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Abstract— This letter proposes a LiDAR and image line-
guided stereo matching method (L2GSM), which combines sparse
but high-accuracy LiDAR points and sharp object edges of
images to generate accurate and fine-structure point clouds. After
extracting depth discontinuity lines on the image by using LiDAR
depth information, we propose a trilateral update of cost volume
and depth discontinuity lines-aware semi-global matching (SGM)
strategies to integrate LiDAR data and depth discontinuity lines
into the dense matching algorithm. The experimental results for
the indoor and aerial datasets show that our method significantly
improves the results of the original SGM and outperforms two
state-of-the-art LiDAR constraints’ SGM methods, especially
in recovering the 3-D structure of low-textured and depth
discontinuity regions. In addition, the 3-D point clouds generated
by our proposed method outperform the LiDAR data and dense
matching point clouds generated by Metashape and SURE aerial
in terms of completeness and edge accuracy.

Index Terms— 3-D reconstruction, depth discontinuity lines,
LiDAR, low-textured, semi-global matching (SGM), stereo
matching.

I. INTRODUCTION

DENSE stereo matching, finding the disparity between
matching pixels on a stereo image pair [1], has many

influential applications in photogrammetry and computer
vision [2]. However, conventional dense matching methods
have weak distinguishability in low-textured and depth dis-
continuity regions due to texture sensitivity [3], [4], as shown
in Fig. 1(c). By contrast, LiDAR point clouds have high geo-
metric accuracy independent of feature spectra [5]. However,
as shown in Fig. 1(a) and (b), unlike pixel measurements
from cameras, LiDAR data are sparse in most cases, which
can lead to depth discontinuity regions that are not well
reconstructed [6]. Therefore, the complementary fusion of
LiDAR data and image data is a promising solution for
generating accurate and fine-structure 3-D point clouds [7].
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Dense image matching (DIM) constrained by LiDAR data,
which integrates the LiDAR data into an advanced DIM
framework [8], is a reliable method to fuse LiDAR data and
images. LiDAR data can be used in many aspects of DIM,
such as reducing the disparity search range [9] and optimizing
the matching cost [10]. The aforementioned methods produce
better-matching results than the original DIM algorithm but
tend to generate extended regions at the depth discontinuity
edges due to the smoothness constraint of dense matching.
Reducing penalty constraints on gradient [11], canny [12],
or texture [13] edges can improve the matching results in
edge regions. However, the aforementioned strategy does
not distinguish texture edges from geometric edges, which
conflicts with penalty constraints tending to be changed at
geometric edges. With the introduction of LiDAR data, it is
feasible to distinguish texture edges from geometric edges.
Hence, an edge-preserving stereo matching with LiDAR data
and geometric edge knowledge is proposed to recover accurate
3-D structures of low-textured and depth discontinuity regions,
as shown in Fig. 1(d).

II. METHODOLOGY

The inputs of the proposed method are stereo images and
LiDAR point clouds located in the same area. The accurate
registration [14] is a prerequisite for most of the LiDAR
and image fusion methods including our proposed method.
In preprocessing, stereo images need to be rectified in the
epipolar image space, and LiDAR outliers need to be filtered
out via positional uncertainty [15]. First, we triangulate a mesh
surface from the LiDAR point clouds and generate an initial
disparity map. Next, we extract depth discontinuity lines,
which are located in the depth discontinuity regions, from the
image line features based on the initial disparity map. Finally,
we propose a trilateral update of cost volume for improving
low-textured regions and depth discontinuity lines-aware semi-
global matching (SGM) for preserving the depth discontinuity.

A. Depth Discontinuity Line Extraction
We project the LiDAR mesh surface onto the stereo epipolar

images to generate an initial disparity map and LiDAR projec-
tion points. The LiDAR projection points render sparse laser
points with known depths or disparities in an image grid. The
occluded LiDAR points are excluded when back-projecting the
watertight LiDAR mesh to the image.

