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A B S T R A C T   

Multi-modal remote sensing image (MRSI) has nonlinear radiation distortion (NRD) and significant contrast 
differences to which image gradient features are usually sensitive. Although image phase features are more 
robust against NRD, they might not be much helpful in resolving the problems of directional inversion or phase 
extreme value mutations that are common in the phase feature calculation. To address these issues, a new MRSI 
matching method—“histogram of the orientation of weighted phase” (HOWP)—is proposed in this paper. This 
method distinguishes itself from other methods in three aspects: (1) a feature aggregation strategy is used to 
optimize feature points by extracting the corner and blob features separately; (2) a novel weighted phase 
orientation model is established to replace the traditional image gradient orientation features; and (3) a 
regularization-based log-polar descriptor is constructed to generate robust feature description vectors. To eval-
uate the performance of the proposed method, we selected 50 sets of typical MRSIs with translation, scale, and 
rotation differences for comparison with the other four state-of-the-art methods. The results show that our 
method is more resistant to radiometric distortion and the contrasting differences in MRSIs. It also performs 
better in tackling the problems of direction reversal and phase extreme value mutation, as evidenced by more, 
the number of correct matches (NCM). Since the method has improved the average NCM by 1.6–4.5 times, the 
average success rate by 35.5%, and the average rate of correct matches by 11.1% with an average root of mean- 
squared error of 1.93 pixels. Moreover, we have put forward an extended version of the HOWP method 
(Simplified-HOWP) when there is no image rotation, which manifests in an average 0.75 times improvement in 
NCM of Simplified-HOWP performance over that of the HOWP method. The executable code and test data are 
linked in https://skyearth.org/publication/project/HOWP/.   

1. Introduction 

The rapid development of modern technologies in multi-sensor in-
formation processing has assured unhindered access to multi-source/ 
multi-modal image data. Multi-modal remote sensing image (MRSI) 
matching technology—the process of overlaying two or more images of 
the same scene taken at different times with different sensors or under 
different imaging conditions—has been a hot research topic in recent 
years (Yao et al., 2022). It is widely used in image fusion, change 
detection, image mosaic, and 3D reconstruction. However, MRSIs have 
nonlinear radiation distortion (NRD), spectral differences, and great 
contrast differences due to different imaging mechanisms, and among 

them, NRD is a serious impediment to MRSI matching. Traditional 
matching methods do not work well for MRSIs with remarkable NRD, for 
they inevitably reduce the similarity between corresponding points. 
Therefore, MRSI matching is still a challenge that is to be solved in 
current studies. 

In the past few years, substantial research on MRSI matching has 
been carried out, and the methods used can be generally classified into 
three categories (Xu et al., 2016): area-based matching, feature-based 
matching, and deep learning-based matching. The area-based method 
is used to calculate the image similarity mainly by measuring image 
intensity and mutual information (Viola et al., 1997). With this method, 
high matching accuracy can be guaranteed. Unfortunately, it is also 
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characterized by a heavy computing burden and poor invariance to the 
scale and rotation of the image, making its scope of application greatly 
limited. The feature-based matching method concerns image gradient 
features and often yields satisfactory results when dealing with trans-
lation, scale, and rotation differences. However, it is not applicable in 
MRSI matching due to the sensitivity of image gradient features to the 
NRD and contrast differences in MRSIs. Although breakthroughs have 
been made by applying phase features to MRSI matching, such as his-
togram of phase congruency (PC) direction (Ye et al., 2018) and RIFT (Li 
et al., 2020) algorithms, these algorithms all constrain the scale and 
rotation invariance of the algorithm to some extent. Despite attempts to 
improve them, problems such as phase direction inversion and phase 
extreme value mutation of MRSIs still exist. Deep learning-based 
methods, such as LoFTR (Sun et al., 2021), have shown great potential 
in optical image matching but have not achieved superior performance 
in MRSI matching. However, it is not an optimal solution either, owing 
to the difficulty in collecting MRSI sample data and the complex appli-
cation scenarios of remote sensing images. 

As summarized above, the ability to extract significant feature points 
and robust descriptors become the key to MRSI matching success. In 
feature extraction, most scholars have focused on finding corner or blob 
features of images; it is more difficult to describe the advantages of these 
two feature points simultaneously. In feature description, the phase 
features extracted using the PC model are usually contaminated with 
direction reversal and phase extreme value mutation, which would 
surely affect the shape component of the image represented by the 
phase, thus destroying the structural integrity of the image. Addition-
ally, the information provided by feature descriptors may not be accu-
rate for the phase orientation features and cannot correctly characterize 
the directional changes between images. 

Traditional image feature description is mainly conducted using 
gradient amplitude and gradient direction of the image. These gradient 
features are more sensitive to MRSIs, which cannot characterize the 
image feature changes robustly. Some scholars adopted the PC model 
instead of the gradient features of images to better eliminate the NRD, 
illumination differences, and contrast between MRSI images. However, 
recent studies have proved that the phase features the model constructs 
cannot effectively tackle the problems of directional inversion and phase 
extreme value mutation, which undermine the robustness of the de-
scriptors, especially when scale-change or rotation exists. Against this 
backdrop, we propose a novel MRSI matching method based on the 
histogram of the orientation of the weighted phase (HOWP) descriptor, 
aiming to achieve robust matching of MRSI (Fig. 1). The main contri-
butions of this study are as follows:  

• An aggregated feature point optimization strategy is proposed. The 
strategy uses the advantages of both blob points and corner points to 
improve the richness of image feature points. These feature points 

can be better used to describe the feature vector for our proposed 
descriptor;  

• An HOWP feature model and log-polar description method based on 
regular grid division are proposed. The HOWP features generated by 
this model are used to replace the traditional image gradient orien-
tation features to address the directional inversion and phase 
extreme value mutation of phase features, which also improvs the 
scale and rotation invariance of the method. The model is robust 
against NRDs, illumination differences, and contrast differences of 
MRSIs. The log-polar description utilization helps improve the 
robustness of MRSI feature descriptors. 

