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Abstract
Due to containing rich patterns between entities, relation paths have been widely used in knowledge graph link prediction. The
state-of-the-art link prediction methods considering relation paths obtain relation paths by reinforcement learning with an
untrainable reward setting, and realize link prediction by path-ranking algorithm (PRA), which ignores information in entities.
In this paper, we propose a new link prediction method RLPath to employ information in both relation paths and entities, which
alternately trains a reinforcement learning model with a trainable reward setting to search high-quality relation paths, and a
translation-based model to realize link prediction. Simultaneously, we propose a novel reward setting for the reinforcement
learning model, which shares the parameters with the attention of the translation-based model, so that these parameters can not
only measure the contributions of relation paths, but also guide agents to search relation paths that have high contributions for link
prediction, formingmutual promotion. In experiments, we compare RLPath with the state-of-the-art link predictionmethods. The
results show that RLPath has competitive performance.
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1 Introduction

Knowledge graphs (KGs), containing structural knowledge,
have been a crucial part of various applications, e.g., informa-
tion retrieval [1], knowledge extraction [2], fake-review

detection [3], and recommendation [4]. Therefore, people
are committed to building and developing large-scale KGs,
e.g., Freebase [5] and DBpedia [6]. The facts in KGs are
represented as triples (head entity, relation, tail entity), which
can be abbreviated as (h, r, t). Although KGs have included a
large number of triples, they are still far from complete, and
link prediction becomes a hot research spot, which aims at
completing a triple when h or t is missing. Traditional link
prediction methods used to be popular, but with the growth
of KG size, they are limited by low computation efficiency
and data sparsity. Representation learning based link predic-
tion (RLLP) methods solve these problems, which embed
relations and entities into a low-dimensional vector space
[7], and encode the semantics of relations and entities into
their embeddings.

Most existing RLLP methods only consider single-hop re-
lations, which can be mainly divided into two classes, i.e.,
translation-based models and semantic matching models. For
example, TransE [8], as the most classical translation-based
model, regards the single-hop relation as a translation between
the head entity and the tail entity. TransE performs well with
1-to-1 relations, but has issues with 1-to-n, n-to-1, and n-to-n
relations. To address the issue, a lot of improvedmodels based
on TransE are proposed [9–16]. For example,Wang et al. [16]
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proposed TransH, which differentiates relations by projecting
entities into different hyperplanes decided by relations; Lin
et al. [13] proposed TransR, which supposes relations and
entities belonging to different semantic spaces, and projects
entities into relation-specific spaces; Sun et al. [12] proposed
RotatE, which defines the relation as a rotation from head
entity and tail entity in a complex vector space to better cap-
ture symmetric and asymmetry relations; Zhang et al. [14]
proposed HAKE, which captures semantic hierarchies by
mapping entities into the polar coordinate system; Chen
et al. [9] proposed UGKE, which introduces the probabilistic
soft logic to calculate the confidence score of triples; Tang
et al. [15] proposed MKRL, which combines entity descrip-
tions, hierarchical types, and textual relations to learn the rep-
resentations of entities and relations. RESCAL [11] is a typi-
cal semantic matching model, which utilizes a bilinear model
to capture the semantic correlations between entities and rela-
tions. To reduce the number of parameters, Yang et al. and Liu
et al. proposed DistMult [17] and ANALOGY [10], which use
diagonal matrices and normal matrices to represent relations,
respectively.

In addition to single-hop relations, there are also multi-hop
relations, i.e., relation paths, in KGs, which contain rich pat-
terns between entities. Figure 1 shows an example of relation
pa th , r ep r e sen t ed a s (Born In , S t a t eLoca t ed In ,
CountryLocatedIn), from which we can infer that the
“Nationality” of “Barack Obama” is “United States” (with a
high probability).

To utilize the rich pattern information in relation paths,
some link prediction methods with relation paths have been
proposed, which can be divided into four categories according
to the way of obtaining relation paths and realizing link
prediction.

The first one obtains relation paths by traversal and realizes
link prediction by traditional link prediction methods [18–20].
For example, PRA [19] obtains relation paths by random
walks and uses relation paths as features to train a
per-relation classifier to realize link prediction; Gardner et al.
[18] introduced feature similarity based on PRA; Neelakantan
et al. proposed PathRNN [20], which uses a recurrent neural
network (RNN) to model the path.

The second one obtains relation paths by traversal and re-
alizes link prediction by RLLP methods [21, 22]. For exam-
ple, based on TransE, Lin et al. [21] proposed PTransE, which
obtains relation paths by traversing through the knowledge
graph and utilizes both single-hop relations and relation paths
to learn the embeddings of relations and entities. By introduc-
ing relation paths, PTransE enriches the semantics of relations

and entities. However, the number of relation paths increases
exponentially with the number of hops. Therefore, PTransE
can only utilize short relation paths. Huang et al. [22] im-
proved PTransE by replacing TransE with TransR.

