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A B S T R A C T

Most popular recommender systems learn the embedding of users and items through capturing valuable
information from user–item interactions or item knowledge graph (KG) with Graph Convolutional Network.
However, only a few methods capture information from both source data, and they introduce many trainable
parameters that increase training difficulty. In this work, we aim to aggregate information from both the
user–item interaction graph and the item KG in a light and effective manner. We first experimentally verify
the effectiveness of removing feature transformation and nonlinear activation in KG-aware recommendation,
which has been proven to greatly reduce parameters while improving performance in the collaborative filtering-
based recommendation. Then we propose a new Knowledge graph-aware Light Graph Convolutional Network
(KLGCN), which can learn partial embeddings of users and items by aggregating features on the source
graphs for recommendation and introduces no extra parameters. Extensive experiments on three public datasets
demonstrate that KLGCN achieves substantial improvement over several state-of-the-art models and maintains
satisfactory performance on cold-start scenarios.
2017). A main reason is the flourish of Graph Convolutional Networks
(GCNs) which aggregate neighbor features by stacking multiple graph
convolutional layers (GCLs) to capture the long-distance structural
1. Introduction

With the development of Internet technology, online applications
have provided a multitude of content to users, such as books, movies
and restaurants. The explosive growth of content has made applica-
tions notorious since it is difficult for users to pick out what they
are really interested in. Recommender systems (RS) have been widely
implemented to alleviate the negative effect of information overload
by providing users a small set of items that meet their personalized
interests (Covington, Adams, & Sargin, 2016; Wang et al., 2018; Ying
et al., 2018).

The main task of RS is to predict whether a user will interact
with an item, e.g. rate, click and view. Among different traditional
recommendation strategies, collaborative filtering (CF)-based methods
recommend items by considering historical interactions, which are
shown as Fig. 1(a), to find the shared preference of users or the
similarities of items, have achieved tremendous success in the past few
years (Koren, Bell, & Volinsky, 2009; Wang, Wang, Zhao, Cao, & Guo,
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information and can be applied to graphs directly (Bruna, Zaremba,
Szlam, & LeCun, 2013; Defferrard, Bresson, & Vandergheynst, 2016;
Kipf & Welling, 2016a; Xu, Hu, Leskovec, & Jegelka, 2018). GCN and
its variants have been proven to perform well in graph tasks, such as
node classification (Abu-El-Haija, Kapoor, Perozzi, & Lee, 2020; Rong,
Huang, Xu, & Huang, 2019), graph classification (Gao & Ji, 2019; Li
et al., 2019) and link prediction (Kipf & Welling, 2016b). Applying GCN
to user–item interaction graphs, the higher-order connections between
nodes can be caught effectively (Berg, Kipf, & Welling, 2017; Chen, Wu,
Hong, Zhang, & Wang, 2020). NGCF (Wang, He, Wang, Feng and Chua,
2019) explicitly injects the collaborative signal into the representation
via following the standard propagation rule of GCN to model the
high-order connectivity in user–item interaction graph and manifests
promising improvement. LightGCN (He et al., 2020) simplifies NGCF
via abandoning feature transformation and nonlinear activation, two
operations standard in GCL but bring negative effect to CF, achieving
state-of-the-art performance while reducing the complexity. That is to
say, although GCN could benefit recommendation, the effect of its
components are worth to be rethought.

In general, CF-based methods suffer from two challenges. One is the
data sparsity, which is common in practical scenarios, such as movie
ry 2022
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apps where the movie watched by a user is extremely few. The other
is the cold-start, the lack of historical information makes it difficult for
these methods to recommend new items. To solve these two limitations,
researchers introduced side information to recommendation, such as
contexts (Sun, Yuan, Xie, McDonald, & Zhang, 2017; Zhang, Yuan,
Lian, Xie, & Ma, 2016), visual information (Zhang et al., 2016), user
profiles/item attributes (Cao, Wang, He, Hu, & Chua, 2019; Wang et al.,
2018), social networks (Ji, He, Xu, Liu, & Zhao, 2015) and so on.

In recent years, knowledge graphs (KGs) have attracted extensive
attention in RS (Sang, Xu, Qian, & Wu, 2021; Wang, He, Cao, Liu and
Chua, 2019; Wang et al., 2019; Wang, Zhao, Xie, Li and Guo, 2019)
due to their abundant structural and semantic information between
entities. A KG, as shown in Fig. 1(b), is a heterogeneous graph in which
nodes represent entities (e.g., items or users, and their attributes or
characteristics) and edges represent relations. The KG is helpful for
recommendation with three aspects (Wang et al., 2018): (1) In the
precision, the KG introduces fruitful semantic information for items,
which is rewarding for deep exploration of user interests and precision
improvement of item recommendation. (2) In the diversity, the KG
provides a variety of relations which facilitate the diversification of
recommended items. (3) In the explainability, the historical interacted
items and the recommended items are connected through paths that
consist of entities and relations, thus bringing explainability to rec-
ommendation as well as improving users’ satisfaction. The proposal of
several academic KGs (e.g., DBpedia, Freebase, NELL) has also profited
the research (Guo et al., 2020).

Although KG-aware methods have achieved meaningful success,
there are two general problems: (1) Focus on extracting information
from KGs but ignore the collaborative signal contained in user–item
historical interactions. However, these signals reflect the essential rela-
tion between users and items. (2) Introduce other complex models as
aids (Lu & Altenbek, 2021; Wang, He, Cao et al., 2019), which triggers
sharp increase in parameters and computational complexity.

Considering the aforementioned limitations of previous methods,
we are fully convinced that it is of crucial importance to develop a
method that can dig out useful information from both the interaction
graph and the item KG in an intuitive and efficient approach. Inspired
by the pattern of twin tower model (Cheng et al., 2016; Covington
et al., 2016; He et al., 2017) which encodes various related features in
parallel, we propose Knowledge graph-aware Light Graph Convolutional
Network (KLGCN). KLGCN mainly contains two parallel GCL-based
aggregation components which separately focus on the connectivity
exploration of the two kinds of graphs.

• LGC. We inherit the aggregation layer of LightGCN — Light Graph
Convolution (LGC) straightly to capture collaborative signals be-
tween users and items for its sightful performance in dealing with
user–item interactions.