This paper is structured as follows: Section 1 presents the research 
purposes and limitations of previous studies, followed by a brief expla-
nation of the significance of the present study in Section 2. The pro-
cessing procedure of the proposed HOWP method is introduced in 
Section 3, and Section 4 gives a detailed account of the experimental 
analysis. The paper is concluded with a discussion of the effects of 
different parameter settings on HOWP performance in Section 5 and a 
summary of the study’s contributions in Section 6. 

2. Related work 

MRSI methods can be mainly categorized as follows (Xu et al., 2016): 
feature-based matching, deep learning-based matching, and area-based 
matching, which will be elucidated below. 

Area-based matching methods simply use the grayscale information 
of the images to construct a similarity measurement for matching 
without extracting the common features of images. Frequently used 
similarity measurements include correlation coefficient (Cole-Rhodes 
et al., 2003) and mutual information (Chen et al., 2003). The correlation 
coefficient is invariant with respect to grayscale changes under linear 
transformations, but it is sensitive to the grayscale differences between 
images, thus making it difficult to match MRSIs. Mutual information is 
better for NRD resistance, but the method presents the local optimal 
solutions, which usually affect MRSI matching performance. The CFOG 
algorithm (Ye et al., 2019) that came out later also has its limitations in 
that it relies greatly on geographic coordinate information. 

Feature-based matching methods, such as speeded-up robust features 
(SURF) (Bay et al., 2008), ORB (Rublee et al., 2011), KAZE (Alcantarilla 
et al., 2012), PSO-SIFT (Ma et al., 2016), and scale-invariant feature 
transform (SIFT)-like (Öfverstedt et al., 2019) algorithms, have been 
extensively developed since Lowe (1999) proposed to SIFT matching. 
Previous studies have examined these methods from different perspec-
tives, such as scale robustness, rotation invariance, binary description 
optimization, computational cost optimization, and feature matching 
enhancement. However, they still have certain limitations for MRSI with 
intensity differences and NRD differences. Scholars then resorted to 
phase features of the image in the frequency domain and have proposed 

Fig. 1. Matching results of the “histogram of the orientation of weighted phase” method (blue lines represent successful matching point pairs). (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Log-Gabor filter optimized matching (LGHD) (Aguilera et al., 2015), 
robust line segment descriptor matching (Zhao et al., 2016), coarse-to- 
fine matching for MRSI (3MRS) (Fan et al., 2022), histogram of abso-
lute phase consistency gradients (HAPCG) (Yao et al., 2021), and locally 
normalized images for the rotation invariant matching method (Li et al., 
2022). These algorithms have effectively advanced MRSI matching 
research, but their applicability is constrained by factors such as 
geographical location, scale, rotation, and computational complexity. 

As deep learning technologies evolve so quickly, they have drawn 
scholarly attention and been increasingly utilized in MRSI matching, 
such as the use of the convolutional neural network in the estimation of 
mapping relationships between image blocks (Wang et al., 2018) and 
image matching based on spatial attention mechanism (Wiles et al., 
2021), the use of D2-Net in multi-source image feature extraction and 
description (Dusmanu et al., 2019), the feature extraction by VGG 
network (Efe et al., 2021), and a novel hierarchical extract-and-match 
transformer (Wang et al., 2022) algorithm based on Transformers con-
verter, matching frameworks based on convolutional gradient features 
(Zhou et al., 2021) and multiscale frameworks with unsupervised 
learning (Ye et al., 2022). Deep learning image matching methods pre-
sent the advantages of being fast and automatically optimizing the pa-
rameters and constructing the wanted descriptors. However, due to the 
large geological differences between MRSIs and the difficulty obtaining 
training samples, this method’s generalization ability and applicability 

are limited. 

3. Method 

The proposed HOWP method is implemented in three steps: (i) 
aggregate feature extraction; (ii) HOWP descriptor construction (the 
orientation weighted phase feature generation and regular log-polar 
description feature vector computation are also included); (iii) bidirec-
tional matching. The whole process is shown in Fig. 2. 

3.1. Aggregation feature extraction 

Feature point extraction is an important part of image matching. The 
non-linear filtering and the PC model facilitate the extraction of the 
image’s blob and corner point features. Therefore, we adopted the image 
anisotropy diffusion method optimized by Yao et al. (2021) to establish 
the nonlinear filtering equation to achieve the diffusion. After diffusion, 
the PC calculation was performed to obtain the phase map (Kovesi, 
1999), i.e., for a better description of the edge features, we computed an 
independent mapping PC(θo) (Kovesi, 1999) for each direction o, where 
θ is the angle of direction o. According to the moment analysis method, 
the axis corresponding to the minimum moment is referred to as the 
principal axis, which usually represents the directional information of 
the feature. In this paper, we first construct an image pyramid to achieve 

Fig. 2. The flow diagram of the HOWP method.  
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scale-invariant and then perform PC calculations on all images within 
the image pyramid. The magnitude of the maximum moment, which is 
about an axis perpendicular to the principal axis, indicates the salience 
of the feature. In this paper, the maximum and minimum moments are 
solved and normalized based on the PC model, and the formula is 
defined as (1): 

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

A =
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′
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In Eqs. (1) and (2), Mmax represents the maximum moment of PC; 
Mmin , the minimum moment; PC(θo), the mapping of PC’ in the o di-
rection. A, B, and C are intermediate quantities of phase moment 
calculation, and θ denotes the angle in the o direction. 

