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Multi-Modal Remote Sensing Image Matching
Considering Co-Occurrence Filter

Yongxiang Yao, Yongjun Zhang , Yi Wan, Xinyi Liu , Xiaohu Yan , and Jiayuan Li

Abstract— Traditional image feature matching methods cannot
obtain satisfactory results for multi-modal remote sensing images
(MRSIs) in most cases because different imaging mechanisms
bring significant nonlinear radiation distortion differences (NRD)
and complicated geometric distortion. The key to MRSI matching
is trying to weakening or eliminating the NRD and extract
more edge features. This paper introduces a new robust MRSI
matching method based on co-occurrence filter (CoF) space
matching (CoFSM). Our algorithm has three steps: (1) a new
co-occurrence scale space based on CoF is constructed, and the
feature points in the new scale space are extracted by the opti-
mized image gradient; (2) the gradient location and orientation
histogram algorithm is used to construct a 152-dimensional log-
polar descriptor, which makes the multi-modal image description
more robust; and (3) a position-optimized Euclidean distance
function is established, which is used to calculate the displacement
error of the feature points in the horizontal and vertical directions
to optimize the matching distance function. The optimization
results then are rematched, and the outliers are eliminated using
a fast sample consensus algorithm. We performed comparison
experiments on our CoFSM method with the scale-invariant fea-
ture transform (SIFT), upright-SIFT, PSO-SIFT, and radiation-
variation insensitive feature transform (RIFT) methods using
a multi-modal image dataset. The algorithms of each method
were comprehensively evaluated both qualitatively and quan-
titatively. Our experimental results show that our proposed
CoFSM method can obtain satisfactory results both in the
number of corresponding points and the accuracy of its root
mean square error. The average number of obtained matches
is namely 489.52 of CoFSM, and 412.52 of RIFT. As men-
tioned earlier, the matching effect of the proposed method
was significantly greater than the three state-of-art methods.
Our proposed CoFSM method achieved good effectiveness and
robustness. Executable programs of CoFSM and MRSI datasets
are published: https://skyearth.org/publication/project/CoFSM/
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I. INTRODUCTION

IMAGE matching is the process of aligning two or more
images with overlapping ranges, which were taken by the

same or different modals of sensors at the same or different
shooting angles[1]. In the case of Multi-modal Remote Sensing
Image (MRSIs), (e.g., infrared, multispectral, synthetic aper-
ture radar (SAR), unmanned aerial vehicle (UAV) image, high
resolution, and multispectral imagery), obtaining satisfactory
matching results is a challenging problem [2]. Because their
imaging mechanisms are different, MRSIs produce different
images for the same target, resulting in significant nonlinear
radiation distortions (NRD) and geometric differences, which
makes it difficult to obtain a successful match. Given that
MRSI data plays an important role in target detection, dis-
aster assessment, illegal building detection, and monitoring of
changes in land and resources, resolving this issue with MRSI
matching method is of major importance.

Due to the NRDs and geometric differences in multi-modal
images, obtaining accurate matching corresponding points is
difficult. As an alternative, the image texture edge information
is known to better preserve the image information, which
could be helpful for extracting the similar features of multi-
modal images. However, image texture edge processing mainly
operates in image scale space. In the traditional scale space
construction, the image is generally noisy, which is controlled
by Gaussian blur. Although this operation reduces the image
noise to a certain extent, the edge information between differ-
ent textures in the image is weakened. Therefore, finding a way
to better preserve or enhance the edge information between
textures in the scale space construction to achieve the feature
matching of multi-modal images would be very beneficial.

The co-occurrence filter (CoF), which is an edge-preserving
filter by Jevnisek et al. [3] has been shown to distinguish the
edge within the image texture effectively. The pixel values
that appear frequently in the image will have a higher weight
in the co-occurrence matrix, which can smooth the image
texture without considering the intensity difference. The pixel
values that rarely appear in the image at the same time will
have a lower weight in the co-occurrence matrix, will not
smooth across the texture boundary, and can better preserve the
boundary within the image texture area. At the same time, CoF
has no parameters and has good co-occurrence information
collection capabilities for different images. It is helpful to
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apply CoF to the matching of MRSIs to reduce the NRD
differences and to extract more effective edge information.
Therefore, a CoF image scale space constructed has the
advantages of image edge feature retention, which can increase
the detection effect of the points, could lessen the difference
between the descriptors and achieve a better multi-modal
image matching effect.

In the study presented in this paper, a MRSI matching
method based on CoF was created. This paper proposed two
contributions.

(1) A new image scale space is constructed by the proposed
co-occurrence filtering algorithm, which can increase the
number of feature points extracted from most modalities.

(2) The proposed CoFSM algorithm involves the low-pass
butterworth filter (LPBF) when generating the image
gradient and optimizes the partition of the log-polar
descriptor grids, which both enhance the robustness of
the feature descriptor across multi-modal images.

II. RELATED WORK

Image matching is the key to remote sensing image process-
ing and is widely used in many fields such as change detection,
image mosaic, aerial triangulation, 3D reconstruction, and
medical image analysis.

Traditional image matching mainly focuses on intensity and
features. The methods based on image intensity include shape
context, mutual information, and pixel intensity [4], but they
cannot achieve a good effect when there is a large difference
in image intensity. The methods based on image features [5]
include scale-invariant feature transform (SIFT), speeded up
robust features (SURF), oriented fast and rotated brief (ORB),
enlarged descriptor window, multi-directional assignment of
key points, enhanced feature matching algorithm, fast sample
consensus algorithm, pattern search [6] and progressive feature
matching [7]. Among them, Bellavia [8] et al. proposed an
improved sGLOH algorithm, which improved the robustness
of the descriptor and achieved robust matching. Jin [9] et al.
also proposed a wide baseline matching benchmark method,
which analyzed the performance of different matching meth-
ods and provided a reference for the application of dif-
ferent algorithms. They explore image matching from the
perspective of scale robustness, rotation invariance, binary
description optimization, image nonlinear diffusion, etc. The
feature matching methods are effective for images with linear
distortion differences, among which the SIFT algorithm is the
most robust. Therefore, feature matching is more widely used,
and the advantages of feature matching methods has been
demonstrated [10], but in the case of large changes in time and
geometry, the algorithm does not perform well. At the same
time, MRSI images with larger NRDs are more sensitive to
grayscale and gradient. These factors reduce the correlation
between the corresponding images; therefore, the advantages
of the feature matching methods cannot be exploited in MRSI
matching, which often leads to matching difficulties.