Reinforcement learning, aiming at learning the optimal
strategy by maximizing the cumulative reward that the agent
obtains from the environment, has proven advance in many
KG related tasks [23], due to the availability of better control
and more flexibility over the path-searching process. In KG,
the goal of reinforcement learning is to make a sequence of
decisions on choosing relation paths to finally reach the cor-
rect entities, where the policy gradient is utilized for training
agents to learn from the interactions with the environment
derived from a KG. The third one integrates reinforcement
learning with traditional RLLP methods to obtain relation
paths and realize link prediction. For example, Xiong et al.
[24] proposed DeepPath, which trains an agent to search rela-
tion paths between a given entity pair. DeepPath starts from
the head entity, and walks through the KG. Its agent chooses a
relation at each step to extend the relation path, until reaching
the tail entity. Since DeepPath ignores the importance of
choosing entities, Li et al. [25] proposed MARLPaR that con-
sists of two agents, one for choosing relations, and the other
for choosing entities. However, the reward settings of both
DeepPath and MARLPaR are artificial and untrainable:
DeepPath gives shorter relation paths higher rewards, ignoring
rich information in longer relation paths; MARLPaR gives all
relation paths the same reward, therefore it can hardly distin-
guish high-quality ones from all relation paths. In addition,
both DeepPath and MARLPaR use the same way of link pre-
diction as PRA, which fails to take the information in entities
into consideration.

The fourth one integrates reinforcement learning with
end-to-end learningmodels to obtain relation paths and realize
link prediction, where the reward is trainable and learnt auto-
matically [23, 26–29]. For example, Das et al. [23] proposed
MINERVA, which trains an agent to directly realize link pre-
diction. Given a head entity and a relation, the agent of
MINERVA walks through the KG starting from the head en-
tity, and stops when it reaches the tail entity. Since
MINERVA has the problem of sparse rewards, Shen et al.
[29] proposed M-Walk, which consists of a deep recurrent
neural network (RNN) and Monte Carlo Tree Search
(MCTS). Lin et al. [27] improves MINERVA via reward
shaping and action drop-out. By leveraging text corpus with
the sentence bag of current entity denoted, Fu et al. proposed
CPL [26], which introduces collaborative policy learning for
path searching and fact extraction from text. Lv et al. [28]
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Fig. 1 A relation path between the entity pair (Barack Obama, United States)
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proposed Meta-KGR, which adopts meta-learning to learn
effective meta parameters from high-frequency relations that
could easily adapt to few-shot relations. Despite the promising
results of introducing end-to-end learning, there still exist
some deficiencies needed to be improved.

Firstly, existing methods [18, 19, 24] only consider relation
paths, ignoring the importance of choosing entities in relation
path searching. However, the information in entities is impor-
tant for an agent, ignoring which makes the agent easily “get
lost”. For example, as shown in the upper portion of Fig. 2,
suppose that the agent is searching a relation path between
entity pair (Barack Obama, United States), after finding rela-
tion path (LanguageSpoken, LanguageSpokenIn), ignoring
the information in entity “United States”, the agent may
choose entity “United Kingdom”, which may fail to reach
entity “United States” before reaching predefined max step,
i.e., the agent “gets lost”. Secondly, existing methods [4, 21,
24] calculate the weights of each relation path by the
path-constraint resource allocation (PCRA) algorithm [30],
which is untrainable. Thirdly, existing methods [21, 24] only
realize link prediction on entity pairs whose length of shortest

relation path is less than a certain threshold, which ignores rich
information in longer relation paths.

To address the aforementioned problems, we propose a
link prediction method RLPath combining reinforcement
learning based attentive relation path searching with represen-
tation learning, which obtains relation paths by reinforcement
learning and realizes link prediction by RLLP methods.
RLPath alternately trains a reinforcement learning model
consisting of two agents, one for choosing relations, and the
other for choosing entities, and a translation-based model.
Given a triple, the reinforcement learning model searches
high-quality relation paths based on the embeddings learned
by the translation-based model, and uses a trainable reward
setting. The translation-based model utilizes these relation
paths to learn the embeddings of relations and entities, and
uses attention to measure the contributions of relation paths.
The main contributions of this paper are summarized as
follows:

& We propose RLPath, which alternately trains a reinforce-
ment learning model to search high-quality relation paths,
and a translation-based model to realize link prediction.
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Fig. 2 The overall architecture of
RLPath, which includes the path-
searching part (at the bottom right
of Fig. 2) and the representation
learning part (at the bottom left of
Fig. 2). The path-searching part
searches relation paths between
entity pairs based on the embed-
dings learned by the representa-
tion learning part. The path-
searching part trains two agents,
i.e., the relation agent and the en-
tity agent. The representation
learning part utilizes both single-
hop relations and relation paths
obtained by the path-searching
part to learn embeddings, and
uses the shared attention to mea-
sure the contributions of relation
paths
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& We propose a novel reward setting for the reinforcement
learning model, which shares the parameters with the at-
tention of the translation-based model, so that these pa-
rameters can not only measure the contributions of rela-
tion paths, but also guide agents to search relation paths
that have high contributions for link prediction, forming
mutual promotion.

