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ABSTRACT 

 

Cloud detection is an important preprocessing step for remote 

sensing image processing and analysis. The current deep-

learning-based cloud detection methods are mostly based on 

Convolutional Neural Network (CNN) which pay more 

attention to local information. To make more use of the global 

information, in this article, we propose a transformer-based 

cloud detection method (SCTrans) based on the spatial and 

channel attention mechanism. The experiment results show 

that when using only three-band images on the Landsat7 

dataset, the mIoU of the validation set reaches 85.92% and 

the mIoU of the test set reaches 87.86%. The experimental 

results show that the proposed network has a higher mIoU 

and F1 score than Fmask and other networks. 

 

Index Terms— Cloud detection, deep learning, 

transformer, attention mechanism, neural networks, remote 

sensing 

 

1. INTRODUCTION 

 

Remote sensing images are inevitably contaminated by 

clouds, which limit the subsequent use of remote sensing 

images. A large proportion of remote sensing data are 

destructed due to the existence of clouds, which affects the 

application of target detection, image fusion, and image 

registration [1]. Therefore, cloud detection is an important 

preprocessing step for remote sensing images. Cloud 

detection methods include threshold methods, methods based 

on the spatial and texture characteristics, and methods based 

on machine learning [2]. Fmask [3] is a classic cloud 

detection method based on the threshold, the threshold 

methods need to set the threshold according to the cloud and 

spectral characteristics to achieve better detection results. 

Because of seasons and geographic location, the threshold 

will also change. Since different seasons and land covers will 

need different thresholds, the threshold methods tend to have 

lower accuracy. The texture-based detection methods detect 

clouds according to the spatial and geometric characteristics 

of the cloud. Tian et al. [4] used the grey level cooccurrence 

matrix to get the spatial distribution of numeric counts. 

Compared with the threshold methods, the texture-based 

detection methods improve the accuracy and scalability. 

However, due to the diversity of cloud features, the effect is 

still not ideal. The cloud detection methods based on machine 

learning use models to extract features from the training set 

and adjust hyperparameters through multiple experiments to 

obtain the optimal model. 

Deep learning is a subfield of machine learning. In recent 

years, with the proposal of FCN [5], semantic segmentation 

networks have shined in the field of remote sensing, such as 

cloud detection, building detection, and so on. Researchers 

begin to use semantic segmentation networks for cloud 

detection. Drönner et al. [6] proposed CS-CNN, which is a 

fast cloud detection method. Francis et al. [7] proposed 

CloudFCN based on an encoder-decoder structure to detect 

clouds. Cloud detection is essentially a pixel-by-pixel 

classification problem. The main goal is to distinguish clouds 

from ground objects in remote sensing images. Although 

people have explored many methods based on CNN to 

improve the accuracy of cloud detection, their ability to 

extract features is still limited. In recent years, the vision 

transformer (ViT) has shown the potential for global 

modeling to learn long-distance information in hyperspectral 

image classification [8]. Thus, we propose a semantic 

segmentation network based on Mix Transformer (MiT) [9] 

and incorporate the attention mechanism. Experiments on the 

landsat7 dataset show that our method significantly 

outperforms previous methods. The network structure is 

shown in the Fig. 1. This is an Encoder-Decoder architecture. 
Our main contributions are as follows: 

1) A transformer-based network is proposed for cloud 

detection. The MiT is introduced to extract features, which 

has higher accuracy than the CNN-based architectures. At the 

same time, we take advantage of the U-shaped network in 

cloud detection to construct a U-shaped network based on the 

MiT, which helps to identify global features and improves the 

computing efficiency. 

2) On the decoder side, we incorporate the attention 

mechanism named Convolutional Block Attention Module 

(CBAM) [10], which helps our model to highlight critical 

information and ignore unimportant information. 

 

2. METHOD 

 

U-Net [11] is an image segmentation algorithm, originally 

used for medical image segmentation. As an efficient  
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Fig. 1. Framework of the proposed SCTrans method. 

semantic segmentation network. Researchers introduce U-

Net into the field of remote sensing. U-Net has shown 

excellent performance on cloud detection tasks, but there is 

still room for improvement. ViT exhibits very competitive 

modeling capabilities, proving that the transformer-based 

architecture in the field of natural language processing 

performs better than CNN in image classification tasks. 