After pre-processing the image, the feature points can be extracted. 
Feature points are common in two types: Corners and Blobs. Blob points 
refer to areas that differ in color and grayscale from their surroundings. 
They have the advantages of being more resistant to noise and more 
stable. Corner points featuring saliency are usually referred to as areas 
where converging lines, edges, or sides meet. Traditional detectors only 
extract one type of the abovementioned key points, which is not prof-
itable for image matching. In this regard, Ye et al. (2020) proposed a PC 
model that consists of an MMPC-Lap detector and a feature descriptor 
named local histogram of oriented PC (LHOPC), to increase the richness 
of feature points. However, as the number of feature points extracted 
increases, the computational cost and redundancy of the feature points 
also increase. Fortunately, Sedaghat and Mohammadi (2018) proposed a 
method of uniform competency to improve the matching performance of 
feature points that helps reduce computational costs. 

Inspired by their research, we used a Hessian determinant (Lowe, 
1999) to extract blob features and a FAST feature detector (Rosten and 
Drummond, 2006) to extract corner features. To reduce unnecessary 
duplicate points, significant feature points are retained. We also 
designed an aggregate feature (AF) strategy to optimize feature points, 
thereby enhancing the richness of the feature points. The aggregation 
feature optimization strategy has three steps: border area points’ 
removal, non-maximum suppression, and significance score filtering. In 
the first step, the max-moment and min-moment images need to be 
masked to remove edge unstable regions, as shown in Eq. (3). 

Spoints = fBlob

(
Mask(⋅)|R=NW/2 ⊗ (Mmax)

)
+ fCorner

(
Mask(⋅)|R=NW /2 ⊗ (Mmin)

)

(3) 

In Eqs. (3), Spoints represent the set of blobs and corners after masking; 
fBlob represents the blob extraction function; fCorner represents the corner 
extraction function; Mask(⋅)|R=NW/2 represents the mask function, R 
represents the mask radius; Nw represents the neighborhood window. 

Next, non-maximum suppression is performed on the feature points 
obtained by Eq. (3), and the suppression function is represented by 
fnms(⋅). Finally, significance score filtering was proposed. In feature 
extraction, each pixel strength value of images would be normalized and 
unified between 0 and 1, followed by a sorting work and construction of 
a saliency score extraction equation, as shown in (4): 
{

fscore(⋅) = k⋅sortrows
(
Spoints

⃒
⃒pscore

i

)

AF = fscore
(
fnms
(
Spoints

) ) (4) 

In Eq. (4), Sscore represents the set of points filtered by the salience 

score, k represents the feature points filtering threshold (k = 0.85), pscore
i 

represents its PC strength value, fnms(⋅) represents the feature points 
retained after non-maximum suppression, and Spoints denotes the points 
removed from the edge. 

Those feature points retained after filtering would be defined as the 
final key points, as shown in Fig. 3. 

3.2. Histogram of the orientation of weighted phase 

The proposed HOWP method has four steps: (1) characterization of 
phase amplitude; (2) establishment of weighted phase orientation 
feature; (3) calculation of principal orientation of feature points; and (4) 
construction of regularized log-polar descriptor. Among them, (2) and 
(4) are steps we have mainly been concerned about. Using step (2), we 
have established the maximum noise and minimum noise response 
functions by phase noise. This function is combined with the even and 
odd symmetries of the Log-Gabor filter to establish a weighted phase 
orientation equation. Finally, the weighted phase orientation feature of 
the image is calculated using this equation. Step (4) is to generate 
feature vectors through a regularized grid log-polar coordinate 
description framework to improve descriptors’ robustness. The whole 
workflow of the HOWP method is shown in Fig. 4. 

Considering that the PC model has advantages over the traditional 
methods in terms of dealing with the sensitivity of the gradient ampli-
tude and gradient direction, we used the phase-amplitude feature 
calculated by an improved PC model based on Log-Gabor filters pro-
posed by Kovesi (1999), to replace the image gradient amplitude 
feature. 

3.2.1. Weighted phase orientation feature 
A PC model is developed as a feature detection method based on local 

energy, using the maximum Fourier component to calculate the struc-
tural features of the images. The algorithm uses a 2D-Log-Gabor filter to 
extract local phase information to convolve the image. Firstly, the 2D- 
Log-Gabor filter was constructed, and the 2D log-Gabor filter can 
generally be obtained by Gaussian spreading of the vertical direction of 
the log-Gabor filter (Fischer et al., 2007). Therefore, it can be defined as 
Eq. (5): 

p(ρ, θ, s, o) = exp

(
− (ρ − ρs)

2

2σ2
ρ

)

exp

(
−
(
θ − θs,o

)2

2θ2
ρ

)