& We evaluate RLPath on FB15K-237 and NELL-995
datasets, and compare it with the state-of-the-art link pre-
diction methods. Experimental results show that RLPath
achieves a competitive performance.

2 Methodology

In this section, we present the technical details of our method,
including two parts: the representation learning part, which
trains a translation-based model to learn the embeddings of
relations and entities, and the path-searching part, which trains
a reinforcement learning model consisting of two agents to
search high-quality relation paths.

2.1 Problem definition

We use E andQ to represent the entities and relations in a KG,
respectively. The facts in a KG are represented as triples (h, r,
t), where h; t∈E, r∈Q. Then, a knowledge graph can be repre-
sented as KG = {(h, r, t)}. Our task is link prediction, i.e.,
completing a triple when h or t is missing.

2.2 Overall architecture

Figure 2 shows the overall architecture of RLPath. Given a
triple (h, r, t), the path-searching part searches relation paths
between (h, t) based on the embeddings learned by the repre-
sentation learning part. The path-searching part trains two
agents: the relation agent and the entity agent. From head
entity h, at step τ, the relation agent chooses a relation rτ
among all possible relations of entity eτ, and the entity agent
chooses an entity eτ + 1 in the condition of entity eτ and chosen
relation rτ. The process stops until reaching target entity t or
reaching predefined max step τmax. Then, relation paths that
reach target entity t are sent to the representation learning part.
The representation learning part utilizes both single-hop rela-
tions and relation paths to learn the embeddings of relations
and entities, and uses attention to measure the contributions of
relation paths. The attention of relation paths in the represen-
tation learning part and the reward of the path-searching part
share the weight matrixW, forming mutual promotion.

2.3 Representation learning part

The representation learning part is based on TransE [8]. Given
a triple (h, r, t), TransE regards r as a translation between h and
t, i.e., h + r ≈ t, where h,r,t ∈ℝd are the embeddings of h, r,
and t, respectively. The energy function of TransE is defined
as follows:

ETransE h; r; tð Þ ¼ hþr−tj j: ð1Þ

RLPath utilizes both single-hop relations and relation
paths. A single-hop relation is a direct relation between an
entity pair, i.e., r is a single-hop relation of (h, t). A relation
path is defined as follows: given n triples (h, r1, e1), (e1, r2, e2),
…, (en − 1, rn, t), in which the tail entity of the former one is the
same as the head entity of the latter one, then, p = (r1, r2,…,
rn) is a relation path between (h, t).

The semantic relevance of each relation path to the corre-
sponding single-hop relation is different, i.e., the contributions
of relation paths are different. Therefore, we use attention [31]
to measure the contributions of relation paths. Suppose P =
{p1,…, pK} is the relation path set of (h, r, t), the semantics of
relation paths in P should be similar to the corresponding
single-hop relation r, i.e., pi ≈ r, where pi is the embedding
of pi = (ri1, ri2,…, rin), which is defined as follows:

pi¼ ∑
n

j¼1
rij; ð2Þ

where rij is the embedding of rij.
Therefore, the energy function of the representation learn-

ing part is defined as follows:

E h; r; tð Þ ¼ hþ r−tj j þ ∑
pi∈P

αi pi−rj j; ð3Þ

where αi is the attention of relation path pi, which is defined as
follows:

ηi ¼ tanh Wpið Þ; ð4Þ

αi ¼
exp r � ηið Þ

∑K
j¼1exp r � η j

� � ; ð5Þ

where W ∈ℝd × d is the weight matrix.

2.4 Path-searching part

In the path-searching part, we train a reinforcement learning
model having two agents to search high-quality relation paths,
one for choosing relations (called relation agent), and the other
for choosing entities (called entity agent). In this way, RLPath
takes both relation choosing and entity choosing into consid-
eration in relation path searching.The reinforcement learning
model consists of external environment and policy networks.

Chen et al.4718



2.4.1 External environment

External environment is a Markov Decision Process (MDP),
which represents the interactions between the KG and the
agents. The MDP consists of four parts: state S, action A,
transition T , and reward R, which can be represented as a
tuple S;A; T ;Rð Þ. In the following, we suppose the agents
are searching relation paths given a triple (h, r, t).

Action At step τ, the relation agent chooses a relation rτ from
its action space Arel;τ ¼ rj eτ ; r; eð Þ∈KGf g, and the entity
agent chooses an entity eτ + 1 from its action space Aent;τ ¼
ej eτðf ; rτ ; eÞ∈KGg. We call relations in Arel;τ as candidate

relations, entities in Aent;τ as candidate entities.

