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A B S T R A C T   

Water body classification from high-resolution optical remote sensing (RS) images, aiming at classifying whether 
each pixel of the image is water or not, has become a hot issue in the area of RS and has extensive practical 
applications in a variety of fields. Numerous existing methods have drawn broad attention and achieved 
remarkable advancements, meanwhile, serious challenges and potential opportunities also exist, which deserves 
in thinking and discussing deeply. By taking into account the comprehensive survey is still lacking, through the 
compilation of approximately 200 papers, this paper summarizes and analyzes the achievements, and discusses 
the perspectives of future research directions. Specifically, we first analyze 5 challenges according to the char-
acteristics of water bodies in high-resolution optical RS imagery, and 5 corresponding significant opportunities 
combined with advanced deep learning techniques are discussed to respond mentioned challenges. Then, we 
divide the existing methods into several groups in light of their core ideas and introduce them chiefly. In 
addition, some practical applications and publicly open benchmarks are listed intuitively. 10 and 9 represen-
tative methods are implemented on two widely used datasets to assess their performance, respectively. To 
facilitate the qualitative and quantitative comparison in the research avenue, the two benchmarks employed in 
the comparative experiments and links to other relevant datasets and open-source codes will be summarized and 
released in https://github.com/Jack-bo1220/Benchmarks-for-Water-Body-Extraction-from-HRORS-Imagery. 
Finally, we discuss a range of promising research directions to provide some references and inspiration for the 
following research. The studies of our paper, including the existing methods, challenges, opportunities, derived 
applications, and future research directions, provide a fuller understanding of water body classification from 
high-resolution optical remote sensing imagery.   

1. Introduction 

With the great advances of remote sensing (RS) sensors, computer 
science, and other technologies, RS has ushered in a climax of devel-
opment, and the volume of that is growing at high speed. Numerous 
sensors, particularly high-resolution optical satellites and unmanned 
aerial vehicles (UAVs), become significant platforms for earth observa-
tion (McCabe et al., 2017; Li et al., 2012). Since 1972, the first satellite 
called ERTS-1 applied to survey and research the earth’s surface was 
launched by NASA, which marks the beginning of the task of monitoring 
the land cover on Earth’s surface from the angle of view of space (Huang 
et al., 2018). Subsequently, a large number of satellites were launched 
for various purposes, including Sentinel, SPOT, Gaofen, and WorldView 
series. Nanosatellites (e.g., GRUS-1A, SkySat series, and Flock series), 

especially CubeSats that use a standard size and form factor, have the 
advantages of short development cycle, low cost, and the ability to carry 
a variety of RS sensors, and have achieved rapid development. Ac-
cording to the differences of the sensors’ imaging band, they can be 
divided into optical RS sensors and synthetic aperture radar (SAR) 
sensors. Further, taking into account the local coverage, optical RS 
sensors are categorized into 3 kinds in terms of spatial reso-
lution—coarse-resolution (>200 m), medium-resolution (5–200 m), and 
high-resolution (<5 m) (Huang et al., 2018). In recent years, as a novel 
observation platform, UAV has been extensively used in specific tasks of 
RS (Adão et al., 2017; Nex and Remondino, 2014). Due to its portability, 
operation flexibility, and the ability to provide images with the high 
spatial resolution, it is becoming a new generation of sensors to sup-
plement the conventional RS technology. Relying on the advancements 
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of the above sensor techniques, the high-resolution optical RS imagery 
obtained from high-resolution optical satellites and high-resolution 
UAVs are the focus of researchers’ attention and are frequently used 
in various tasks in the area of RS. 

Water bodies, as one of the fundamental elements of the earth, are 
not only essential to the natural ecological cycle, but closely geared to 
human life as well, such as health, irrigation, electric power generation, 
and so on (Vörösmarty et al., 2000). Water bodies mainly include rivers, 
canals, ponds, lakes, and seas. It should be noted that for water bodies 
that change with seasonal climate, for example, seasonal rivers that are 
covered by water in the rainy season but sand in the summer. When 
images are acquired during the rainy season, they are naturally identi-
fied as water bodies. Thanks to the earth observation capability of the 
abovementioned sensors and advanced image processing techniques, it 
is possible to extract water bodies from RS imagery. For optical RS im-
ages, the methods based on handcrafted features appear and demon-
strate fine performance (McFeeters, 1996; Xu, 2006; Acharya et al., 
2016). The wide application of the deep learning (DL) algorithm makes 
it further developed (Li et al., 2021c; Sun et al., 2021). For SAR images, 
there are also a considerable number of studies that achieved great 
success. For example, gray-level co-occurrence matrix (GLCM) and 
support vector machine (SVM) (Lv et al., 2010), Graph Cut model (Bao 
et al., 2021), homogeneity response (Sghaier et al., 2016), PA-UNet (Li 
et al., 2021b), cascaded fully-convolutional network (CFCN) (Zhang 
et al., 2020b), and superpixel segmentation (Pappas et al., 2020). 
Compared with the speckle noise interference of SAR data and the 
fuzziness of lower-resolution optical data which is difficult to obtain 
detailed information and is not conducive to accurately distinguishing 
small-sized land cover classification, high-resolution optical RS images 
have absolute advantages of observing and classifying the land use 
categories. Consequently, raising the spatial resolution of optical satel-
lites has always been, without doubt, one of the most critical tasks in the 
field of RS, as shown in Tables A1 and A2. 

In the background of increasing global water scarcity, water body 
classification from high-resolution optical RS imagery can be widely 
used in water resources assessment, environmental protection, urban 
planning, etc, which makes it attach importance in the RS community 
(Nath and Deb, 2010). Although there are still many challenges to be 
tackled in water body classification from SAR images and coarse- 
resolution optical RS images, it is worth mentioning that high- 
resolution optical RS images, which are the focus of this article, are 
increasingly utilized in the task of water body classification owing to 
extensive data sources, high enough spatial resolution. 

Currently, a large number of water body classification methods have 

emerged and the accuracy of that is gradually increasing. To better 
organize and introduce the existing approaches, and explore the feature 
research, in this article, they are divided into two categories in light of 
the core idea of algorithms: non-DL-based methods and DL-based 
methods. Specifically, the former can be separated into three compo-
nent subcategories: threshold-based methods, shallow classifier-based 
methods, and hybrid classification methods. Generally speaking, 
threshold-based methods usually formulate the discriminative water 
body index that relies on the different spectral response in various bands 
and make an attempt to combine them effectively. However, the second 
is to excavate the spatial features of images, such as edge, shape, and so 
on. In addition, unsupervised classification algorithms (e.g., K-means 
clustering (Likas et al., 2003), MRF model (Dubes et al., 1990), and 
decision tree (Friedl and Brodley, 1997)) or low-level machine learning 
models (Huang et al., 2015; Li et al., 2021a) are embedded. As its name 
implies, the third is to combine the above two categories to form an 
overall water body segmentation workflow. Owing to the powerful 
capability of deep neural networks mining the deeper-level abstract 
features of images, DL-based methods have achieved better perfor-
mance, and have gradually become the mainstream approaches of water 
body classification from high-resolution optical RS imagery. Facing 
different motivations, the optimization schemes of these methods can be 
systematically summarized into four categories. In order to integrate 
more multi-scale or spatial-spectral feature information to adapt to the 
variability of water bodies, feature fusion-based methods emerged as 
time requires, and some studies (Duan and Hu, 2019; Chen et al., 2020; 
Sun et al., 2021) as milestones demonstrate great potential in this 
research direction. Boundary constraint-based methods are also com-
mon water body classification projects, mainly including well-designed 
boundary constraint loss functions (Miao et al., 2018), boundary 
refinement modules (Chen et al., 2020; Cui et al., 2020), and post- 
processing optimization (Sun et al., 2021; Feng et al., 2018; Li et al., 
2019b). The methods driven by large scene context (Chen et al., 2018b; 
Dong et al., 2019) and cross-domain migration approaches (Yang et al., 
2021; Abid et al., 2021) should not be ignored in this field. The road map 
of existing methods for water body classification from high-resolution 
optical RS imagery is shown in Fig. 1 clearly and intuitively. 

To sum up, it is not hard to see that non-DL-based methods are 
usually specially formulated for certain imagery from specific sensors, 
which leads to their poor transferability and low efficiency of water 
body classification. Under the background of the RS big data era (Li 
et al., 2021h; Chi et al., 2016), non-DL-based methods cannot meet the 
needs of practical application. Therefore, it is urgent to extract water 
from high-resolution optical RS images accurately and efficiently. 

Fig. 1. The road map of existing methods for water body classification from high-resolution optical RS imagery. (For each method category, some representative 
work is selected for display.). 
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Fortunately, relying on the great advances of DL technology in image 
processing and visual recognition, the bottleneck of automatic water 
body classification has been broken through. A large number of explo-
rations on DL technology appeared, which made considerable achieve-
ments and breakthroughs (Krizhevsky et al., 2012; He et al., 2016; Xie 
et al., 2017; Zhang et al., 2020a). Especially for semantic segmentation, 
fully connected network (FCN) (Long et al., 2015), PSPNet (Zhao et al., 
2017), DeepLab series (Chen et al., 2017a; Chen et al., 2017b; Chen 
et al., 2018), High-resolution network (HRNet) (Wang et al., 2020b), 
Swin Transformer (Liu et al., 2021), and other advanced DL network 
architectures and training strategies continue to emerge, promoting the 
continuous improvement of classification performance. Motivated by DL 
technology, DL-based methods, as alternative ways to extract water 
bodies from high-resolution optical RS imagery, have made many at-
tempts from different perspectives, which provide good inspiration for 
the follow-up improvement research. More exactly, there are four con-
tributions for existing DL-based methods. First, fusing the high- and low- 
level features from different layers to enrich the representation of the 
final feature map, or aggregating contextual information at multi-scale 
receptive fields is to adapt the variable shape, size of water bodies and 
make full use of the multi-scale characteristic of water bodies. Then, 
through the boundary constraint loss, boundary refinement units, and 
post-processing algorithms, the complex details of boundaries can be 
preserved to the greatest extent. Last, some large scene context-guided 
methods and domain adaptive methods appeared gradually, which is 
beneficial for extracting water bodies from large-size scene imagery and 
images with the complex scene or distribution, respectively. 