Straight lines provide important information on man-made
objects, which are often within the boundaries of objects. Per
the literature [16], depth discontinuity lines can be clearly
identified by the initial disparity map. As shown in Fig. 2,
two buffer rectangles are symmetrical to the straight line in
the basic image with its length parallel to the straight line
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Fig. 1. Complementary fusion of images and LiDAR data. (a) Images.
(b) LiDAR data. (c) DIM. (d) Proposed method (DIM constrained by LiDAR
data).

Fig. 2. Depth discontinuity line extraction. (a) Lines detected by LSD.
(b) Initial disparity map. (c) Depth discontinuity lines.

and its width (ten pixels) perpendicular to the straight line.
The median disparity value of the two buffer rectangles of
the initial disparity map can be calculated. Only the straight
line with obvious disparity changes (>one pixel) is selected
as depth discontinuity lines.

B. Trilateral Update of Cost Volume
Cost volume stores the matching cost of each pixel in the

reference image with the matching image in the disparity
range. Cost volume optimization for updating the matching
cost of homogeneous pixels when LiDAR data are available is
an effective strategy for DIM constrained by LiDAR data [7].
Homogeneous pixels are pixels with no significant depth
changes within the spatial neighborhood of the LiDAR projec-
tion point. Bilateral filtering based on the spatial and intensity
domains is a commonly used method to determine homoge-
neous pixels, which defines a similarity measure between the
central pixel q and each surrounding pixel p. The equation
for calculating the similarity measure is as follows:

W(p,q) = f (||p − q||)g
(
||Ip − Iq ||

)
(1)

where Ip and Iq are the intensities of the current and the
centric pixel, respectively. The weighting functions, f (·) and
g (·) are based on a Gaussian distribution. Whether p is a
homogeneous pixel of q can be determined by applying a
fixed threshold truncation (the empirical value is 0.7) to W(p,q).
An illustration of the homogeneous pixels (yellow points)
based on a bilateral filter is shown in Fig. 3(a). The right part
of the homogeneous pixels is not in the continuous disparity
region with the LiDAR projection point (red point). Thus,
the aforementioned results conflict with the basic assumption
that disparities of homogeneous pixels should be continuously
varying.

By using the a priori of the depth discontinuity lines, a new
solution to the aforementioned problem is available. We added
depth discontinuity lines to the homogeneous pixel similarity
metric to enhance the possibility that homogeneous pixels lay

Fig. 3. Cost volume and cost aggregation optimization. (a) Bilateral update.
(b) Trilateral update. (c) Depth discontinuity lines-aware SGM.

in regions of continuous disparity variation. We simplified the
trilateral filter on the image space. First, we stored each depth
discontinuity line in the image raster in the form of four
neighborhoods. Next, after two pixels satisfied the bilateral
filtering, each pixel on the line segment formed by these
two pixels that did not contain depth discontinuity lines was
considered a homogeneous pixel

W(p,q) = f (||p − q||)g
(
||Ip − Iq ||

)
T {M ∩ DL = ∅} (2)

where T {·} is an indicator function that tests whether the line
between the center pixel and the current pixel crosses the depth
discontinuity lines, M denotes the binarized set of the line
between the center pixel and the current pixel in the image
space, and DL denotes the binarized set of depth discontinuity
lines in the image space

T {M ∩ DL = ∅} =

{
1 M ∩ DL = ∅
0 M ∩ DL ̸= ∅.

(3)

The trilateral-based pixel similarity ensures that pixels on
either side of the depth discontinuity line are not judged
as homogeneous pixels, as shown in Fig. 3(b). Finally, the
matching cost of these homogeneous pixels is updated using
the riverbed method [7], which can induce the continuous
disparity or depth changes in the homogeneous region of
an image. Therefore, the riverbed method ensures that most
pixels, including those near-depth discontinuity lines, are more
inclined to the correct disparities than the incorrect disparities.