• LUCGC. We extend the aggregation layer of KGCN (Wang, Zhao
et al., 2019) to Light User&Central nodes-specific Graph Con-
volution (LUCGC) which only keeps the most essential part of
GCL – neighborhood aggregation – to aggregate features on item
KGs. In the aggregation, a special designed attention mechanism
is employed which simultaneously focus on the importance of
relations to the specific users and the central nodes. In this way,
not only users’ personalized interests in relations are acquired, but
also the semantic information is strengthened.

A simple weighted sum and inner product are used to the final
recommendation. Empirically, we evaluate KLGCN on three real-world
recommendation benchmark datasets: MovieLens-20M (movie), Book-
crossing (book) and Last-FM (music). The experimental results show
that comparing with state-of-the-art recommendation baselines, KLGCN
achieves recall@20 gains of 12.45%, 57.05% and 9.83% on average in
movie, book and music recommendation, respectively.
2

The contributions of this paper are summarized as follows:
• We experimentally verify that two essential designs in GCL –
feature transformation and nonlinear activation – also contribute
little to KG-aware recommendation.

• We develop a new model named KLGCN, which obtains informa-
tion from the user–item historical interaction graph and the item
KG simultaneously in a light and effective manner by discarding
unnecessary components in GCL. Exploiting the information in
both source data, the problems of cold-start when only using the
user–item interactions and the insufficient of collaborative signals
when only using the item KG can be effectively alleviated.

• We demonstrate the superiority of our model in top- recommen-
dation and cold-start scenarios via conducting extensive experi-
ments and comprehensive analysis on three public datasets.

The remainder of this paper is organized as follows. Section 2
introduces the background and related work. In Section 3, we formalize
the task. The details of the proposed method are described in Section 4.
Section 5 reports the experimental results and analyzes the impact of
hyperparameters and attention mechanism to the proposed model. In
the last section, conclusions and future work are discussed.

2. Related work

We review and summarize existing work on CF-based recommen-
dation and KG-aware recommendation that are most relevant to our
work.

2.1. Collaborative filtering-based recommendation

CF is one of the most classical and prevalent techniques on rec-
ommendation which uses known preference of users to predict and
recommend new preference for other users (Su & Khoshgoftaar, 2009).
In general, CF techniques can be categorized as memory-based CF and
model-based CF. The key idea of memory-based methods is K-nearest.
These methods recommend same items to users with similar preference
(Breese, Heckerman, & Kadie, 1998) or recommend similar items to a
user (Linden, Smith, & York, 2003; Sarwar, Karypis, Konstan, & Riedl,
2001) via similarity measuring, like cosine similarity. However, they
are unreliable when data is sparse.

The key idea of model-based approaches is representation gaining.
An up-to-data approach is to embed users and items to trainable
parameters and refine the parameters by rebuilding user–item historical
interactions. Such as MF (Koren et al., 2009) maps ID feature of a
user/an item to an embedding, FM (Rendle, 2010) and FFM (Juan,
Zhuang, Chin, & Lin, 2016) use multi-features and consider the linear
combination of them, but only low-level feature combinations can
be obtained. To get the high-level feature combination, deep neural
networks are jointly trained. Some distinguished models (Cheng et al.,
2016; Covington et al., 2016; He et al., 2017; Zhou et al., 2018) share
such a Embedding&MLP paradigm, and gain significant performance.
However, the interaction of users and items are not explicit encoded
because they are only used to define the loss function in these models,
and therefore the collaborative signal is insufficient. A solution is to
adopt GCN to capture the signal in the user–item interaction graph due
to its strong performance on modeling graph structures. Pinsage (Ying
et al., 2018) first introduces GCN into commercial recommendation
and attains remarkable success. NGCF (Wang, He, Wang et al., 2019)
follows the standard design of GCN to guide the embedding learning,
LightGCN (He et al., 2020) further demonstrates that GCN could be

applied in recommendation in a lighter and more effective way.
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Fig. 1. An illustration of (a) user–item historical interactions and (b) item KG. A line in interactions indicates that the user interacted with the item. An arrow in KG indicates
that there is a relation between the entities. The purpose is to provide recommendation for the target user 𝑢1.
2.2. Knowledge graph-aware recommendation

KG is introduced to alleviate the cold-start problem and bring inter-
pretability to recommendation. The best performing KG-aware meth-
ods can be classified into three groups: embedding-based, path-based
and Graph Neural Network (GNN)-based. Embedding-based methods
(Huang, Zhao, Dou, Wen, & Chang, 2018; Wang, Zhang, Xie and Guo,
2018; Wang et al., 2019; Zhang et al., 2016) encode the KG into
low-dimension embeddings with knowledge graph embedding (KGE,
e.g., TransE Bordes, Usunier, Garcia-Duran, Weston, & Yakhnenko,
2013, TransR Lin, Liu, Sun, Liu, & Zhu, 2015 and DistMult Yang, Yih,
He, Gao, & Deng, 2014) and assign the learned embeddings to recom-
mendation directly. However, these embeddings are might unsuitable
for recommendation because they are unintuitive and inefficient in
characterizing inter-item relations. Path-based methods (Lee, Kahng,
& Lee, 2015; Palumbo, Monti, Rizzo, Troncy, & Baralis, 2020; Wang,
Wang et al., 2019; Zhao, Yao, Li, Song, & Lee, 2017) explore high-order
potential connections between entities in KGs via designing special
meta paths/graphs to guide the recommendation. Although path-based
methods explore the semantic information in KGs in an intuitive way
and provide interpretability for recommendation, they require strong
domain knowledge and the designed meta paths/graphs might just be
suitable for special domains.

GNN-based methods encode the KG into low-dimension embeddings
on the basic theory of signal processing on graphs. High-hop informa-
tion can be captured through iterative aggregation, and the path formed
by relations between nodes bring interpretability to recommendation.
The emergency of GAT (Veličković et al., 2017) further facilitates the
preference exploration in RS, because it makes it possible for GNN to
distinguish the importance of different information. KGCN (Wang, Zhao
et al., 2019) applies GCN to item KGs and use an attention mechanism
to capture users’ personalized preference on relations, KGNN-LS (Wang
et al., 2019) provides a better inductive bias relies on label smoothness
assumption to solve the overfitting that might occur in KGCN. KGCN
and KGNN-LS show their potential on datasets, however, they focus
on the connections between items but ignore the direct relationship
between users and items. KGAT (Wang, He, Cao et al., 2019) applies
GAT to the graph merged by the interaction graph and the item KG, and
fine-tunes the gained embeddings with TransR. Although KGAT fully
gains the collaborative signal in both source data and outperforms on
datasets, the complexity increases due to the complex projection matrix
of TransR.

