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A B S T R A C T   

Point cloud registration (PCR) is an important technique of 3D vision, which has been widely applied in many 
areas such as robotics and photogrammetry. The iterative closest point (ICP) is a de facto standard for PCR. 
However, it mainly suffers from two drawbacks: small convergence basin and the sensitivity to outliers and 
partial overlaps. In this paper, we propose a robust symmetric ICP (RSICP) to tackle these drawbacks. First, we 
present a new symmetric point-to-plane distance metric whose functional zero-set is a set of locally-second-order 
surfaces. It has a wider convergence basin and higher convergence speed than the point-to-point metric, point-to- 
plane metric, and even original symmetric metric. Second, we introduce an adaptive robust loss to construct our 
robust symmetric metric. This robust loss bridges the gap between the non-robust ℓ2 cost and robust M-estimates. 
In the optimization, we gradually improve the degrees of robustness via the decay of a robustness control 
parameter. This loss has a high “breakdown” point or low computational overhead compared with recent work 
(e.g., Sparse ICP and Robust ICP). We also present a simple but effective linearization for the alignment function 
based on Rodrigues rotation parameterization with the small incremental rotation assumption. Extensive ex-
periments on challenging datasets with noise, outliers or partial overlaps show that the proposed algorithm 
significantly outperforms Sparse ICP and Robust ICP in terms of both accuracy and efficiency. Our source code 
will be publicly available in https://ljy-rs.github.io/web.   

1. Introduction 

Point cloud registration (PCR) is an important and fundamental 
technique of 3D vision, with wide applications in the fields of robotics, 
photogrammetry, and computer graphics, such as simultaneous locali-
zation and mapping (SLAM), scene perception, and 3D modelling. Cur-
rent point cloud acquisition device can only capture a part of the object 
at a single frame. Thus, to cover the whole object or scene, a sequence of 
frames with overlaps should be taken from different positions. PCR is a 
technique to merge this sequence into a panorama, in a way that seeks 
the best rigid model to align each pair of adjacent point clouds (Li, 
2021). 

Iterative closest point (ICP) (Besl and McKay, 1992) is the standard 
method for PCR problem, which consists of two main steps, i.e., corre-
spondence step and alignment step. The first step searches a closest point 
from the target set for each source point to establish correspondences; 
then, the alignment step estimates an optimal transformation to register 
the correspondences. These two steps are alternately performed until a 
locally optimal alignment is achieved. However, ICP suffers from two 
major drawbacks: small convergence basin and the sensitivity to outliers 

and partial overlaps (Zhang et al., 2021). Classical ICP has a slow 
convergence speed because of its linear convergence rate (Pottmann 
et al., 2006). Although the improved point-to-plane ICP (Chen and 
Medioni, 1992) can converge faster, its convergence basin is small. The 
functional zero-set of point-to-plane metric is only planar patches. 
Another problem with ICP lies in the alignment step, which estimates a 
rigid model based on the least-squares optimization. As known, the ℓ2 
loss is not a robust cost. If many source points have no true correspon-
dences in the target set, ICP will converge to a bad local optimum. 
Therefore, ICP is sensitive to outliers and partial overlaps, which are 
common for real datasets. To tackle this issue, several methods use 
distance or normal constraints to filter potential outliers (Rusinkiewicz 
and Levoy, 2001; Rusinkiewicz, 2019). These methods are heuristics and 
the constraint parameters are difficult to tune. Recently, Sparse ICP 
(Bouaziz et al., 2013) and Robust ICP (Zhang et al., 2021) show supe-
riority to other ICP variants, which introduce robust cost functions 
instead of the ℓ2 loss to enhance the alignment step. 

In this paper, we aim to design a new ICP-based approach with 
following properties compared with classical ICP: better registration 
accuracy, wider convergence basin, higher convergence speed, and 
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better robustness to outliers and partial overlaps. Our key observations 
are twofold: (1) Symmetric point-to-plane distance metric minimizes 
point-to-surface error based on normals of both the source and target 
points, which has a wider convergence basin and higher convergence 
speed, since its functional zero-set is locally-second-order surfaces while 
the one of point-to-plane metric is only local plane patches. (2) Using 
robust loss instead of the least-squares cost of classical ICP can largely 
improve the robustness to outliers and partial overlaps. The least- 
squares is the best fitting for observations with Gaussian noise. How-
ever, it is not a robust loss and very sensitive to outliers. This conclusion 
had been evidenced in several work such as the Sparse ICP and Robust 
ICP. Based on these observations, we propose a robust symmetric ICP 
(RSICP) method to achieve our goals. We first present a rigorous 
mathematical model for the symmetric point-to-plane distance metric. 
Compared with the original approximate model, our mathematical 
model also considers the rotation of normals without increasing the 
computational complexity, which does not suffer from the loss of 
registration accuracy. We then introduce an adaptive robust loss (Li 
et al., 2021) to deal with outliers and partial overlaps, which bridges the 
gap between the non-robust ℓ2 cost and robust M-estimates. This loss is 
optimized based on a dynamic strategy so that it acts as functions with 
different degrees of robustness along with iterations. Compared with the 
loss of Sparse ICP, our loss has a much lower computational overhead 
and higher efficiency. Our loss has a higher “breakdown” point than the 
traditional Welsch (Holland and Welsch, 1977) loss used in Robust ICP. 
Extensive experiments on both synthetic and real-world datasets 
demonstrate that our RSICP is accurate, fast, and robust. It gets better 
performance in terms of both accuracy and efficiency than several base- 
lines and state-of-the-arts, including point-to-point ICP (Besl and McKay, 
1992), point-to-plane ICP (Chen and Medioni, 1992), Anderson accel-
eration ICP (Pavlov et al., 2018), Fast ICP (Zhang et al., 2021), Sparse 
ICP (Bouaziz et al., 2013), symmetric ICP (Rusinkiewicz, 2019), and 
robust ICP (Zhang et al., 2021). 

Our main contributions are summarized as follows:  

• We propose a new ICP-type method called RSICP, which has better 
registration accuracy, wider convergence basin, higher convergence 
speed, or better robustness to outliers than current methods.  

• We present a new rigorous mathematical model for the symmetric 
metric, which also considers the rotation of normals without 
increasing the computational complexity. It is more accurate than 
the original one, with a wider convergence basin and higher 
convergence speed.  

• We propose a robust registration objective based on an adaptive loss, 
which bridges the gap between the non-robust ℓ2 cost and robust M- 
estimates. It has a higher “breakdown” point compared with the 
Welsch loss.  

• We present a simple but effective linearization for the alignment 
function based on Rodrigues rotation parameterization with the 
small incremental rotation assumption. 