A great deal of researches has been conducted in
this area. The SAR-SIFT algorithm was proposed by
Dellinger et al. [11] to solve the matching problem of SAR

images. This method has a good effect on remote sensing
images to some extent; but when the RNDs of the image are
large, the matching fails. A new similarity measurement for
image matching based on shape attributes was proposed by
Ye et al. [12]. Although their method matches the image with
good effect by constructing a self-similarity shape descriptor
within the image, the applicability of the algorithm is restricted
because it relies heavily on the image contour or shape.
Recently, the Histogram of Orientated Phase Congruency
algorithm was proposed to optimize MRSI matching [13].
Good results can be obtained, but the method is limited by
the accuracy of the geographic information. The Radiation-
Invariant Feature Transform (RIFT) method, which was pro-
posed by Li et al. [14], mainly uses phase congruency and
builds a Maximum Index Map to weaken the NRD difference
of the MRSI. However, the RIFT method does not support
scale differences in images. The extended phase correlation
algorithm based on log Gabor filtering was proposed by
Xie et al. [15], which could better optimize the matching
difficulty caused by NRD and large-scale difference, but this
method relies on structural information from the imagery,
which would otherwise be restricted. Wu et al. [16] proposed
fast visual highlighting and descriptor rearrangement methods.
This method can obtain the corresponding points faster, but it
is not applicable to large scale change of images; Liu et al.
[17], [18] proposed local frequency information multimodal
matching. This method can effectively resist image noise and
scene distortion, but the method does not have the image
alignment function; Zhao et al. [19] proposed a multimodal
SURF algorithm (MM-SURF), this method has high oper-
ating efficiency and matching accuracy. However, when few
feature points are extracted, MM-SURF will not achieve the
prospective result; and Zhao et al. [20] proposed a multimodal
images method based on multimodality robust line segment
descriptor (MRLSD). The MRLSD method has the advantages
of high applicability and high accuracy, but the long running
time is its biggest shortcoming. As mentioned earlier, although
the above methods have achieved certain results, they still
have a series of problems such as high time consumption,
non-support of geometric transformation, limitation of image
structure information, insufficient key point extraction, and
high computational cost.

Deep learning methods also have been developing rapidly,
such as convolutional neural network to generate feature
descriptors [21], [22], multi-scale neural network [23], multi-
relation attention network [24], similarity supervision [25],
hybrid convolutional neural network [26] and recursive cas-
cade network [27]. These methods use deep learning to
supervise and match part of the multi-modal image matching
and then gradually realize end-to-end unsupervised matching,
constantly enriching the matching methods. However, the
computational complexity and generalization capacity of these
methods are still in need of study.

In summary, good progress has been made in advancing
multi-modal image matching from the classical feature meth-
ods to similarity matching, to phase correlation methods and
deep learning methods, but MRSI matching methods still have
challenges, which are mainly concentrated in three areas:
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Fig. 1. Multi-modal image matching process of CoFSM method.

(1) the current multi-modal image feature point extraction
is fewer, and the edge information detection is not perfect;
(2) the traditional descriptor cannot describe the feature points
well, resulting in the sparse points of the same name obtained
by the initial matching and even the matching failure; (3) the
NRD differences between multi-modal images is significant.
The existing distance matching method is more sensitive to
MRSIs so its applicability is reduced or even unusable. To fill
this knowledge gap, this paper introduces a MRSI matching
method that uses CoF to construct the image scale space,
and enhances gradient and feature description optimization to
achieve effective MRSI matching.

III. CO-OCCURRENCE FILTER SPACE

MATCHING (COFSM)
Image matching generally includes: image scale space

construction, feature point extraction, descriptor construction,
matching relationship construction, and mismatch elimina-
tion. In our study, the process of the proposed CoFSM
method was organized into four sections as shown Fig.1:
(1) image co-occurrence scale space construction and feature
point extraction; (2) log-polar descriptor extraction suitable
for multi-modal images; (3) multi-modal image matching opti-
mized for position error; and (4) outlier removal of multimodal
images.

A. Co-Occurrence Scale Space Construction and Feature
Extraction

Feature point extraction in the CoF scale space is an
important topic of this paper, which mainly includes three
sections: (1) CoF image scale space construction, (2) feature
point extraction, and (3) feature point optimization filtering.

1) Co-Occurrence Filter (CoF) Scale Space Construction:
The purpose of the classic SIFT image scale space is mainly to
convolve the image with Gaussian kernel functions of different
sizes and Meanwhile down-sample between the hierarchical
transformations to construct the scale space in the pyramid
mode. The traditional image scale space is constructed with
isotropic diffusion or anisotropic diffusion [28], [29], which

smooth or blur the image to a certain extent. However, these
methods are not conducive to the preservation of the image
edge features and the removal of image noise. In particular,
the NRDs of MRSIs are larger than those with the same sensor
and the same modal, and their nonlinear luminance differences
are obvious. Therefore, it is of great significance to effectively
retain the image edge feature information and construct a new
image scale space that can optimize the nonlinear distortion
difference.

The co-occurrence matrix collects the point-like mutual
information in the image to obtain the probability of the
boundary in the image, which is used to measure the sim-
ilarity between textures. The definition of CoF is shown in
Equation (1):

Jp =
�

q∈N(p)Gσs (p, q) · M(Ip, Iq ) · Iq�
q∈N(p) Gσs (p, q) · M(Ip, Iq )

(1)

In Equation (1), Jp and Iq are the output and input pixel
values, p and q are pixel indices; Gσs (p, q) · M(Ip, Iq ) is the
weight of the contribution of pixel q to the output of pixel
p; Gσs (p, q) is Gaussian filter; M(Ip, Iq ) is the calculation
result of the co-occurrence matrix.

The weight of image co-occurrence filtering is mainly cal-
culated by the co-occurrence matrix. M is a 256×256 matrix,
the equation is shown in (2):⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

M(a, b) = C(a, b)

h(a)h(b)

C(a, b) =
�
p,q

exp(−d(p, q)2

2 · σ 2 )[Ip = a][Iq = b]

h(a) =
�

p

[Ip = a], h(b) =
�

q

[Iq = b]
(2)

In Equation (2), M(a, b) is based on the co-occurrence
matrix C(a, b) that counts the co-occurrence of values a
and b divided by their frequencies(i.e., the histogram of pixel
values), h(a) and h(b), in the image; σ 2 is a fixed parameter
determined, σ 2 = 2 · √5 + 1.