Our method attempts to jointly aggregate the information in the
user–item historical interaction graph and the item KG as light and
effective as LightGCN does. To further highlight the uniqueness of our
proposed model, we summarize and compare our model with some of
3

the most related methods in Table 1 in terms of whether to introduce
additional trainable weights, whether to gain information directly from
the source data and the techniques adopted.

3. Problem formulation

The problem we focus on can be formulated as follows. In a typical
recommendation scenario, we have a collection of historical interaction
records of users to items. Let 𝑼 = {𝑢1, 𝑢2,… , 𝑢𝑁} denotes a set of users
and 𝑰 = {𝑖1, 𝑖2,… , 𝑖𝑀} denotes a set of items. The user–item interaction
matrix 𝒀 = {(𝑢, 𝑖)|𝑢 ∈ 𝑼 , 𝑖 ∈ 𝑰} is defined according to the interaction
records which represent the users’ implicit feedback w.r.t items, and in
which

𝑦𝑢𝑖 =

{

1, if interaction (𝑢, 𝑖) is observed,
0, otherwise.

(1)

A value 1 of 𝑦𝑢𝑖 indicates that user 𝑢 implicitly interacts with item
𝑖, such as the behavior of watching, clicking and browsing, and 0
indicates that user 𝑢 has not engaged with item 𝑖. Apart from the
interaction matrix 𝒀 , a corresponding KG 𝑮 = {(ℎ, 𝑟, 𝑡)|ℎ ∈  , 𝑟 ∈
𝑹, 𝑡 ∈ } is also available which is constructed in the form of entity-
relation-entity triples (ℎ, 𝑟, 𝑡). For example, the triple (Gods Must Be
Crazy, film.film.genre, comedy) states the fact that the genre of the film
‘Gods Must Be Crazy’ is comedy.  ∈ R𝑂 denotes a set of entities and
𝑹 ∈ R𝑄 denotes a set of relations.

In an item KG, an item 𝑖 ∈ 𝑰 matches with an entity 𝑒 ∈  in the
KG. Taking ‘Gods Must Be Crazy’ as an instance, which is an item in
the dataset MovieLens-20M as well as an entity in the corresponding
movie KG. Therefore, the entity set  can be splitted into items 𝑰 and
non-items  ⧵ 𝑰 (e.g., entities correspond to item characteristics). In
detail, given a user–item interaction matrix 𝒀 and a KG 𝑮, our task
is to predict whether user 𝑢 has potential interest in item 𝑖 that the
user has not interacted before. More specifically, we aim to predict the
probability �̂�𝑢𝑖 that user 𝑢 will interact item 𝑖 via learning a prediction
function  (𝑢, 𝑖|𝒀 ,𝑮, 𝜃) where 𝜃 is the parameters.

4. Methodology

The architecture of KLGCN proposed in this paper is described in
Fig. 2. There are three components of the architecture: (1) Embedding
layer, which offers the initial embeddings of all users, entities and
relations; (2) Aggregation layer, which is composed of LGC and LUCGC,
and these two components refine embeddings by separately aggregat-
ing high-hop neighbor features with multiple layers on the user–item
interaction graph and the item KG; and (3) Prediction layer, which
generates the final embeddings through combining the partial refined
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Table 1
Comparison of KLGCN and related methods. In the table, ‘U-I’ stands for user–item interaction graph, ‘MLP’ stands for multi-layer perceptron,
‘Att.’ stands for attention mechanism, ‘AE’ stands for autoencoder, ‘MF’ stands for matrix factorization.
Method Weight matrix Source data Framework

U-I KG MLP GCN Att. KGE AE MF

FM (Koren et al., 2009)
√ √

NeuMF (He et al., 2017)
√ √ √

NGCF (Wang, He, Wang et al., 2019)
√ √ √

LightGCN (He et al., 2020)
√ √

CKE (Zhang et al., 2016)
√ √ √ √

RippleNet (Wang, Zhang, Wang et al., 2018)
√ √ √ √

KGCN (Wang, Zhao et al., 2019)
√ √ √ √

KGNN_LS (Wang, Zhang et al., 2019)
√ √ √ √

KGAT (Wang, He, Cao et al., 2019)
√ √ √ √ √ √

KLGCN
√ √ √ √
Fig. 2. Overall architecture of KLGCN. KLGCN is composed of embedding layer, aggregation layer and prediction layer. The initial embeddings are fed into the aggregation layer,
and two partial embeddings of each user/item are obtained. A weighted sum of the partial embeddings are used to get the final embeddings. Recommend 𝑖4 to 𝑢1 is shown in the
figure.
embeddings of users and items from the aggregation layer and outputs
the score of a user–item pair which represents the probability of the
user would interacts the item.

4.1. Embedding layer

To obtain the final appropriate representations, we assign each user
(entity, relation) with an initial embedding vector 𝐞𝑢 ∈ R𝑑 (𝐞𝑒, 𝐞𝑟 ∈
R𝑑), where 𝑑 is embedding size, which can be regarded as building a
parameter matrix for embeddings looking up:

𝐄 = {𝐞𝑢1 , 𝐞𝑢2 ,… , 𝐞𝑢𝑁
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
users embeddings

, 𝐞𝑖1 , 𝐞𝑖2 ,… , 𝐞𝑖𝑀
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
items embeddings

, 𝐞𝑒𝑀+1
, 𝐞𝑒𝑀+2

,… , 𝐞𝑒𝑂
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

entities∖items embeddings

,

𝐞𝑟1 , 𝐞𝑟2 ,… , 𝐞𝑟𝑄
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

relations embeddings

}. (2)

The initial embeddings can be optimized with our method in an
end-to-end way. In contrast to traditional methods (He et al., 2017;
Zhou et al., 2018) feed embeddings into interaction layers directly, our
4

method propagates embeddings on the user–item interaction graph to
capture the crucial collaborative signals to upgrade them satisfactory
for CF, and we add auxiliary embeddings, which are gained by aggre-
gating features on the item KG, as supplements to confront cold-start. In
this way, the final embeddings contain abundant similarity information
and semantic information.