2. Related work 

PCR methods can be roughly classified into two categories, i.e., 
feature-based approaches and point-based ones. In this section, we 
briefly review both the two types of methods. The readers are referred to 
(Tam et al., 2013; Huang et al., 2021) for a comprehensive review of 
PCR techniques. 

2.1. Feature-based registration 

Feature-based registration is the 3D extension of image matching, 
which also contains two major steps: feature matching and geometric 
estimation (Li et al., 2020c). In the feature matching, 3D distinctive 
keypoints are first detected from point clouds via feature detectors (e.g., 
intrinsic shape signatures (ISS) (Zhong, 2009), MeshDoG (Zaharescu 

et al., 2009), KeypointNet (Suwajanakorn et al., 2018), and USIP (Li and 
Lee, 2019)). Then, each keypoint is encoded to a compact feature vector 
by analysing its local surface based on descriptors (e.g., fast point feature 
histogram (FPFH) (Rusu et al., 2009), 3DMatch (Zeng et al., 2017), 
3DSmoothNet (Gojcic et al., 2019), fully convolutional geometric fea-
tures (FCGF) (Choy et al., 2019), and SpinNet (Ao et al., 2021)), so that 
keypoints have a high degree of discrimination. Finally, one-to-one 
corresponding relationship is established via computing pairwise simi-
larity scores (e.g., nearest neighbor distance ratio (NNDR) (Lowe, 2004) 
and chi-square test (Zhong, 2009)). 

In the geometric estimation, six degrees of freedom (DoF) rigid 
transformation is estimated based on robust fitting techniques, among 
which random sample consesus (RANSAC) (Fischler and Bolles, 1981) 
and its variants (Tordoff and Murray, 2005; Chum and Matas, 2008; 
Raguram et al., 2012; Barath and Matas, 2018; Brachmann and Rother, 
2019; Barath et al., 2020) are the most widely used methods. RANSAC 
alternates between a random sampling step and a model fitting step. 
However, the computational complexity of RANSAC-type methods 
grows exponentially with outlier rate (Li et al., 2020a). Compared with 
2D image matching (e.g., scale-invariant feature transform (SIFT) 
(Lowe, 2004) and radiation-variation insensitive feature transform 
(RIFT) (Li et al., 2020b)), 3D feature matching is much more difficult 
due to uneven densities, lack of texture, and noise. Hence, initial cor-
respondence set contains a large portion of outliers (often > 95%). In 
this case, RANSAC-type methods may cost dozens of minutes or hours to 
find an approximate solution, which are too slow to be practical. 

Recently, several approaches are proposed for extremely high outlier 
rate problem. For example, guaranteed outlier removal (GORE) (Bustos 
and Chin, 2017) identifies true outliers based on the conflict between 
upper bounds and lower bounds, which is robust to 99% of outliers. 
Based on the idea of GORE, polynomial-time GORE (Li, 2021) uses two 
novel concepts (correspondence matrix and augmented correspondence 
matrix) to decide the tight bounds, which improves the efficiency from 
exponential complexity O(2N) to polynomial complexity O(N2). Several 
methods (e.g., TEASER (Yang and Carlone, 2019; Yang et al., 2020b), 
1pt-RANSAC (Li et al., 2021), and weighted q-norm estimation (Li et al., 
2020c)) decompose the 7-DoF/6-DoF registration problem into sub-
problems (scale, rotation, and translation estimation) to decrease the 
parameter space, and solve these subproblems based on truncated least- 
squares (TLS), 1-point RANSAC, or improved M-like robust estimators. 
Although these methods achieve promising performance, their regis-
tration accuracies are lower than point-based registration. Therefore, 
feature-based registration is generally referred as coarse registration, 
which provides good initializations for point-based registration for 
refinement. 

2.2. Point-based registration 

The most widely used point-based registration method is the ICP 
(Besl and McKay, 1992), which is a simultaneous correspondence and 
alignment technique. Compared with feature-based methods, ICP uses 
raw points as input instead of features, which does not require corre-
sponding relationship between points. Thus, ICP has one more step 
called correspondence update step, in which closest points are estab-
lished as correspondences. Different from feature correspondences, the 
correspondences in ICP are dynamic. They are changed along with 
iterations. 

ICP has many variants (Chen and Medioni, 1992; Rusinkiewicz and 
Levoy, 2001; Chetverikov et al., 2005; Bouaziz et al., 2013; Pavlov et al., 
2018; Rusinkiewicz, 2019; Wang and Solomon, 2019; Zhang et al., 
2021), which improve the sampling and matching, distance metric, or 
outlier rejection strategies of the original ICP. (1) Sampling and 
matching. Generally, the sizes of point clouds captured by 3D laser 
scanners are very large (104 ∼ 107). Direct registration of the whole 
point sets is time-consuming and not acceptable in practice. Proper 
sampling can largely improve the efficiency without losing registration 
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accuracy. Typical sampling strategies are random sampling, Voxel Grid 
filtering (Rusu and Cousins, 2011), and octree compression (Schnabel 
and Klein, 2006), etc. ICP uses nearest search for correspondence 
establishment. Some variants improve this step based on additional 
properties such as invariant features (Feldmar and Ayache, 1996) and 
normals (Serafin and Grisetti, 2015). (2) Error metric. Classical ICP uses 
the Euclidean distance between the transformed point and its closest 
point as the distance metric, called point-to-point metric. Chen and 
Medioni (Chen and Medioni, 1992) proposed a point-to-plane metric 
that measures the distance between the transformed point and the 
tangent plane of its correspondence. As evidenced, point-to-plane metric 
has a higher convergence speed than the point-to-point metric. Segal 
et al. (Segal et al., 2009) associated a probabilistic model in the ICP to 
construct a soft plane-to-plane metric. Recently, symmetric point-to- 
plane (Rusinkiewicz, 2019) shows great superiority in both conver-
gence speed and convergence basin compared with the point-to-point 
and point-to-plane metrics. The functional zero-set of symmetric 
metric is a set of locally-second-order surfaces instead of just planar 
patches of the point-to-plane metric. (3) Outlier rejection. Some 
methods are heuristics, which use additional geometric constraints be-
tween distance and normals to reject possible outliers (Zhang, 1994; 
Rusinkiewicz and Levoy, 2001; Rusinkiewicz, 2019). However, as 
mentioned earlier, these methods are difficult to tune for different 
datasets. Robust estimation techniques are preferred for this problem. 
For example, least trimmed squares cost is used in Trimmed ICP 
(Chetverikov et al., 2005) and Anisotropic ICP (Maier-Hein et al., 2011) 
for alignment step. Robust ICP (Zhang et al., 2021) adapts the Welsch 
function as robust kernel. The common drawback of these M-like robust 
cost is the sensitive to high outlier rates. Sparse ICP (Bouaziz et al., 
2013) introduces a sparse norm, i.e., ℓp-norm (0 < p < 1), to achieve 
robustness to outliers. However, optimization of the sparse norm suffers 
from high memory footprint and slow convergence. Besides the above 
improvements, several variants try to achieve globally optimal, such as 
the globally optimal ICP (Go-ICP) (Yang et al., 2015), which uses a 
nested Branch-and-Bound scheme for rigid transformation estimation. A 
comprehensive survey of ICP-type methods can be found in (Huang 
et al., 2021). 