Although lots of achievements have been obtained in water body 
classification from high-resolution optical RS imagery, many tricky 
challenges still remain. However, a thorough review of water body 
classification from high-resolution optical RS imagery is still lacking, 
which motivates us to systematically analyze the challenges and inves-
tigate the existing methods. Different from the existing relevant review 

articles (Govender et al., 2007; Nath and Deb, 2010; Haibo et al., 2011; 
Jawak et al., 2015; Musa et al., 2015; Huang et al., 2018; Wang and Xie, 
2018; Acharya et al., 2018; Shen et al., 2019; Bijeesh and Nar-
asimhamurthy, 2020)(as shown in Table A3), our paper focuses on the 
developing methods, practical application, challenges, and opportu-
nities of water body classification from high-resolution optical RS im-
agery. Through detailed theoretical analysis and intuitive experimental 
comparison, our paper aims to summarize the achievements and per-
spectives in this field and fill the gap of a systematic review in this field. 
To the best of our knowledge, about 47 methods have been disclosed, 
and they have made remarkable advancements. At present, the methods 
based on DL technique occupy the mainstream gradually. Then, 10 and 9 
representative methods are reproduced and compared on two public 
benchmarks respectively, which will help potential readers quickly 
study and compare, and facilitate engineers and technicians to rapidly 
lock the most appropriate method by viewing this paper. Furthermore, 
we summarize some practical applications. Last but not least, combined 
with the current progress in the field of DL, future development op-
portunities and research directions are discussed, which is conducive to 
providing research ideas for young researchers. 

The rest of this paper is organized as follows. Challenges and op-
portunities are discussed in Section 2. In Section 3, existing methods are 
categorized and introduced. Some practical applications are discussed in 
Section 4, and then, Section 5 mainly focuses on the publicly open 
datasets and applied some milestones to compare and discuss their 
performance. In Section 6, we conclude the possible future research 
directions that can provide inspiration for potential readers. Ultimately, 
we conclude this paper in Section 7. In addition, Fig. 2 intuitively dis-
plays the outline of this paper. 

Fig. 2. An outline of this paper, including (a) challenges and opportunities, (b) existing methods, (c) practical applications (The pictures in the second and third 
columns of the second row of this component are downloaded from (Qayyum et al., 2020; Tian et al., 2017) and edited, respectively), (d) evaluation and comparison 
(The picture in the first row and first column of this component is downloaded from (Huang et al., 2018)), and (e) future research directions. 
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2. Water body classification from high-resolution optical remote 
sensing imagery: Challenges and opportunities 

The use of remote sensing for automatic water body classification, as 
one of the significant tasks in the field of intelligent interpretation and 
monitoring of natural resources, still has many problems and challenges 
to be tackled. In the same way, a number of advanced artificial intelli-
gence (AI) approaches, especially DL methods, not only bring broader 
development opportunities but also promote advanced algorithms to 
succeed in practical applications. In this section, we first systematically 
discuss the main challenges of water body classification from high- 
resolution optical RS imagery according to the characteristic of rele-
vant images of water bodies. And then, aiming at several challenges we 
concluded, many cutting-edge DL approaches that can assist to solve 
these problems are analyzed one by one. 

2.1. Challenges of water body classification from high-resolution optical 
remote sensing imagery 

Compared with SAR data, despite high-resolution optical RS imagery 
being easy to be influenced by the natural climate and having no ability 
to provide 24 h and all-weather RS data, they still have incomparable 
advantages. Panchromatic and visible images with high-spatial resolu-
tion provide clear spatial texture information for water bodies. On the 
basis of that, multispectral data (e.g., WorldView-2 data) has the 

advantage of integrating spectral information and can present the 
intrinsical characteristics of water bodies. In other words, due to the 
different characteristics of receiving and radiating electromagnetic 
waves, different types of ground objects show different spectral curves. 

In recent years, with the progress of high-resolution RS imaging 
technology, the texture structure of the obtained image is finer, the 
geometry of the ground object is clearer, and the detail difference be-
tween the visual and the natural image has become smaller and smaller 
(Cheng et al., 2020). Therefore, in addition to the existence of traditional 
water body classification methods, many advanced Computer Vision 
(CV) algorithms have been successfully transferred to water body clas-
sification from high-resolution optical RS images. However, it still needs 
to be noted that there has not yet been an algorithm that can achieve the 
target of that with satisfactory accuracy. Intuitively, the challenges 
include the following:  

(1) Limited spectral information and small scene coverage. In 
terms of the preeminence of NDWI (McFeeters, 1996), automated 
water extraction index (AWEI) (Feyisa et al., 2014), water index 
created with linear discriminant analysis (WI2015) (Fisher et al., 
2016), it demonstrates the significance and desirability of enough 
spectral bands, especially a series of infrared bands.Unfortu-
nately, apart from the WorldView-3 satellite, other common op-
tical high-resolution sensors have no capability of supplying 
much band information such as short-wave infrared band (SWIR), 
which makes most threshold-based methods ineffective. Addi-
tionally, it is easy to understand that with the increase of spatial 
resolution, the geographical area covered by each tile is narrower 
when the size of patches is fixed. Currently, mature DL algorithms 
prefer to crop large-size samples into small-size (e.g., 256 × 256, 
512 × 512) tiles and then use them to train models. There are two 
major reasons for this. On one hand, the limited computational 
power and GPU memory cannot meet the setting of training large- 
size samples directly. On the other hand, the receptive field of 
neurons is finite, and small-size tiles are conducive to the model 
to learn abstract features better. However, different from natural 
imagery, RS imagery contains more complex geoscience knowl-
edge and interdependent ground objects. Especially, river, lake, 
and so on are geographically continuous, but the small scene 
coverage undermines the application of continuity, as shown in 
Fig. 3.  

(2) Variability of shape, size, and distribution. Water bodies 
include surface rivers, ponds, lakes, oceans, and so on. Their 

Fig. 3. Large-size imagery and corresponding cropped patches.  

Fig. 4. Water bodies with different scale characteristics, including (a) rivers, (b) canals, (c) ponds, (d) lakes, and (e) seas.  
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shapes are various. Therefore, if classification methods only 
depend on morphological algorithms, it is difficult to define 
water bodies with a unified paradigm. In addition, water bodies 
can be roughly divided into large-size ones (e.g., lakes and trunk 

streams) and small ones (e.g., ponds and tributaries). These 
multi-scale characteristics present many challenges to the scale- 
generalization of existing approaches. In Fig. 4, the above-
mentioned viewpoints are demonstrated visually. It is also 
important to note that the impact of distribution differences 
should not be ignored. For example, images obtained from 
divergent regions or sensors have great differences in illumina-
tion, color tone, texture, and appearance, as shown in Fig. 5.  

(3) Scene complexity. The spectral characteristics of some water 
bodies are similar to those of shadow on the optical RS image, 
which is particularly easy to cause false classification of water 
bodies, as shown in Fig. 6. Therefore, the elimination of moun-
tain, building, and cloud shadow is a necessary aspect to improve 
the accuracy of water body information classification. To solve 
this problem, scholars have conducted extensive experiments via 
using thinning segmentation (Gao et al., 2016), multiband spec-
tral relationship (Xu, 2006), and object-oriented methods (Xu 
et al., 2010), the interference of shadow is eliminated to a certain 
extent. Sun glint (i.e., specular reflection of light from water 
surfaces) is another important factor impacting the accuracy of 
water body mapping. The reason is that in the sun glint area of a 
satellite image, smooth ocean water becomes a silvery mirror, 
while rougher surface waters appear dark. More importantly, the 
deteriorating environment and increasingly serious pollution 
have gradually aroused the concern of human beings, which also 
has a negative impact on water body extraction. Water body is 
mainly contaminated by water eutrophication, toxic organic 
matter and heavy metals. Polluted waters usually represent black 
and smelly characteristics, as shown in Fig. 7, in which water 
eutrophication seriously affects the edge extraction. The principal 
reason is that a series of water eutrophication products such as 
cyanobacteria and the red tide will show vague information like 
vegetation on RS images, which makes it laborious to classify the 
water or land boundary. Similarly, macrophytes often cover parts 
of water bodies, making accurate classification more difficult.  

(4) Complex and blurry boundaries. Boundary optimization, as a 
hot research issue, has been widely exploited in both natural 
image vision (Lafferty et al., 2001; Borse et al., 2021; Zhu et al., 
2021; Chen et al., 2019b) and RS image interpretation 
(Bokhovkin and Burnaev, 2019; Sun et al., 2020; Nong et al., 
2021; Zhang et al., 2020e). However, the boundaries of water 
bodies are too intricate and various to be maintained well during 
the process of downsample and upsample. Intuitively, in the 
comparative display of Fig. 8, the boundaries of buildings are 
usually regular and straight, the reason is that buildings in a 
certain area usually have similar styles. However, this regional 
similarity is not tenable in the fine extraction of water body 
boundary.  

(5) Deficiency of large-size image datasets. Up to now, we count 
that a total of 10 publicly available benchmarks or datasets can be 
applied for the evaluation and supervision learning of water body 
classification from high-resolution optical RS images, which will 
be introduced in detail later. It should be noted that the current 
dedicated datasets are only proposed by the 2020 Gaofen Chal-
lenge (Sun et al., 2021), and the large-size fine classification 
datasets are also scarce except from the Gaofen image dataset 
(GID) (Tong et al., 2018) to the best of our knowledge. 

2.2. Opportunities of water body classification from high-resolution 
optical remote sensing imagery 

Opportunities are often accompanied by challenges. Learning 
transferable DL models for land-use pixel-level, object-level, and scene- 
level classification is relatively mature (Cheng et al., 2020). Propelled by 
the powerful computer capabilities of deep networks, massive novel 
algorithms have been proposed and conducted to various practical 

Fig. 5. Water body images from different areas of the world captured by Dig-
italGlobe and downloaded through Google Earth software (spatial resolution: 
0.3 m). Data source areas: (a) Thailand; (b) Mississippi River, U.S.A.; (c) Ber-
talano Lake, Argentina; (d) Colorado River, Bolivia; (e) Hillier Lake, Australia; 
(f) Bahamas. 

Fig. 6. Samples disturbed by (a) building shadows, (b) cloud shadows, and (c) 
mountain shadows. The red dashed circle indicates the shadow coverage area 
that is prone to misclassification. 

Fig. 7. Polluted black and smelly water bodies.  
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applications, such as Image Style Transfer (Liu et al., 2019; Zhao, 2020), 
Adversarial Attack, and Defense (Yuan et al., 2019; Zhou et al., 2020; 
Qiu et al., 2019), Salient Detection (Borji et al., 2019; Wang et al., 
2021b), and so on. Furthermore, In the other tasks of RS, many methods 
driven by DL have drawn remarkable attention and made great 
achievements, which are worthy of reference. For example, positive fruit 
from cloud shadow removal (Zhang et al., 2020d; Bermudez et al., 
2018), cross-domain segmentation (Li et al., 2021i; Yan et al., 2021), 
and weakly-supervised land-cover mapping (Schmitt et al., 2020; Wang 
et al., 2020c) is likely to be beneficial for water body classification. In 
this section, we systematically survey approximately 60 promising al-
gorithms for sorting out potential opportunities clearly. To help poten-
tial readers better comprehend, we discussed the opportunities point by 
point in terms of the abovementioned challenges. 