4.2. Aggregation layer

Because of the sharing of signal propagation theory, we first intro-
duce a standard GCL and then separately illustrate the two aggregation
components — LGC and LUCGC, in which we focus on introducing
the origin of LUCGC. Note that LGC contains the parts of embedding
generation and embedding combination.

4.2.1. Standard LGC
The basic idea of GCN is to learn node representations by smoothing

features over graphs. To achieve the target, it aggregates features of
neighbor nodes and the target node itself as the new representation of
the target node by stacking multiple convolutional layers. A multi-layer
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Fig. 3. An illustration of LGC architecture, which removes feature transformation and nonlinear activation in the aggregation, and a weighted sum of the embeddings at each
layer are used to obtain the final embeddings. LGC works on user–item interaction graphs.
GCN follows the simple and well-behaved layer-wise propagation rule
which operates directly on graphs (Kipf & Welling, 2016a):

𝑯 (𝑘+1) = 𝜎(�̃�− 1
2 �̃��̃�− 1

2 𝑯 (𝑘)𝑾 (𝑘)), (3)

where �̃� = 𝐴 + 𝐼 denotes the graph adjacency matrix with added
self-connections. In recommendation tasks, the user–item interaction
graph is an undirected graph and the item KG is a directed graph.
𝐼 is the identity matrix. �̃� is the diagonal degree matrix in which
�̃�𝑖𝑖 =

∑

𝑗 �̃�𝑖𝑗 . 𝑾 (𝑘) is a layer-wise trainable weight matrix. 𝜎(⋅) is an
nonlinear activation function as normal neural networks with, such as
𝑅𝑒𝐿𝑈 (⋅) = 𝑚𝑎𝑥(0, ⋅) (Glorot, Bordes, & Bengio, 2011). 𝑯 (𝑘) is the feature
of layer 𝑘, 𝑯 (0) is the initial feature 𝑿 which can be set as an identity
matrix 𝐼 in featureless graph tasks, and can be set as initial user (item)
embeddings {𝐞𝑢𝑛}

𝑁
𝑛=0 ({𝐞𝑖𝑚}

𝑀
𝑚=0) when it involves to RS. Following the

rule, the lower-layer feature can be propagated to the higher-layer.

4.2.2. LGC
Most GCN-based works follow the standard form of GCL with fea-

ture transformation matrix 𝑾 and nonlinear activation function 𝜎(⋅).
LightGCN (He et al., 2020) proves that these operations benefit to
graph tasks such as node classification and graph classification due to
their abundant semantic input features but might be cumbersome for
CF-based recommendation since there is only ID feature in most cases.

The architecture of LGC is shown in Fig. 3, which abandons the
feature transformation and nonlinear activation in the propagation pro-
cess and just adopts a sum aggregator at each layer for the embedding
generation of the target node, and is simply defined as:

𝐞(𝑙+1)𝑢 =
∑

𝑖∈𝑢

1
√

|𝑢||𝑖|
𝐞(𝑙)𝑖 ,

𝐞(𝑙+1)𝑖 =
∑

𝑢∈𝑖

1
√

|𝑖||𝑢|
𝐞(𝑙)𝑢 ,

(4)

where 𝐞(𝑙)𝑢 and 𝐞(𝑙)𝑖 denote the 𝑙𝑡ℎ layer embedding of user 𝑢 and item
𝑖, respectively.  denotes the set of items in user–item interaction
5

𝑢

graph that have been interacted by user 𝑢 and |𝑢| denotes the number
of the set. Similarly, 𝑖 and |𝑖| denote the set of users that have
interacted with item 𝑖 and its number, respectively. The symmetric
normalization term 1

√

|𝑢||𝑖|
is designed to avoid the explosion of the

embedding scale, which plays a same role as the term �̃�− 1
2 �̃��̃�− 1

2 does
in the standard GCL. It can be found that only the initial embeddings
of all users {𝐞(0)𝑢𝑛 }

𝑁
𝑛=0 and items {𝐞(0)𝑖𝑚

}𝑀𝑚=0 are trainable parameters. After
𝐿 layers feature aggregation, 𝐿 + 1 embeddings are obtained which
represent user 𝑢 (item 𝑖) {𝐞(𝑙)𝑢 }𝐿𝑙=0 ({𝐞(𝑙)𝑖 }𝐿𝑙=0) from its initial embedding to
the 𝐿-hop aggregated embedding. A weighted sum is used to combine
the 𝐿 + 1 embeddings to get the final embedding of the user 𝑢 (item 𝑖)
and offset the influence of without self-connections:

𝐞𝐿𝐺𝐶
𝑢 =

𝐿
∑

𝑙=0
𝛼𝑙𝐞(𝑙)𝑢 ,

𝐞𝐿𝐺𝐶
𝑖 =

𝐿
∑

𝑙=0
𝛼𝑙𝐞

(𝑙)
𝑖 ,

(5)

where 𝛼𝑙 denotes the weight of the 𝑙𝑡ℎ layer embedding in generating
the final embedding which is experimentally set as a constant 1∕(𝐿+1).
The embedding generation process of LGC is summarized in Algorithm
1.

4.2.3. User-specific Graph Convolution (UGC)
KGCN is a typical KG-aware recommendation model which aggre-

gates features on the item KG and shows satisfactory performance
over several datasets. The architecture of UGC is shown in Fig. 4(a).
Generally speaking, users have different personalized interests in rela-
tions, e.g., a user might care more about ‘genre’ while someone else
cares more about ‘actor’. Therefore, the personalized interest of users
is considered in the aggregation process via a special designed attention
mechanism. A user-specific attention function 𝑔 ∶ R𝑑 × R𝑑 → R is used
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Fig. 4. An illustrate of (a) UGC architecture and (b) LUCGC architecture. UGC aggregates neighbor features with the design of standard GCL and a user-specific attention
mechanism. LUCGC removes feature transformation and nonlinear activation on the basis of UGC and further designs a user&neighbor-specific attention mechanism. UGC and
LUCGC work on item KGs.
Algorithm 1 Embedding generation process of LGC
Input: a user-item pair (𝑢, 𝑖); user-item interaction matrix Y ; initial em-

beddings of all users and items {e𝑢𝑛}
𝑁
𝑛=0, {e𝑖𝑚}

𝑀
𝑚=0; hyperparameters:

layers 𝐿, layer weights {𝛼𝑙}
𝐿
𝑙=0;