Apart from ICP-type registration, probabilistic-based registration is 
also a branch of point-based methods, such as the normal distributions 

transform (NDT) (Biber and Straßer, 2003), Gaussian mixture models 
(GMMs) (Jian and Vemuri, 2010), and coherent point drift (CPD) 
(Myronenko and Song, 2010). Probabilistic-based approaches have 
lower dependencies on initializations than ICP-family. However, the 
results of ICP are more predictable than the ones of probabilistic-based 
registration (Magnusson et al., 2009). 

3. Classical ICP revisited 

Given a pair of point clouds X = {x1,…, xM} and Y = {y1,…, yN} in 
R3, the goal of registration is to estimate a 6-DoF rigid transformation 
(represented by a 3-DoF rotation matrix R and a 3-DoF translation 
vector t) to align the source set X with the target set Y : 

min
R,t

∑M

i=1
(ri(R, t))2

+ ISO(3)

(

R

)

, (1)  

where ri(R, t) = minyj∈Y

⃦
⃦
⃦Rxi +t − yj

⃦
⃦
⃦ is the residual distance between the 

transformed point Rxi +t and its closest point yj in Y , and ISO(3)(⋅)
provides a constraint on the rotation matrix R, which should belong to 
the orthogonal group SO(3). Exactly, ISO(3)(⋅) acts as an indicator func-
tion: 

ISO(3)

(

R
)

=

{
0, ifRT R = I and det

(
R
)
= 1,

+∞, otherwise. (2)  

where I ∈ R3×3 is an identity matrix and det(⋅) is the determinant of a 
matrix. Problem (1) is generally solved by the well-known ICP algorithm 
(Besl and McKay, 1992), which alternates between two major stages 
until convergence:  

• Correspondence update step: seek the corresponding point ̂y(k)i ∈ Y for 
each point xi ∈ X with fixed transformation parameters (R(k), t(k)): 

ŷ(k)
i = argmin

yj∈Y

⃦
⃦R(k)xi + t(k) − yj

⃦
⃦. (3)   

Fig. 1. Registration results of different methods (see Section 5.1.2) on a point cloud pair with partial overlap, obtained from the monkey model of the EPFL statue 
dataset. #S and #T are the point cloud sizes of the source and the target sets, respectively. The RMSE υ, running time t, and number of iterations k are reported below 
each result. Our RSICP and Symmetric ICP are the only two methods that achieve good registrations, while our RSICP being much more accurate than Symmetric ICP. 
Our RSICP can also be faster than Symmetric ICP if we limit the maximum number of correspondences as in the Symmetric ICP, since our iteration number k is 
smaller than Symmetric ICP. 
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• Transformation update step: optimize the transformation parameters 
(Rk+1, tk+1) based on Eq. (1) with known correspondence points 

{(ŷ(k)i , xi)}
M
1 : 

(

R(k+1), t(k+1)

)

= argmin
R,t

∑M

i=1

⃦
⃦
⃦Rxi + t − ŷ(k)

i

⃦
⃦
⃦

2
+ ISO(3)

(

R

)

, (4)   

where the superscript k is an iteration indicator. The alignment (4) is an 
absolute orientation problem, which can be solved by the Horn’s 
method (Horn, 1987) in a closed-form. Apart from the above point-to- 
point distance metric, point-to-plane distance rl

i(⋅) is another popular 
metric for ICP, 

rl
i

(
R, t
)
=
(
Rxi + t − ŷi

)
⋅nŷ i

, (5)  

where symbol n represents a normal vector, e.g., nŷ i 
is the normal of ŷi. 

This metric measures the distance between the transformed point Rxi +t 
and the tangent plane of ̂yi. Compared with the point-to-point ICP, point- 
to-plane ICP has faster convergence speed. 

4. Robust symmetric ICP 

4.1. Symmetric point-to-plane metric 

The symmetric point-to-plane metric proposed by Rusinkiewicz 
(Rusinkiewicz, 2019) had shown to have a wider convergence basin and 
faster convergence speed than other distance metrics. Its basic idea is to 
minimize point-to-surface error based on normals of both the source and 
the target points. 

To show the superiority of symmetric metric, let’s first compare the 
zero-sets of the objective functions of point-to-plane and symmetric 
point-to-plane distances. In the overlapping regions, the surfaces of 
point clouds X and Y are the same up to noise. Assume that the sur-
faces are perfectly aligned, a correspondence (x, y) becomes nearby 
points on the surface due to the discrete point cloud sampling step. Then, 
the point-to-plane error of (x, y) is: 

r =
(
x − y

)
⋅ny. (6)  

Therefore, the residual is zero only if point x locates on the tangent plane 
of y. It means that the local surface containing (x, y) is perfectly flat, 
which is intuitively illustrated in Fig. 2(a). Considering the symmetric 
objective, the error is: 

r =
(
x − y

)
⋅
(
nx + ny

)
. (7) 

Fig. 2(b) gives an illustration of the behavior of the objective (7) in 
2D case. As shown, the residual reaches zero whenever the local surface 

containing (x, y) is an arc of some circle, since the sum of normals nx and 
ny must be orthogonal to the vector x − y. This property can be easily 
extended to 3D case: function (7) gets zero error as long as x and y are 
sampled from some local cylinder. Further, Rusinkiewicz had proved 
that the symmetric metric can be minimized whenever the local surface 
is quadratic or planar (Rusinkiewicz, 2019). In summary, the zero-set of 
point-to-plane function is a class of local planar patches while the one of 
symmetric function is a set of locally-second-order surfaces. Therefore, 
the symmetric function has a wider convergence basin in theory. 

The original symmetric metric in (Rusinkiewicz, 2019) is: 

rs*

i

(
R, t
)
=
(
Rxi + t − R− 1 ŷi

)
⋅
(
nxi +nŷ i

)
. (8)  

In this function, both the point clouds X and Y are moved to a neutral 
coordinate system based on the symmetric split of the transformation. 
Namely, the optimized parameters (R, t) in (8) is a neutral trans-
formation. However, the common process of the ICP-family is to trans-
form one point cloud to another. Importantly, this function ignores the 
rotation of normals. According to (7), the normals should be in the 
registration coordinate system instead of its original coordinate system. 
Thus, it may cause loss of registration accuracy. Although Rusinkiewicz 
also presented an exact formulation for symmetric metric, it is complex 
to linearize and implement. 