C. Depth Discontinuity Lines-Aware SGM
Because SGM demonstrates superior matching precision

and computational efficiency [12], the proposed method is an
optimization of SGM. The SGM method aims to minimize
the global cost function by going along 1-D paths L in eight
directions r through the image. Along each path Lr , the
minimum cost to reach all disparities of a pixel p on the path
is calculated recursively

Lr (p, d) = C(p, d) + min(Lr (p − r, d), Lr (p − r, d − 1)

+P1, Lr (p − r, d + 1) + P1,

× min
i

Lr (p − r, i) + P2) − min
k

Lr (p − r, k)

(4)

where P1 and P2 are the penalty parameters for the current
pixel p and the previous pixel in the direction of path r with
a disparity difference of one and a disparity difference greater
than one, respectively, and P2 ≥ P1. The last subtraction
guarantees that Lr (p, d) < C max + P2. The SGM aggregates
the cost paths over all paths on each pixel

S(p, d) =

∑
r

Lr (p, d). (5)
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Thus, the disparity for each pixel corresponds to the mini-
mum aggregated cost. Small penalty parameters are used for
depth discontinuities to allow for significant changes in the
disparities of adjacent pixels. Therefore, an extension penalty
tuning algorithm was proposed to tolerate significant disparity
changes on both sides of the depth discontinuity lines during
the cost aggregation.

After adaptively adjusting the penalty parameters using the
gradient, canny, or texture edges (optional), we updated the
penalty parameters based on whether neighboring pixels on
the cost aggregation path laid on the depth discontinuity line.
As shown in Fig. 3(c), if at least one of the current pixel p
and the previous pixel p–r in the aggregation direction has
a depth discontinuity line, the disparity information passed to
the current pixel is no longer reliable, and a smaller penalty
parameter P2(p) should be chosen to allow for disparity
mutations. If both p and p–r have no depth discontinuity lines,
the penalty parameter P2(p) was not adjusted. The specific
equation is as follows:

P2(p) =

{
P2 p /∈ DL and p − r /∈ DL
P1 p ∈ DL or p − r ∈ DL.

(6)

Finally, disparities around depth discontinuity lines will
be more likely to obtain the correct matching result when
combined with the trilateral update and penalty tuning.

III. VALIDATION

To validate the effectiveness of the LiDAR and image line-
guided stereo matching method (L2GSM), we proposed and
evaluated the indoor and aerial stereo images, particularly on
artificial structures with many line features. In addition to
stereo images, the aerial dataset provides LiDAR data, and
the indoor dataset provides reference disparity maps collected
by structured lighting scanners. The reference disparity maps
of our selected indoor dataset have been proved to be a
valid alternative to LiDAR data, owing to its very high
accuracy [10].

A. Validation Metrics
We define overall accuracy and edge accuracy to evaluate

the disparity maps generated by different DIM methods. The
average error and the percentage of outliers [7], calculated by
the difference between DIM disparity value and real disparity
value, are commonly used overall accuracy indicators. Object
edge buffers on the non-object side is an effective method of
evaluating edge accuracy [17]. When the absolute difference is
greater than 3 pixels between the dense matching disparity di
and true disparity dm

i , the pixel i is considered a false match.
Mismatched pixels are placed in the set of error matches Serror ,
and other pixels are placed in the set of correct matches
Scorrect . The percentage of mismatched pixels in the edge
buffer is defined as follows:

badper = [Serror ]/[Serror + Scorrect] (7)

where [ · ] represents the number of all elements in the set.
We also evaluate the root mean square error (RMSE) of the
linear buffer corresponding to the nonobject side. The RMSE
is defined as follows:

RMSE =

√∑
di ∈Serror ∪Scorrect

(
di − dm

i

)2
/[Serror + Scorrect].

(8)

Fig. 4. Experimental results for the Middlebury 2014 dataset. (a) Left rectified
image. (b) SGM. (c) Gauss. (d) Diffusion-based. (e) L2GSM. (f) Ground truth
disparities.

TABLE I
MATCHING ACCURACY FOR MIDDLEBURY DATASET

B. Experimental Results of Indoor Data
We evaluated the L2GSM method first using the Middlebury

2014 dataset [18]. Five percent of the ground truth data
were randomly sampled as the LiDAR constraints, and the
remaining 95% were used to evaluate the matching accuracy.
The sampling percentage is reasonable for the actual data
acquisition and is consistent with that of the experiment using
the Gauss method [9].