(1) To cope with the first challenge: Limited spectral informa-
tion and small scene coverage. As we all know, high-spatial 
resolution and high-spectral resolution seem to be an inherent 
contradiction. Therefore, under the background of scanty spectral 
information, some manually designed or calculated features are 
embedded into original spectral channels as auxiliary informa-
tion. Liu et al. (2017) applied handcrafted features like NDVI and 
nDSM to logistic regression, which is readable and active for 
segmentation. Similar works (Xu et al., 2018; Pan et al., 2018; 
Sherrah, 2016; Du et al., 2019) were presented to demonstrate 
the potential of the idea of this auxiliary channel. Another way to 
do this is to construct an extra branch to learn relative knowl-
edge. For example, Ma et al. (2020) delved into a structure- 
preserving framework to super resolution, which integrates the 
gradient branch and super-resolution branch to fuse multi-level 
representations. It is conducive to better capturing geometric 
relationships via supervising the image-space and gradient-space. 
The enhancement of image resolution has brought great benefits 
to daily life and scientific research. At present, some methods are 
applicable to resolution even for ultra-high resolution images 
larger than 4 K. For example, Cheng et al. (2020) proposed a plug- 

and-play segmentation framework named CascadePSP that re-
fines the large-size images and shows the high-quality refinement 
capability, even without extra finetuning. Similarly in the field of 
RS, land cover classification from very-high resolution (VHR) has 
raised increasing interest recently. Ding et al. (2020) provided a 
two-stage training strategy to break through the limitation of 
cropped image patches that only contain partial context infor-
mation. Based on this core idea, a Wider-Context Network 
(WiCNet) (Ding et al., 2021) was devised to enhance the perfor-
mance further. In particular, a novel Context Transformer was 
created and assessed to learn the correlations among various 
areas. Li et al. (2021d) introduced a novel pipeline called 
contextual semantics refinement network that is enabling to 
leverage local and context mask comprehensively and refine 
mask contours to obtain final refined high-resolution labels. The 
experimental conclusion declares that the segmentation accuracy 
can be effectively improved by combining the small, medium, 
and large context sizes. Motivated by the synergy of global and 
local branches, Collaborative Global–Local Network (GLNet) was 
designed by Chen et al. (2019a), it mainly focuses on fusing 
multi-branches feature maps and exploiting the contextual 
interdependence from inputs. Three large-size datasets from RS 
and medical image challenges are applied to verify the effec-
tiveness and universality of their approaches. Furthermore, they 
also demonstrate that the global scene information is essential for 
semantic segmentation.  

(2) To cope with the second challenge: Variability of shape, size, 
and distribution. How to accurately and automatically detect 
small water bodies has always been a research hotspot in envi-
ronmental monitoring and protection. Coincidentally, small ob-
jects segmentation is also significant. In (Takikawa et al., 2019), a 
two-stream architecture named Gated-SCNN was created to pay 
more attention to shape information as a separate stream, which 
was proven the effectiveness of inferencing thinner and smaller 
objects accurately. Multi-scale feature fusion strategy is the most 
common to deal with the recognition of changeable objects. 

Fig. 8. Comparison of (a) buildings’ boundary and (b) water bodies’ boundary in high-resolution optical RS images. The first column is the raw images, and the 
second column is the boundary masks of the corresponding buildings and water bodies. (The images of buildings are from the WHU Aerial imagery dataset (Ji et al., 
2018), and the boundary masks were made by. skimage tool.). 
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Pyramid Pooling Module (PPM) learned from PSPNet (Zhao et al., 
2017), as a classical multi-scale fusion block, was used or modi-
fied in visual recognition or intelligent interpretation. Further-
more, He et al. (2019) came up with Adaptive Pyramid Context 
Network (APCNet) that especially considers global-guided local 
affinity to generate powerful multi-scale and global contexts. 
Propelled by vision transformer (Dosovitskiy et al., 2020), 
CrossViT (Chen et al., 2021a) was formulated to learn multi-scale 
feature representations via a dual-branch transformer block and 
cross-attention fusion strategy for vision applications, which is 
superior to other methods. Expanding the receptive field is 
another available strategy that has great promise. Based on the 
ASPP module, Multi Receptive Field Module (MRFM) (Yuan 
et al., 2020a) was proposed to replace the traditional backbone to 
capture the multi-receptive field. To model the long-range de-
pendencies better and explore rich contextual representative, the 
strip loss (Hou et al., 2020) was released. It should be mentioned 
that making better use of object-context information is also of 
significance for multi-scale ground objects like water body. 
OCRNet (Yuan et al., 2020b) showed the powerful ability to mine 
object-context representation. The above schemes are worthy of 
reference for extracting water bodies with various shapes and 
sizes, however, distribution discrepancy is expected to be elimi-
nated by GAN, if it is roughly equivalent to the image style dif-
ference. In (Zhu et al., 2017), CycleGAN was proposed for image- 
to-image translation, and obtained promising performance. 
Although pair patches are not available, it is also possible to 
generate transferred samples. Because there are no sufficient 
constraints such as labels, the phenomenon of confused classifi-
cation is frequent among transferred images, which is immensely 
harmful for subsequent semantic segmentation. To address this 
issue, a variety of consistency training (Melas-Kyriazi and Man-
rai, 2021;Kim and Byun, 2020; Li et al., 2021i) were introduced 
to constrain the training of GAN.  

(3) To cope with the third challenge: Scene complexity. For 
resolving shadow occlusion, high-quality shadow detection al-
gorithms and cloud removal algorithms provide another potential 
solution. In the past several years, these algorithms are also 
gradually mature enough to be leveraged in practical applica-
tions. Zheng et al. (2019) proposed a discriminative framework to 
learn distraction-aware features that can boost the performance 
of shadow detection. A weakly-supervised training scheme was 
designed by Le and Samaras (2021), which was beneficial for 
shadow removal when the shadow-free images are enabled to be 
available. Facing the various and unknown shadow patterns, Fu 
et al. (2021) delved into a robust overexposure fusion approach 
that is superior in recovering the background content. In the field 
of RS, Chen et al. (2019c) and Li et al. (2019a) conducted their 
experiments in different ways, and both gained a pretty good 
performance, respectively. Adversarial Attack and Defense, as an 
exploratory study direction, is considered to be of great impor-
tance for information safety. However, another point of thought, 
can the disturbance of adversarial attack simulate the color tone 
disturbance caused by water pollution? Currently, not only many 
related approaches have emerged in the CV (Cho et al., 2020; Xie 
et al., 2017), but also they have been transferred to RS image 
interpretation (Xu et al., 2020).  

(4) To cope with the fourth challenge: Complex and blurry 
boundaries. How to accurately extract or refine boundaries of 
objects has attracted the interest of scholars from multi-domain. 
For example, in the assignment of salient object detection, BAS-
Net (Qin et al., 2019) and Contour loss (Chen et al., 2019d) was 
proposed to make an attempt to refine boundary through 
designing a predict refinement module and formulating object 
contours-guided perception loss function, respectively. In the 
mission of segmentation, the shape stream from Gated-SCNN 

(Takikawa et al., 2019) only take the advantage of relevant 
boundary information, which is beneficial for retaining the fine 
boundaries. Chen et al. (2019b) analyzed the reason for the loss of 
fine boundaries, which is mainly that manual labels via annota-
tion tools cannot meet the requirements. Then, BANet was 
formulated to recover the fine boundaries like thin hairs, 
including semantic branch, boundary feature mining branch, and 
fusion unit. In the field of medical image processing, Kervadec 
et al. (2019) presented a well-designed boundary loss that cal-
culates the distance metric on the space of shape to alleviate the 
problem of high-unbalanced scenarios and enhance the accuracy 
of segmentation. Besides, driven by boundary metric, a novel 
boundary loss was introduced by Bokhovkin and Burnaev (2019), 
which applies the pixel-wise max pooling operation to define the 
boundary, and calculate the precision and recall combined with 
ground truth. Extensive experiments demonstrate that this 
boundary loss can be successfully transplanted to RS binary 
classification. Furthermore, boundary refinement also plays a key 
role in building extraction from RS imagery, therefore, many 
works (Jin et al., 2021; Jung et al., 2021; Zhao et al., 2018) have 
emerged to tackle this issue. The abovementioned methods afford 
water body classification lessons that merit attention, however, it 
should be noted that relevant boundary refinement algorithms 
should be devised around the uniqueness of water bodies.  

(5) To cope with the fifth challenge: Deficiency of large-size 
image datasets. It is undeniable that constructing large data-
sets is necessary for training sufficiently robust deep network 
models. However, gathering and annotating the class labels are 
expensive and time-consuming, which is difficult to build a large- 
size scene dataset in the short term. Fortunately, some semi-, self- 
and unsupervised approaches use fewer labeled data and incor-
porate unlabeled data into training, which is possible to reach a 
similar even equal performance (Schmarje et al., 2020). For 
instance, the student–teacher method (Tarvainen and Valpola, 
2017) was proposed to replace label predictions with average 
model weights for semi-supervised learning. Pseudo labels (Lee 
et al., 2013) and MixUp (Zhang et al., 2018a) are classical ap-
proaches to boost the performance under the condition of a small 
amount of labeled data. Self-supervised learning (SSL), as one of 
the most prevailed research directions, utilize a pretext task to 
learn representations for downstream tasks. Komodakis and 
Gidaris (2018) created a pretext task that recognizes the rotation 
angle to learn high-level image features, and its state-of-the-art 
(SOTA) performance demonstrates that it can stand comparison 
quite effectively by supervised learning. Then, SimSiam archi-
tecture (Chen and He, 2021) was reported to emphasize the 
vitalness of Siamese networks in representative learning. Addi-
tionally, some weakly-supervised land cover mapping, object 
detection, and scene classification methods (Li et al., 2020; Wang 
et al., 2020c; Cheng et al., 2013; Cheng and Han, 2016; Robinson 
et al., 2020; Yao et al., 2016; Li et al., 2018; Li et al., 2021j) and 
benchmarks (Schmitt et al., 2019; Yokoya et al., 2020) were 
conducted to deal with relevant circumstances. 