In this paper, we present a new symmetric point-to-plane metric: 

rs
i

(
R, t
)
=
(
Rxi + t − ŷi

)
⋅
(
Rnxi + n̂y i

)
. (9)  

Similar to the most ICP variants, this function performs a rigid trans-
formation to only the source set. Since our symmetric metric almost does 
not increase the amount of calculation, it achieves the efficiency and 
simplicity properties of the point-to-plane ICP. Moreover, our symmetric 
metric has a wider convergence basin, faster convergence speed, and 
better registration accuracy than the original one (See Section 5.1.1). 

4.2. Robust loss for symmetric ICP 

Traditional ICP uses the ℓ2 norm as the cost in the alignment step 
(transformation update step), which relies an assumption of Gaussian 
noise of the observations. The behavior of the ℓ2 cost is to penalize 
correspondences with large residuals established in the first step. 
However, it may cause erroneous alignment due to outliers and partial 
overlaps, in which a portion of source points in X have no correct 
correspondences in the target set Y . In these cases, the Gaussian noise 
assumption is violated and the ℓ2 cost produces a large error under the 
ground-truth alignment. This problem is generally solved by replacing 
the ℓ2 function with a robust loss, which gives high confidences to the 
true correspondences, while excluding the outlier correspondences in 
the optimization by assigning very small weights. Therefore, the 
behavior of a robust loss is to induce sparsity of the distance metric for 
the ICP. For example, the ℓp-norm (p ∈ (0, 1)) cost is introduced in 
Sparse ICP, which minimizes the function 

∑M
i=1(ri(R, t))p. The only dif-

ference with problem (1) is to use the ℓp-norm instead of the ℓ2-norm. 
However, the ℓp based alignment step is a non-convex and non-smooth 
function, which is optimized by the alternating direction method of 
multipliers (ADMM) since no closed-form solution is available. The 
drawbacks of sparse ICP are the high computational cost and memory 
footprint. Another recently proposed example is the Robust ICP that 
adapts the Welsch robust loss. Robust ICP shows great improvement 
compared with classical ICP in cases of outliers and partial overlaps. The 
limitation of Robust ICP is the sensitivity to high outlier rates. 

In this paper, we introduce a different robust loss for symmetric 
metric, which has a high “breakdown” point and low computational 
overhead. The objective function of our RSICP is: 

Fig. 2. Comparison between point-to-plane and symmetric point-to-plane 
metrics. Left: The point-to-plane error (Eq. 6) is zero only if point x locates 
on the tangent plane of y, regardless of nx. Right: The symmetric point-to-plane 
error (Eq. 7) is zero whenever the local surface containing (x, y) is an arc of 
some circle, since the sum of normals nx and ny must be orthogonal to the 
vector x − y. 
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min
R,t

∑M

i=1
ρ(α,β)

(
rs

i

(
R, t
))

+ ISO(3)

(

R

)

, (10)  

where ρ(α,β) is our robust model (Li et al., 2021): 

ρ(α,β)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

r

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

β2

2
ln

(

1 +

(
r
β

)2
)

α = 0

β2

α

⎛

⎝

(

1 +

(
r
β

)2
)α

2

− 1

⎞

⎠ α ∕= 0

, (11)  

α is a robustness-control parameter, and β > 0 is a scale factor. This 
robust model acts as different functions with different parameter α. For 
instance, it is the ℓ2 loss when α = 2, the ℓ1-ℓ2 loss when α = 1, the 
Cauchy loss when α = 0, and the Geman-McClure loss when α = − 2. 
Our model is able to connect the non-robust ℓ2 cost and robust M-esti-
mation cost. Hence, we can gradually improve the degrees of robustness 
via the decay of α in the optimization. As α decreases, many outliers are 
assigned ≈ 0 weights. In other words, the point-wise distance between 
the source set and the target set becomes sparse. 

Similar to Robust ICP, our formulation is also non-convex. Fortu-
nately, based on the Black-Rangarajan duality (Black and Rangarajan, 
1996) (See Appendix A), we can reformulate it as: 

min
R,t,wi∈[0,1]

∑M

i=1
wi⋅
(
rs

i

(
R, t
))2

+ χρ

(

wi

)

+ ISO(3)

(

R

)

, (12)  

where χρ(wi) is a penalty on the weight wi = w(α,β)(rs
i (R, t)), whose 

formulation is as follows: 

χρ

⎛

⎜
⎜
⎜
⎜
⎝

wi

⎞

⎟
⎟
⎟
⎟
⎠

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

β2(wi − lnwi) α = 0

β2wi

⎛

⎜
⎝1 −

α − 2
α w

2
α− 2
i

⎞

⎟
⎠ α ∕= 0

, (13)  

and the weight function w(α,β)(r) is: 

w(α,β)

⎛

⎜
⎜
⎜
⎜
⎜
⎝

r

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=
∂ρ(α,β)

∂r

/

r =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

β2

β2 + r2 α = 0

(

1 +

(
r
β

)2
)α

2− 1

α ∕= 0

. (14)  

In our robust model, parameter α is important and controls the robust-
ness. It begins with the least-squares cost (α = 2) and gradually becomes 
a robust M-estimate along with iterations. A larger α allows more ob-
servations to take part in the alignment (e.g., giving equal weights to all 
correspondences at the beginning.), which helps to avoid undesirable 
local minima. Meanwhile, a smaller α largely discounts the influence 
from outlier observations (e.g., assigning large weights to point pairs 
with small transformed distances, while giving small weights to the ones 
with large residuals.). Therefore, our model performs more global 
optimization with more observations and gradually reduces the effect of 
observations with large residuals to obtain high-precise alignment. 

Several ICP variants achieve robustness through discarding the cor-
respondences with large position or normal errors. However, as point 
out in (Zhang et al., 2021), it is difficult to tune these methods to achieve 
good results. Further, these strategies may increase the possibility of 
getting stuck in local minima. Differently, our method acts as a dynamic 
thresholding approach which gradually penalizes outliers. Compared 
with Robust ICP, our registration model has better performance in ac-

curacy and robustness, which benefits from our symmetric point-to- 
plane metric and the adaptive robust model. 