(5) 

where (ρ, θ) represents the log-polar coordinates; s and o are the scale 
and orientation of 2D-log-Gabor, respectively; (ρs, θs) is the centre fre-
quency of 2D-log-Gabor; σρ and σθ are the bandwidths in ρ and θ, 
respectively. As the 2D-log-Gabor filter is a frequency domain filter, 
whose corresponding spatial domain filter can be obtained by inverse 
Fourier transform. In the spatial domain, 2D-log-Gabor can be repre-
sented as: 

po(x, y, s) = peven
o (x, y, s)+ i⋅podd

o (x, y, s) (6) 

where peven
o (x, y, s) represents the even-symmetric filter of the 2D-Log- 

Gabor filter; podd
o (x, y, s) represents the odd-symmetric filter; i represents 

the imaginary unit of the retest; o is the orientation of 2D-log-Gabor. 
The 2D-Log-Gabor filter is decomposed into two parts in the spatial 

domain: even- and odd-symmetric filters, which are more robust against 
the noise and the grayscale differences. The equation constructed is 
shown in (7): 

[
ẼOo(x, y), ÕOo(x, y)

]
=

[
∑3

s=1
I(x, y) ⊗ peven

o (x, y, s),
∑3

s=1
I(x, y)

⊗ podd
o (x, y, s)

]

(7) 

where I(x, y) is the image; ẼOo(x, y) represents the response result of 
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the image on the real part filter; ÕOo(x, y) represents the response result 
of the image on the imaginary part filter; and ⊗ represents the convo-
lution operation. The ẼOo(x, y) and ÕOo(x, y) are normalized to give 
EOo(x, y) and OOo(x, y) respectively. 

Problems such as phase direction reversal and phase extreme value 
mutation usually cause changes in the shape component of the image, 
which destroys its structural features and increases the difficulty in 
identifying the descriptors. Log-Gabor’s odd symmetric function rather 
than its even symmetric function filter has often been used to calculate 
the PC features. For calculating the shape component of the image, the 
2D-Log-Gabor filter used a bandwidth function to calculate the shape 
component ratio between different pixels, which has played a key role in 
the computation of phase-oriented features. Based on the above-
mentioned findings, a weighted bandwidth function model of the 2D- 
Log-Gabor filter is designed as: 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

wc
′

= max6

o=1

(
1

1 + exp(g⋅(Cutoff − widtho(x, y) ) )

)

− ξ

wc′′ = min
6

o=1

(
1

1 + exp(g⋅(Cutoff − widtho(x, y) ) )

)

− ξ
(8)  

where wc′ and wc′′ represent the maximum and minimum weighting 
coefficients, respectively; exp is an exponential operator;Cutoff is the 
fractional measure of frequency spread; widtho(x, y) is the fractional of 
image frequency; g controls the sharpness of the transition in the PC 
model; and ξ is a minimum value excluding zero. 

Eq. (8) calculates the maximum and minimum bandwidths of the 
phase energy components in each direction and scale and then adds the 
results into 2D-Log-Gabor’s odd-symmetry and even-symmetry func-
tions. This operation can effectively overcome the negative effects 
caused by phase extreme value mutation. Accordingly, the weighted 

phase orientation feature equation is defined, as shown in Eq. (9): 

WO=arctan

⎛

⎜
⎝

∑6
o=1

(
wc′ ⋅sin

( π
6⋅o
)
⋅OOo(x,y)+wc′′⋅sin

( π
6⋅o
)
⋅EOo(x,y)

)

−
∑6

o=1

(
wc′ ⋅cos

( π
6⋅o
)
⋅OOo(x,y)+wc′′⋅cos

( π
6⋅o
)
⋅EOo(x,y)

)
+Φ

⎞

⎟
⎠

(9)  

where WO represents the weighted phase orientation feature, OOo(x, y)
represents the odd-symmetric convolution results after normalization at 
direction o-th layer, EOo(x, y) represents the even-symmetric convolu-
tion results after normalization at direction o-th layer, π6⋅o represents the 
angle of rotation, and Φ is a minimal value (Φ=0.0001) excluding zero. 

Finally, to eliminate the forward angle reversal caused by convolu-
tion values in multiple directions, we transformed the orientation angle 
between [0◦, 360◦] and used W to denote the final weighted phase 
orientation feature. The formula used here is shown in equation (10): 

WP =

{ WO + Φ, WO > 0

WO + π, WO < 0
, W = WP ⊗

ω
π (10)  

where W represents the final weighted phase orientation feature, WP 
represents the radian value of the phase orientation feature, ω represents 
a non-negative constant term (ω=360), and Φ is a minimum value 
(Φ=0.0001) excluding zero. 

Fig. 5(a) demonstrates the orientation features calculated directly by 
the PC model; Fig. 5(b) describes our proposed weighted phase orien-
tation features. The global comparison shows that the weighted orien-
tation features are more recognizable than the phase orientation 
features, for they better preserve the shape components of the image and 
are far less vulnerable to the phase extreme value mutations. Mean-
while, observation of local areas (I and II) reveals that the problem of the 
directional inversion of the phase-oriented features is also well resolved 

Fig. 3. The flow chart of aggregation feature extraction of key points.  

Fig. 4. The flow chart of the histogram of the orientation of robust phase descriptor.  
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by the weighted phase orientation features, making the calculation of 
the principal orientation of the feature more accurate. 

The principal orientation of the feature point needs to be calculated 
to guarantee the rotation invariance of HOWP. Thus, we have selected a 
fixed circular neighborhood centered on the feature points and identi-
fied the principal direction of each feature point based on the phase- 
amplitude feature and the weighted phase orientation feature. First, 
the histogram was evenly divided into 36 equal parts at intervals of 10◦. 
Then, the phase-amplitude features and weighted phase orientation 
features of each equal part are counted, and the peaks with amplitudes 
higher than 80% of the highest peak were assigned as the principal 
orientation of the feature point. 