State The state of the agents should record the current posi-
tion, the single-hop relation, and the target entity of relation
path searching, so that the agents can choose an action accord-
ing to the semantics of the single-hop relation and the target
entity. The state vectors of the relation agent and the entity
agent at step τ are defined as srel, τ = (eτ, r, t) ∈ℝ3d and sent, τ =
(eτ, r, t, rτ) ∈ℝ4d, respectively, where eτ is the embedding of
entity eτ and rτ is the embedding of chosen relation rτ.

Transition From step τ to step τ + 1, the states of the two
agents are updated from (eτ, r, t) and (eτ, r, t, rτ) to (eτ + 1, r,
t) and (eτ + 1, r, t, rτ + 1), respectively. Therefore, transition T
can be represented as T rel eτ ; r; tð Þ; rτð Þ ¼ eτþ1; r; tð Þ and
T ent eτ ; r; t; rτð Þ; eτþ1ð Þ ¼ eτþ1; r; t; rτþ1ð Þ.

Reward The path-searching part aims to search high-quality
relation paths. Therefore, the reward should not only measure
whether a relation path reaches the target entity, but also mea-
sure the quality of the relation path. Our reward setting con-
sists of the following two components:

Global accuracy Global accuracy measures whether a relation
path reaches the target entity, which is defined as follows:

Rg¼
1; if the relation path reaches t
0; otherwise :

�
ð6Þ

Path weight Path weight measures the quality of a relation
path, i.e., the semantic relevance between the relation path
and the corresponding single-hop relation. In the representa-
tion learning part, we use attention to measure the contribu-
tions of relation paths. In the path-searching part, we use the
same parameters to measure the qualities of relation paths.
The path weight is defined as follows:

Rw¼
rWp; if the relation path reaches t
0; otherwise ;

�
ð7Þ

where W is the weight matrix, which is shared with the rep-
resentation learning part.

Finally, the total reward is defined as follows:

Rtotal ¼ Rg þ Rw: ð8Þ

2.4.2 Policy networks

Each of the two agents can be represented as a policy network
with parameters θ: πθ(a|X) = P(a|X; θ), which maps input X
to the probability distribution of candidate relations or entities.
We build history-dependent policy networks whose inputs
consist of history and state. History records the relations and
entities that have been chosen in a process of relation path
searching. It is the same for the two agents. The embedding
of history at step τ is represented as dτ ∈ℝ2d. We use one layer
RNN to encode chosen relations and entities into dτ:

dτ ¼ RNN dτ−1; eτ−1; rτ−1½ �ð Þ; ð9Þ

where eτ − 1 and rτ − 1 are the embeddings of the chosen entity
and relation at step τ − 1, respectively. [,] is the concatenation
of two embeddings. The inputs of the two policy networks at
step τ are represented as Xrel, τ = [dτ, srel, τ] and Xent, τ = [dτ,
sent, τ], respectively.

The structure of the two policy networks is a
fully-connected neural network with two hidden layers, each
followed by a ReLU nonlinearity layer. Since the embeddings
of relations and entities contain features, we include this in-
formation in the following way:

πθ Arel;τ Xrel;τ
��� �

¼ softmax Arel;τOrel;τ
� �

; ð10Þ

πθ Aent;τ Xent;τ
��� �

¼ softmax Aent;τOent;τ
� �

; ð11Þ

where πθ Arel;τ Xrel;τ
��� �

and πθ Aent;τ Xent;τ
��� �

are the probabil-
ity distributions of all candidate relations and entities at step τ,
respectively;Orel, τ ∈ℝd andOent, τ ∈ℝd are the outputs of the
second ReLU nonlinearity layer of the relation agent and the
entity agent, respectively. Arel;τ∈ℝ Arel;τj j�d and Aent;τ∈
ℝ Aent;τj j�d are matrixes consisting of the embeddings of all
candidate relations and entities at step τ, respectively.

2.5 Training

In this section, we describe the parameter updating in our
method RLPath, including the representation learning part
and the path-searching part, and present the complete training
procedure of RLPath.

2.5.1 Parameter update

In the representation learning part, we update parameters by
minimizing a margin-based loss function [8], which is defined

RLPath: a knowledge graph link prediction method using reinforcement learning based attentive relation path... 4719



as follows:

LKG ¼ ∑
h;r;tð Þ∈T

∑
h;r0 ;tð Þ∈T−

γ þ E h; r; tð Þ−E h; r
0
; t

� �h iþ
; ð12Þ

where [x]+ = max (0, x) represents the maximum between 0
and x; γ is the margin; T is the set of all the triples in the
KG, i.e., positive triples; T− is the set of negative triples, which
is defined as follows:

T− ¼
�
h; r

0
; t
�
∉KGj

�
h; r; t

�
∈KG; r

0
∈Q

n o
: ð13Þ

In the path-searching part, we update parameters by maxi-
mizing expected total reward for all searched relation paths,
which is defined as follows:

J θð Þ ¼ ∑
M
Ea∼πθ ∑

τ
Rsτ ;aτ

� 	
; ð14Þ

where J(θ) is the expected total reward for all searched relation
paths; M is the set of all searched relation paths; Rsτ ;aτ is the
reward in condition of state sτ and action aτ.