4.3. Main algorithm and linearization 

Similar to the classical ICP, our RSICP also has a correspondence step 
and an alignment step. Differently, our alignment is an iteratively 
reweighted least squares (IRLS) problem instead of the least-squares, 
which contains a weighted least-squares estimation and a weight up-
date step. The main procedure is as follows:  

• Correspondence update: seek the correspondence ŷ(k)i ∈ Y for each 
point xi ∈ X with fixed transformation parameters (R(k), t(k)): 

ŷ(k)
i = argmin

yj∈Y

⃦
⃦
⃦
(
R(k)xi + t(k) − yj

)
⋅
(

R(k)nxi + nyj

)⃦
⃦
⃦. (15)  

This step can be approximated by the step (3) or we can search the 
closest m≪N points in Y for xi and optimize (15) on these selected 
points.  

• Transformation update: optimize the transformation parameters 
(Rk+1, tk+1) based on Eq. (12) with known correspondences 

{(ŷ(k)i , xi)}
M
1 and weights {w(k)

i }
M
1 : 

(

R(k+1), t(k+1)

)

= argmin
R∈SO(3),t

∑M

i=1
w(k)

i

⃦
⃦
⃦

(
Rxi + t − ŷ(k)

i

)
⋅
(

Rnxi + n
ŷ
(k)
i

)⃦
⃦
⃦

2
,

(16)  

where the item χρ(wi) is dropped since it does not depend on the 
transformation parameters. It is difficult to directly optimize the 
problem (16), since our symmetric point-to-plane metric is a 
quadratic function of R. Fortunately, the rotation is gradually 
recovered along with iterations, which means that the increment of 
rotation ΔR is small in each iteration. Thus we can make an 
approximation on the rotated normal with the known rotation R of 
the last iteration. Then, problem (16) becomes: 
(

R(k+1), t(k+1)

)

= argmin
R∈SO(3),t

∑M

i=1
w(k)

i

⃦
⃦
⃦

(
Rxi + t − ŷ(k)

i

)
⋅
(

R(k)nxi + n
ŷ
(k)
i

)⃦
⃦
⃦

2
.

(17)  

The term R(k) is a known value. Hence, it becomes a linear function of 
R instead of the quadratic one in the problem (16). Then, we can 
easily optimize this problem in the same way as the point-to-plane 
metric (If we set the known term (R(k)nxi +n

ŷ
(k)
i
) to be nŷ i

, problem 

(17) exactly becomes the ploint-to-plane metric).  

• Weight update: optimize weights w(k+1) = {w(k+1)
i }

M
1 based on Eq. (12) 

with fixed transformation parameters (R(k+1), t(k+1)) and known 

correspondences {(ŷ(k)i , xi)}
M
1 : 

w(k+1) = argmin
wi∈[0,1]

∑M

i=1
wi
⃦
⃦rs

i

(
R(k+1), t(k+1))⃦⃦2

+ χρ

(

wi

)

, (18)  

where rs
i is a constant with a given (R(k+1),t(k+1)). The solution of (18) 

is exactly equivalent to (14).  
• α update: decrease α by a step-size τ, i.e., α(k+1) = α(k) − τ, to change 

the weight/cost function. 

These steps are iteratively performed until convergence. The details 
are summarized in Algorithm 1. 
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Algorithm 1. Robust symmetric ICP   

The transformation update (alignment) step is a non-linear problem. 
To make the optimization easier, we first transfer it to a linear least- 
squares problem based on the small incremental rotation assumption. 
Specifically, we first use the Rodrigues rotation formula to parameterize 
the rotation: 

Rxi = xicosθ+(v × xi)sinθ+ v(v⋅xi)(1 − cosθ). (19)  

Under the small incremental rotation assumption, we have cosθ ≈ 1 and 
sinθ ≈ θ. Then, the above equation can be approximated by: 

Rxi ≈ xi + (v × xi)θ
= xi + (v′

× xi),
(20)  

where v represents the axis of R, θ is the angle of R, and v′

= vθ. 
Substituting it into Eq. (17): 

argmin
v′ ,t

∑M

i=1
w(k)

i

((
xi − ŷ(k)

i

)
⋅ni +

(
xi × ni

)
⋅v′

+ ni⋅t
)2
, (21)  

where ni = R(k)nxi + n
ŷ
(k)
i

. This weighted linear least-squares can be 

written in the following form: 

arg min
ξ

εTWε = arg min
ξ

(Aξ − b)TW(Aξ − b), (22)  

where ξ = [v′ ; t] is the variable to be estimated, ε = (Aξ − b) is the error 
equation, diagonal matrix W = diag(w1⋯wi⋯wM) is a M × M weight 
matrix, A =

[
AT

1⋯AT
i ⋯AT

M
]T is a M × 6 coefficient matrix and b =

[b1⋯bi⋯bM]
T is a M × 1 observation vector, where: 

⎧
⎨

⎩

Ai =
[
(xi × ni)

T nT
i

]T

bi =
(

ŷ(k)
i − xi

)
⋅ni

. (23)  

Then, the solution of (22) is: 

ξ̂ =
(
ATWA

)− 1(ATWb
)

=

(
∑M

i=1
AT

i wiAi

)− 1(
∑M

i=1
AT

i wibi

) (24)  

5. Results 

In this section, both synthetic and real experiments are designed to 
comprehensively evaluate the proposed algorithm (denoted as RSICP). 
We compare our performance with seven ICP-based baselines or state-of- 
the-arts, including point-to-point ICP (denoted as ICP) (Besl and McKay, 
1992), point-to-plane ICP (denoted as ICP-l) (Chen and Medioni, 1992), 
Anderson acceleration ICP (denoted as AA-ICP) (Pavlov et al., 2018), 
Sparse ICP (Bouaziz et al., 2013), Fast ICP (Zhang et al., 2021), Robust 
ICP (Zhang et al., 2021), and Symmetric ICP (Rusinkiewicz, 2019). For 
Sparse ICP and Robust ICP, we use the point-to-plane distance metric, 
since its convergence speed is faster than the point-to-point metric. 
Then, it is fairer to compare them with Symmetric ICP and our RSICP 
that are based on improved point-to-plane metrics. The parameter set-
tings and implementation details of each compared algorithm are 
summarized in Table 1. In the following experiments, input point clouds 
are first normalized by eliminating their centroids and scaling them such 

Table 1 
Detailed settings of each compared algorithms (MNII and MNOI represent 
maximum number of inner ICP and outer robust iterations, respectively; vmax and 
vmin are the maximum and minimal values for the Welsch cost, respectively. All 
methods run in single thread.).  

Method Parameters Implementations 

ICP Error metric: point-to-point; 
convergence threshold: 1e − 5; MNII: 

100.  

C++ code 
https://github.com/ 
OpenGP/sparseicp 

ICP-l Error metric: point-to-plane; 
convergence threshold: 1e − 5; MNII: 

100.  