Output: the user embedding e𝐿𝐺𝐶
𝑢 ; the item embedding e𝐿𝐺𝐶

𝑖 ;
1:  𝑢, 𝑖 ← Y ⊳ get neighbors of user 𝑢 and item 𝑖;
2: for 𝑙 = 1, 2,⋯ , 𝐿 do
3: e(𝑙)𝑢 =

∑

𝑖∈ 𝑢
1

√

| 𝑢|| 𝑖|
e(𝑙−1)𝑖 ; ⊳ propagate the 𝑙-hop neighbor

features to user 𝑢;
4: e(𝑙)𝑖 =

∑

𝑢∈ 𝑖
1

√

| 𝑖|| 𝑢|
e(𝑙−1)𝑢 ; ⊳ propagate the 𝑙-hop neighbor

features to item 𝑖;
5: e𝐿𝐺𝐶

𝑢 =
∑𝐿

𝑙=0 𝛼𝑙e
(𝑙)
𝑢 ; ⊳ generate the final LGC embedding of user 𝑢;

6: e𝐿𝐺𝐶
𝑖 =

∑𝐿
𝑙=0 𝛼𝑙e

(𝑙)
𝑖 ; ⊳ generate the final LGC embedding of item 𝑖;

7: return e𝐿𝐺𝐶
𝑢 , e𝐿𝐺𝐶

𝑖

to calculate the care score of a user to a relation:

𝜋𝑢
𝑟𝑒𝑖

= 𝑔(𝑢, 𝑟𝑒𝑖), (6)

where 𝑟𝑒𝑖 denotes the relation between entity 𝑒 and item 𝑖, i.e., 𝑒 ∈
𝑖 and 𝑒

𝑟𝑒𝑖
←←←←←←←←←←←→ 𝑖, 𝑖 is the neighbor entities of item 𝑖 in item KG.

Considering that a KG in real-world is extremely large, where contains
myriad entities and an entity may be linked up with thousands of
entities, to keep the computational pattern fixed and efficient, UGC
follows GraphSAGE (Hamilton, Ying, & Leskovec, 2017) to uniformly
and randomly sample a fixed-size number 𝐾 of neighbor nodes as the
local neighborhood instead of using the full neighbors, which is similar
to the receptive field of Convolution Neural Network in conceptual.
In this way, a new neighbor set 𝑖 is obtained where |𝑖| ≡ 𝐾, and
duplicates are contained in the condition of |𝑖| < 𝐾.

UGC aggregates neighbor embeddings to generate an integrated
representation 𝐞𝑖 as:

𝐞(ℎ+1)𝑖
=

∑

𝑒∈𝑖

�̃�𝑢
𝑟𝑒𝑖
𝐞(ℎ)𝑒 , (7)

where �̃�𝑢
𝑟𝑒𝑖

is the normalized user-relation importance:

�̃�𝑢
𝑟𝑒𝑖

=
exp(𝜋𝑢

𝑟𝑒𝑖
)

∑ 𝑢 . (8)
6

𝑒′∈𝑖 exp(𝜋𝑟𝑒′ 𝑖 )
To propagate the lower-layer embedding to the higher-layer, UGC
follows the standard GCL design, applying feature transformation and
nonlinear activation to feature generation.

𝐞(ℎ+1)𝑢 = 𝐞(0)𝑢 ,

𝐞(ℎ+1)𝑖 = 𝜎(𝑾 (ℎ)(𝐞(ℎ)𝑖 + 𝐞(ℎ+1)𝑖
) + 𝑏(ℎ)),

(9)

where 𝑏(ℎ) is the bias of the ℎ𝑡ℎ layer. The transformation matrix
and bias of each layer are shared. From Eq. (9) we can see that
self-connection is added and the item embedding is updated in each
iteration.

4.2.4. Empirical explorations on KGCN
To explore the influence of feature transformation and nonlinear

activation on KG-aware recommendation, we conduct extensive abla-
tion studies on KGCN. We use the codes1 released by the authors of
KGCN on model part, and use the codes2 on data generation part for
training acceleration. For fair comparison, we run experiments on same
data split and evaluation metrics, each experiment is repeated five
times, and the average performance is reported. The base model and
its variants are as follows:

• KGCN, which keeps the feature transformation matrix 𝑾 (ℎ) and
nonlinear activation function 𝜎(⋅).

• KGCN-f, which removes the feature transformation matrix but
keeps the nonlinear activation function:

𝐞(ℎ+1)𝑖 = 𝜎(𝐞(ℎ)𝑖 + 𝐞(ℎ+1)𝑖
). (10)

• KGCN-n, which removes the nonlinear activation function but
keeps the feature transformation matrix:

𝐞(ℎ+1)𝑖 = 𝑾 (ℎ)(𝐞(ℎ)𝑖 + 𝐞(ℎ+1)𝑖
) + 𝑏(ℎ). (11)

• KGCN-fn, which removes both the feature transformation matrix
and nonlinear activation function:

𝐞(ℎ+1)𝑖 = 𝐞(ℎ)𝑖 + 𝐞(ℎ+1)𝑖
. (12)

Note that only the generation manner of item representations has
changed. We set each hyperparameter of KGCN and its three vari-
ants with same value, such as learning rate, embedding size, sampled

1 https://github.com/hwwang55/KGCN.
2 https://github.com/wubinzzu/NeuRec.

https://github.com/hwwang55/KGCN
https://github.com/wubinzzu/NeuRec
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Table 2
Performance of KGCN and its three variants.