We use Monte-Carlo Policy Gradient [32] to calculate the
gradient of J(θ):

∇θ J θð Þ ¼ ∇θ ∑
M
Ea∼πθ ∑

τ
Rsτ ;aτ

� 	
≈∇θ ∑

M
∑
τ
logπθ a ¼ aτ jXτð ÞRsτ ;aτ :

ð15Þ

For the relation agent, aτ = rτ and πθ(a = aτ|Xτ) = πθ(rτ|
Xrel, τ). For the entity agent, aτ = eτ + 1 and πθ(a = aτ|Xτ)
= πθ(eτ + 1|Xent, τ).

2.5.2 Training procedure

Algorithm 1 shows the complete training procedure of
RLPath. First, we use TransE to pre-train the embeddings of
relations and entities (Line 1). In some KGs, the number of
relations is large, so training the two agents without supervi-
sion would be time-consuming and parameters are difficult to
converge. Therefore, we exploit supervised learning (Line 2–
5), where the reward of each step Rsτ ;aτ is set to 1. Then, we
implement reinforcement learning to further update parame-
ters (Line 7–24), where the reward of each step Rsτ ;aτ is set to
Rtotal. After that, we use the relation paths that reach the tail
entity to retrain the embeddings (Line 25). Reinforcement
learning and embedding retraining are alternated for a
predefined number of iterations (Line 26–27). We use Adam
[33] with a learning rate of 0.001 to update embeddings, and
the updating process is defined as follows:

gt ¼ ∇θ J θt−1ð Þ; ð16Þ
mt ¼ β1mt−1 þ 1−β1ð Þgt ð17Þ

vt ¼ β2vt−1 þ 1−β2ð Þg2t ; ð18Þ

bmt ¼
mt

1−βt
1

; ð19Þ

bvt ¼ vt
1−βt

2

; ð20Þ

θt ¼ θt−1−
ηffiffiffiffibvtq
þ ϵ

bmt; ð21Þ

where β1 = 0.9, β2 = 0.999, and ϵ = 10−8. Eq. 16 gets the gra-
dient of J(θ) at step t. Equations 17 and 18 update the biased
first moment estimate and the biased second raw moment
estimate, respectively. Equations 19 and 20 compute the
bias-corrected first moment estimate and the bias-corrected
second raw moment estimate, respectively. Equation 21 up-
dates parameters.

3 Experiments

We evaluate the performance of RLPath on two datasets:
FB15K-237 [34] and NELL-995 [24]. We choose TransE
[8], PTransE [21] (we only consider the add operation, which
has the best performance in [21]), DeepPath [24], MARLPaR
[25],MINERVA [23],M-Walk [29], and other state-of-the-art
link prediction methods, i.e., DistMult [17] (which is a simple
variant of bilinear method), ComplEx [35] (which is an exten-
sion of DistMult that uses complex-valued vectors instead of
real-valued vectors), and ConvE [36] (which uses 2D convo-
lutions to realize link prediction) as our baselines. We com-
pare RLPath with baselines on the link prediction task. We
implement our model with TensorFlow and implement train-
ing, validation, and test tasks on a server with one GPU
(NVIDIA RTX 2080Ti).

3.1 Datasets

To evaluate the performance of RLPath, following [23], we
conduct experiments on two more common and realistic KG
datasets, i.e., FB15K-237 [34] and NELL-995 [24].
FB15K-237 is constructed from the original FB15K [8] by
removing highly redundant relations, which is a subset of
Freebase [5]. NELL-995 is constructed from the 995th itera-
tion of the NELL system by removing two relations (general-
izations and haswikipediaurl), and selecting triples with

Table 1 The statistics of datasets

舃Dataset 舃#Rel 舃#Ent 舃#Train 舃#Valid 舃#Test

舃FB15K-237
舃NELL-995

舃237
舃200

舃14,541
舃75,492

舃272,115
舃154,213

舃17,535
舃-

舃20,466
舃3992

Chen et al.4720



top-200 relations. Table 1 shows the statistics of the datasets.
Similar to DeepPath, MARLPaR, MINERVA, and M-Walk,
we add inverse relations to training sets (for each triple (h, r, t),
we add a triple (t, r−1, h), where r−1 is the inverse relation of r).

3.2 Parameter settings

We investigate the influence of several important parameters
on the model performance, including the dimension of embed-
dings and the margin γ in the representation learning part.