We compared our method with two other state-of-the-art
cost volume optimization methods: the Gauss method [9] and
the diffusion-based method [10]. A qualitative comparison of
disparity maps is presented in Fig. 4. Disparities from small
to large are mapped to the pseudo color from blue to red.
The original SGM substantially restored the 3-D shape of
the object but produced the worst object boundary among
these compared algorithms. With the introduction of LiDAR
constraints, disparity maps generated by dense matching are
improved significantly, as shown in Fig. 4(c)–(e). As shown
in the white ellipse area, among all the comparison methods,
the object edges of L2GSM are the closest to the object edges
of the ground truth disparities.

The statistical results of the overall and edge accuracy,
calculated by the remaining LiDAR projection points, are
shown in Table I. To perform ablation experiments, we added
L2GSM without a cost update and L2GSM without penalty
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tuning. The former means that L2GSM only uses depth discon-
tinuity lines-aware SGM. The latter means that L2GSM uses
only trilateral updates of the cost volume. L2GSM doubles
the computational time compared with the original SGM,
but it has less than one-fifth the error rate of the original
SGM for all verification metrics. All the LiDAR constraints’
SGM methods improved the edge accuracy, and L2GSM is
optimal. L2GSM without penalty was better than L2GSM
without a cost update in all evaluation metrics in our ablation
experiments. We also observed that the matching accuracy
of L2GSM without penalty tuning and L2GSM is relatively
close. Nevertheless, depth discontinuity lines-aware SGM is
essential because L2GSM generates better disparities near the
depth discontinuity lines than L2GSM without penalty tuning.
Therefore, L2GSM is optimal among all compared algorithms
in terms of overall accuracy and edge accuracy.

C. Experimental Results of Aerial Data
We also evaluated the performance of L2GSM by using

the Vaihingen dataset, which provides aerial images with
a ground sampling distance of 0.08 m and airborne
laser scanner data for which the average point density is
4 points/m2. The images and LiDAR data collected in the
area have been accurately registered. The dataset was pro-
vided by the German Society for Photogrammetry, Remote
Sensing and Geoinformation (http://www.ifp.uni-stuttgart.de/
dgpf/DKEP-Allg.html). The matching cost of SGM is the
census, and the regularization parameter P2 of SGM adapts
to the intensity gradient.

We selected 15 stereo pairs from 20 images based on geo-
metric configuration and interimage overlap. Due to the sig-
nificant outdoor light variation, we further compared L2GSM
with the light-variation-insensitive pyramid stereo matching
network (PSMNet). PSMNet can effectively reduce the match-
ing errors in ill-posed regions by taking advantage of the
capacity of global context information [19]. Depth maps of the
SGM, Gauss, diffusion-based, PSMNet, and L2GSM methods
around building edges are shown in Fig. 5. PSMNet was
trained by satellite image datasets. The depth map of the
original SGM has many matching errors on the roof, mainly
due to matching uncertainty caused by weak textures. The
depth map generated by PSMNet does not have many outliers
but is not sharp enough at the edges of buildings. With the
introduction of LiDAR constraints, the matching results for
the low-textured regions are significantly improved. However,
compared with the Gauss and diffusion-based methods at
building boundaries, our L2GSM method achieves the most
accurate matching results. In addition, Fig. 5 shows the ele-
vation profiles of the two white lines on the elevation maps
generated by various methods. On the roof (low-textured area),
the elevation profiles of the SGM and Gauss methods have
false elevation protrusions, and the elevation profiles of the
diffusion-based and L2GSM methods vary continuously and
consistently. At the building edge, the elevation profiles of the
SGM, PSMNet, and diffusion-based methods have different
degrees of offset from the building edge. The elevation profiles
of the L2GSM method and building edge overlap. Thus, the
elevation maps and elevation profiles confirm that the L2GSM
method outperforms the SGM, PSMNet, Gauss, and diffusion-
based methods in low-textured areas and building edges.