3. Methods for water body classification from high-resolution 
optical remote sensing imagery 

In the past decades, water body classification from high-resolution 
optical RS images has attracted the attention of many researchers due 
to its wide and essential application in human being society. In the early 
stage of development, a number of approaches based on handcrafted 
features, especially water body indexes, have been proposed. Yet, 
considering that the limitation of spectral information of high-spatial 
optical imagery, shallow classifier tools that pay more attention to 
spatial texture information are also applied in this mission. Propelled by 
DL and thanks to the availability of massive labeled data and powerful 
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computational resources, DL-based methods have emerged and occu-
pied the mainstream in this area due to their puissant high-level se-
mantic features exploiting capability and the SOTA accuracy. In this 
section, we survey and analyze about 45 existing methods to explore 
their core contributions. Especially, to understand better, we divide 
them into two categories and seven subcategories and introduce them 
separately at length. 

3.1. Non-deep learning-based methods 

(1) Threshold-based methods: The definition of threshold-based 
method is to select the appropriate spectral band to build the model 
according to the spectral characteristic curve of water body, and carry 
out the classification method of water body extraction according to 
certain threshold determination rules. In 1996, NDWI (McFeeters, 
1996), as a pioneer of water body index, was proposed for the first time 
and achieved great success in assessing water resources. The core prin-
ciple of that is using the low reflectance of NIR by water, and combined 
Green and NIR bands. And then Yao et al. (2015) developed the High 
Resolution Water Index (HRWI) that only uses the visible and NIR 
channels. Its performance in ZY-3 images demonstrates that it can 
achieve a high accuracy under different conditions. Similarly, Wu et al. 
(2018) released the Two-Step Urban Water Index (TSUWI), which is 
easy to popularize and apply to most common high-resolution optical 
imagery that has only visible and NIR bands. Due to the circumscription 
of spectral channels, some water body indexes cannot be applied to most 
high-resolution RS images containing RGB and NIR channels. However, 
they are suitable for specific high-resolution RS sensors, which still has 
good application value. The NDWI was modified to form the MNDWI 
(Xu, 2006) which was modified to boost the robustness under the 
building noise disturbance. In particular, it should be emphasized that 
the middle-infrared red (MIR) band that is needed for calculating the 
MNDWI is not common in images from high-resolution optical sensors, 
but some research surveyed that it is successful to replace that with 
Band-7 of WorldView-2. Because WorldView-2 includes 9 bands, which 
makes the threshold-based methods that are extremely dependent on 
spectral information work, several exclusive water body indexes 
appeared. For example, Jawak and Luis (2015) introduced some fresh 
modified NDWI and evaluated them with other target extraction 
methods to prove their effectiveness. Incorporated a complex NDWI and 
morphological shadow index (MSI), NDWI-MSI (Xie et al., 2016) was 
proposed to further give prominence to water bodies and simultaneously 
suppress shadow areas. Besides, it made full use of the rich information 
of 8 bands of WorldView-2, and extensive experiments showed its ad-
vances. In terms of the red edge (RE) band that was provided specially 
by RapidEye, Klemenjak et al. (2012) came up with RE-NDWI that 
applied RE band rather than NIR. Draw support from the fact that the red 
edge band is very sensitive to the change of chlorophyll, RE-NDWI can 
better distinguish water from vegetation and soil. 

With the continuous development of threshold-based methods, their 
utilization of spectral information is more reasonable. However, they 
depend on the spectral information and ignore the spatial information of 
the images, which is easy to lead to the problems of significant errors in 
boundary classification and terrible detection accuracy of the transition 
region. 

(2) Shallow classifier-based methods: SVM, as one of the most classical 
shallow classifiers, was highly applied and compared in many works 
(Yao et al., 2015; Wu et al., 2018; Zhang et al., 2018b; Li et al., 2014; Sui 
et al., 2013). Generally, the texture information of the samples was 
trained by SVM, and then the decision function was obtained to distin-
guish the water body. In addition, Khurshid and Khan (2012) formulated 
the two-stage algorithms that contain computing approximate masks 
and refining detailed masks. Experiments in a SPOT-5 image prove it is 
an efficient way to enhance the accuracy via multiple iterations. In 
(Zeng et al., 2015), a framework based on Natural-Rule-Based- 
Connection (NRBC) was proposed to connect the patch pair and 

segment an intact river mask. Simultaneously, the river centerlines were 
extracted to verify river continuity. Zhang et al. (2010) devised a 
workflow to extract water body, including level set segmentation and 
fast matching algorithm. Markov model was used to refine initial masks 
in (Qi et al., 2019), and it is an interesting and significant work for water 
body classification from panchromatic imagery. 

Most shallow classifier-based methods are derived from traditional 
machine learning and have obtained good performance under specific 
data conditions. However, they usually need to design classifier func-
tions, which are sophisticated and difficult to transfer to other scenes. 

(3) Hybrid classification methods: In general, threshold-based methods 
mainly focus on spectral knowledge, and shallow classifier-based 
methods leverage more spatial features such as texture. Therefore, 
combing them to comprehensively analyze the characteristics of water 
bodies is more stable at a certain cost. In 2012, Zhou et al. (2012) pro-
posed an adaptive framework to extract urban water. It uses NDWI to 
roughly classify the binary class of water body and background, and 
construct the segmented buffer with automatic multi-scale buffer length 
to extend the margin of water body. Finally, in light of the spatial ad-
jacency and similarity principle to enhance the segmentation perfor-
mance. Li et al. (2014) introduced a multi-hierarchies method that 
combines spectral and shape features. They adopted the modified Sta-
tistical Region Merging (SRM) approaches to image segmentation, 
merging original channels and two indexes to boost the robustness. MRF 
model and Graph cut algorithm were integrated with NDWI to improve 
the accuracy of water body classification, and significant performance 
on GF-1 images proved its appropriateness under complex surroundings 
(Li et al., 2016). On the basis of detecting urban water bodies with 
NDWI, Yang et al. (2017) also used an object-oriented shadow detection 
method to remove shadow noise, and finally obtained the optimized 
mask. Zhang et al. (2018b) delved into an unsupervised approach that 
applies pixel region index (PRI) and NDWI to calculate the preliminary 
mask, and then further processes by K-means clustering and merges 
them. 

Hybrid classification methods combine the advantages of the above 
two approaches. They can not only effectively utilize the rich spatial and 
texture information of high-resolution optical RS images, but also unite 
the spectral features. However, their implementation process is gener-
ally relatively complicated. 

3.2. Deep learning-based methods 

(1) Feature fusion-based methods: Under a certain geographic 
coverage, the water area in the image contains rivers, lakes, ponds, and 
other various types of water bodies that have different shapes and sizes, 
demonstrating different scales characteristics, as shown in Fig. 4. These 
water bodies with different scales bring certain limitations and diffi-
culties to the training and inference of general DL models. Therefore, the 
multi-scale features of water bodies are not only the hardship of 
extracting them, but also the key point to boost the classification accu-
racy. Inspired by the multi-scale features fusion algorithm in the area of 
CV, many researchers explored various integration strategies to take the 
advantage of multi-scale features. Concretely, Li et al. (2019b) intro-
duced a hierarchical expansion splitting approach to get the multi-scale 
scene dataset and provided multi-scale data instead of a single-scale 
sample as input. In the decoder architecture, multi-scale features were 
fused with weights. The multi-scale features supervision strategy was 
conducted by MSR-Net (Duan and Hu, 2019), and it can leverage multi- 
scale information from different layers to refine final results. Inspired by 
ASPP (Chen et al., 2018), Guo et al. (2020) presented a multi-scale 
convolutional neural network (MWEN) that expands the receptive 
fields via atrous convolution to capture the features with various scales. 
Likewise, Expanding the receptive fields was adopted by some other 
methods (Weng et al., 2020; Yu et al., 2021; Wang et al., 2020; Cui et al., 
2020), and relevant multi-scale features from distinct dilation rates 
convolution were integrated flexibly. In (Chen et al., 2020), a multi- 
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scale learning module was created to capture multi-scale contextual 
information through upsampling and downsampling input data and 
fusing their score maps. Recently, motivated by PPM (Zhao et al., 2017) 
and spatial pyramid pooling (SPP) (He et al., 2015), Dang and Li (2021) 
devised MSResNet that can seize the scale-invariant feature and fuse the 
multi-scale contextual information by integrating high- and low-level 
feature maps. Kang et al. (2021) proposed a multi-scale context 
feature extractor module and used Res2Net to tackle the problem of 
shape and size variations of water bodies. Aside from multi-scale fusion 
strategy, many other features fusion methods have emerged. For 
example, high-resolution and low-resolution feature maps were com-
bined to gain dense and accurate water body localization (Fu et al., 
2018). Li et al. (2021c) designed an LFC module to integrate spatial and 
spectral features, which is an important part of the overall architecture. 
Zhang et al. (2021) presented a semantic feature fusion module (DSFF) 
to focus on global feature information, which is effective to enhance the 
semantic consistency between encoder and decoder. In addition, 
designing diverse features or channels as input data is another signifi-
cant way. Li et al. (2021f) and Yuan et al. (2021) embedded artificial 
features and multi-channel features into the original RGB channel as 
novel input data, and fuse them adaptively, respectively. 

As the most common DL-based methods, feature fusion-based 
methods mainly optimize the network structure according to the 
multi-scale features of water bodies. However, under the condition of 
certain DL model parameters, the more efficient multi-scale feature 
fusion modules are still developing. 

(2) Boundary constraint-based methods: At present, the existing 
methods can be divided into three categories: boundary constraint loss 
functions, boundary refinement modules, and post-processing optimi-
zation. Conditional random field (CRF) (Krähenbühl and Koltun, 2011), 
as an effective post-processing algorithm, attracted the attention and 
interest of researchers and was utilized in many works. Intuitively, 
taking each pixel or superpixel as a node and the relationship between 
pixels or superpixels as an edge constitutes a conditional random field, 
which can make full use of the spatial neighborhood information of 
labeled images and observed images to effectively obtain spatial context 
information. Extensive experiments (Sun et al., 2021; Feng et al., 2018; 
Li et al., 2019b; Chu et al., 2019) showed that it is a significant tool for 
boundary refinement. For specific loss functions, Miao et al. (2018) 
proposed a novel loss named Edges Weighting Loss (EWLoss) to compute 
the edge weight contribution to constrain the network to catch accurate 
boundaries of water bodies. In addition, Cui et al. (2020) surveyed the 
boundary-sensitive feature maps and embedded the Squeeze-and- 
excitation (SE) module (Hu et al., 2018) to improve the boundaries’ 
representation. Chen et al. (2020) presented spatial-spectral convolution 
(SS-Conv) to construct a boundary refinement unit like a residual block, 
which can generate refined boundary score maps. 

Although the experimental results of existing boundary constraint- 
based methods show that they can improve the accuracy of boundary 
detection, most of them are universal boundary post-processing opti-
mization methods and boundary loss functions. Enhancement algo-
rithms in the light of the meandering boundaries of water bodies are 
scarce. 