Convolution is a local operation and usually models the 

relationship between neighboring pixels, while the 

transformer is a global operation, which can model the 

relationship between all pixels. We combine the advantages 

of U-Net and the MiT and introduce CBAM [10]. U-Net 

combines multi-scale features through jump connections, and 

focuses on the structured information of the image. The 

transformer focuses more on the semantic information of the 

image. Next, we will introduce our model from the encoder 

and the decoder. 

 

2.1. Transformer encoder 

 

ViT is the first work to prove that the transformer is effective 

in image classification, ViT reshapes the image into a 

sequence of patches, which also serves as the input sequence 

for the transformer. 

In semantic segmentation, the encoder is usually a pre-

trained classification network, such as VGG, Resnet. It 

generally outputs high-resolution coarse-grained features and 

low-resolution fine-grained features. The feature maps 

extracted by the encoder can be input into the decoder to 

obtain the result of pixel-by-pixel classification. A suitable 

encoder is very important. Compared with the commonly 

used CNN in semantic segmentation, ViT has obvious 

advantages in accuracy performance on public dataset, but 

the disadvantages are also obvious. The parameters and 

calculations are large and require large video memory. Due 

to the position embedding in ViT, images of different 

resolutions need to be interpolated during the test process, 

which will lead to a decrease in accuracy. 

Inspired by ViT, Xie et al. [9] design a series of the MiT 

encoders, MiT-B0 to MiT-B5, with the same architecture but 

different sizes, our model uses MiT-B2 as the encoder. ViT 

can only generate a single-resolution feature map, which 

results in limited information used by the decoder. The MiT 

can output CNN-like multi-resolution feature maps. 
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Fig. 2.  Structure of the MiT block. 

The structure of the MiT block is shown in the Fig. 2, the 

MiT block includes efficient self-attention, Mix-FFN and 

overlap patch merging. In self-attention, the attention map is 

obtained by multiplying the input vector X by the weight 

matrix Q, K, V, which have the same dimensions 

𝐻 ×𝑊 × 𝐶.  The multi-head self-attention generates 

multiple attention maps, then cascades the results of multiple 

attention maps, which is similar to the multi-channel 

mechanism in CNN. CNN obtains feature maps of different 

dimensions, concatenates them, and then maps back to the 

original dimensions through a parameter matrix. The 𝑑ℎ𝑒𝑎𝑑 
is dimension of the head. The calculation process of a 

conventional multi-head self-attention is as follows: 

Attention(𝐐, 𝐊, 𝐕) = Softmax (
𝐐𝐊𝐓

√𝑑ℎ𝑒𝑎𝑑
) 𝐕 (1) 
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Fig. 3. Self-attention(left) and multi-head self-

attention(right) 

The structure of self-attention and multi-head self-

attention is shown in the Fig. 3. To reduce the computational 

complexity of multi-head self-attention, efficient self-

attention controls the size of the K, V matrix in multi-head 

self-attention by increasing the reduction ratio R. Efficient 

self-attention changes the shape of the K by controlling R, 

reducing the complexity from O((𝐻 ∗𝑊)2) to O(
(𝐻𝑊)2

𝑅
). 

The formula is as follows: 

�̂� = Reshape (
𝐻𝑊

𝑅
, 𝐶 ⋅ 𝑅) (𝐊) (2) 

𝐊 = Linear(𝐶 ⋅ 𝑅, 𝐶)(�̂�) (3) 

To solve the problem of inconsistent resolution in the test 

process caused by position embedding in ViT, the MiT uses 

3×3 convolution in Mix-FFN to transmit position information. 

Overlap Patch Merging reduces the size of the feature map 

and increases the number of channels. 

 

2.2. Attention decoder 

 

The decoder’s input comes from two parts. The first is feature 

maps of different scales through jump connection after 

passing through the transformer encoder. The second is the 

feature maps from the upper level. We concatenate the two 

obtained feature maps. Then the height and width of the 

feature map are doubled by up sampling layer and the 

convolutional layer, and the number of channels is halved. 