The current remote sensing image matching study found that the 
rational polynomial coefficient or POS data can be directly used for 
rough geographical registration (Noh and Howat, 2018) and image 
rotation elimination. In this respect, we also proposed an improved 
Simplified-HOWP with no main orientation estimation for generating 
patches. 

3.2.2. Regularized log-polar descriptor 
To further improve the robustness of our descriptor, a regularized 

grid-optimized log-polar descriptor framework is designed for 
computing feature vectors. The log-polar description method using the 
gradient location and orientation histogram (GLOH) algorithm has the 
advantage of being quite stable (Mikolajczyk and Schmid, 2005). 
However, the GLOH algorithm is composed of 17 irregularly divided 
sub-regions, which, we found, negatively influences the robustness of 
descriptors in MRSI matching. Therefore, we put forward a framework 
of the regularized log-polar descriptor that constrains the GLOH for 
better performance. 

The area of each sub-region was approximately the same. The hori-
zontal direction of each grid represented the polar angle of the pixel 
location in the circular neighborhood, which was divided into 12 fan- 
shaped intervals by 30◦. Therefore, the pixels of each sub-region had a 
gradient amplitude and direction histogram of eight dimensions. 
Finally, the number of log-polar sub-region grids (48) and the orienta-
tion histogram (eight dimensions) were multiplied to generate a new 

Fig. 5. Comparison results of phase and weighted phase orientation features.  

Fig. 6. Extended GLOH descriptor flowchart.  
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384-dimensional log-polar descriptor vector (Fig. 6). The vector of the 
descriptor feature is as equation (11): 

RGLOH = [D1,D2, ⋅⋅⋅,DN ]
T (11) 

where RGLOH represents the descriptor set of all feature points, DT
i 

the descriptor vector of a feature point, T the matrix transposition 
character, and N the number of feature points. The components of the 
feature vector of the 384-dimensional descriptor are expressed as DT

i =

[V1,V2,V3, ⋅⋅⋅,V384], and the dimension of each descriptor can be 
expressed as (4*n*d), where n represents the number of grids divided by 
each circular neighborhood, and d represents the orientation dimension 
of each feature point. 

3.3. Bidirectional matching 

Feature matching follows the calculation of the HOWP descriptor. 
Here, we used the similarity measurement of Euclidean distance and the 
matching strategy of the bidirectional matching to ensure the one-to-one 
correspondence of the obtained matching points. To remove outliers 
generated after the bidirectional matching, we used the fast sample 
consensus (FSC) algorithm (Wu et al., 2014) to cast out wrong match-
ings. The FSC algorithm can steadily extract the correct matching point 
pairs from mismatches with fewer iterations. 

4. Experimental results 

Four state-of-the-art methods, i.e., PSO-SIFT (Ma et al., 2016), LGHD 
(Aguilera et al., 2015), RIFT (Li et al., 2020), and HAPCG (Yao et al., 
2021), were used for comparison in which we set the image scale dif-
ferences of 1.6. The radius of the neighborhood window (NW) is set to 38 
pixels. The parameters for comparison were adjusted to the optimal 
stage accordingly and the proposed HOWP method. The PSO-SIFT, 
LGHD, RIFT, and HAPCG were implemented in Matlab-R2018a, and 
the number of matched key points was set to 3500. The experiments 
were performed on a Lenovo-R9000K with an AMD Ryzen 9 5900HX 
CPU, 3.30 GHz, 32 GB-RAM, and Windows 11 x64 operating system. The 
image-space affine transformation was used to model the geometric 
relationships of image pairs. Over 15 well-distributed ground truth 
points were manually collected for each pair to calculate the affine 
transformation as the ground truth, which was used to measure the 
location accuracy of the automatically matched points. The distribution 
of some ground truth points is shown in Fig. 7. 

Four indices, i.e., the number of correct matches (NCM) in the MRSIs. 
The success rate (SR) was calculated with the following definition of 
success matching: (1) the NCM should be sufficient to obtain a solution 
of the selected geometric transformation model and have at least one 
redundant observation. The definition of SR is as follows: 

I(pi) =

{ 1, NCM(pi)⩾Nmin

0, else
, SR =

1
M

⋅
∑

i
I(pi)⋅100% (12) 

In Eq. (10), I(pi) represents a logical value, 1 represents a successful 
matching trial and 0 represents a failed matching trial. The Nmin rep-
resents a minimum number of correct matching points (Nmin was set as 
4). SR represents the matching success rate; M represents the total 
number of image pairs of multi-modal image sets. 

Rate of correct matches (RCM), and root of mean-squared location 
error (RMSE), were used to examine the matching results. The RCM is 
defined as Eq. (13): 

RCM =
NC

NC + NF
(13) 

The RMSE of the correct matches is defined as Eq. (14): 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

(
∑N

i=1
[(xi − x′′i ) + (yi − y′′i )]

)√
√
√
√ (14) 

where N represents the number of ground truth points, and (x“i, y”i) 
is the coordinate of the i-th ground truth point (x’i, y’i) converted by 
correspondence matching. 

4.1. Image datasets 

In this paper, 50 sets of MRSIs, including depth-optical, infrared- 
optical, map-optical, synthetic aperture radar (SAR)-optical, and night- 
day image, were used for demonstration. The image pairs not only have 
the NRD and the contrast differences but also have geometric trans-
formations such as scale-change, rotation, and displacement (Fig. 7). 
Specifically, depth images were obtained from airborne LiDAR data, 
infrared images were from the Landsat TM-5 or the airborne infrared 
sensors, and maps were from Google Maps. The SAR data were acquired 
with the GF 3 satellite. The night data were acquired with national 
aeronautics’ Suomi, national polar-orbiting partnership satellite and 
space administration, and national oceanic and atmospheric adminis-
tration’ satellite. The image sizes range from 381 and 750 pixels. 