MovieLens-20M Last-fm

recall@20 ndcg@20 recall@20 ndcg@20

KGCN 0.3115 0.2485 0.3567 0.1964
KGCN-f 0.3325 0.2676 0.3574 0.2025
KGCN-n 0.3003 0.2371 0.3428 0.1862
KGCN-fn 0.3472 0.2666 0.3651 0.2066

neighbor number, regularization coefficient and so on, to ensure that
the only experimental influencing factor is the component of GCL. We
give an account of the results of the best hyperparameter settings on
MovieLens-20M and Last-fm in Table 2, where the layer of UGC on
the two datasets is set to 1 and the sampled neighbor size is 16 and
8 respectively. As we can see, when feature transformation is removed,
model performs better (KGCN-f performs better than KGCN and KGCN-
fn performs better than KGCN-n). However, the role of nonlinear
activation is unclear, because when we remove it on the basis of KGCN,
the model (i.e., KGCN-n) performs worse, but removing it on the basis
of KGCN-f, the performance of the model (i.e., KGCN-fn) is improved
(apart from ndcg@20 of MovieLens-20M drops lightly, recall@20 of
both datasets improve imperatively and ndcg@20 of Last-fm improves
lightly). We conclude these findings that:

• Removing feature transformation brings positive effect to KGCN,
adding it leads to performance setbacks (compare KGCN with
KGCN-f, KGCN-n with KGCN-fn).

• Removing nonlinear activation brings positive effect when feature
transformation is disabled (compare KGCN-f with KGCN-fn), but
it brings negative effect when feature transformation is enable
(compare KGCN with KGCN-n).

• Removing feature transformation and nonlinear activation simul-
taneously brings positive effect to KGCN (compare KGCN with
KGCN-fn).

.2.5. LUCGC
The former experiments demonstrate that feature transformation

rings only heavy complexity and play a limit role in KG-aware rec-
mmendation, and removing nonlinear activation will benefit the per-
ormance if feature transformation is removed. Therefore, we extend
GC to LUCGC, which is shown in Fig. 4(b). In LUCGC, we abandon the

eature transformation and nonlinear activation simultaneously. After
-hop aggregation, the final embeddings can be represented as:

𝐿𝑈𝐶𝐺𝐶
𝑢 = 𝐞(0)𝑢 ,

𝐞𝐿𝑈𝐶𝐺𝐶
𝑖 = 𝐞(𝐻)

𝑖 + 𝐞(𝐻+1)
𝑖

.
(13)

In conventional GATs, the importance of neighbors to central nodes
re mainly considered. However, the relationship between relation 𝑟
nd central node plays a nonnegligible important role in KGs, because
he relation determines what role the neighbor plays in the circum-
tance of the central node. Taking triples (USA, hadPresident, Obama)
nd (Malia, isDaughter, Obama) as examples. Two types of relations
onnect two different neighbors with a same central node. Because the
eighbor ‘Malia’ can uniquely determine the central node ‘Obama’ with
he aid of the relation ‘isDaughter’, but ‘hadPresident’ cannot help ‘USA’
nfer ‘Obama’ since ‘USA’ had other presidents, it can be considered that
isDaughter’ helps ‘Malia’ paly a more important role than ‘USA’ when
he central node is ‘Obama’. In other words, ‘isDaughter’ contributes
ore to ‘Obama’ than ‘hadPresident’. Considering the importance of

elations to central nodes, we further implement the attention function
s:
𝜋 = 𝛼𝜋𝑢

𝑟𝑒𝑖
+ 𝛽𝜋𝑖

𝑟𝑒𝑖
,

𝑢
𝑟𝑒𝑖

= 𝑔(𝑢, 𝑟𝑒𝑖),
𝑖

(14)
7

𝑟𝑒𝑖
= 𝑔(𝑖, 𝑟𝑒𝑖), (
here 𝛼 and 𝛽 are the weights of care scores 𝜋𝑢
𝑟𝑒𝑖

and 𝜋𝑖
𝑟𝑒𝑖

in constituting

he final attention score, respectively. Both of them can be treated as
yperparameters like learning rate, to be tuned manually, or trainable
arameters like embedding vectors, to be trained automatically. We
ind that setting 𝛼 = 𝛽 = 1 leads to good performance in our
xperiments, hence we leave them as constants to keep our model
imple. The embedding generation process of LUCGC is summarized in
lgorithm 2.

Algorithm 2 Embedding generation process of LUCGC
Input: a user-item pair (𝑢, 𝑖); item KG G; initial embeddings E;

hyperparameters: layers 𝐻 , sampled neighbor size 𝐾;
utput: the user embedding e𝐿𝑈𝐶𝐺𝐶

𝑢 ; the item embedding e𝐿𝑈𝐶𝐺𝐶
𝑖 ;

1: { ℎ
𝑖 }

𝐻
ℎ=0 ← GetNeighbors(𝑖,G,𝐻,𝐾); ⊳ generate 𝐻-hop neighbors

of item 𝑖;
2: for ℎ = 1, 2,⋯ ,𝐻 do
3: for 𝑒 in  ℎ

𝑖 do
4: e(ℎ)𝑒

=
∑

𝑒′∈𝑒
�̃�𝑢
𝑟
𝑒′ 𝑒
e(ℎ−1)𝑒 ; ⊳ aggregate the (𝐻 − ℎ)-hop

neighbor features of item 𝑖;
5: e(ℎ)𝑒 = e(ℎ−1)𝑒 + e(ℎ)𝑒

; ⊳ add self-collection;

6: e𝐿𝑈𝐶𝐺𝐶
𝑢 = e(0)𝑢 ; ⊳ get the final LUCGC embedding of user 𝑢;

7: e𝐿𝑈𝐶𝐺𝐶
𝑖 = e(𝐻)

𝑖 ; ⊳ get the final LUCGC embedding of item 𝑖;
8: return e𝐿𝑈𝐶𝐺𝐶

𝑢 , e𝐿𝑈𝐶𝐺𝐶
𝑖

9:
0: function GetNeighbors(𝑖,G,𝐻,𝐾)
1: 𝐻

𝑖 = 𝑖;
2: for ℎ = 𝐻 − 1,⋯ , 0 do
3:  ℎ

𝑖 = ∅;
4: for 𝑒 in  ℎ+1

𝑖 do
5:  𝑒 ← 𝑒,G; ⊳ get neighbors of entity 𝑒;
6: 𝑒 ← 𝐾, 𝑒; ⊳ sample K neighbors from the entire

neighbors;
7:  ℎ

𝑖 =  ℎ
𝑖 ∪ 𝑒; ⊳ update the (𝐻 − ℎ)-hop neighbors of

item 𝑖;
8: return { ℎ

𝑖 }
𝐻
ℎ=0

4.3. Prediction layer

After feeding initial embeddings to the aggregation layer, two user
embeddings 𝐞𝐿𝐺𝐶