To explore the dimension of embeddings in the represen-
tation learning part, we select it among {50, 100, 200}, The
experimental results on dataset FB15K-237 are shown in
Fig. 3, from which we can find that with the increasing of
the dimension of embeddings in the representation learning
part, first the model performance increases and then decreases
slightly. When the number is 100, the model achieves the
highest Hits@1, Hits@3, Hits@10, and MRR. Therefore,
we set the dimension of embeddings in the representation
learning part as 100 in the following experiments.

For the margin γ in the representation learning part, we
select it among {1, 2, 3}. The experimental results on dataset
FB15K-237 are shown in Fig. 4, from which we can find that
with the increasing of the margin γ in the representation learn-
ing part, the model performance decreases slightly. When the
number is 1, the model achieves the highest Hits@1, Hits@3,
Hits@10, and MRR. Therefore, we set the margin γ in the
representation learning part as 1 in the following experiments.

On both FB15K-237 and NELL-995, the learning rates for
the parameters are 0.001. For the dimension of embeddings in
the representation learning part, the optimal setting is 100. For
the margin γ in the representation learning part, the optimal
setting is 1. We set the sizes of the two hidden layers of the
policy networks =1024 and 100 in the path-searching part. On
FB15K-237, we choose max step τmax = 10 and the max
length of the relation paths in supervised learning lmax = 10.

On NELL-995, we choose τmax = 20 and lmax = 40. We use
Adam optimizer [33] to update parameters.

3.3 Computational complexity discussion

In KGs, the number of relations is quite large. Considering the
complexity of the triple set, training the two agents without
supervision would be time-consuming and parameters are dif-
ficult to converge. Therefore, we exploit supervised learning
with a randomized breadth-first search (BFS). In spite of this,
compared with other methods, our method still has higher
computational complexity due to the need of searching rela-
tion paths for all triples.

3.4 Evaluation protocol

Given a test triple as ground truth, we use a common evaluation
method of translation-based models [8] to evaluate the perfor-
mance of RLPath on the link prediction task: first, replace the
head entity (or tail entity) of the test triple with all entities in E,
forming candidate triples; and then, rank candidate triples with
energy function (Eq. 3) in ascending order; at last, record the
ranking of the ground truth. Through the above process, a head
entity prediction (or tail entity prediction) is accomplished.

On FB15K-237, we compare RLPath with TransE,
PTransE, MINERVA, DistMult, ComplEx, and ConvE by
link prediction on Hits@1, Hits@3, Hits@10, MRR (Mean
Reciprocal Rank), and MR (Mean Rank) metrics. MRR de-
notes the average of the reciprocal ranks of correct entities.
MR denotes the ranks of correct entities. Hits@k denotes the
percentage of correct entities ranked at top k. HigherMRR and
Hits@k and lower MR indicate better performance. Since
PRA trains a model for each relation, DeepPath and
MARLPaR cannot be evaluated on FB15K-237, which con-
tains a few relations. To reduce the amount of calculation, we
use a re-rank method [21]: first, rank all candidate triples with
the energy function of TransE (Eq. 1); and then, rank the
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top-200 candidate triples with Eq. 3. On NELL-995, the num-
ber of entities is large, while the triples are sparse, and training
the methods on the whole dataset results in poor results.
Therefore, we choose the same 10 relations as [23]. For each
relation, we use triples that contain it in the training set to train
the methods, and evaluate the methods by tail entity predic-
tion. We compare RLPath with DeepPath, MARLPaR,
MINERVA, and M-Walk on MAP metric.

To justify the effectiveness of the components of RLPath,
we also evaluate three variants models. RLPath (CON) re-
places the reward setting of RLPath, and only considers global
reward, which is the same as MARLPaR; RLPath (DP) re-
places the reward setting of RLPath, and considers global
reward, as well as the length and diversity of relation paths,
which is the same as DeepPath; RLPath(PRA) replaces the
way of realizing link prediction of RLPath, and uses the same
way of link prediction as PRA.

3.5 Result

Table 2 shows the performances of link prediction on
FB15K-237, where “Head” and “Tail” are the results of head
entity prediction and tail entity prediction, respectively, from
which we could find out (Since MINERVA can only realize
tail entity prediction, we do not give its results on “Head”):

(1) Although PTransE utilizes relation paths, it has a worse
performance on most metrics than the state-of-the-art
link prediction methods DistMult, ComplEx, and
ConvE, which do not consider relation paths. It is be-
cause the number of relation paths increases exponential-
ly with the number of hops, using traversal, PTransE can
only utilize short relation paths. In addition, PTransE
uses PCRA to calculate the weights of each relation path,
which is untrainable.