Fig. 7. Part of multi-modal remote sensing images (MRSIs).  
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4.2. Results and analysis 

To verify the robustness and the matching accuracy of the proposed 
HOWP method, we compared it with the four popular methods PSO- 
SIFT, LGHD, RIFT, and HAPCG. Fig. 8 shows the results of the quanti-
tative evaluation; the NCMs, the RCMs, and the RMSEs of the proposed 
method and the four compared methods are presented in this figure. 
Table 1 shows the average results on four metrics. In Fig. 8(c), the 
symbol +∞ represents the pairs that failed to match, or when the RMSE 
was > 9 pixels. 

The results of the PSO-SIFT method are represented by orange dotted 
lines in Fig. 8. The PSO-SIFT method successfully matched 28 out of 50 
image pairs and has the worst SR result of only 56.0% (Table 1), with a 
mean NCM of 37.7 and a mean RCM of 9.86%. Nonetheless, it boasts the 
advantage that it is favorably invariant to MRSI scaling and rotation 
invariance, manifest in its average RMSE of 4.53 pixels. Since the core of 
the PSO-SIFT method is to design a second-order Sobel operator to 
calculate the image gradient features, it is still sensitive to NRD despite 
its robustness to the illumination difference. 

The light blue dotted lines represent the results of the LGHD method, 
which uses image frequency domain features to perform matching. In 
our experiments, it successfully matched 27 out of 50 image pairs, with 
an SR of 54.0%. However, this method cannot effectively address the 
scale and rotation differences manifested in its average NCM of 24.54, 
average RCM of 8.66%, and average RMSE of 4.38 pixels. Meanwhile, it 
takes more time to calculate frequency domain features. All these factors 
make it unable to achieve MRSI matching effectively and efficiently. 

The results of the RIFT method are marked in purple. This method 
also used image frequency domain features to achieve the matching as 
LGHD did. The difference is that a robust maximum index map 
descriptor substantially optimized its matching performance, as its SR 
increased to 70.0% with an NCM of 50.62, an RCM of 10.78%, and an 
RMSE of 4.13 pixels. 

Both Fig. 8 (b) and (c) show that the RIFT method is characterized by 
a lower value of RCM with great fluctuations in its RMSE results. The 
reason might be its incapability to handle scale differences in images. 
The HAPCG method (presented in green) has better results with the SR 
of 78.0%, average NCM of 51.56, average RCM of 15.53%, and average 
RMSE of 2.89 pixels. However, HAPCG can only be utilized to match the 
images with small rotation differences (Yao et al., 2021). 

The proposed HOWP (marked in solid red lines) yielded the most 
robust matching results. It successfully matched all the 50 MRSI pairs. Its 
average NCM is 138.72, with it being the only method to obtain >50 
correct matches. Its average RCM is 22.32%—the best among the five 
methods, and the average RMSE is 1.93 pixels. It is the only method with 

Fig. 8. Results of several indicators.  

Table 1 
Results of five methods with respect to four evaluation indicators.   

PSO-SIFT LGHD RIFT HAPCG HOWP 

SR  56.0%  54.0%  70.0%  78.0% 100% 
NCM  37.7  24.54  50.62  51.56 138.72 
RCM  9.86%  8.66%  10.78%  15.53% 22.32% 
RMSE  4.53  4.38  4.13  2.89 1.93  
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100% success matching rate that also obtained <2-pixel RMSE. 
Fig. 9 shows the matched corresponding points of the five methods. 

Fig. 9 (a) presents the results of the PSO-SIFT method, which has fewer 
corresponding points in images with significant contrast and illumina-
tion differences. Fig. 9 (b) and (c) provide information about LGHD and 
RIFT, respectively. The latter method features high stability in the 
matching due to its descriptor of the maximum index map. Besides, they 
all used the PC model in the feature description, but their ability to deal 
with scale and rotation differences is strongly limited. The HAPCG 
method, as shown in Fig. 9 (d), performs better in coping with scale 
differences and small rotation differences, but it is still not an optimal 
solution when it comes to large rotation differences. The proposed 
HOWP achieves the most robust matching of images with NRD, optical 
differences, and contrast differences, as demonstrated in Fig. 9 (e). It 
also shows its great potential in tackling scale, rotational, and 

displacement differences. 
The matching results of another 40 images are displayed in Fig. 10, 

demonstrating the matching performance of the HOWP method. As 
shown in Fig. 10, the proposed HOWP method shows good stability 
against MRSI matching and achieves rich NCM in scale, rotation, and 
translation differences. Therefore, the proposed HOWP method provides 
a useful reference for further MRSI matching challenges. 

The Simplified-HOWP method can improve HOWP’s matching per-
formance in MRSI matching when images only have translational dif-
ferences or rotation angles <5◦. Ten sets of MRSI pairs with only 
translation differences were selected for the experiment, and the results 
are shown in Fig. 11. 

Fig. 11 shows that the proposed Simplified-HOWP method showed 
outstanding performance when the main orientation of the features were 
not considered. Fig. 12 shows that its NCM has increased by at least 0.12 

Fig. 9. Matching results from the five compared methods.  
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times, its NCM has increased by at most 1.5 times and the average 
performance by 0.75 times. At the same time, Simplified-HOWP 
method’ RCM has increased by at least 0.1%, its RCM has increased 
by at most 19.1% and the average performance by 6.9%. Therefore, the 
Simplified-HOWP method performs more robustly in matching the 
MRSIs with only translational differences. 