𝑢 and 𝐞𝐿𝑈𝐶𝐺𝐶
𝑢 , two item embeddings 𝐞𝐿𝐺𝐶

𝑖 and 𝐞𝐿𝑈𝐶𝐺𝐶
𝑖

are obtained. To get the final embeddings, a weighted sum is used:

𝐞𝑢 = 𝜔1𝐞𝐿𝐺𝐶
𝑢 + 𝜇1𝐞𝐿𝑈𝐶𝐺𝐶

𝑢 ,

𝐞𝑖 = 𝜔2𝐞𝐿𝐺𝐶
𝑖 + 𝜇2𝐞𝐿𝑈𝐶𝐺𝐶

𝑖 ,
(15)

where 𝜔 and 𝜇 are the importance of embeddings generated by LGC and
LUCGC, separately. We manually set 𝜔𝑖 = 𝜇𝑖 = 0.5, 𝑖 ∈ {1, 2} to avoid
complicating our proposed KLGCN. It can be seen that no additional
trainable parameters are introduced to our model.

The model prediction is defined as feeding the generated represen-
tations of a user 𝐞𝑢 and an item 𝐞𝑖 to a function 𝑓 ∶ R𝑑 ×R𝑑 → R to get
he probability of user 𝑢 has potential interest in item 𝑖. In our model,
nner product is applied due to its simplicity:

�̂�𝑢𝑖 = 𝐞𝑇𝑢 𝐞𝑖. (16)

.4. Optimization

We employ Bayesian Personalized Ranking (BPR) loss
Rendle, Freudenthaler, Gantner, & Schmidt-Thieme, 2012) to train the
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model parameters which encourages users interest more on interacted
items than their unobserved ones:

 = −
∑

(𝑢,𝑖,𝑗)∈
ln 𝜎(�̂�𝑢𝑖 − �̂�𝑢𝑗 ) + 𝜆‖𝜃‖22, (17)

here  = {(𝑢, 𝑖, 𝑗)|(𝑢, 𝑖) ∈ 𝐘, 𝑦𝑢𝑖 = 1; (𝑢, 𝑗) ∈ 𝐘, 𝑦𝑢𝑗 = 0}, 𝜎(⋅) =
1 + 𝑒𝑥𝑝(−⋅))−1 is the logistic sigmoid, 𝜆 is a balancing hyperparameter
hich controls the strength of 𝐿2 regularization to prevent overfitting,
is the trainable parameters which is equal to the initial embeddings
.

To facilitate understanding, we give a summarization of the afore-
entioned algorithm in Algorithm 3.

Algorithm 3 The overall recommendation process of KLGCN
Input: user-item interaction matrix Y ; item KG G; initial embeddings

E; hyperparameters: 𝐿, 𝐻 , 𝐾, {𝛼𝑙}
𝐿
𝑙=0, 𝜔1, 𝜔2, 𝜇1, 𝜇2; probability

calculation function 𝑓 (⋅);
Output: prediction function  (𝑢, 𝑖|Y ,G, 𝜃);
1: while KLGCN not converge do
2: for (𝑢, 𝑖) in Y do
3: e𝐿𝐺𝐶

𝑢 , e𝐿𝐺𝐶
𝑖 = 𝐿𝐺𝐶((𝑢, 𝑖),Y ,E, 𝐿, {𝛼𝑙}𝐿𝑙=0);⊳ generate the LGC

embeddings by Algorithm 1;
4: e𝐿𝑈𝐶𝐺𝐶

𝑢 , e𝐿𝑈𝐶𝐺𝐶
𝑖 = 𝐿𝑈𝐶𝐺𝐶((𝑢, 𝑖),G,E,𝐻,𝐾); ⊳ generate the

LUCGC embeddings by Algorithm 2;
5: e𝑢 = 𝜔1e𝐿𝐺𝐶

𝑢 + 𝜇1e𝐿𝑈𝐶𝐺𝐶
𝑢 ; ⊳ generate the final KLGCN

embedding of user 𝑢;
6: e𝑖 = 𝜔2e𝐿𝐺𝐶

𝑖 + 𝜇2e𝐿𝑈𝐶𝐺𝐶
𝑖 ; ⊳ generate the final KLGCN

embedding of item 𝑖;
7: Calculate predicted probability �̂�𝑢𝑖 = 𝑓 (e𝑢, e𝑖)
8: Update parameters, i.e., initial embeddings E, by gradient

descent
9: return 

5. Experiments and discussion

In this section, we evaluate the proposed KLGCN and present its
performance on three real-world recommendation scenarios: movie,
book and music.

5.1. Evaluation datasets and metrics

To assess the effectiveness of our method, we conduct extensive
experiments on the following three benchmark datasets for movie, book
and music recommendation: MovieLens-20M, Book-Crossing and Last-
FM. All these three datasets are publicly accessible and widely used in
academic. And the performance of KLGCN on various scale KGs can be
well evaluated due to their variety in terms of size and sparsity.

• MovieLens-20M is an extensively used benchmark dataset for
movie recommendation which consists of almost 20 million ex-
plicit historical rating records (ranging from 1 to 5) on the
MovieLens website.

• Book-Crossing consists of approximately 1 million explicit rating
records (ranging from 0 to 10) of book items in the Book-Crossing
Community.

• Last-FM consists of nearly 93 thousand musician listening infor-
mation from a set of 2 thousand users from Last.fm online music
8

system.
Table 3
Statistics of datasets.

MovieLens-20M Book-Crossing Last-fm

Users 116 733 1248 1251
Items 16 953 14 965 3846
Interactions 6 613 568 39 755 16 669
Sparsity 0.9967 0.9979 0.9965
Entities 102 569 77 903 9366
Relations 32 25 60
KG triples 499 474 151 500 15 518

Since these three datasets are explicit feedbacks, we transform them
into implicit feedbacks, where each record is marked with 1 indicating
that the user has rated the item positively and 0 indicating that the user
has low opinion on the item or has never interacted with it before. The
threshold of positive rating is 4 for MovieLens-20M, while we set no
threshold for the other two datasets. For each dataset, we use the 10-
core setting to ensure the data quality, i.e., each user interacts with at
least 10 items.