The co-occurrence space of the current image layer is
calculated by Equation 1 and Equation 2. To reduce the
computational complexity, the image is not down sampled.
Therefore, the resolution of the image in the co-occurrence
scale space is the same. The scale space is divided into
(S + 1) layers (generally no more than 8 layers), then the
scale definition of each layer image is shown in (3):

σn = σ0 · 3
√

2n, (n = 0, 1, 2 · · · S) (3)

In Equation (3), σn represents the scale of the nth layer
image in scale space; σ0 represents the scale of the first layer
image in scale space; S represents the number of scale space
layers of the multimodal image. Considering the need to cal-
culate the size of the statistical window when calculating co-
occurrence information, the size of the co-occurrence window
is obtained by combining the initial window size of the filter
and the image scale. The definition is shown in (4):⎧⎪⎨

⎪⎩
OCn = σ 2

n · NO

2
, (n = 0, 1, 2 · · · S)

CoFSpace =
�

OCn · J n
p

	N

n=0

(4)
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Fig. 2. Multi-modal remote sensing image of co-occurrence filtering (CoF).
(a) is the original image; (b) is the first layer result of the CoF scale space;
(c) is the second layer result of the CoF scale space; (d) is the third level
result of the CoF scale space; (e) is the fourth level result of the CoF scale
space.

In Equation (4), COFSpace represents the image collection
of co-occurring scale space; OCn represents the size of the
nth co-occurrence statistical window; NO represents the initial
window size of the co-occurrence filter (this paper is set to 5,
see Tables II); n represents the scale space layer; J n

p represents
the nth layer multimodal image after co-occurrence filtering.
The results are shown in Fig. 2.

2) Shi-Tomasi Feature Point Extraction: After construction
of the CoF scale space of the image, the corner detection
operator can be used to extract the feature points. The feature
points are extracted through the gradient image calculation of
the MRSIs. Considering that the traditional image gradient is
sensitive to NRDs, the Low-Pass Butterworth (LPB) filter is
introduced as a filtering method to generate a new gradient to
weaken the influence of NRD. The new gradient constructed
by LPB filtering can increase the number of homonymy points
for most MRSIs, which is beneficial to obtain more matching
results.

The LPB filter was proposed by Kovesi et al. [30], [31],
for image processing. Because of its maximum flatness in the
pass band, it can reduce the energy of the high-frequency part
of the image to achieve the effect of smoothing the image and
reducing noise. Therefore, the LPB filter has a certain effect
on the optimization of nonlinear distortion of the image. Its
mathematical expression can be written as follows:

LPB = 1

1.0 + (D(u, v)/cuto f f )2n (5)

In Equation (5), LPB represents the convolution kernel
of the Low-Pass Butterworth filter; D(u, v) represents the
distance from the pixel point to the reference points (u, v) [32];
(u, v) is a two-element vector specifying the size of filter
to construct (In this paper, we set (u, v) to [3,3]); cutof f

represents the cutoff frequency of the filter, with a value
between 0 and 0.5; n represents the order of the filter.

The LPB filter is integrated into the gradient calculation
of MRSI to obtain new first-order and second-order gradient
amplitude diagrams, the definition is shown in (6):

G1
σ =



(L(x,σ ) ⊗ LPB)2 + (L(y,σ ) ⊗ LPB)2 (6)

In Equation (6), G1
σ represents the first-order gradient

amplitude diagram of MRSI; ⊗ represents the convolution

Fig. 3. Results of new gradient magnitude. The (t1), (t2), (t3) and (t4)
respectively represent new gradient magnitude layers generated based on LPB
filtering optimization.

operator. σ represents the scale of a CoF scale space image;
L(x,σ ) and L(y,σ ) represent the difference of the CoF scale
space image L along the horizontal and vertical results of the
scale σ , respectively.

Ma et al. [33] used a Sobel operator to eliminate the
non-linear brightness difference of an image and achieved
good results in remote sensing images. Therefore, to highlight
the feature information, the LPB filter was combined with
the Sobel operator to obtain second and third order image
gradients, as shown in the following:

⎧⎪⎪⎨
⎪⎪⎩

G2
σ =



(G1

x,σ ⊗ �x )2 + (G1
y,σ ⊗ �y)2

Angle2
σ = arctan(

G1
y,σ ⊗ �y

G1
x,σ ⊗ �x

)
(7)

⎧⎪⎪⎨
⎪⎪⎩

G3
σ =



(G2

x,σ ⊗ �x )2 + (G2
y,σ ⊗ �y)2

Angle3
σ = arctan(

G2
y,σ ⊗ �y

G2
x,σ ⊗ �x

)
(8)

In Equation (7) and (8), G2
σ represents the new second-order

gradient amplitude; Angle2
σ represents the new second-order

gradient direction; G3
σ represents the new third-order gradient

amplitude; Angle3
σ represents the new third-order gradient

direction; �x represents the Sobel operator template in the X
direction; �y represents the Sobel operator template in the
Y direction.

In our study, the LPB and Sobel filters were combined to
generate a new image gradient, and more influential gradient
information was extracted. To highlight the new gradient
effect, the gradient amplitude and gradient direction were
visualized, and the results are shown in Fig. 3 and Fig.4.

After the multimodal image calculation was completed, the
Shi-Tomasi operator was used to extract the feature points.
The Shi-Tomasi operator was proposed by Shi et al. [34].
It is an improvement of the Harris operator and has a strong
anti-noise ability for MRSI images and can extract sufficient
feature points. Therefore, the Shi-Tomasi operator was chosen
for extracting the feature points in our study. Meanwhile,
to avoid duplication of feature points, all feature points need
to be filtered. In the paper, all feature points are sorted
from the highest to the lowest by response value. Only
points with duplicate coordinate positions (x-coordinates and
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Fig. 4. Results of new gradient angle. The (t1), (t2), (t3) and (t4)
respectively represent new gradient angle layers generated based on LPB
filtering optimization.

Fig. 5. The results of feature points detected and optimized based on Shi-
Tomasi algorithm. (a) is the final extraction result of feature points of infrared-
optical images; (b) is the final extraction result of the feature points of the
depth-optical images; (c) is the final extraction result of feature points of
SAR-optical images.

y-coordinates) with higher response values are retained. The
filtered feature points are shown in Fig. 5. Fig. 5(a) through
5(c) are the feature points extracted from an infrared-optical-
image-pair, a depth-optical-image-pair, and a SAR-optical-
image-pair respectively.