4.2.1. Analysis of scale invariance 
To verify the scale invariance of the HOWP method, a set of map- 

optical image pairs was used for the matching test. First, the reference 
images were simulated and computed at 0.2 times image scale intervals 
to generate 10 sets of simulated images (0.4–2.4 times). The matching 
results are shown in Fig. 13. 

Although the number of corresponding points matched by the HOWP 
method gradually decreased as the scale differences increased (Fig. 13), 
the method could still secure the successful matching even when the 

scales were 0.4–2.4 times different. NCMs we obtained exceeded 20 for 
the two cases of 0.4 and 2.4 scale difference, which were sufficient for 
the registration. Therefore, the HOWP method could effectively boost 
the scale invariance of the MRSI matching. 

4.2.2. Analysis of rotation invariance 
To verify the rotation invariance of the HOWP method, a set of map- 

optical image pairs was used for the matching tests. First, the reference 
image was rotated clockwise and counterclockwise at 10-degree in-
tervals to generate five simulated images in both directions. Then, 10 
sets of simulated image pairs were obtained for the matching test 
(Fig. 14). 

Although the number of valid corresponding points matched by the 
HOWP method decreased as the angle increased, the method still 
secured the successful matching whether the rotation difference was set 
at − 50, 50 between two degrees. The NCMs obtained when the rotation 

Fig. 10. Matching results of the HOWP method.  

Fig. 11. Matching results of the Simplified-HOWP method.  
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difference was − 50 and 50◦were all >10 point pairs, which meets the 
calculation requirements of the transformation model (three-point pairs 
are required for affine model calculation and four for perspective 
transformation model). Therefore, the HOWP method could effectively 
enhance the rotational invariance of the MRSI matching. Compared with 
traditional methods, the proposed HOWP displays the most robust per-
formance in MRSI matching with reference to its ability to handle the 
NRD, contrast difference, and scale and rotation invariance. 

5. Discussion 

To validate the robustness of the HOWP method, we first carried out 
an in-depth analysis of its performance under different parameter set-
tings and then elaborated on its three main contributions, namely, 
aggregated feature strategy, weighted phase histogram, and regularized 
log-polar description, intending to fully demonstrate the innovation 
accomplished by the proposed HOWP method. 

Fig. 12. Quantitative comparison results of HOWP and Simplified-HOWP methods.  

Fig. 13. Matching results under different scale differences of the HOWP method.  

Fig. 14. Matching results under different rotation differences of the HOWP method.  

Y. Zhang et al.                                                                                                                                                                                                                                   



ISPRS Journal of Photogrammetry and Remote Sensing 196 (2023) 1–15

12

5.1. Parameter settings 

The proposed HOWP method has parameters, such as feature 
neighborhood window (Nw) and repeated feature point filtering window 
(Fw), whose different values will affect its matching performance. 
Therefore, we quantitatively analyzed how the HOWP method func-
tioned under different settings. More details of parameter settings are 
given in Table 2. 

We tested 30 sets of MRSIs according to the parameter settings given 
in Table 2 to evaluate the impact of different parameters on the HOWP 
method by observing the mean NCM and mean RCM of images, which 
are shown in Fig. 14. 

Fig. 15 shows how different settings of the two parameters affect the 
HOWP method. The NCMs progressively decreased when NW < 30 or 
NW > 46 (Fig. 15 (a)). When NW = 38, NCM could obtain the optimal 
result. The RCM increased as NW increased; however, when NW > 46, the 
increase in RCM was no longer sufficient to compensate for the loss 
brought by the decline of NCM. Therefore, the results would be optimal 
only when NW is set to 38. As shown in Fig. 15 (b), both NCM and RCM 
decreased as Fw increased. When Fw ≤ 3, small fluctuations were ob-
tained in the NCM and RCM; however, when Fw > 3, the indices began to 
drop. Taken together, the optimal value for Fw should be 3. 

5.2. Analysis of aggregation features 

The effect analysis of the aggregation feature strategy was then 
conducted where the control variate method was used. In this case, we 
changed only the feature point extraction method. Two indices (NCM 
and RCM) were used to evaluate their performance. The results are 
shown in Figs. 16 and 17. 

Fig. 16 shows that the matching results obtained with the aggrega-
tion feature strategy are better than those obtained with either the blob 
or the corner method. Notably, the NCM of the aggregation feature is 
107, higher than that of blobs (61) and corners (33), showing the sig-
nificant improvement of the proposed method after the optimization by 
the aggregation feature strategy. 

Fig. 17 shows that Blob-HOWP method has a poor perform. The 
Corner-HOWP method performs better than that of the Blob-HOWP 
method, but the matching results of the Corner-HOWP method are not 
as significant. Average NCMs and average RCMs of the Blob-HOWP 
method were 75.38 points and 18.88%, while those of Corner-HOWP 
were 108.12 points and 21.77% respectively. By comparison, average 
NCMs of the proposed AF-HOWP, 1.84 times higher than that of the 
Blob-HOWP method, 1.28 times higher than that of the Corner-HOWP 
method. Its average RCMs was 3.44% higher than that of the Blob- 
HOWP method and 0.54% higher than that of the Corner-HOWP 
method. This is mainly because the proposed aggregation features 
method could combine the advantages of Blob and Corner features, 
therefore the acquired feature points are more robust. 