(3) Large scene context guided methods: Some researchers found that 
the importance of capturing context information from large scene RS 
images to maintain the continuity of water bodies. Chen et al. (2018b) 
applied a super-pixel segmentation algorithm to crop the large-size 
images into small patches rather than cropping them in sequence. The 
advantage is that it can retain the whole rivers and lakes to the 
maximum, even without consuming huge computing resources. Dong 
et al. (2019) released a sub-neighbor system constraint algorithm to 
generate a more coherent water body mask. Experimental results on a 
large scene dataset proved that it is superior among relevant methods. 

Compared with feature fusion-based methods and boundary 
constraint-based methods, only a small number of literature about large 
scene context guided methods have been reported so far. Nevertheless, it 

is a promising research direction to accurately identify water bodies 
from large scene RS images. 

(4) Other methods: Domain gap is a common problem in land cover 
classification, and it also exists in water body extraction. Yang et al. 
(2021) discovered this issue and proposed an unsupervised content- 
adaptive water-body extraction framework (UCWater) and content- 
consistent matching sample selecting strategy to alleviate the domain 
shift. Its progressiveness is that it not only boosts the classification ac-
curacy of cross-domain samples, but also reduces the consumption of 
manual annotation. In (Abid et al., 2021), unsupervised Curriculum 
Learning (UCL) was introduced to classify water body without relying on 
any labeled data. Simply put, a pre-trained CNN was applied to extract 
features, and then clustered and selected them into water or non-water, 
fine-tuned the CNN with selected samples, repeated the above steps until 
the model converges. 

4. Practical applications of water body classification from high- 
resolution optical remote sensing 

Against the backdrop of the rapid advance of various types of sen-
sors, high-resolution optical imaging sensors are undoubtedly unique 
among them because they can provide ‘clear’ imagery with a high 
spatial resolution that not only retains the most complete details but also 
improves the visual impression of images, which is significant for both 
visual and intelligent interpretation. Throughout the development of 
satellite and UAV techniques in the past few decades, it is not difficult to 
find that sensors with higher spatial resolution have always been the hot 
topic in the field of the RS community. Furthermore, water is a precious 
resource for human survival. With the surge of the global population and 
the rapid economical development of the human community, the de-
mand for water resources is increasing. Meanwhile, unreasonable use 
and uncontrollable water pollution lead to a huge waste of water re-
sources, further leading to a perplexing ecological deterioration. 
Consequently, water body classification from high-resolution optical RS 
imagery will have broader applications. In this section, we discuss some 
prevailed applications and consider the advantages and shortages of the 
existing methods in these practical applications. 

4.1. Flood monitoring and mapping 

Flood event is one of the most frequently occurring natural disasters 
in the world, especially under the background of drastic global climate 
change, it has gradually become a hot research field (Ward et al., 2014; 
Lamovec et al., 2013; Byun et al., 2015). Flood monitoring mainly fo-
cuses on obtaining basic information about flood ranges and land cover 
changes quickly. In (Huang et al., 2008), the destructiveness of flood 
disasters is discussed. Compared with any other natural disaster, flood 
hazard is more destructive, which can cause huge casualties and eco-
nomic losses. In addition, because floods destroy key substances such as 
power, water supply, and transportation, rapid and even real-time 
monitoring of flood extent can help decision-makers put forward effec-
tive disaster management strategies and rescue plans. 

In fact, due to the advantages of numerous available spectral bands 
and short revisit periods, multi-temporal images obtained from sensors 
with low spatial resolution but high spectral resolution have been widely 
applied in flood monitoring (Byun et al., 2015; Ticehurst et al., 2014). In 
addition, considering SAR has the unique capability of capturing images 
regardless of the weather condition, their images have also been 
commonly applied in flood monitoring(Grimaldi et al., 2020). 

It must be acknowledged that due to the limitations of high- 
resolution optical satellites, their images are not the first and optimum 
choice in the general mission of flood monitoring. Nevertheless, related 
research has made some achievements. Byun et al. (2015) proposed a 
novel method based on VHR image fusion, and extensive experiments 
were conducted to assess the effectiveness. Malinowski et al. (2015) 
employed the multispectral images that were captured from WorldView- 
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2 to tackle the problem of detecting and mapping inundation on complex 
areas. Thanks to the advances of UAV technology, some inundation 
monitoring methods based on aerial images from UAVs (Munawar et al., 
2021; Koutalakis et al., 2020; Munawar et al., 2021) have emerged and 
drawn remarkable attention, and UAVs are considered to be the next 
generation of favorable monitoring tools due to their cost-effectiveness, 
ability to fly at lower altitudes, and ability to enter a dangerous area 
(Gebrehiwot et al., 2019). 

Different from rapid or real-time inundation monitoring, flood 
mapping is mainly employed for disaster assessment after flood hazards 
and helps for post-disaster reconstruction work, which emphasizes 
obtaining high-precision extraction maps. Although low-resolution op-
tical data and SAR data can also be applied for mapping (Thomas et al., 
2011; Dhara et al., 2020; Benoudjit and Guida, 2019), high-resolution 
optical RS images are more broadly employed for local flood mapping 
because of their comprehensibility and high quality. In (Hashemi-Beni 
and Gebrehiwot, 2021), a novel method based on FCN and region 
growth (RG) algorithm was presented to map the inundation extent from 
UAV data. The preliminary results were predicted by FCN, and then, 
DEM and water level information were employed for RG algorithm to 
identify the floods underneath vegetation canopy. Gebrehiwot et al. 
(2019) surveyed the effectiveness of CNN approaches to flood mapping 
accurately. Driven by discriminative texture features, Feng et al. (2015) 
applied a shallow random forest classifier to make a satisfactory urban 
inundation map and provide a case study. 

4.2. Water body mapping in specific scenarios 

Water body mapping in some specific scenarios is another momen-
tous application, which needs to fully consider the peculiarity of land-
scape elements and the characteristics of water bodies contained 
therein. 

As an important part of the urban ecosystem, the urban water body is 
of great significance in urban environmental quality monitoring and the 
urban heat island effect. Moreover, the change of urban water bodies 
also has a great impact on human life, such as floods and waterlogging in 
the city (Fletcher et al., 2013). More importantly, high-resolution optical 
RS imagery can better demonstrate small water bodies such as ponds 
and narrow rivers, which is significant for urban water resources 
investigation. Therefore, it is necessary to understand the distribution 
and change of urban water bodies via high-resolution optical RS imagery 
timely and accurately. Considering that the shadow influence of high- 
rise buildings or plants is more remarkable, some studies proposed a 
modified water body index to reduce the adverse influence of shadow as 
much as possible (Xie et al., 2016; Wu et al., 2018; Yang et al., 2017). For 
example, Wu et al. (2018) combined an Urban Water Index (UWI) and 
an Urban Shadow Index (USI) to improve the performance of urban 
water body mapping. Depending on the advanced DL model, Chen et al. 
(2018b) took into account the complexity of China’s urban surface water 
network and employed ZY-3 and GF-2 images from various cities 
including divergent urban water bodies as experimental data to verify 
the effectiveness of their proposed DL network architecture. The 
experimental results of threshold-based and traditional machine 
learning methods demonstrated that in the face of relatively complex 
urban surface water bodies, DL-based methods have more advantages 
than other methods. Similarly, based on the WorldView-3 images and 
GF-2 images of Beijing, Song et al. (2020) verified the identification 
ability of the improved Mask-RCNN for urban water bodies. Compared 
with other methods, it can significantly reduce the confusion with the 
shadow of buildings and vegetation. 

The conventional field surveys to map glacial lakes are time- 
consuming, laborious, costly, and even dangerous, especially in alpine 
countries (Mitkari et al., 2017). However, RS data with wide sources and 
easy access become the most practical source for mapping glacial lakes. 
Using high-resolution RS images to map glacial lakes is considerably 
valuable for studying the impact of climate change and the mitigation 

and risk assessment of a Glacial Lake Outburst Flood (GLOF) (Shugar 
et al., 2020). In 2014, Jawak and Luis (2014) designed four customized 
NDWI to map the glacier lakes of Larsemann Hills in the Antarctica re-
gion using WorldView-2 pan-sharpened images. Unfortunately, their 
proposed method was not superior to the target extraction method, but 
the experimental results proved that it was feasible to use high- 
resolution optical data to extract glacial lakes. In (Mitkari et al., 
2017), a novel object-based image analysis (OBIA) approach was 
applied to the case study of mapping the small supraglacial lakes (SGLs) 
of Gangotri glacier (Uttarakhand Himalayas) from the high-spatial- 
resolution data of the LISS-IV sensor (spatial resolution: 5 m). 
Compared with the object-based NDWI and other methods, it is observed 
that the accuracy of mapping is significantly enhanced. Qayyum et al. 
(2020) focused on utilizing PlanetScope imagery with 4 bands to explore 
the application of DL technology in glacier lake mapping and change 
monitoring for accuracy evaluation. The superior experiment perfor-
mance confirmed the great potential of high-resolution optical images 
captured by CubeSats in this field. 

Thermokarst lakes, topographic depressions formed by the melting 
of ice-rich permafrost or a large amount of ground ice, are easy to cause 
a series of thorny environmental problems such as groundwater level 
decline, vegetation degradation, and land desertification due to erosion 
and expansion (Kokelj and Jorgenson, 2013; Tian et al., 2017). RS data is 
an effective tool to map the distribution of thermokarst lakes. Massive 
optical satellites have been widely employed in the change monitoring 
task of thermokarst lakes in the Qinghai Tibet Plateau (QTP) (Zhang 
et al., 2015; Mergili et al., 2013; Song et al., 2013). However, because of 
the limitation of coarse spatial resolution, they cannot identify massive 
small thermal-karst lakes. Therefore, the utilization of high-resolution 
optical RS images is a potentially effective way to obtain their accu-
rate distribution. Tian et al. (2017) delved into the thermokarst lake 
shorelines extraction approach based on Nonlocal Active Contours 
(NLAC) model and NDWI. The shoreline vector map corroborated that 
their method was robust and superior in mapping the shorelines from 
the GF-2 images, and was feasible for detecting thermokarst lakes of the 
QTP. Huang et al. (2018) exploited high-resolution UAV images to verify 
an automatic extraction method of thermokarst lakes based on DL 
techniques. The experimental results confirmed that it can be extended 
to other thermokarst lakes and larger areas in the future by collecting 
corresponding training data. 