B. Improved Log-Polar Coordinate Descriptor

After the feature points are extracted, describing them
is an important step for subsequent successful matching.
A great deal of research has been conducted on the gener-
ation of descriptors. The more commonly used descriptors in
image feature matching include SIFT descriptors and log-polar
descriptors. However, due to the difference in the RNDs of
MRSIs, the SIFT descriptor cannot be accurately described,
and an incorrect matching result usually is obtained. The
log-polar description method using the gradient location and
orientation histogram (GLOH) algorithm has obvious advan-
tages and is relatively stable [35], [36]. However, the log-
polar description method is not the only descriptor. It depends
heavily on the division of the polar coordinate grid, and
different division methods can generate different descriptors.
Meanwhile, it is also sensitive to the gradient amplitude and
gradient direction of the image. Of course, the advantage of
this method is that the description method is flexible and
therefore has better applicability than the SIFT descriptor.

The new gradient amplitude and the new gradient direction
calculated in Section III.(A) were used to construct a log-polar

Fig. 6. Log-Polar descriptors of grid-optimized for Multi-modal image.

descriptor. Therefore, our study chose the GLOH algorithm
to generate the log-polar descriptors. However, the division
of the sub-region grids in the neighborhood of the feature
points is the key to constructing log-polar descriptors. The
dimensions of the descriptor are determined by different grid
division methods, and the descriptors of different dimensions
have different stability levels in describing the feature points.
The neighborhood grids constructed by the GLOH algorithm
commonly are used in four and eight division grids. Although
these divisions have achieved significant results in optical
matching, the description of the MRSIs may not be robust
enough, such as SAR images and optical images.

Therefore, considering the stability and robustness of the
descriptor, we divided the neighborhood grid from the right
end at zero degrees into a fan-shaped neighborhood every
40◦ and finally divided the entire circular neighborhood into
nine equal parts. A new pair of log-polar coordinate grids
of (9 × 2 + 1) sub-region grids was generated. This grid
division method not only compensated for the instability of
the descriptor caused by less division of the grid (such as four
equal divisions and eight equal divisions), but also avoided the
redundant calculation caused by dividing too many grids (e.g.,
10 equal divisions).

The area of each sub-region was approximately the same.
The horizontal direction of each grid represented the polar
angle of the pixel location in the circular neighborhood,
and the whole circular neighborhood was divided into eight
fan-shaped intervals by 45◦. Therefore, the pixels of each
sub-region had a gradient amplitude and direction histogram
of eight dimensions. Finally, the number of logarithmic
polar coordinate sub-region grids (19) and the direction his-
togram (eight dimensions) were multiplied to generate a new
152-dimensional log-polar descriptor. The log-polar descriptor
is shown in Fig. 6. Each purple square represents a vector value
of one dimension, and there is a total of 152 vector values.

The improved Log-polar descriptor is quantified as: the
mathematical equation of the vector component of the descrip-
tor characteristic is as follows:

L P D = [D1, D2, · · ·, DN ]T (9)

In Equation (9), LPD represents the descriptor set of all
feature points; DT

i represents the descriptor vector of a feature
point; T represents the matrix transposition character; N
represents the number of feature points.

The components of the feature vector of the
152-dimensional descriptor can be expressed as
DT

i = [V1, V2, V3, · · ·, V152].The dimension of each
descriptor can be expressed as (2∗n + 1)∗d , which n
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represents the number of grids divided by each circular
neighborhood; d represents the direction dimension of each
feature point.

C. Optimization of MRSI Position

After the descriptor is obtained, the initial match can be per-
formed. However, it is often difficult for the existing distance
ratio matching methods (e.g., Euclidean distance, hamming
distance) to describe an accurate relationship between the
MRSI feature points, which makes it difficult to match the
correct pair of points with the homonymy points. In the case
of correct matching, the horizontal and vertical displacements
of the feature points usually have common characteristics.
Therefore, if the offset of the feature point in the horizontal
and vertical direction can be roughly obtained, and the offset
is optimized to describe the distance function, more matching
results can be obtained. Our study used a similar transforma-
tion to calculate the initial conversion model of the MRSI.
The Euclidean distance extended would be named as the
Position Euclidean Distance (PED). The processing consists of
three steps: 1) image transformation parameters initialization;
2) position offset calculation; 3) descriptor matching distance
optimization. The detailed process is as follows.

1) Image Transformation Parameters Initialization: In our
study, Euclidean distance was used for initial matching; and
the Random Sample Consensus (RANSAC) algorithm [37]
then was used for fast outlier removal. The elimination thresh-
old was set harsh to quickly obtain more accurate model
transformation parameters. To convert the success rate of the
model calculation, the threshold error of the least squares
iterative calculation was set to six pixels, and the matching
point pair was used for the least squares iterative calculation
to obtain the model transformation parameters.

2) Position Offset Calculation: By using the above deter-
mined model transformation parameters and combining the
position, the position offset error between the feature points
was calculated as shown.

Suppose the set of feature points extracted from the ref-
erence MRSI is defined as Ple f t . The set of feature points
extracted from the MRSI to be matched is defined as Pright .
Combined with the transformation parameters, the position
transformation error can be defined following [6]:

�XY(Pi
le f t , P j

right ) =
���Pi

le f t − T (P j
right , μ)

��� (10)

In Equation (10), �XY(Pi
le f t , P j

right ) represents the position
transformation error; T represents the transformation model;
μ represents the parameters of the transformation model.

3) Descriptor Matching Distance Optimization: The results
of Equation (10) are used as a constraint to optimize the
Euclidean distance. These operations finally acquire a new
descriptive distance for MRSI matching. The mathematical
expression is shown in Equation 11.

P E D(Pi
le f t , P j

right ) = E D(Pi
le f t , P j

right )

· (1 + �XY(Pi
le f t , P j

right )) (11)

In Equation (11), P E D(Pi
le f t , P j

right ) represents the Euclid-
ean distance after the error of position offset transformation

is optimized; E D(Pi
le f t , P j

right ) represents the Euclidean dis-
tance between the descriptors of the feature points Pi

le f t and

P j
right . When the value is minimum, the feature points Pi

le f t

and P j
right are considered as a correct corresponding. Then,

the point pair with the shortest PED is used as a candidate
matching pair. The above steps are calculated iteratively, and
more matching point pairs are retained.