(2) RLPath has a better performance on most metrics than
the state-of-the-art methods DistMult, ComplEx, and
ConvE, which might be because RLPath can effectively
search high-quality and longer relation paths, measure
the contributions of relation paths, and utilize the infor-
mation in relation path.

(3) RLPath has a better performance thanMARLPaR, which
might be because MARLPaR uses PRA, which only
considers relation paths, ignoring the information in en-
tities, to realize link prediction, and gives all relation
paths the same reward, which makes it difficult for
MARLPaR to distinguish high-quality ones from all re-
lation paths; while RLPath realizes link prediction by the
translation-based model, considering the information in
both relation paths and entities, and uses a trainable re-
ward setting.

(4) MINERVA has a poor performance, partly because of
the problem of sparse reward as mentioned in [29], and
partly because MINERVA can only realize link predic-
tion on entity pairs whose length of shortest relation path
is less than a certain threshold.

(5) RLPath has a better performance than RLPath(CON) and
RLPath(DP), whichmight be because the reward settings
of MARLPaR and DeepPath can hardly distinguish
high-quality ones from all relation paths. The reward
setting of RLPath is trainable and shared with the atten-
tion of the translation-based model, therefore, RLPath
can search high-quality relation paths, justifying the ef-
fectiveness of the reward setting of RLPath.

Table 3 shows the MAP of link prediction on NELL-995,
from which we could find out:

(1) RLPath has a better performance on all metrics than
DeepPath, which might be because RLPath realizes link

Table 2 The performances of link prediction on FB15K-237, in which “Head” means predicting head entity and “Tail” means predicting tail entity

舃Metric(%) 舃Head 舃Tail

舃MR 舃MRR 舃Hits@1 舃Hits@3 舃Hits@10 舃MR 舃MRR 舃Hits@1 舃Hits@3 舃Hits@10

舃TransE 舃969 舃16.4 舃9.1 舃17.4 舃31.1 舃855 舃33.4 舃23.3 舃37.5 舃53.2

舃PTransE 舃486 舃20.8 舃12.9 舃22.5 舃37.1 舃453 舃29.5 舃19.1 舃33.2 舃50.8

舃MINERVA 舃– 舃– 舃– 舃– 舃– 舃447 舃29.8 舃21.8 舃33.7 舃46.2

舃DistMult 舃503 舃19.2 舃11.9 舃20.9 舃34.1 舃404 舃38.7 舃29.7 舃42.6 舃56.7

舃ComplEx 舃526 舃18.7 舃11.4 舃20.3 舃33.7 舃412 舃37.7 舃28.5 舃41.4 舃56.2

舃ConvE 舃458 舃20.8 舃12.9 舃22.7 舃37.6 舃397 舃41.0 舃31.7 舃44.6 舃59.8

舃RLPath(CON) 舃321 舃22.6 舃15.9 舃26.9 舃38.5 舃293 舃39.5 舃32.1 舃43.8 舃54.9

舃RLPath(DP) 舃297 舃23.8 舃16.3 舃27.3 舃37.9 舃288 舃38.8 舃31.4 舃43.9 舃55.4

舃RLPath 舃264 舃24.9 舃27.4 舃40.1 舃242 舃41.3 舃33.4 舃45.0 舃56.3
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prediction by the translation-based model, and uses a
trainable reward setting.

(2) M-Walk shows a significantly better performance than
DeepPath, MARLPaR, and MINERVA, as it solves the
problem of sparse rewards by combing MCTS and deep
RNN. RLPath has a comparable performance to
M-Walk, indicat ing that RLPath can search
high-quality relation paths, and encode this information
into the embeddings of relations and entities.

(3) RLPath has a better performance in most tasks than
RLPath(RPA). RLPath and RLPath(RPA) have the same
reinforcement learning framework. However, RLPath
(RPA) uses PRA to realize link prediction, which only
utilizes relation paths, ignoring the information in enti-
ties, while RLPath uses a translation-based model, con-
sidering the information in both relation paths and enti-
ties, justifying the effectiveness of realizing link predic-
tion by RLLP methods.

(4) RLPath(DP) does not have significantly better perfor-
mance than RLPath(CON), which might be because

RLPath(DP) gives short relation paths higher rewards,
ignoring the information contained in long relation paths.
RLPath has a better performance than RLPath(CON) and
RLPath(DP), which might be because we use a trainable
reward setting that shares the parameters with the atten-
tion of the translation-based model, therefore, RLPath
can distinguish high-quality ones from all relation paths,
justifying the effectiveness of the reward setting of
RLPath.