5. Experimental results and discussion 

5.1. Survey on publicly open benchmarks 

Benchmark datasets, as powerful partners in the implementation and 
development of DL algorithms, are essential in the era of RS big data. 
With the increase of RS sensors and the reduction of the cost of manual 
annotation, a large number of land cover classification benchmarks 
appear, which is of great benefit to enhance the accuracy of water body 
classification from high-resolution optical RS imagery. In the past 
several years, many researchers and organizations have released 
numerous benchmarks in which images are captured from various sen-
sors for training or evaluation. For example, DeepWaterMap (Isikdogan 
et al., 2019), Deltares Aqua Monitor (Donchyts et al., 2016), Global 
surface water (Pekel et al., 2016), Earth surface water knowledge base 
(ESWKB) (Luo et al., 2021), 2020 Gaofen challenge water body seg-
mentation dataset (Sun et al., 2021), DeepGlobe Land Cover Classifi-
cation Challenge benchmark (Demir et al., 2018), GID (Tong et al., 
2018), and so on were proposed to facilitate this area forward. In 
particular, this paper only discusses the publicly open benchmarks that 
consist of high-resolution optical RS images, including Zurich Summer 
(Volpi and Ferrari, 2015), WHDLD (Shao et al., 2018; Shao et al., 2020), 
DLRSD (Chaudhuri et al., 2017), DeepGlobe (Demir et al., 2018), Dro-
neDeploy (Nicholas et al., xxxx), EORSSD (Zhang et al., 2020c), Land-
cover_ai (Boguszewski et al., 2021), LoveDA (Wang et al., 2021a), GID 
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Table 1 
10 publicly available datasets for water body classification from high-resolution optical remote sensing imagery.  

Datasets Total image number Image bands number Image size (pixels) Spatial resolution Data sources Year 

Zurich Summer 20 4 600∼1600  × 600∼1600 0.62 m QuickBird 2015 
WHDLD 4940 3 256  × 256 2 m GF-1 & ZY-3 2018 
DLRSD 2100 3 256  × 256 0.3 m UC Merced archive 2018 
DeepGlobe 803 3 2448  × 2448 0.5 m DigitalGlobe 2018 
GID 10/150 3/4 7200  × 6800 4 m GF-2 2018 
DroneDeploy 55 3 6000  × 6000 0.1 m Aerial images 2019 
EORSSD 2000 3 500  × 500 - Google Earth 2020 
Landcover_ai 41 3 9000  × 9500/ 4200  × 4700 0.25 m/0.5 m Public Geodetic Resource 2020 
2020 Gaofen Challenge dataset 1000/2500 3 492∼2000  × 492∼2000 1 to 4 m GF-2 2020 
LoveDA 5987 3 1024  × 1024 0.3 m Google Earth 2021  

Fig. 9. Raw images and ground truths from the GID dataset.  

Fig. 10. Raw images and ground truths from the 2020 Gaofen challenge water body segmentation dataset.  
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(Tong et al., 2018), and 2020 Gaofen challenge water-body segmenta-
tion dataset (Sun et al., 2021). The relevant details are listed in Table 1. 
Among them, the GID (Tong et al., 2018) and the 2020 Gaofen challenge 
water body segmentation dataset (Sun et al., 2021) are two represen-
tative benchmarks that were introduced in detail and used for evaluating 
the performance of various methods later. 

5.1.1. Gaofen Image Dataset (GID) 
The GID was proposed in 2018 by a group from Wuhan University 

and contains 5 or 15 classes originally. In total, this dataset includes 10 
fine land cover images and annotations, and 150 large-scale images and 
annotations. They are all captured from the GF-2 satellite and the pixel 
resolution is 4 m. To the best of our knowledge, the dataset is broadly 
employed for land cover classification in the area of RS due to the 
characteristics of images and satisfactory manual labels. To better meet 
the requirements of water body extraction, we redefined the classifica-
tion standard, that is, rivers, lakes, and ponds are divided into water, 
while other classes are classified as non-water. Some samples are dis-
played in Fig. 9. In our later experiments, we select representative 
samples and crop them to small samples with the size of 256 × 256, of 
which the total images number is 19500. 60% are used for training, 20% 
and 20% are used for validation and testing, respectively. In the case 
where the sample size is not particularly large, in order to reduce the 
information leakage and obtain a more accurate response model. Such a 
proportion of divided datasets seems to be more reasonable. 

5.1.2. 2020 Gaofen challenge water body segmentation dataset 
The 2020 Gaofen challenge water body segmentation dataset was 

released by the 2020 Gaofen Challenge committee, which is the current 
only specific high-resolution optical benchmark for water body classi-
fication. The benchmark contains 2500 RGB images from the GF-2 sat-
ellite, of which the pixel resolution is ranging from 1 to 4 m. Noted that 
only 1000 samples with the size of 492 × 492 can be publicly available, 
of which the pixel resolution is 1 m. Fig. 10. lists the samples from the 
dataset. When we conduct experiments, the train and test ratio are the 
same as GID. 

5.2. Performance comparison and discussion 

5.2.1. Evaluation metrics 
Three commonly used evaluation metrics: the overall accuracy (OA), 

the mean intersection over union (MIoU), and the frequency weighted 
intersection over union (FWIoU) are applied to assess the 10 existing 
milestone works on the GID dataset and the 9 existing milestone works 
on the 2020 Gaofen challenge water body segmentation dataset. The 
confusion matrix between the water body masks and ground truths is 
calculated, consisting of true positives (TP), true negatives (TN), false 
positives (FP), and false negatives (FN). Then, the abovementioned 
criteria can be denoted as Eqs. (1)–(3): 

OA =
TP + TN

TP + FP + TN + FN
(1)  

MIoU =
1

n + 1
∑n

i=0

TPi

FNi + FPi + TPi
(2)  

FWIoU =
1

n + 1
∑n

i=0

(
TPi

TPi + TNi + FNi
⋅

TPi + FNi

TPi + FPi + TNi + FNi

)

(3)  

5.2.2. Performance comparison and experiment setting 
In the past few years, numerous DL-based approaches have been 

proposed. In this paper, we select 9 representative DL-based methods 
and compare their performance on two open benchmarks. Among them, 
2 of them released their source code publicly, and 7 of them were 
reimplemented by us. In addition, we also select the most representative 
non-DL-based method (i.e., NDWI) to compare with other approaches on 
the GID benchmark. Tables 2 and 3, and Fig. 11 and Fig. 12 demonstrate 
the water body classification accuracy comparison of 10 methods on the 
GID dataset and 9 DL-based methods on the 2020 Gaofen challenge 
water body segmentation dataset, respectively. 

For a fair comparison, all DL experiments were implemented using 
Pytorch platform (Paszke et al., 2019) on a single NVIDIA GeForce RTX 
3090 GPU, and the networks were optimized with the Adam optimizer 
(Kingma and Ba, 2014). The Adam optimizer uses the exponential decay 

Table 2 
Quantitative accuracy comparison of 10 water body classification methods on the GID benchmark. (repro means that the experimental results are reproduced by us 
according to the description in reference.)  

Methods Year Publication Backbone OA(%) MIoU(%) FWIoU(%) 

NDWI (McFeeters, 1996) 1996 IJRS - 91.19 83.34 83.82 
Feng et al. (2018) w/o Regional Restriction (repro.) 2018 IEEE GRSL - 96.51 93.01 93.23 
Chu et al. (2019) (repro.) 2019 IGARSS 2019 ResNet-34 96.36 92.78 92.99 
Li et al. (2019b) (repro.) 2019 IEEE Access ResNet-101 96.42 92.89 93.10 
MWEN (Guo et al., 2020) (repro.) 2020 MDPI ISPRS - 96.75 93.53 93.72 
SR-SegNet (Weng et al., 2020) (repro.) 2020 MDPI ISPRS ResNet-50 96.32 92.72 92.93 
MSCENet (Kang et al., 2021) (repro.) 2021 JAG Res2Net-50 96.67 93.38 93.58 
MECNet (Zhang et al., 2021) 2021 Remote Sensing - 96.27 92.62 92.83 
Dang and Li (2021) 2021 Remote Sensing ResNet-34 97.27 94.53 94.70 
The Wu Da Ti Shui Gao Fen Team (Sun et al., 2021) (repro.) 2021 IEEE JSTARS ResNet-34 96.73 93.49 93.68  

Table 3 
Quantitative accuracy comparison of 9 water body classification methods on the 2020 Gaofen challenge water body segmentation benchmark. (repro means that the 
experimental results are reproduced by us according to the description in reference.)  

Methods Year Publication Backbone OA(%) MIoU(%) FWIoU(%) 

Feng et al. (2018) w/o Regional Restriction (repro.) 2018 IEEE GRSL - 94.95 85.53 90.65 
Chu et al. (2019) (repro.) 2019 IGARSS 2019 ResNet-34 94.46 84.19 89.79 
Li et al. (2019b) (repro.) 2019 IEEE Access ResNet-101 93.48 81.85 88.17 
MWEN (Guo et al., 2020) (repro.) 2020 MDPI ISPRS - 95.18 85.95 90.99 
SR-SegNet (Weng et al., 2020) (repro.) 2020 MDPI ISPRS ResNet-50 94.46 84.17 89.78 
MSCENet (Kang et al., 2021) (repro.) 2021 JAG Res2Net-50 94.87 85.16 90.46 
MECNet (Zhang et al., 2021) 2021 Remote Sensing - 94.66 84.96 90.21 
Dang and Li (2021) 2021 Remote Sensing ResNet-34 95.17 85.81 90.94 
The Wu Da Ti Shui Gao Fen Team (Sun et al., 2021) (repro.) 2021 IEEE JSTARS ResNet-34 94.92 84.92 90.43  
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Fig. 11. The histogram of quantitative accuracy comparison of 10 water body classification methods on the GID benchmark.  

Fig. 12. The histogram of quantitative accuracy comparison of 9 water body classification methods on the 2020 Gaofen challenge water body segmenta-
tion benchmark. 
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Fig. 13. Visible water body classification of the GID dataset using the codes of the previously published researches or the codes that we reproduce according to the 
description of reference. (a,b) are raw images and ground truth, respectively. The result of NDWI (McFeeters, 1996) are shown in c. (d,e) are the results of (Feng et al., 
2018) and the results of (Chu et al., 2019), respectively. The results of (Li et al., 2019b) and the results of MWEN (Guo et al., 2020) are shown in (f,g), respectively. 
(h) The results of SR-SegNet (Weng et al., 2020), and (i) the results of MSCENet (Kang et al., 2021). The results of MECNet (Zhang et al., 2021) are displayed in (j). (k, 
l) are the results of Dang and Li (2021) and the results of (Sun et al., 2021.), respectively. 