D. MRSI Matching and Outlier Removal

The optimized descriptor distance was rematched to obtain
a new matching result. However, there were still a lot number
of outliers that did do not correspond to each other, and
these outliers still needed to be removed. The outlier removal
threshold is set to 3 pixels. The use of logical filtering has
been shown to remove position offset errors [38]. Therefore,
we used this method for reference to deal with logical filtering.
Then the fast sample consensus (FSC) method [39] was used
to eliminate the small outliers.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Datasets and Parameter Settings

To verify the effectiveness of our CoFSM method, sixty
pairs of multi-modal images were selected for qualitative
and quantitative evaluation. To further verify the performance
of the CoFSM algorithm, the proposed CoFSM algorithm
was compared its performance to four of the latest matching
algorithms such as SIFT, upright-SIFT(i.e. for SIFT with
no dominant orientation estimation for generating patches),
PSO-SIFT and RIFT. For fair comparison, all the implementa-
tion details of SIFT, PSO-SIFT and RIFT were obtained from
their authors’ websites.

First, feature matching was performed on the six image-
pairs and the correspondences with less-than-three-pixel resid-
uals were regarded as the correct matches [14]. The number of
correct matches (NCM), the ratio of corrected number (NCR)
root mean square error (RMSE), and success rate (SR) were
used as the evaluation metrics. The SR was calculated with the
following definition of success matching: (1) the NCM should
be sufficient to obtain a solution of the selected geometric
transformation model and have at least one redundant obser-
vation; and (2) the NCR should be larger than 20% because the
literature shows that the latest robust solvers can deal with over
80% of the outliers[40]. The definition of SR is as follows:

I (pi ) =
⎧⎨
⎩

1, NC M(pi ) ≥ Nmin&
NGT (pi)

��≥τ

NC M(pi )
≥ ξ

0, else

(12)

S R =
�

i
I (pi )

M
× 100% (13)

In Equation (12), I (pi ) represents a logical value, 1 rep-
resents a success matching trial and 0 represents a failed
matching trial. NC M(pi ) represent the number of matched
points of the i -th image pair. Nmin represents the minimum
number of matches sufficient to obtain a solution of the
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TABLE I

PARAMETER SETTING OF OUR COFSM

selected geometric transformation model and has at least
one redundant observation. In this paper, we used an affine
model for transformation, which needs at least three matches
a solution; thus, the Nmin was set as 4. NGT (pi) represents
the number of correct matches, which were judged by the
ground truth affine model with an τ -pixel distance threshold.
The ground truth model was obtained by calculation of the
corresponding points collected manually. In this paper, the
ground truth affine model was calculated with the manually
collected corresponding points, and the threshold τ was set as
3. ξ represents the correct-match-ratio threshold, which was
set at 20% in this paper. In Equation (13), SR represents the
matching success rate; M represents the total number of image
pairs of a multimodal image sets.

1) MRSI Datasets: Six types of multi-modal remote sensing
image data sets were selected as the experimental sets. The
image size ranges from 400 × 400 pixels to 650 × 650 pixels.
These multi-modal remote sensing image datasets include
multi-temporal-optical images, infrared-optical images, depth-
optical images, map-optical images, SAR-optical images, and
night-day images, which considers almost all the application
scenarios of multi-modal image matching like multi-source
data interpretation, multi-structure data registration, and multi-
spectral data fusion. Each dataset contains 10 image pairs for
a total of 60 MSRI pairs. Most image pairs have significant
nonlinear radiation distortions which is very representative and
can fully verify and compare the performances of the MRSI
matching algorithms. The first image pair of each of the six
MRSI datasets is shown in Fig. 7.

2) Parameter Settings: Our study can be mainly divided into
four parts, i.e., co-occurrence filtering scale space construction,
feature point extraction, log-polar descriptor construction, and
position Euclidean distance matching. Table I shows the three
parameters which are needed to be analyzed, while other
parameters are defined with author’s published papers.

Parameter NO represents the initial co-occurrence filter
window size. In general, the larger the initial CoF window
value is set, the larger the co-occurrence matrix range and
the less feature point extraction; in the opposite case, the
more feature points will be extracted. Parameter NL represents
the number of scale space layer settings. In general, the
higher the number of layers is set, the more the feature
points will be extracted and the greater the time-cost will
be needed. Parameter NT represents the threshold of feature
point extraction. In general, the smaller the threshold is set,
the more feature points will be extracted, but more noise
will be extracted. This section describes the parameter study
and sensitivity analysis conducted based on the night-day
sensing images dataset. Three independent experiments were
designed to determine parameters NO , NL and NT , where

TABLE II

THE RESULTS OF PARAMETER NO , NL and NT

each experiment had only one parameter as a variable and the
other parameters were fixed. For each parameter, NCM and SR
were used as the evaluation metrics. The experimental results
are shown in Tables II. In Tables II, the first row represents
three parameter variables, one of which represents a variable,
and the other two remain unchanged. The second row is the
change value of the variable.

From the experimental results, the following conclusions
can be inferred:

(1) in our study, the parameter NO was set to 5. Not only
average NCM was very high, but also when the NO value was
set to 5, the SR was 100%, and the SRs with other’ NO (3,
4, 6, and 7) did not reach 100%. Therefore, considering the
results of NCM and SR, and the time efficiency, it was better
to set the NO value to 5.

(2) Parameter NL of the image generally does not exceed
eight; but in the actual matching task, it needs to be chosen
according to the characteristics of the image. As the results
in Table II, when the value of NL was smaller, the results of
NCM and SR were poor. When the value of NL was larger,
the result of NCM was better, but the result of SR was worse.
When the value of NL was equal to 4, NCM and SR obtained a
better result. At the same time, the larger the value of NL was
set, the more time that was necessary. Therefore, considering
the results of NCM and SR, and the time efficiency, it was
better to set NL to four layers.

(3) Parameter NT of the image generally is important in
feature point extraction. As the results show in Table II, when
the value of NT was set smaller, more noise was extracted,
affecting the results of NCM and SR. When NT = 600, the SR
of the image was 90%, and it did not reach 100%. However,
when the value of NT ≥ 1000, both NCM and SR obtained
a better result. Setting the value of NT between 1000 and
2000 can achieve a better matching effect. Considering the
calculation efficiency and time, when the value of NT = 1300,
the result was the best. Therefore, considering the results of
NCM and SR and the time efficiency achieved, the threshold
was set at NT to 1300.