C++ code 
https://github.com/ 
OpenGP/sparseicp 

AA-ICP Error metric: point-to-point; alpha 
limit: 10; 

history length for Anderson: 5; 
convergence threshold: 1e − 5; MNII: 

100.  

C++ code 
https://github. 

com/yaoyx689/Fast-Rob 
ust-ICP 

Sparse ICP Error metric: point-to-plane; 
p-norm: p = 0.5; convergence 
threshold: 1e − 5; MNII: 100.  

C++ code 
https://github.com/ 
OpenGP/sparseicp 

Fast ICP Error metric: point-to-point; 
convergence threshold: 1e − 5; history 

length for Anderson: 5; MNII: 100.  

C++ code 
https://github. 

com/yaoyx689/Fast-Rob 
ust-ICP 

Robust ICP Error metric: point-to-plane; history 
length for Anderson: 5; 

vmax = 3D(0); vmin = EQ/3
̅̅̅
3

√
; 

convergence threshold: 1e − 5; MNII: 
100; MNOI: 100.  

C++ code 
https://github. 

com/yaoyx689/Fast-Rob 
ust-ICP 

Symmetric 
ICP 

Thresholds {distance: 0.5× centroid 
distance; angle: 60◦; convergence: 

1e − 5}; 
error metric: symmetric point-to-plane; 
number of correspondences: 5× 104; 

MNII: 100.  

C++ code 
https://gfx.cs.princeton. 

edu/proj/trimesh2/ 

RSICP 
(ours) 

Error metric: improved symmetric 
point-to-plane; 

step-size: α = 0.5; convergence 
threshold: 1e − 5; MNII: 100; MNOI: 

100.  

MATLAB code 
https://ljy-rs.github. 

io/web/  
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that the diagonal length of their bounding box is 1. Since the point-to- 
plane and symmetric point-to-plane metrics require normals at the 
points, we use the Point Cloud Toolbox1 to estimate normals if they are 
unknown. The same as in (Zhang et al., 2021), we adapt the registration 
root mean square error (RMSE) for quantitative evaluation, 

υ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
M

∑M

i=1

⃦
⃦
⃦
⃦R*xi + t* − Rxi − t‖2

2

√

. (25)  

where (R, t) is an estimated rigid transformation and (R*, t*) is the 
ground truth alignment. We also report the iteration count and running 
time of each compared method. All the methods are performed on a 
laptop with single CPU Core i7-8550U at 1.8 GHz and 8 GB of RAM. 

5.1. Synthetic data 

Here, we first compare the convergence basin and convergence speed 
of our proposed symmetric point-to-plane with classical point-to-point, 
point-to-plane, and the original symmetric point-to-plane distance 
metrics. Then, We comprehensively evaluate our robustness to outliers 
and partial overlaps. 

5.1.1. Convergence basin and speed 
We use the dataset constructed in the fast global registration (FGR) 

(Zhou et al., 2016) for simulations, which contains a total of 50 point 
clouds. For each point cloud, we apply a randomly generated rigid 
transformation (φ, t) to obtain its target point cloud, where φ is a 3 × 1 
rotation angle vector. This experiment only studies the convergence 
properties of different distance metrics. Therefore, we do not simulate 
any outliers, partial overlaps, and initializations. We only add Gaussian 
noise to the target points along normal directions with the standard 
deviation being the point cloud resolution μ. In our experiment, φ is 
generated in four categories, i.e., {[0◦, 20◦), [20◦, 40◦), [40◦, 60◦), [60◦,

80◦)}, and t is set to be one of the three configurations, i.e., {0, 50%× d,
100%× d}, where d is the diagonal length of the bounding box of source 
set. For each (φ, t) category configuration, we perform 100 independent 

tests. We use the success rate and number of iterations to reflect the 
convergence basin and convergence speed, respectively. If the RMSE υ of 
a method in a test is smaller than triple of the noise standard deviation, 
this registration is accepted as a good registration. Thus, the success rate 
of a method is the number of good registrations that the method ach-
ieves in total 100 registrations. Note that the number of iterations for 
each method refers to its average value of all good registrations. 

Fig. 3 plots the quantitative results. When the rotation angles are 
small (< 20◦), all the distance metrics achieve a 100% success rate. 
However, the success rate decreases as the rotation angle increases. 
Compared with rotation, translation has little influence on the perfor-
mance. Our symmetric point-to-plane metric has the widest convergence 
basin while point-to-plane has the narrowest one. When the rotation is 
within [60◦, 80◦), our metric (47.6%) gains a growth rate of 26% 
compared with original symmetric point-to-plane (21.4%), which ranks 
the second. In terms of convergence speed, original symmetric point-to- 
plane is the slowest. The reason may be that its implementations pro-
vided by the author limit the number of correspondences and use an 
outlier rejection module based on correspondence distance and normal 
angle. Reasonably, point-to-plane converges much faster than point-to- 
point metric. Again, our symmetric metric gets the fastest convergence 
speed. It is 200% faster than point-to-point and symmetric point-to- 
plane, and 70% faster than point-to-plane if the rotation is within [60◦,

80◦). 

5.1.2. Outliers and partial overlaps 
Fig. 1 compares registration results on a point cloud pair with partial 

overlap, which is obtained from the monkey model of the EPFL statue 
dataset 2. Specifically, the first 60% of the points from the full model are 
taken to produce the source point cloud, and the last 60% are regarded 
as the target one. The overlap of this pair is only about 33%. Then, a 
randomly generated rigid transformation (φ ∈ [0◦,45◦], t ∈ [0, d]) is 
applied to the target set. As shown, our RSICP achieves the highest RMSE 
accuracy among eight compared methods, while being comparable with 
AA-ICP and Fast ICP in terms of running time (Note that our RSICP is 
implemented in MATLAB). Sparse ICP and Robust ICP, the two typical 

Fig. 3. Comparison of the convergence basin and convergence speed between different distance metrics on the FGR synthetic dataset, where {[0◦,20◦), [20◦,40◦), 
[40◦, 60◦), [60◦, 80◦)} are represented as points {20◦, 40◦, 60◦, 80◦} in the figure. 

1 https://www.mathworks.com/help/vision/ref/pcnormals.html. 2 https://lgg.epfl.ch/statues_dataset.php. 
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Fig. 4. Comparison between different methods on point clouds with outliers and partial overlaps, generated from the femme enfant model of the EPFL dataset. In 
each subfigure, the first row provides registration results and the second raw shows error maps between the estimated alignment and the ground truth alignment of 
the source set using log-scale color-coding. 
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ICP methods with high degrees of robustness, fail to achieve good reg-
istrations, since their convergence basins are narrow. In this registration, 
no initialization information is provided. Symmetric ICP performs much 
better than ICP, ICP-l, and their accelerated variants. It uses distance and 
normal constraints to reject outliers. Hence, it has good robustness to 
outliers and partial overlaps. Symmetric ICP is the fastest among all 
methods, which benefits from the limit of correspondences. It only 
samples no more than 5 × 104 correspondences for optimization. Actu-
ally, it will be slower than our RSICP if all correspondences are taken in 
optimization, since its iteration number is larger than ours. 