3.6 Case study

In Table 4, we show top-3 relation paths in confidence
searched by RLPath for some single-hop relations on
NELL-995 in the last iteration. “Co-occur” represents the
number of times a relation path co-occurs with its correspond-
ing single-hop relation; “HC” and “Conf” represent the ratios
of co-occurrences to the occurrences of the relation path and

Table 3 The MAP of entity prediction on NELL-995

舃Task 舃DeepPath 舃MARLPaR 舃MINERVA 舃M-
Walk

舃RLPath
(CON)

舃RLPath
(DP)

舃RLPath
(PRA)

舃RLPath

舃athletePlaysInLeague 舃95.1 舃96.2 舃95.9 舃97.6 舃96.4 舃93.2 舃96.9 舃98.6

舃worksFor 舃70.3 舃72.9 舃82.7 舃84.6 舃84.4 舃83.4 舃76.3 舃85.3

舃orgHiredPerson 舃74.4 舃77.7 舃86.8 舃89.2 舃77.7 舃78.1 舃77.1 舃82.1

舃athletePlaysSport 舃93.1 舃96.5 舃98.2 舃98.2 舃96.7 舃97.5 舃96.8 舃98.4

舃teamPlaysSport 舃73.5 舃83.8 舃87.5 舃88.6 舃76.8 舃79.0 舃85.8 舃80.5

舃PersonBornInLoc 舃75.2 舃80.3 舃78.9 舃81.2 舃83.7 舃85.7 舃81.4 舃82.3

舃PersonLeadsOrg 舃80.8 舃82.5 舃85.4 舃89.1 舃85.4 舃84.9 舃83.6

舃athleteHomeStadium 舃84.6 舃87.9 舃92.0 舃91.6 舃86.9 舃88.7 舃89.2 舃92.1

舃OrgHeadquartereInCity 舃79.4 舃79.5 舃94.1 舃95.2 舃82.6 舃80.7 舃81.0 舃81.9

舃athletePlaysForTeam 舃73.3 舃76.2 舃82.5 舃83.9 舃78.2 舃76.8 舃77.9 舃80.5

Table 4 The top-3 relation paths
in confidence searched byRLPath
for some single-hop relations on
NELL-995 in the last iteration

舃Single-hop

舃relation

舃Relation path 舃Co-
occur

舃Conf

舃(%)

舃HC

舃(%)

舃personBornIn

舃Loc

舃(personBornInCity, subpartOf−1, locationLocatedWithinLoc) 舃351 舃64.0 舃28.6

舃(personGraduatedSchool, synonymFor, personBornInCity,
subpartOf−1, locationLocatedWithinLocation)

舃159 舃24.8 舃23.7

舃(personGraduatedUniversity, synonymFor, personBornInCity,
subpartOf−1, locationLocatedWithinLocation)

舃159 舃24.8 舃23.9

舃athletePlays

舃Sport

舃(athletePlaysForTeam, teamPlaysSport) 舃453 舃22.6 舃38.2

舃(athletePlaysInLeague, personBelongsToOrganization−1,
athletePlaysSport)

舃250 舃16.1 舃51.7

舃(athleteLedSportsTeam, teamPlaysSport) 舃192 舃9.6 舃50.9

舃athleteHome

舃Stadium

舃(athletePlaysForTeam, teamHomeStadium) 舃461 舃69.1 舃54.9

舃(athletePlaysForTeam, athleteLedSportsTeam−1,
athleteHomeStadium)

舃365 舃54.7 舃40.2

舃(athleteLedSportsTeam, teamHomeStadium) 舃98 舃14.7 舃32.1
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the single-hop relation, respectively. Some interesting facts
can be obtained. For example, from the relation path
(athletePlaysForTeam, teamHomeStadium), if athlete A plays
for teamB, and C is the home stadium of teamB, then, C is the
home stadium of athlete A with a high probability. We can
observe that RLPath can search relation paths that not only
have high confidence but also are in line with common sense
in reality.

4 Conclusion and future work

In this paper, we propose a link prediction method RLPath to
employ information in both relation paths and entities, which
alternately trains a reinforcement learning model with a train-
able reward setting to search high-quality relation paths, and a
translation-based model to realize link prediction.
Simultaneously, we propose a novel reward setting for the
reinforcement learning model, which shares the parameters
with the attention of the translation-based model, so that these
parameters can not only measure the contributions of relation
paths, but also guide agents to search relation paths that have
high contributions for link prediction, forming mutual promo-
tion. In addition, our method RLPath can be applied to plenty
of fields, e.g., information retrieval and recommendation, by
utilizing the embeddings of entities and relations learnt by
RLPath.

In the experiments, RLPath shows competitive perfor-
mance, justifying that RLPath can effectively search and uti-
lize high-quality relation paths by the trainable reward setting
of RLPath and the shared attention of the translation-based
model, which justifies the effectiveness of the reward setting
of RLPath. In the future, we will continue our study in the
following aspects: (1) we will try to improve the representa-
tion learning part based on the state-of-the-art link prediction
methods to train RLPath, as they have better performances
than TransE. (2) We will attempt to adaptively adjust training
times and weights based on the characteristics of training sam-
ples, as RLPath is vulnerable to the number of training
samples.
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