The parameters for the comparison methods of SIFT,
upright-SIFT, PSO-SIFT and RIFT were set according to
their original authors. For all the matching methods, the
outlier elimination threshold was set to 3 pixels. To improve
the efficiency of matching, a multi-thread parallel processing
strategy was used for matching both the descriptor calculation
and the matching stage.
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Fig. 7. Part of multi-modal images. The six groups of image pairs are composed of the first group of image pairs of six types of multi-modal images.

Fig. 8. Matching results of the images in Fig. 7 with SIFT.

Fig. 9. Matching results of the images in Fig. 7 with upright-SIFT.

3) Experimental Conditions: All the algorithms were imple-
mented under MatlabR2018a; and the experiments were per-
formed on a Window10 X64 laptop computer with Intel(R)
Core(TM) i7-9750H CPU at 2.59 GHz, and 16 GB RAM.

B. Qualitative Evaluation of Matching Results

The matching results of SIFT, upright-SIFT, PSO-SIFT,
RIFT and CoFSM are shown in Fig.(8) through Fig.(12),
respectively.

As is shown in Fig. (8) through Fig. (12), the results of
CoFSM was significantly better than those of SIFT, upright-
SIFT, and PSO-SIFT algorithms.

SIFT failed to match the image pairs in
Fig. 8(b), 8(c), and 8(e) while successfully matching in
Fig.8(a), 8(d), and 8(f). SIFT’s SR accuracy therefore was
50%; however, even if its matching had been successful in
the other figures, its NCMs were also small (i.e., 12, 62, and
5, respectively). SIFT uses the Gaussian image pyramid to
construct the image scale space, which performs global blur
processing on the image, resulting in the image texture edge
feature being weakened and making it difficult to extract
the feature information of the image contour edge. The
above treatment led to poor matching results due to the huge
differences in the computed gradient histogram. In summary,
the traditional image scale space was not good for MRSI
matching.

Fig.9 shows that the upright-SIFT algorithm can
obtain better matching results than the SIFT algorithm.
The upright-SIFT failed to match the image pairs in
Fig. 9(b), 9(c), and 9(e) while successfully match the image
pairs in Fig.9(a), 9(d), and 9(f). However, the NCMs were
also low (i.e., 31, 36, and 11, respectively), which shows that

the upright-SIFT still cannot obtain robust results in MRSI
matching. The reason may be that the SIFT-descriptor is very
sensitive to the NRD of the MRSIs.

PSO-SIFT failed to match on the image pairs in Fig. 10(c),
and successfully matched the image pairs of Fig. 10(a), 10(b),
10(d), 10(e), and10(f). Its SR accuracy was 83.33%; however,
except for the larger value of NCM in Fig. 10(b), the other
results were still low (i.e., 43, 201, 18, 38 and 10) because
PSO-SIFT mainly utilizes the Sobel algorithm to redefine the
image gradient to optimize the SIFT algorithm. Therefore,
it was concluded from Fig.10 that when the modal difference
of an image is small, the matching can be successful; and
conversely, when the modal difference is large, the matching
effect can be poor or may even fail.

Fig. 11 shows that RIFT successfully matched all six image
pairs, and its matching SR accuracy was 100%. However,
the NCMs in Fig. 11(c) and 11(f) were still low, 197 and
142, respectively. Because the RIFT algorithm matches by
the phase consistency information, the image therefore was
converted from the spatial domain to the frequency domain.
Although it had good adaptability to multi-modal image
matching, it also caused the matching accuracy to be less
robust than required.

As shown in Fig. 12, CoFSM successfully matched all six
image pairs, and its SR accuracy was 100%. At the same time,
the NCM of all its results (i.e., 677, 835, 322, 674, 1014,
and 370) better than RIFT and much higher than SIFT and
PSO-SIFT.

C. Quantitative Evaluation of Matching Results

Fig.13 shows the quantitative results of the NCM metric
for the four comparison methods on the six MRSI datasets.
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Fig. 10. Matching results of the images in Fig. 7 with PSO-SIFT.

Fig. 11. Matching results of the images in Fig. 7 with RIFT.

Fig. 12. Matching results of the images in Fig. 7 with CoFSM.

Fig. 13. Comparisions on NCM metric.

As can be seen, SIFT performed better on the multi-temporal-
optical dataset and the day-night dataset than on the other
four datasets because of its resistance to illumination changes.
In the multi-temporal-optical dataset, the difference in modal
between the images was smaller than that of the other four
data sets, and matching became relatively easy. Also note that
the night-day dataset essentially also was a multi-temporal-
optical dataset, but, their light differences made the matching
more complex. SIFT produced its worst performance on the
SAR-optical dataset and the depth-optical dataset, and their
SR accuracy was 10% and 20%, respectively; therefore, few
correct matches were obtained. SIFT may have performed
poorly for the following reasons. (1) The gradient constructed
by SIFT was more sensitive to MRSI and the feature infor-
mation description was insufficient. For example, the depth-
optical dataset and the SAR-optical dataset have huge modal
differences. (2) SIFT detects feature points directly based on
intensity; the number of extracted feature points was few and
the distribution was poor. In most of the successfully matched
image pairs, most of the NCMs of SIFT were very small
(smaller than 50 points). In some images, there were only
a few correct matching points.

Fig.13 shows that the upright-SIFT algorithm improves
the matching performance of the SIFT algorithm by about
15%∼60%. However, it is still difficult to obtain robust results
in the depth-optical and SAR-optical types, where the match-
ing SRs are only about 20% and 10%, and the average NCMs

TABLE III

COMPARISIONS ON SR METRIC

are only 1.8 and 0.4. Only in the multi-temporal optical and the
night-day datasets, the upright-SIFT achieved relatively better
results, where the matching SRs are both 90% and the average
NCMs are about 33.6 and 33.3 respectively. In conclusion,
even using a fixed orientation angle, the upright-SIFT cannot
achieve robust matching with all the MRSI types.The perfor-
mance of PSO-SIFT was better than SIFT. Its performance
on the multi-temporal-optical dataset and the infrared-optical
dataset were better than for the other four datasets, but the
NCMs of PSO-SIFT were still very few. The performance
of RIFT was significantly better than PSO-SIFT and SIFT,
but the NCMs of the matching depth-optical dataset and the
night-day dataset were not stable enough. In contrast, CoFSM
successfully matched all the image pairs of the six datasets,
and the NCMs were much greater than 100 on most of
the image pairs. The matching performance of CoFSM was
very stable and robust because the CoFSM algorithm better
weakened the NRDs and geometric differences, enhanced the
edge information of the texture features of the MRSIs, and
reduce the influence of the differences between the image
modalities to a certain extent.