Fig. 4 compares the methods on point clouds with outliers and partial 
overlaps, which are generated from the femme enfant model of the EPFL 
dataset. Similarly, the first 55% of the points from the full model are 
taken to produce the source point cloud, and the last 55% are regarded 
as the target one. Then, a random transformation (φ ∈ [0◦,10◦], t ∈ [0, d/
10]) is applied on the target set. In this test, we want to eliminate the 
impact of initializations on different methods. Therefore, we only apply 
small rotation angles and offsets. To simulate outliers, η⋅M random 
points are uniformly generated from the bounding box of source set, 
where η is set to be 1%,50% and 200%, respectively. From the results, 
ICP, ICP-l, and there accelerated variants are very sensitive to outliers. 
This is reasonable, since there are no outlier process strategies in these 
methods. For case with up to η = 50% added outliers, our RSICP and 
Robust ICP achieve better registration accuracies than other robust-type 
ICPs (Sparse ICP and Symmetric ICP). For 200% added outliers, Sparse 
ICP and Robust ICP can no longer obtain good registrations. Symmetric 
ICP uses distance and normal constraints to reject outliers. It has very 
good robustness when good initializations are available. However, this 
outlier rejection strategy may cause registration accuracy loss. Our 
RSICP achieves the best RMSE among all methods. This example shows 
that our RSICP has better robustness than Sparse ICP and Robust ICP, 
and has better accuracy than Symmetric ICP. 

Fig. 5 shows the sensitivity to initializations of different methods. In 
Section 5.1.1, we report the convergence basin of different distance 
metrics. Hence, we only compare with the three methods with robust-
ness to outliers and partial overlaps in this example, i.e., Sparse ICP, 
Robust ICP, and Symmetric ICP. The first 60% of the points from the 
femme enfant model are taken as the source set, and the last 60% are the 
target set. The configurations of noise, random rotation angles φ, and 
random translations t are the same as in Section 5.1.1. For problems with 
small rotation angles, all methods achieve good performance. However, 
as the rotation increases, Sparse ICP and Symmetric ICP become very 
unreliable, i.e., their success rates dramatically drop. Robust ICP has 
much better robustness to large rotations. But it is still much worse than 
our RSICP. Our success rate is always close to 100%, which gains a 
growth rate of ≈ 45% compared with Robust ICP, the method that ranks 
second, when the rotation is within [60◦, 80◦). For problems with 
translations, the behavior of Symmetric ICP looks a bit strange. Its 

performance under [0◦, 20◦) rotations is lower than the one under [20◦,

40◦) rotations. The reason may be that the correspondence picking and 
outlier rejection strategies establish wrong correspondence relationship 
in this example with large translation offsets. This example shows that 
our RSICP has less sensitivity to initializations than current state-of-the- 
arts. 

Our method is further evaluated on the FGR dataset, which consists 
of five point cloud models with partial overlaps, i.e., Bimba, Children, 
Chinese Dragon, Angle, and Bunny. Each model contains five point 
cloud pairs, where each pair only suffers from rotation changes. As show 
in the above, when rotation angle is smaller than 20◦, all robust methods 
can achieve good results. Hence, we add a random rotation within 
[ − 20◦,20◦] to the ground truth to obtain the initializations. One prob-
lem instance from each model is selected for visual comparisons in 
Fig. 6, which shows the RMSE, running time, and iteration number of 
each compared method, where the RMSE is reflected by the error map 
between the estimated registration and the ground truth registration of 
the source set. As shown, only our RSICP and Robust ICP get good 
registrations on all the five pairs. Sparse ICP and Symmetric ICP fail on 
the first pair and the fourth pair, respectively. Quantitative results are 
reported in Table 2. Again, our RSICP and Robust ICP are the only two 
methods that achieve good results on all pairs. Our RSICP gets compa-
rable RMSE accuracy to Robust ICP, while being much faster. Our 
running time ranks second, which is 50% of Robust ICP, 33% of Sym-
metric ICP, and only 2% of Sparse ICP. 

5.2. Real-world data 

To test our RSICP on real-world problem instances, we compare the 
methods on the large-scale KITTI dataset3. We select five sequence 
(03 ∼ 07) with a total of 6035 laser scans from the KITTI training dataset 
for evaluations, where sequences 03 and 04 are taken in country sce-
nary, and 05 ∼ 07 are captured in unban scenary. A ground truth pose 
file for each sequence is provided by a high precision GPS-INS equip-
ment. For each sequence, we use a registration method to align each two 
adjacent laser scans and recover their 6-DoF relative pose information. 
This is known as the laser odometry problem. Here, we only perform 
scan-to-scan matching; namely, scan-to-model registration is not 
adapted. There are a total of 6030 registration instances in this experi-
ment. For each registration instance, we use the relative transformation 
between the previous scan pair as the initialization. The same as in 
(Zhang and Singh, 2014), the average relative translation error (RTE) is 
used as the evaluation metric. 

Fig. 7 plots the estimated trajectories of four methods with good 
robustness. Robust ICP and Sparse ICP get very bad results on the 

Fig. 5. Comparison of the sensitivity to initializations between different methods, where {[0◦,20◦), [20◦,40◦), [40◦,60◦), [60◦,80◦)} are represented as points {20◦, 
40◦, 60◦, 80◦} in the figure. 

3 http://www.cvlibs.net/datasets/kitti/eval_odometry.php. 
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sequence 04, where their estimated trajectory lengthes are shorter than 
a half of the ground truth. The reason is that they fail to recover the true 
translations on many instances, since the driving speed of 04 sequence is 
the fastest among these five sequences. Our RSICP achieves the best 
results, whose trajectories are very close to the ground truth. 

Table 3 reports the average RTE and total running time of each 
sequence. For this laser odometry problem, the performance of Robust 

ICP is much worse than that on the synthetic data. Its average RTE of all 
sequences is even larger than non-robust ICP variants. The reasons are 
twofold: First, the overlapping ratios between two adjacent laser scans 
are much higher than the ones in the synthetic experiments. Hence, non- 
robust ICP variants can achieve much better results. Second, Robust ICP 
is less stable than non-robust ICP variants. Although Robust ICP obtains 
better registration accuracy than non-robust ICP methods on most of the 

Fig. 6. Registration results on several example instances of the FGR dataset with partial overlaps. The registration RMSE, running time, and iteration number are 
reported below each result, where the RMSE is reflected by the error map using log-scale color-coding. 
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Table 2 
Average RMSE (× 10− 3), running time (in seconds), and number of iterations for each method on the partially overlapping FGR dataset constructed by five models. The 
best results are highlighted in bold fonts, and the second best results are underlined.  