Fig. 14. Visible water body classification of the 2020 Gaofen challenge water body segmentation dataset using the codes of the previously published researches or 
the codes that we reproduce according to the description of reference. (a,b) are raw images and ground truth, respectively. (c,d) are the results of (Feng et al., 2018) 
and the results of (Chu et al., 2019), respectively. The results of (Li et al., 2019b) and the results of MWEN (Guo et al., 2020) are shown in (e,f), respectively. (g) The 
results of SR-SegNet (Weng et al., 2020), and (h) the results of MSCENet (Kang et al., 2021). The results of MECNet (Zhang et al., 2021) are displayed in (i). (j,k) are 
the results of (Dang and Li, 2021) and the results of (Sun et al., 2021.), respectively. 
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rate with a coefficient of 0.9 to control the weight distribution (mo-
mentum and current gradient), and used the exponential decay rate with 
a coefficient of 0.999 to control the effect of the square of the previous 
gradient. The initial learning rate was set to 0.0001 and was reduced 
during the training process. The batch-size was set to 4, and the 
maximum epoch was 100. We finally adopted binary cross-entropy loss 
for training and picked the epoch that achieved the highest MIoU on the 
validation tile. In particular, after continuous experimental attempts, we 
finally determined that the optimal segmentation threshold of NDWI is 
0.332. (i.e., when the calculated value is greater than 0.332, it is 
recognized as a water body, otherwise it is a non-water body). 

5.2.3. Discussion 
In this section, we compare 9 DL-based learning methods, of which 5 

belong to feature fusion-based methods, while the other methods are 
classified as boundary constraint-based methods. we also add a non-DL- 
based methods on the GID benchmark. Note that because the principles 
of approaches employed in the experiments and discussions are all 
introduced in Section 3, we do not repeat them here. The quantitative 
results on the two public benchmarks are shown in Tables 2 and 3 and 
Fig. 11 and Fig. 12 in detail. Furthermore, Fig. 13 and Fig. 14 display 
some samples of the water body classification results and their ground 
truths for the GID dataset and the 2020 Gaofen Challenge water body 
segmentation dataset, respectively. 

It is obvious from the comparison in Table 2 and Fig. 11 that the 
result of NDWI is significantly inferior to that of other DL methods. The 
third column in Fig. 13 also shows obvious classification errors. In fact, 
most non-DL-based methods cannot stably adapt to abundant classifi-
cation tasks. Furthermore, it can be seen intuitively from Fig. 11 and 
Fig. 13 that Dang and Li (2021) is superior to the other nine methods on 
the GID dataset, it shows that SSL algorithms and intervention of prior 
knowledge can improve the performance of the network, which con-
firms the opportunity mentioned in Section 2.2(5. However, it is worth 
noting that MWEN (Weng et al., 2020) achieved the best performance on 
another benchmark. It demonstrates that the existing DL-based methods 
are very dependent on specific datasets, and cannot guarantee to obtain 
enough stable performance on data with large style differences. As we 
described in the challenges faced in Section 2.1(2) and (5), the distri-
bution of existing datasets varies greatly. At present, there is no 
benchmark that can cover most of the world’s water conditions for 
training sufficiently stable models, which seems to be one of the po-
tential research directions in the future. 

Another significant problem that can be seen from Fig. 13 and Fig. 14 
is the randomness in the classification of various DL algorithms. As a 
matter of fact, DL models often have thousands of parameters that 
change in each epoch of training, thereby affecting the validation results 
of each epoch. When the DL model training converges, the overall 
inference results are stable, but for the extraction results of a certain 
image, this is not necessarily the best classification result. This is why 
one algorithm is detecting water in one area and not detecting in other 
areas in Fig. 13 and Fig. 14. Moreover, this problem can be attributed to 
the instability and insufficient interpretability of deep network. It is not 
only an overt problem but also a research hotspot in the field of DL 
(Ovadia et al., 2019; Wang et al., 2020a). 

In addition, it can be found from Tables 2 and 3 that the method 
based on feature fusion is better than the method based on boundary 
constraints as a whole. It illustrates that the exploration of adaptive 
fusion through multi-scale or other different features has become 
mature, but how to more effectively use or recover boundary informa-
tion is still a tough problem, as we mentioned in Section 2.1(4. From the 
conclusion of (Sun et al., 2021), we can understand that CRF and other 
common post-processing algorithms play a negative role in the recog-
nition of small water bodies, so more methods dedicated to water 
boundary restoration need to be further developed. 

6. Future research directions 

Due to the broad applications and numerous unresolved problems, 
water body classification from high-resolution optical RS imagery is still 
a significant and challenging mission of RS images intelligent interpre-
tation. Propelled by the great advancement of relevant DL algorithms 
and RS land cover classification benchmarks, the accuracy of water body 
extraction is enhancing gradually. Although many meaningful 
achievements have been proposed, there still exist a lot of challenges 
and gaps that need to be further studied, as described in Section 2. 
Therefore, by summarizing the existing algorithms and publicly open 
benchmarks, this section discusses several potential future research di-
rections of water body extraction, hoping to provide some inspiration for 
potential readers. 

(1) Learning discriminative multi-scale context feature repre-
sentations. Rivers, lakes, ponds, and other various types of water 
bodies have different shapes and sizes, demonstrating different 
scales characteristics. Therefore, how to capture multi-scale fea-
tures has been a vital issue. Despite most existing methods based 
on DL techniques focus on improving the capability of multi-scale 
representation or mining object-context information, the fact is 
that it still has a great room to upgrade for further research. As 
mentioned in Section 2.2, some advanced techniques were 
exploited to strengthen multi-scale features or make more effec-
tive use of spatial context information. In the future, there is 
much work to be done in this direction.  

(2) Developing specific classification methods from large-size 
images. As the increase of spatial resolution, the geographical 
area covered by a tile is narrower, which seems to be an inherent 
contradiction and hampers the performance of water body clas-
sification. Some researches (Cheng et al., 2020; Ding et al., 2020; 
Ding et al., 2021; Li et al., 2021d; Chen et al., 2019a) about large- 
size scene segmentation in other tasks have emerged in recent 
years, such as exploiting wider windows’ information and fusing 
global and local features. However, these existing developments 
have just started and are still far from simulating the intelligent 
perception of human vision. Currently, the mainstream methods 
tend to crop large-size images into small patches. In the future, 
how to use the limited GPU memory to model the spatial relative 
position consistency of large-scale area effectively? How to 
eliminate the negative edge noise during the inference?  

(3) Geographical knowledge-driven and domain adaption water 
body classification methods. The images from existing open 
benchmarks are generally concentrated in some specific areas, 
such as Wuhan, Suzhou, and Zurich. However, water bodies 
contained in these areas can not completely cover the charac-
teristics of global water bodies, which is a disadvantage for global 
water resources monitoring. From the algorithm aspect, intro-
ducing geographical knowledge representation or relevant 
knowledge graph to supervise or pre-train networks is a good 
choice. To the best of our knowledge, some researches (Li et al., 
2022a; Li et al., 2021g; Li et al., 2021e; Ouyang and Li, 2021; Li 
et al., 2021k) have been done in the past several years, which can 
provide inspiration for detecting water body. Among them, Li 
et al. (2022a) innovatively delved into a collaboratively boosting 
framework (CBF) to obtain better RS classification performance 
by combining knowledge-guided reasoning algorithm and data- 
driven deep learning model. Further, a new remote sensing 
knowledge graph (RSKG) was released, which greatly promotes 
the application of geographical knowledge in the field of RS in-
telligence interpretation (Li et al., 2021g). Another valuable op-
tion is to explore algorithms inspired by domain adaption 
technology, as described in Section 2.2(2), GAN and its improved 
version (Zhu et al., 2017; Melas-Kyriazi and Manrai, 2021; Kim 
and Byun, 2020; Li et al., 2021i) have made great advancements 
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in the problem of domain shift. Consequently, it is worthy of 
developing relevant approaches for water body classification. 

(4) Constructing high-resolution optical water body segmenta-
tion datasets with large-size imagery. As mentioned above, 
existing high-resolution optical datasets are not enough to pro-
vide global characteristics of various water bodies, and images 
with small sizes destroy the continuity of water bodies. From the 
data aspect, building a novel larger-size scene dataset that con-
tains massive water body objects from all regions of the world is 
meaningful and necessary.  

(5) Water body detection from multi-temporal RS images. As one 
of the essential branches of intelligent interpretation of RS im-
ages, automatic water body classification from high-resolution 
optical images can be employed in many practical application 
scenarios. Considering this, analyzing and monitoring water 
bodies from the same area at different times is worthwhile and 
necessary for flood monitoring and mapping of water resources 
change. Multi-temporal water body change monitoring, as an 
extended task of water body classification, can be directly served 
for major projects such as the emergency rescue of natural di-
sasters and evaluation of ecological environment. 

(6) Developing a monolithic framework for water body classi-
fication from multimodal RS data. In this paper, water body 
classification from high-resolution optical images is discussed 
chiefly, yet in fact, hyperspectral images, SAR images (or even 
future high-resolution SAR based products such as Surface Water 
and Ocean Topography (SWOT) (Morrow et al., 2019)), and even 
Laser Radar (Lidar) data are also employed for water body 
detection because of their respective imaging characteristics. 
Considering that each sensor has its own limitations, modeling a 
robust framework based on multimodal images is significant for 
further development in the future. In the past several years, some 
multimodal images fusion strategies (Audebert et al., 2018; Tuia 
et al., 2014; Ferreira et al., 2016; Li et al., 2022b) and alignment 
and matching approaches (Tuia et al., 2016; Hughes et al., 2020) 
have emerged. For example, as mentioned in (Mahdianpari et al., 
2021), multiple spectral, contextual, and elevation features are 
extracted from multispectral data and Lidar data respectively, 
and then combined into a multi-feature stack. Among them, 
morphometric topographic features (such as slope and curvature) 
extracted from Lidar data can also be added to the multi-feature 
stack. When classifying water bodies on a global scale, it seems 
inevitable that the elevation changes significantly in different 
scenes. In this case, the segmentation scene is divided by Digital 
Elevation Model (DEM) (Acharya et al., 2018), or the elevation is 
used as additional supervision information. However, how to 
build a multimodal framework is still a challenging need to be 
tackled in the future.  

(7) Water body vectorization mapping. Intuitively, water body 
vectorization mapping consists of two independent pipelines: 
water body classification and water body vectorization. The 
former has been relatively mature, while the latter still has great 
room for improvement. Up to now, existing methods have 
extracted water body areas and saved them as raster data, which 
is inconvenient for spatial analysis and relevant information 
queries. Furthermore, pixel-level classification can not meet the 
high-quality requirements of high-precision projects, conse-
quently, studying the methods of end-to-end or automatic water 
body vectorization is promising. Currently, some researches 
about road and building vectorization (Chen et al., 2021b; Wei 
and Ji, 2021; Abdollahi et al., 2021) have been already done, 
such as creating an end-to-end vectorization mapping framework, 
using graph convolutional networks (GCN) to vector maps, and 
tracking pixels. In a word, it is valuable to exploit water body 
vectorization approaches. 