Table III summarizes the matching SRs of the four com-
parison methods on each dataset. SIFT had the highest SRs
on the multi-temporal-optical dataset and night-day dataset,
both of which were 90%. The matching performance of the
upright-SIFT method is better than that of the SIFT algorithm
in both map-optical and SAR-optical modality types. While
for the other four modality types, no method is superior to
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TABLE IV

COMPARISIONS ON NCM AND NCR OF RIFT AND COFSM

the others. PSO-SIFT had the highest SRs on the multi-
temporal-optical dataset and the infrared-optical dataset, which
were 100% and 90%, respectively. The SRs of RIFT were
100%, except for the infrared-optical dataset and the night-day
dataset, which were 90% and 80%, respectively. In contrast,
the SRs of CoFSM were 100% on all the datasets. The
average SRs of SIFT, upright-SIFT, PSO-SIFT, RIFT, and
CoFSM on the six datasets were 50%, 51.67%, 68.33%, 95%,
and 100%, respectively. Compared with SIFT, upright-SIFT,
PSO-SIFT, and RIFT, CoFSM improved by 50, 48.33, 31.67,
and 5 percentage points, respectively. Fig. 13 plots the average
NCM of in four algorithms on each image pair.

In Table IV compares the average NCR and NCM of the
CoFSM and RIFT. The results show that the CoFSM had
better average NCRs and NCMs than RIFT in all types of
MRSI. Table IV shows the NCMs of RIFT and CoFSM on
each dataset. As RIFT method was used, most image pairs
had the NCM greater than 200. The average NCM of all
image pairs was 412.52, with an average NCR of 13.88%.
In contrast, CoFSM method brings the NCM of each image
pair to over 300, with the average NCM of 498.52, the average
NCR of 23.37%. Sufficient corresponding points would be
obtained for MRSIs. The NCMs of CoFSM were more stable
and robust than RIFT. As is shown, the average NCRs are
all less than 50% whether using CoFSM or RIFT, which
weakens the registration accuracy of MRSIs (see section IV
(D)). This is mainly because: (1) The imaging mechanisms
have significant differences, which causes non-linear radiation
distortion; (2) some types of MRSI have relatively low signal-
to-noise ratio; (3) change happens between the acquisition
time of the multi-temporal images. In conclusion, obtaining
more corresponding points is important in MRSI matching
and registration.

Overall, the proposed CoFSM has been demonstrated good
matching ability in MSRI as it achieved good NCMs on
all six datasets. The CoFSM was shown to be suitable for
MRSI matching, and its performance was better than any
of the current three feature matching methods to which we
compared it.

However, this question remains unanswered: was the uni-
formity of the distribution of feature points also excellent? To
evaluate the uniformity of the distribution of feature points,
the standard deviation of box-counting is used to evaluate the
uniformity of the distribution of corresponding points. First,
a square box with a radius of 20 pixels (that is, a diameter
of 40 pixels) is established for each corresponding point,
then all the corresponding points in the box are counted,

Fig. 14. The distribution of the standard deviation of box counting results
of the two methods.

Fig. 15. Matching results of partial MRSI datasets.

and finally their standard deviations are counted. Considering
comprehensively, calculating the standard deviation of box-
counting can better represent the uniform distribution of the
corresponding points. The following are the standard deviation
results in the box of RIFT and the proposed CoFSM, as shown
in Fig.14.

The standard deviation of the proposed CoFSM is sig-
nificantly lower than the standard deviation of RIFT. The
average standard deviation of CoFSM is 2.956, and the average
standard deviation of RIFT is 5.294. In summary, the corre-
sponding points matched by CoFSM have better distribution
uniformity than RIFT.

To evaluate the rotation-invariance, the rotated MRSIs were
used to test the SIFT, PSO-SIFT, and CoFSM. The upright-
SIFT removes the principal orientation of the SIFT method,
which loses rotation-invariance. Since the open-sourced RIFT
codes from the authors’ website do not support rotation-
invariant matching, upright-SIFT and RIFT were not involved
in this evaluation. The matching results of six MRSI pairs
are illustrated in Fig.15, which show that CoFSM had better
results than SIFT or PSO-SIFT. However, considering space
issues, only part of the matching results is displayed. The
SIFT algorithm can successfully match some images in the
multi temporal-optical, map-optical, and night-day data sets.
The PSO-SIFT algorithm can obtain better matching results
in the infrared-optical and night-day multi-modal data sets,
but in other datasets, the results of matching are not robust.
The proposed CoFSM is successfully matched in six types of
MRSIs with large rotation, and enough corresponding points
can be obtained.

D. Accuracy Assessment

In this section, the geometric accuracy of the RIFT matches
and the CoFSM matches are compared. In each of the MRSI
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Fig. 16. Comparisions on RMSE metric.

TABLE V

AVERAGE RMSE RESULTS OF RIFT ALGORITHM AND COFSM
ALGORITHM IN SIX TYPES OF MRSIS

image pairs, no-less-than 20 true matches were manually
collected and carefully checked and then, the RMSE of the
transformation residual error of the true matches was com-
puted with the homography model solved by the RIFT matches
or CoFSM matches. The less the RMSE of true-matches, the
better the matching accuracy of corresponding points.

In Fig.16, the true-match-RMSE of each MRSI pair is
illustrated. In multi-temporal-optical image pairs, the results
of CoFSM are slightly better than that of RIFT. In the
infrared-optical image pairs, the results of the two methods
are very close. In depth-optical, map-optical, and night-day
image pairs, the results of CoFSM are obviously better than
that of RIFT.

The average RMSE of each type of MRSI is in Table V.
In multi temporal-optical image pairs, the average RMSE of
CoFSM 8% lower than that of RIFT. In the infrared-optical
image pairs, the results of the two methods are very close.
In depth-optical, map-optical, and night-day image pairs, the
average RMSE of CoFSM all are at least 22% lower than
that of RIFT. But, the average RMSE of RIFT is 22% lower
than that of CoFSM. In summary, the RMSE of the CoFSM
algorithm is between 1 and 6 pixels. The average RMSE of
the proposed CoFSM algorithm is 3.19 pixels, and the average
RMSE of RIFT is 3.48 pixels. The RMSE of CoFSM is 8.3%
lower than that of RIFT.