5.3. Analysis of different orientation features 

The weighted phase orientation histogram is key to solving phase 
direction inversion and phase extreme value mutation. Nonetheless, we 
used the control variate method to analyze the significance of the his-
togram. The proposed HOWP method is used to compare with the initial 

PC methods and the gradient orientation features methods. Two indices 
(NCM and RCM) were used to evaluate their performance. The com-
parison results are shown in Figs. 18 and 19. 

The HOWP method has obtained a better NCM result than the initial 
PC method and gradient orientation feature method. Specifically, the 
gradient orientation feature method obtained 378 matching pairs, with 
8 correct pairs and 370 incorrect pairs, the initial PC method obtained 
303 matching pairs, with 43 correct pairs and 260 incorrect pairs, while 
the HOWP method obtained 321 matching pairs, with 107 correct pairs 
and 214 incorrect pairs. 

Fig. 19 shows that the HOWP (Gradient)’s average NCM was 73 with 
the average RCM of 13.2%. The HOWP(PC)’s average NCM was 114.18 
with the average RCM of 18.47%. Average NCMs of the proposed HOWP 
(weighted phase orientation, WPO) was 21.5% higher than that of the 
initial PC method and 90.03% higher than that of the gradient orien-
tation feature method in 50 group pairs. Average RCMs of the HOWP 
(WPO) was 3.85% higher than that of the initial PC method and 9.12% 
higher than the gradient orientation feature method. Obviously, the 
HOWP method has better matching performance. The reasons why 
HOWP (Gradient) method performed so poorly might be: the gradient of 
the image was more sensitive to MRSI and the feature information 
description was insufficient. The HOWP (PC) method is mainly affected 
by the directional inversion or phase extreme value mutations. 

5.4. Analysis of regularized log-polar descriptor 

We also utilized a regularized log-polar description calculation 
method characterized by a more finely divided neighborhood division. 
This method is quite useful in computing descriptors of features that are 
more abundant. Its performance was tested by comparison with the 
original log-polar description through the control variate method. Two 
indices (NCM and RCM) were used for evaluation. The results are shown 
in Fig. 20. 

Evidently, the proposed Regularized-GLOH method significantly 
outperforms the original GLOH method in both NCM results and RCM 
results in 50 sets of images. As Fig. 20 (a) and (b) show, the average 
NCMs and average RCMs of the original GLOH were 95.64 points and 
16.03% respectively. The NCM of HOWP (RGLOH) was 0.45 times 
higher than that of HOWP (GLOH), and its’ RCM was 6.3% higher than 
that of HOWP (GLOH). This is mainly because our method could obtain 
more effective information, and the statistics of features in the neigh-
borhood of feature points are more uniform and regular. 

6. Conclusions 

In this paper, we have proposed a novel robust matching method, 
termed “HOWP,” to effectively address the difficulties in MRSI match-
ing, such as the directional inversion of phase features and phase 
extreme value mutation, which the PC model cannot overcome. The 
proposed method guarantees the stably robust matching of MRSIs by 
using the moments of the PC model to extract blob points and corner 
points separately and enriching the phase congruence orientation fea-
tures. Using 50 sets of MRSIs, comparisons were also made with PSO- 
SIFT, LGHD, RIFT, and HAPCG methods with respect to illumination, 
contrast map, grayscale, and rotation differences. The experimental re-
sults have the following indications:  

(1) The aggregation feature optimization strategy proposed by the 
HOWP method can fully extract the corners and blobs features of 
the image. The SR obtained using the HOWP method would be 
increased at least by 22.0% compared with that obtained using 
the four state-of-the-art methods.  

(2) The proposed HOWP method has better performance in matching 
MRSIs with scale, rotational, and translational differences, for its 
NCM is 4.5 times higher than that of the LGHD method, 2.58 

Table 2 
Parameter settings of the proposed HOWP Method.  

Experiment Variable Fixed 
Parameters 

Parameter 
NW 

NW =

[22,30,32,34,36,38,40,42,44,46,54,62,70,78] 
FW = 3 

Parameter 
FW 

FW = [1,2,3,4,5,6,7,8,9] NW = 38  
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times than the PSO-SIFT, 1.66 times than the RIFT method, and 
1.62 times than the HAPCG method.  

(3) An extended version of the HOWP method, namely, Simplified- 
HOWP, can perform more robustly in the matching of MRSIs 
without any rotational differences, for its NCM is 0.75 times 
higher than the HOWP method, and its RCM is 6.92% higher than 
that of the HOWP method. 

In summary, the proposed HOWP method enables robust and stable 
MRSI matching, thereby providing regular and reliable data for multi- 
source image data fusion, multi-target recognition, and SLAM. Addi-
tionally, its neighborhood window can be set more flexibly. The size of 

the neighborhood window can be increased when images have huge 
modal differences or narrowed when the difference is small. In general, a 
setting of 38 pixels is sufficient in most cases. 

However, the proposed HOWP method still has some limitations. (1) 
the HOWP method is mainly suitable for the MRSI matching task with 
rigid transformation. Its performance might be undermined when it 
comes to the non-rigid image; (2) we executed the HOWP method 
mainly in a CPU-based environment without migrating it into a GPU 
computing environment, so it could not achieve real-time matching. 
Improving the computational efficiency of the method will be the focus 
of our next stage of research. 

Fig. 15. Evaluation results of two indicators.  

Fig. 16. Matching results of different feature point detection methods.  

Fig. 17. Comparison results of three feature extraction methods.  
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Fig. 18. Comparison of matching results of three different orientation features.  

Fig. 19. Matching result statistics of three different orientation features.  

Fig. 20. Comparison of matching results original GLOH and Regularized-GLOH.  
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