, respectively,
demonstrating its effectiveness in improving the reconstruction.

4.5. Analysis of the critical parameters

In the following section, the sensitivity analysis of experimental
critical parameters is given. An analysis of ResGroups is provided
in Section 4.5.1 to confirm the influence of ResGroups number 𝑁 .
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Section 4.5.2 analyzes the effect of weight 𝛼 between the spectral pre-
serving loss and structural preserving loss on the model performance.

4.5.1. Analysis of the ResGroups number
We further investigate three models with different values of 𝑁 to an-

alyze the influence of the ResGroups number. The average
quantitative results are presented in Fig. 8. As shown in Fig. 8, when
𝑁 = 4 and 𝑁 = 6, the average quantitative results are improved.
However, the four ResGroups model and six ResGroups model show
superiority in different metrics. For the choice of 𝑁 , the four ResGroups
model makes improvements on MAE/RMSE/PSNR by ∼1.4∕1.0∕0.9%,
respectively, and the six ResGroups model makes improvements on
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Fig. 6. Cloud and shadow removal results with absolute error maps. The first row shows the paired cloudy and cloud-free Sentinel-2 optical images, the second row shows the
results of the DSen2-CR model, the third row shows the results of the GAN-CR model, the fourth row shows the results of the AMGAN-CR model, the fifth row shows the results
of the GLF-CR model and the last row shows the results of the HS2P model.
SAM/SSIM by ∼1.3∕0.4% when comparing these two models, which
shows the better performance of the four ResGroups model. Moreover,
the six ResGroups model causes more time consumption in the training
phase, and we suggest that it is unnecessary to sacrifice time for slight
improvements in SAM and SSIM. Therefore, this study clarifies the
selection of 𝑁 = 4.

4.5.2. Analysis of the collaborative optimization loss weight
The regularization constant 𝛼 is a weight to adjust the spectral

preserving loss and structural preserving loss. It is also an important
factor affecting the precision of the experimental results. To investigate
the effect of 𝛼, we conduct a further study of 𝛼. There are three models
to compare, which have 𝛼 values of 0.25, 0.50 and 0.75. Fig. 9 shows
the average quantitative results; the model with an 𝛼 of 0.50 performs
best on all the metrics.

Furthermore, we select some representative scenes with distinct
boundaries of ground objects and display the cloud and shadow re-
moval results that are predicted by the three models introduced above
in Fig. 10. With an increase in 𝛼, the cloud and shadow removal
results are more clearly and completely contoured but have worse
preservation of spectral information, as the predicted images are more
indistinctly colored compared with the ground truth. This phenomenon
shows that 𝛼 is proportional to the structural quality of the predicted
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images but inversely proportional to the spectral quality. With the
above considerations, we use an 𝛼 of 0.50 to simultaneously enhance
the spectral and structural features.

4.6. Application on large-scale scenes

With the purpose of evaluating the robustness of the proposed
method, we further resample some large-scale scenes that are not
included in the used dataset and utilize our fully trained model to
generate large-scale cloud removal results. The triples of large-scale im-
ages containing cloudy Sentinel-2 optical images, cloud-free Sentinel-2
optical images and Sentinel-1 SAR images are sampled with the size
of 10 240 × 10 240 pixels. Additionally, we select scenes with various
cloud types as well as land cover to guarantee the robust transfer capa-
bility of our model. As Fig. 11 shows, the scene in the first row contains
waters and urban areas with thin cloud cover, the scene in the second
row is mountains and the scene in the last row is mainly croplands
which are both covered by opaquely thick clouds. Due to the limitation
of memory capacity, the large-scale images are first clipped into the
size of 1024 × 1024 pixels with strides of 128 pixels for prediction
and the reconstructed patches are merged to produce the complete
large cloud-free images, where we take the mean for the overlapping
regions of the patches. It can be observed from Fig. 11 that our method
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Fig. 7. Feature maps obtained before and after the attention module. The first row shows the cloud-free Sentinel-2 optical images, the second row shows the feature maps obtained
before the attention module, and the third row shows the feature maps obtained after the attention module.
Fig. 8. Average quantitative results of models with different ResGroups number 𝑁 when 𝛼 = 0.25.
Fig. 9. Average quantitative results of models with different regularization constants 𝛼 when 𝑁 = 4.
generates cloud removal results of the resampled large-scale scenes in
good quality, which proves its stability and robustness.

5. Conclusion

Optical remote sensing images are utilized in various applications.
Nevertheless, optical images are often contaminated by clouds. As a ba-
sic step of processing images in the optical domain, cloud and shadow
225
removal provides data support for continuous ground monitoring. Al-
though SAR data can offer complementary contextual and structural
information for cloud and shadow removal in optical remote sensing
imagery, they are corrupted by speckle noise, which makes SAR-optical
fusion ill-posed to generate cloud removal results with high quality. In
this article, the cloud and shadow removal method HS2P based on the
fusion of Sentinel-2 optical data and Sentinel-1 SAR data is proposed.
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Fig. 10. Cloud and shadow removal results of models with different 𝛼. The first row shows the Sentinel-1 SAR images, the second row shows the cloudy Sentinel-2 optical images,
the third row shows the cloud-free Sentinel-2 optical images, and Rows 4, 5 and 6 show the results of models with 𝛼 values of 0.25, 0.50 and 0.75, respectively.
To progressively constrain the reconstruction at multiple levels of the
network, we propose a deep hierarchical architecture. Furthermore,
RBCA in HS2P are embedded with a channel attention mechanism
to pursue the adaptive selection of more informative features for fu-
sion instead of equally treating channelwise features of multimodal
imagery. We train the proposed model with the custom collaborative
optimization loss to make the network generate cloud removal results
with not only a fine appearance but also explicit outlines. Then, two
state-of-the-art cloud and shadow removal methods are compared with
our method on the SEN12MS-CR dataset. The experimental results
demonstrate that our method, which can handle various cloud types
and reconstruct diverse land covers, achieves significant improvements.
We also conduct an ablation study and prove the effectiveness of our
contributions. For future work, we will try more advanced deep net-
work architectures to improve the performance on cloud and shadow
removal and will consider the fusion of more remote sensing data to
enhance the reconstruction of cloudy regions in a further step. Utilizing
the polarization information of SAR data and the properties of SAR
imaging system will be taken into consideration as well to make better
use of SAR data as complementary data source.
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Fig. 11. Cloud and shadow removal results of large-scale scenes. Column 𝑎 shows the Sentinel-1 SAR images. Column 𝑏 shows the cloudy Sentinel-2 optical images. Column 𝑐
shows the cloud-free Sentinel-2 optical images. Column 𝑑 shows the results of the HS2P model. Columns 𝑒 − ℎ show the details in Yellow and Green boxes of the corresponding
images in the left half.
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