The possible reasons are: (1) the difference in imaging
mechanism between MRSIs causes their matching accuracy
to be lower than that of traditional matching. As a result,
the upper limit of its accuracy is affected; (2) there are
also differences between different MRSIs. To improve the
robustness and universality of the algorithm, the advantages
of some algorithms will inevitably be sacrificed, which lead
to differences in the matching robustness between images
of different modalities. In summary, MRSI matching is a
challenging work. The proposed CoFSM can obtain robust
matching performance in most image pairs.

TABLE VI

THE INFLUENCE OF LPB FILTERING ON THE MATCHING
RESULTS OF SIX DATA SETS

V. DISCUSSION

The CoFSM method achieved better results for two main
reasons. (1) CoFSM constructs a multi-modal image scale
space using the CoF, which allows the scale space to perform
noise reduction and blur processing on the image at different
scales and makes it convenient to extract the image feature
information at different levels for better obtaining the texture
edge similarity feature of MRSI. (2) A log-polar descriptor
for optimizing grid division was established in CoFSM, which
obtains the feature vectors by considering more feature direc-
tions and thus, makes the description of the feature points
more robust.

To have a better understanding of CoFSM’s matching per-
formance the method is analyzed in terms of key-parameter
influence, registration accuracy, and rotation invariance.

A. Analysis of Key Parameters

To fully demonstrate the influence of the presence or
absence of LPB filtering on the matching results of the
six multi-modal data types, this paper separately counts the
average NCMs of the six multi-modal data of the two methods,
and the results are shown in the following Table VI, where six
data types are represented by Arabic numerals 1∼6.

Table VI shows that the matching results obtained with
the LPB filter are significantly better than those without the
LPB filter, where the NCMs increased about 20∼80% after
the LPB filter involved. When the LPB filter is not used, the
NCMs of the map-optical (#4), SAR-optical (#5) and night-day
(#6) datasets (which are usually treated as more challenging
MRSI matching tasks) were all less than 300, meanwhile,
the matching SR of the SAR-optical dataset is only 90%.
In summary, the new gradient features generated by LPB
filtering is more suitable for MRSI matching, which not only
improves the matching SR, but also obtains larger NCMs.

Since grid division will affect the results of multi-modal
matching, this paper analyzes five grid division methods
(6-sector, 8-sector, 9-sector, 10-sector and 11-sector). The
details are shown Table VII.

Table VII shows the 9-sector grid generated has a higher
matching SR and NCM than others grid. Their overall SRs
are 93.33%, 95%, 100%, 95% and 96.67%, of which 6-sector
has a lower SR in the night-day multi-modal data sets. Among
them, in the night-day dataset, the SR results of the other
four sector grids are all lower than the 9-sector grid. As the
same time, comparing the results of NCM, it is found that
the matching corresponding points obtained by the 9-sector
method are significantly more than that of the other four
sector grids methods. The average NCMs of the 9-sector
method is 498.52, and the average NCMs for the 6-sector,
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Fig. 17. Evaluation of image registration results. The first column is the distribution of feature points. The second column is the error distribution result of
each pixel. The third column is the checkerboard registration result of the image.

TABLE VII

COMPARISON OF THE RESULTS OF FIVE SECTOR GRID METHODS

8-sector, 10-sector, and 11-sector methods are 419.67, 413.57,
431.42, and 433.48, respectively. Compared with the other four
sector division methods (6-, 8-, 10- and 11-sector), the average
NCM results obtained by 9-sector have increased by 15.82%,
17.04%, 13.46% and 13.05%, respectively.

B. Analysis of Registration Accuracy

To better evaluate the registration accuracy between images,
the image registration is completed according to the affine
matrix of the CoFSM model. At the same time, the error distri-
bution map of each pixel of the image is calculated according
to the homography of the ground truth and the homography
of CoFSM. The purpose is to reflect the overall registration
accuracy of MRSI and display them in a checkerboard form.
The registration result of the MRSI is shown in Fig.17. At the
same time, the distribution of error distances for all pairs is
calculated and displayed, as shown in Fig.18.

As shown in Fig.17, the color on the map gradually changes
from blue to red, which means that the error is gradually
increasing. The error distribution situation corresponds to the
actual registration situation, and the error in the overlapping
area of the image is relatively low (mainly the blue area).
The MRSI matching effect is better, and the checkerboard
edges can be matched well without obvious dislocation. The
homography matrix of the proposed CoFSM algorithm can
better complete the registration of MRSIs.

Fig. 18. The error distribution diagram of the six multi-modal data sets.

C. Robustness Analysis of the CoFSM Algorithm

To further examine whether the division of the feature
neighborhood into nine sectors has a positive effect on the
MRSI matching, an orientation shift on the grid by 0.5 × 2π /9
was added every time before the examination. A part of
matching results was shown in Fig.19. The test results
were shown in Fig.20. The proposed CoFSM algorithm can
obtain a robust matching effect in the [0∼180] angle rotation
transformation. In the case of different rotation angles, the
matching performance of the CoFSM algorithm would have
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Fig. 19. Results of matching images with different rotation angles.

Fig. 20. NCM results of matching images with different rotation angles.

some differences. The CoFSM algorithm can obtain enough
NCMs at different angles, and the proposed CoFSM in this
paper is rotation invariant.

VI. CONCLUSION

In this paper, a new matching method of CoF and fea-
ture displacement optimization, called CoFSM, was proposed,
and the NRD difference problem of MRSI was transformed
into the optimization of image feature similarity information.
By constructing a new gradient, the feature information of the
image can be optimized to the greatest extent. The similar
information of MRSI can be found, which reduces the impact
of NRD differences, and more feature points can be extracted.
Furthermore, more corresponding points were successfully
matched by optimizing the feature offset. From the results of
experiments on MRSI datasets, which contained sixty pairs
of images, we made the following conclusions. (1) Better
matching results were obtained in different MRSI scenes, such
as multi-temporal optical and optical, infrared and optical,
depth and optical, map and optical, SAR and optical, and
night and day, which proved the CoFSM method. (2) In MRSI
matching, the results with CoFSM were obviously better than
that of SIFT, upright-SIFT, PSO-SIFT, and RIFT. (3) Our
CoFSM method was designed on the basis of feature matching,
which can make full use of the advantages of existing feature
matching methods and has stronger scalability. (4) The results
of the matched points by our CoFSM method indicated reliable
distribution uniformity, thereby providing a good basis for
subsequent processing. The main deficiency in our CoFSM
method is the computational overhead, reducing which will
be our research focus.
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