Dataset Bimba Children Dragon Angle Bunny 

RMSE Time k RMSE Time k RMSE Time k RMSE Time k RMSE Time k 

ICP 83 0.81 88 57 0.41 49 64 0.88 74 29 0.66 59 64 0.63 62 
ICP-l 34 0.16 12 15 0.14 11 92 0.56 30 17 0.20 12 23 0.38 31 

AA-ICP 79 0.74 75 57 0.31 33 64 0.72 59 29 0.41 25 64 0.57 51 
Sparse ICP 100 17.54 43 2.1 19.98 55 2.0 24.84 53 1.9 18.5 33 1.9 24.70 65 
Fast ICP 79 0.55 38 57 0.28 27 61 0.54 33 29 0.46 34 64 0.42 28 

Robust ICP 1.5 0.78 64 2.0 0.68 51 2.0 1.00 57 1.9 0.87 49 1.8 0.78 60 
Symmetric ICP 1.5 0.95 44 2.1 1.10 50 2.1 1.03 47 18 1.35 54 1.9 1.01 48 

Our RSICP 1.5 0.37 28 2.0 0.28 25 2.0 0.32 26 1.9 0.44 29 1.9 0.49 34  

Fig. 7. The estimated trajectories ended with squares of different methods on the KITTI dataset.  

Table 3 
Quantitative evaluation (metric: RTE (%)↓ and total running time (in seconds) ↓) on the KITTI Dataset. The best results are highlighted in bold fonts, and the second 
best results are underlined.  

Sequence 03 (801 scans) 04 (271 scans) 05 (2761 scans) 06 (1101 scans) 07 (1101 scans) Mean 

RTE Time RTE Time RTE Time RTE Time RTE Time RTE Time 

ICP 14.93 100.10 14.26 51.98 4.46 208.95 4.08 146.74 5.16 77.44 8.58 117.04 
ICP-l 5.75 74.45 5.10 33.23 5.00 171.40 18.90 107.28 4.13 77.34 7.78 92.74 

AA-ICP 15.81 116.48 16.15 56.51 4.17 246.91 4.02 178.04 4.92 96.15 9.01 138.82 
Sparse ICP 2.64 2.77e4 72.92 1.03e4 3.54 7.24e4 2.03 3.69e4 7.38 2.49e4 17.70 3.44e4 
Fast ICP 18.09 84.17 20.62 38.08 4.71 193.46 4.27 120.09 5.76 71.98 10.69 101.56 

Robust ICP 9.17 359.41 60.47 149.53 3.79 882.24 9.80 559.41 11.86 326.95 19.02 455.51 
Symmetric ICP 1.08 612.65 0.74 207.79 3.63 950.60 0.69 821.37 1.05 737.67 1.44 666.02 

Our RSICP 0.96 138.14 0.32 64.77 0.72 398.25 0.59 202.62 0.73 149.94 0.66 190.74  
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instances, it still gets a larger RTE if it totally fails on some instances. 
Thus, laser odometry problem can not only reflect the registration ac-
curacy of a method, but also reflect its stability and robustness. Sparse 
ICP suffers from similar problem with Robust ICP. It gets the worst result 
on the sequence 04. Our RSICP achieves the best performance. Its RTE 
error is smaller than 50% of Symmetric ICP. In terms of running time, 
our RSICP is 2 + times faster than Symmetric ICP, 1 + times faster than 
Robust ICP, and about 180 times faster than Sparse ICP, although RSICP 
is implemented in MATLAB code. 

5.3. Limitations 

Similar to other ICP-type methods, our RSICP also converges to local 
minima. Although it has a wider convergence basin, it still requires 
initializations. If the initialization is far from the ground truth, it may 
perform poorly (See Fig. 3). The second limitation is that our conver-
gence speed becomes much slower if the outlier rate is very high. In 
Fig. 4, the iteration number of RSICP is much larger than that of Sym-
metric ICP in the case with 200% added outliers. 

6. Conclusion and future work 

In this paper, we proposed an accurate, fast, and robust method for 
registration problem. We first propose an improved version of the 
symmetric distance metric by considering the rotation of normals, 
together with a simple but effective linearization based on Rodrigues 
rotation parameterization. The functional zero-set of our metric is a set 
of locally-second-order surfaces instead of just planar patches of the 
point-to-plane metric. Compared with original symmetric metric, point- 

to-point, and point-to-plane metrics, our metric has a wider convergence 
basin and higher convergence speed. We also develop a robustified 
symmetric point-to-plane ICP (RSICP) formulation based on an adaptive 
robust loss with a high breakdown point and the Black-Rangarajan 
duality. This problem is solved using the IRLS method with a 
robustness-parameter decay strategy, so that our loss acts as different 
functions with different degrees of robustness. Our RSICP achieves 
comparable or better registration accuracy than several state-of-the-arts 
(including Sparse ICP, Robust ICP, and Symmetric ICP), while being 
much less sensitive to initializations and significantly faster. Thus, it has 
better stability and is more suitable for large-scale problems, e.g., laser 
odometry. 

To tackle the limitations of our RSICP, further improvements can be 
achieved in two directions. First, a correspondence-based registration 
method can be adopted for determining good initializations. Second, 
soft constraints on correspondence distance and normals can be applied 
to decrease outlier rate and correspondence selection strategy can be 
used to improve the efficiency. 
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Appendix A. B&R duality 

Black-Rangarajan Duality (Black and Rangarajan, 1996; Yang et al., 2020a): Given a robust cost function ρ(⋅), define ϕ(z)≐ρ(
̅̅̅
z

√
). If ϕ(z) satisfies 

limz→0ϕ
′

(z) = 1,limz→∞ϕ
′

(z) = 0, and ϕ′′(z) < 0, then the robust estimation problem min
δ

∑M
i=1ρ(ri(δ)) is equivalent to the following optimization with 

outlier process: 

min
δ,wi∈[0,1]

∑M

i=1
wi⋅(ri(δ))2

+ χρ

(

wi

)

, (A.1)  

where wi ∈ [0,1] (i = 1,…,M) are slack variables (or weights) associated to each measurement residual ri, δ are parameters to be optimized, and the 
function χρ(wi) (the so called outlier process) defines a penalty on the weight wi. The expression of χρ(wi) depends on the choice of robust cost function 
ρ(⋅). 
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