7. Conclusions 

Because the spectral range of water bodies contained in the high- 
resolution images is relatively narrow. They have a variety of shapes 
and sizes, and the distribution scene is wide and complex. Moreover, 
their boundaries are generally winding, and there is a lack of data sets 
that can be used for supervised training. Therefore, extracting the water 
body from high-resolution optical RS images still remains great chal-
lenges. Fortunately, profit by the rapid development of related CV 
techniques (e.g., effective multi-scale feature fusion approaches, object- 
contextual representations, boundary optimization strategies, weakly 
supervised learning, and so on.) and relevant RS technologies (e.g., 
multi-modal feature fusion methods, cloud and shadow removal ap-
proaches, natural resource mapping techniques, and so on), The 
abovementioned challenges seem to be expected to be solved in the 
future. 

In the past decades, water body classification from high-resolution 
optical RS images has attracted great attention and obtained major 
advancement. Especially after the great achievements of DL techniques 
in the intelligent interpretation of RS images, articles on novel water 
body classification algorithms have increased rapidly. Considering that 
there is no relevant survey to summarize the existing methods, in this 
paper, we first analyze the current challenges in light of the features of 
water bodies in high-resolution optical RS images. Meanwhile, in 
conjunction with the progressive DL-based approaches in response to 
these challenges, we discussed the corresponding potential opportu-
nities one by one. Then, we surveyed two kinds of existing methods and 
introduced them chiefly. Next, we listed some practical applications and 
demonstrated some publicly open benchmarks. Specially, we selected 
two representative benchmarks that were employed for evaluating 10 
typical approaches, and discussed their performance. Finally, we dis-
cussed a range of promising opportunities for providing some references 
for follow-up research. 
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Table A1 
The main parameters of some high-resolution optical sensors.  

Remote 
sensor 

Spatial 
resolution (m) 

Radiometric 
resolution (bit) 

Number of 
bands 

Spectral range (micron) Revisit 
time 
(days) 

Data acquisition 
permission 

Launch 
year 

IKONOS 1, 4 11 5 Pan:0.45 to 0.9 Blue:0.45 to 0.53 Green:0.52 to 0.61 
Red:0.64 to 0.72 NIR:0.76 to 0.86 

1.5 to 2.9 paid 1999 

QuickBird 0.61 to 0.72, 
2.44 to 2.88 

11 5 Pan:0.405 to 1.053 Blue:0.430 to 0.545 Green:0.466 to 0.62 
Red:0.59 to 0.71 NIR:0.715 to 0.918 

1 to 6 paid 2001 

SPOT-5 2.5, 10, 20 - 5 Pan:0.49 to 0.69 B1:0.49 to 0.61 B2:0.61 to 0.68 B3:0.78 to 
0.89 B4:1.58 to 1.78 

26 paid 2002 

WorldView- 
1 

0.5 11 1 Pan:0.4 to 0.9 1.7 paid 2007 

GeoEye-1 0.41, 1.65 11 5 Pan:0.45 to 0.80 Blue:0.45 to 0.51 Green:0.51 to 0.58 
Red:0.655 to 0.69 NIR:0.78 to 0.92 

less than 3 paid 2008 

WorldView- 
2 

0.46, 1.85 11 9 Pan:0.45 to 0.80 CA:0.40 to 0.45 Blue:0.45 to 0.51 
Green:0.51 to 0.58 Yellow:0.585 to 0.625 Red:0.63 to 0.69 
RE:0.705 to 0.745 NIR:0.77 to 0.895 NIR:0.86 to 1.04 

1.1 paid 2009 

Cartosat-2B 0.8 - 1 Pan:0.45 to 0.85 2/4 paid 2010 
KOMPSAT-3 0.7, 2.8 14 5 Pan:0.45 to 0.90 Blue:0.45 to 0.52 Green:0.52 to 0.60 

Red:0.63 to 0.69 NIR:0.76 to 0.90 
3 paid 2012 

ZY-3 2.1, 5.8 - 5 Pan:0.45 to 0.80 Blue:0.45 to 0.52 Green:0.52 to 0.59 
Red:0.63 to 0.69 NIR:0.77 to 0.89 

3 to 5 paid 2012 

SPOT-6/7 1.5, 6.0 12 5 Pan:0.45 to 0.745 Blue:0.45 to 0.52 Green:0.53 to 0.59 
Red:0.625 to 0.695 NIR:0.76 to 0.89 

3 paid 2012/ 
2014 

GF-1 2, 8/16 - 5, 4 Pan:0.45 to 0.90 Blue:0.45 to 0.52 Green:0.52 to 0.59 
Red:0.63 to 0.69 NIR:0.77 to 0.89 

4 partial free 2013 

GF-2 0.8, 3.2 - 5 Pan:0.45 to 0.90 Blue:0.45 to 0.52 Green:0.52 to 0.59 
Red:0.63 to 0.69 NIR:0.770 to 0.89 

5 paid 2014 

WorldView- 
3 

0.31, 1.24, 3.7 11/14 17 Pan:0.45 to 0.80 MS:0.40 to 2.365 1 paid 2014  

Table A2 
The main parameters of some high-resolution optical sensors.  

Remote sensor Spatial 
resolution (m) 

Radiometric 
resolution (bit) 

Number of 
bands 

Spectral range (micron) Revisit 
time (days) 

Data acquisition 
permission 

Launch 
year 

Flock-1, − 1b, 
− 1c 

3, 5 - 4 Blue:0.42 to 0.53 Green:0.50 to 0.59 Red:0.61 to 
0.70 NIR:0.76 to 0.86 

1 to 2 paid 2014 

DMC-3 1, 4 - 5 Pan:0.45 to 1.00 Blue:0.45 to 0.52 Green:0.52 to 
0.60 Red:0.60 to 0.68 NIR:0.73 to 1.30 

1 paid 2015 

WorldView-4 0.31, 1.24 11 5 Pan:0.45 to 0.80 Blue:0.45 to 0.51 Green:0.51 to 
0.58 Red:0.655 to 0.69 NIR:0.78 to 0.92 

1 paid 2016 

SuperView-1 0.5, 2 11 5 Pan:0.45 to 0.89 Blue:0.45 to 0.52 Green:0.52 to 
0.59 Red:0.63 to 0.69 NIR:0.77 to 0.89 

1 paid 2016/2018 

GF-6 2, 8/16 12 5, 8 Pan:0.45 to 0.90 Blue:0.45 to 0.52 Green:0.52 to 
0.59 Red:0.63 to 0.69 NIR:0.77 to 0.89 

4 partial free 2018 

GRUS-1A 2.5, 5 - 6 Pan:0.45 to 0.90 Blue:0.45 to 0.505 Green:0.515 
to 0.585 Red:0.62 to 0.685 RE:0.705 to 0.745 
NIR:0.77 to 0.90 

1 paid 2018 

GF-7 0.8, 2.6 - 5 Pan:0.45 to 0.90 Blue:0.45 to 0.52 Green:0.52 to 
0.59 Red:0.63 to 0.69 NIR:0.77 to 0.89 

- paid 2019 

Jilin-1 GF − 02A, 
02B, 03A 

1, 4.2 - 5 Pan:0.45 to 0.70 Blue:0.45 to 0.51 Green:0.51 to 
0.58 Red:0.63 to 0.69 NIR:0.77 to 0.895 

3.3 paid 2019 

KEOSat 3 - 4 - 1 paid 2019 
HYDRA-1, 2 4, 35 - 5 - - paid 2020 
1HOPSat 1 - 8 - 0.04 paid 2020 
SkySat-1 to − 18 0.86, 1 12 5 Pan:0.45 to 0.90 Blue:0.45 to 0.515 Green:0.515 

to 0.595 Red:0.605 to 0.695 NIR:0.74 to 0.90 
0.5 paid 2013–2020 

KOMPSAT-7 0.3, 1.2, 4 - 6 Pan:0.45 to 0.90 Blue:0.45 to 0.52 Green:0.52 to 
0.60 Red:0.63 to 0.69 NIR:0.76 to 0.90 
MWIR:3.00 to 5.00 

- paid 2021  
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Summary of existing reviews of water body classification.  
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1 A review of hyperspectral remote sensing and its applicationin 
vegetation and water resource studies (Govender et al., 2007) 

2007 Water Sa Survey the application of hyperspectral imagery in water resource studies. 

2 Water-body area extraction from high resolution satellite images-an 
introduction, review, and comparison(Nath and Deb, 2010) 

2010 IJIP Review early methods applied for water body extraction using satellite 
remote sensing. 

3 Water body extraction methods study based on RS and GIS(Haibo 
et al., 2011) 

2011 PROENV Analysis unsupervised classification, supervised classification, single-band 
threshold, inter spectrum relation method and water index method. 

4 A review on extraction of lakes from remotely sensed optical satellite 
data with a special focus on cryospheric lakes(Jawak et al., 2015) 

2015 ARS Reviewing methods, technologies, and satellite sensors employed for the 
extraction of cryospheric lakes from satellite imagery. 

5 A review of applications of satellite SAR, optical, altimetry and DEM 
data for surface water modelling, mapping and parameter estimation 
(Musa et al., 2015) 

2015 HESS Providing a review of applications and limitations of satellite remote 
sensing in surface water modelling, mapping and parameter estimation. 

6 Detecting, extracting, and monitoring surface water from space using 
optical sensors: A review(Huang et al., 2018) 

2018 REV 
GEOPHYS 

Reviewing the current status and challenges of detecting, extracting, and 
monitoring surface water using optical remote sensing in the last decade. 

7 A review on applications of remote sensing and geographic 
information systems (GIS) in water resources and flood risk 
management(Wang and Xie, 2018) 

2018 Water Providing an analyze on some applications of remote sensing and GIS in 
water resources and flood risk management. 

8 Evaluation of water indices for surface water extraction in a Landsat 
8 scene of Nepal(Acharya et al., 2018) 

2018 Sensors Comparison of three water body index methods using Landsat 8 data. 

9 Inundation extent mapping by synthetic aperture radar: A review( 
Shen et al., 2019) 

2019 Remote 
Sensing 

Reviewing algorithms, strengths, and limitations of flood inundation 
mapping using SAR data. 

10 Surface water detection and delineation using remote sensing 
images: A review of methods and algorithms(Bijeesh and 
Narasimhamurthy, 2020) 

2020 SWAM Review of techniques, methods, algorithms and the sensors/satellites for 
surface water body detection. 

11 Water body classification from high-resolution optical remote 
sensing imagery: Achievements and perspectives 

2022 ISPRS JPRS A systematic review of the latest and advanced approaches, achievements, 
and the perspectives of future research directions in water body 
classification from high-resolution optical remote sensing imagery.  
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