Because the Vaihingen dataset does not have the actual
elevation of all pixels, the input of edge accuracy is slightly

Fig. 5. Experimental results for the aerial stereo image dataset. (a) Depth
discontinuity lines. (b) SGM. (c) Gauss. (d) Diffusion-based. (e) PSMNet.
(f) L2GSM. (g) Elevation profile 1. (h) Elevation profile 2.

Fig. 6. Edge accuracy on multiple aerial stereo images. (a) Percentage of
mismatch pixels. (b) Variance.

Fig. 7. LiDAR and DIM point clouds. (a) LiDAR. (b) Metashape. (c) SURE
aerial. (d) L2GSM.

adjusted. We calculated the average elevation values on each
side of the linear buffer according to the LiDAR projection
points. We evaluated the edge accuracy of 15 stereo images.
As shown in Fig. 6, the original SGM has the highest number
of false matches, and the diffusion-based method has the
largest variance among all comparison methods. The accuracy
of PSMNet is high on most pairs but poor on a few pairs.
Therefore, the bad percentage and variance of L2GSM stabi-
lized at a low level for all 15 stereo pairs, which shows that
L2GSM is valuable for preserving the depth discontinuity.

We further evaluated the PSMNet finetuned by aerial stereo
pairs and our L2GSM method using the Vaihingen benchmark
dataset [20]. About 2% of LiDAR points were randomly sam-
pled from the ground truth data as the input of L2GSM. The
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TABLE II
FITTING RESIDUALS AT 3-D LINE FEATURES (UNIT: METER)

percentage of outliers >1, 2, or 3 pixels of the finetune PSMnet
was 31.4%, 20.7%, or 16.1%, while L2GSM, compared with
the former, decreased by 3.2%, 1.7%, or 0.6%.

Fig. 7 shows the LiDAR point clouds and the dense
matching point clouds generated by our L2GSM method and
two state-of-the-art software packages (Metashape and SURE
aerial). Metashape and SURE aerial processed stereo images
at full resolution and used default values for all matching
parameters. To increase the clarity of the visual comparison,
we selected two types of building regions. The LiDAR point
clouds are sparse and unevenly distributed. From the overall
view, Metashape, SURE aerial, and our L2GSM method sub-
stantially restored the 3-D structure of the region. Regarding
details, Metashape and SURE aerial had some matching errors
in low-textured and depth discontinuity regions (e.g., shadows,
roofs, or building edges), which were represented as invalid
areas of the point cloud. Compared with LiDAR point clouds
and other DIM point clouds, the invalid area of the point
clouds generated by our L2GSM method is the smallest.

The 3-D straight lines of the buildings, which were mea-
sured on the stereo image pair, were used as check features to
quantitatively assess the geometric quality of the DIM point
clouds [21]. Fitting residuals can relatively reflect the ability of
the various methods in describing the nearly ideal lines. Fitting
residuals consist of the average error and RMSE obtained
from the distance from the dense matching edge points to the
adjacent 3-D straight line. Table II shows fitting residuals of
many uniformly distributed 3-D line features. Metashape and
SURE aerial are close to the fitting residuals of the LiDAR
point clouds, which demonstrates the excellent performance
of these two packages. L2GSM is better than LiDAR point
clouds and dense matching point clouds alone.

IV. CONCLUSION

This letter proposes an L2GSM method that combines high-
accuracy LiDAR points and sharp object edges of images to
generate accurate and fine-structure point clouds. The experi-
mental results for the indoor and aerial datasets show that our
method significantly improves the results of the original SGM
and outperforms two state-of-the-art LiDAR constraints’ SGM
methods. Ablation studies demonstrate the value of a trilateral
update of cost volume and depth discontinuity lines-aware
SGM in recovering the 3-D structure of low-textured and
depth discontinuity regions, respectively. In addition, the 3-D
point clouds generated by our L2GSM method outperform
LiDAR data and dense matching point clouds generated by
Metashape and SURE aerial in terms of completeness and
edge accuracy. Therefore, the proposed L2GSM can enhance
the 3-D perception capability of LiDAR data and stereo image
fusion.
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