Combining the feature maps obtained by these two methods 

can help the model obtain multi-scale information, thereby 

better identifying the cloud boundary. However, some 

redundant information may also affect the performance of the 

model. To avoid this effect and make the model more focused 

on cloud-related information, we introduced CBAM, which 

is a kind of attention mechanism, which combines Channel 

attention and spatial attention are combined. After obtaining 

the fusion feature map of each layer, we passed CBAM once 

to increase the focus on the cloud area and suppress 

unimportant features, the final mask image is obtained until 

the original resolution is restored. 

 

3. EXPERIMENT 

 

3.1. Dataset 

To verify the performance of the model, we conducted 

training, validation and testing on the Landsat-7 Irish dataset 

[12], which contains eight bands. Our study selected three of 

these bands: Band 1(Blue), Band 2(Green) and Band 3(Red) 

to compose three RGB channel images. Landsat-7 Irish 

dataset contains 206 images, which are uniformly distributed 

in nine latitude regions, and the ground truths (GTs) of these 

images are manually pixel-wise annotated. We selected 180 

images, including 107 images in the training set, 36 images 

in the validation set, and 37 images in the test set. We divided 

these images into two categories, cloud and others. During 

the training process, it is difficult to input large images into 

the network to train the model, so we cropped the images in 

the training set into 24,504 images whose size is 512x512 

with an overlap rate of 20%, and we used large images for 

evaluation during validation and testing. 

 

3.2. Parameter setup 

 

Our method is implemented with PyTorch on Ubuntu and two 

NVIDIA Tesla V100 (16GB) GPUs and optimized by the 

Adam with decoupled weight decay (AdamW [13]). We use 

poly as the learning rate policy with the initial learning rate 

of 0.00006. Besides, the total number of iterations is 80000, 

where the batch size is set to 8. We select mean intersection 

over union (mIoU), overall accuracy (OA) and F1 score as 

evaluation matrices to quantitatively evaluate the 

performance of cloud detection networks. 

 

3.3. Results and analysis 

 

We compared our SCTrans with other approaches, including 

Danet[14], DeeplabV3[15], Pspnet[16], FCN, U-Net. The 

results of the validation set and test set of Landsat 7 Irish are 

shown in Table 1 and Table 2. 

Table 1. Results on val set of different methods 

Method Acc/% mIoU/% mF1/% 

Fmask [3] 

Danet [14] 

89.18 

91.88 

79.03 

82.83 

88.18 

90.49 

DeeplabV3 [15] 92.53 84.01 91.2 

Pspnet [16] 92.85 84.82 91.7 

FCN [5] 

U-Net [11] 

SCTrans(ours) 

93.01 

93.06 

93.45 

85.02 

85.18 

85.92 

91.81 

91.91 

92.35 

 

Table 2. Results on test set of different methods 

Method Acc/% mIoU/% mF1/% 

Fmask[3] 

Danet[14] 

89.19 

92.18 

79.48 

85.8 

88.5 

92.29 

DeeplabV3[15] 92.58 86.85 92.9 

Pspnet[16] 93.15 87.1 93.05 

FCN [5] 

U-Net [11] 

SCTrans(ours) 

93.32 

93.47 

93.61 

87.54 

87.8 

87.86 

93.3 

93.46 

93.49 
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Fig. 4.   Comparison between the results of different methods in Landsat7 dataset  

 

It can be seen from Table 1 and Table 2 that SCTrans is 

better than Fmask and other mainstream semantic 

segmentation networks. On the validation set, mIoU reached 

85.92%, and on the test set, mIoU reached 87.86%, which 

shows that SCTrans has higher accuracy and better 

robustness. Fig. 4 shows the comparison results of SCTrans 

and other methods. SCTrans handles broken clouds and thin 

clouds better than other methods. 

 

4. CONCLUSION 

 
In this paper, we proposed a new cloud detection method, 

SCTrans, which is based on transformer. SCTrans 

incorporates the spatial and channel attention mechanism 

which helps our model to highlight salient features and ignore 

irrelevant regions. The experiment results have proved the 

effectiveness of our network to extract cloud areas. 
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