We also need the corresponding item KGs in addition to the user–
item interaction records. We use the item KGs provided by KGCN which
are constructed using Satori, a commercial KG built by Microsoft. The
statistics of the three datasets after cleaning and corresponding KGs are
summarized in Table 3.

For each dataset, we split the positive ratings into training set and
test set as the ratio of 8:2, more specifically, we randomly sample
80% positive historical interactions of each user to constitute training
set and leave the rest as the test set. For each positive interaction,
we randomly select an item, the user has not rated positively before,
to pair with the user as the negative sample. We adopt recall@
and ndcg@ to evaluate the capabilities of top- recommendation
and preference ranking of our model, all the non-positive items are
candidates of a user, and  = 20 by default. The hyperparameters are
determined by optimizing the recall@20 on a test data. We apply the
training strategies and calculation methods of evaluation metrics to all
the comparative experiments to ensure the fairness. Note that all the
methods share the acceleration codes.

5.2. Baselines

We compare KLGCN with supervised learning (FM), KG-aware
(CKE, KGCN, KGAT), GCN-based (NGCF, LightGCN) methods over the
datasets to demonstrate the superiority. The details are as follows:

• MF (Koren et al., 2009) is a benchmark model for recommenda-
tion. IDs of users and items are treated as the input features, and
BPR loss is applied to optimize the parameters.

• CKE (Zhang et al., 2016) enhances the item representations with
structural knowledges from item KGs on the basis of MF. These
knowledges are embedded via TransR.

• KGCN (Wang, Zhao et al., 2019) applies GCN to discover the high-
order structural and semantic information from item KGs, and
cross-entropy loss is used to refine the representations.

• KGAT (Wang, He, Cao et al., 2019) trains recommendation and
KGE alternately. All the structural and semantic information are
gained from the graph merged by the user–item graph and the
item KG.

• NGCF (Wang, He, Wang et al., 2019) explores the collaborative
signal in the user–item interaction graph with standard GCL
designs.

• LightGCN (He et al., 2020) is a state-of-the-art GCN-based model,
which abandons the useless operates for recommendation in GCN
– feature transformation and nonlinear activation, and only keeps
the most essential component – neighborhood aggregation.
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5.3. Hyperparameters settings

The settings of hyperparameters largely affect the results. The em-
bedding size is fixed to 64 for all models on all datasets, except KGAT
32 on MovieLens-20M due to its high complexity. The trainable param-
eters are randomly initialized with a uniform distribution by the Xavier
initialization methods (Glorot & Bengio, 2010) which keeps the scale
of the gradients roughly the same in all layers to faster training conver-
gence. The range of the uniform distribution is [−

√

6
√

𝑛𝑗+𝑛𝑗+1
,

√

6
√

𝑛𝑗+𝑛𝑗+1
], in

hich 𝑛𝑗 is the size of layer 𝑗. Mini-batch Adam (Kingma & Ba, 2014)
ptimizer is adopted to optimize parameters due to its effectiveness in
reventing the training from trapping in local optima, where the batch
ize is set as 1024. We apply a grid search for the following parameters:
he learning rate is searched in {0.01, 0.005, 0.001, 0.0005, 0.0001}, the
2 regularization coefficient 𝜆 is tuned in the range from 10−1 to 10−9,

he layer size of GCN applied models (i.e., KGCN, KGAT, NGCF and
ightGCN) is tuned amongst {1, 2, 3, 4, 5}, and the neighbor sampled size
f KGCN is searched in {2, 4, 8, 16, 32}. For KGCN, we keep the hidden
imension of each layer fixed as the embedding size. As to other models
ith multi-standard GCLs (i.e., KGAT and NGCF), the hidden dimension
f the first layer is set as the embedding size, and that of behind layers
re defined as half of their previous layers in general. We consume node
nd message dropout techniques for KGAT and NGCF, and the ratios
ll are set as 0.1. Moreover, early stopping is employed in MovieLens-
0M due to its big scale, i.e., premature stopping if recall@20 does not
ncrease for 10 successive epochs on the test set.

.4. Results

.4.1. Performance comparison with baselines
The results of top- recommendation and preference ranking are

eported in Table 4. From the results we have the following observa-
ions:

• KGCN achieves poor performance in the three datasets (except
recall@20 of MovieLens-20M is a little better than MF). The
reason may be that KGCN gains the connections between items
but ignores that of users and items, and excessive trainable pa-
rameters in KGCN leads to overfitting which is harmful to the
generalization ability of the model, thus limiting the performance.

• The suboptimal performance of MF indicates that the combination
of ID features and inner product are insufficient for capturing
high-order and complex relations, more features and additional
information are necessary. Compare amongst models that ap-
ply item KG as an auxiliary. In contrast to CKE underperforms
than MF in most cases, KGAT consistently outperforms NGCF on
MovieLens-20M and Last-fm. It demonstrates that using KGE to
fine-tune the original representations is better than adding the
representations learned by KGE as supplementary information
to enrich the original representations, which further prove that
the learned KG embeddings via KGE are might not suitable for
recommendation.

• Compare with NGCF, KGCN performs dramatically worse in Book-
Crossing and Last-fm, it verifies that the semantic information
gained from item KG is relatively weak because they lack the
connection between the user and the item, which is essential
for recommendation. Compare LightGCN with NGCF, the perfor-
mance of LightGCN achieves significant improvement on the all
three datasets, which proves again that removing feature transfor-
mation and nonlinear activation is conducive to recommendation.
KLGCN and LightGCN, two LGC-based models, achieve top-2
performance in most cases, a main reason might be that they
have few parameters and low complexity, which is beneficial for
9

preventing overfitting.
Table 4
Overall performance comparison with baseline methods.

MovieLens-20M Book-Crossing Last-fm

recall@20 ndcg@20 recall@20 ndcg@20 recall@20 ndcg@20

MF 0.3066 0.2601 0.1235 0.0791 0.3845 0.2274
CKE 0.3115 0.2520 0.1029 0.0709 0.3791 0.2208
KGCN 0.3115 0.2485 0.0898 0.0637 0.3567 0.1964
KGAT 0.3379 0.2777 0.1049 0.0663 0.4288 0.2485
NGCF 0.2985 0.2503 0.1203 0.0815 0.4049 0.2351
LightGCN 0.3306 0.2909 0.1406 0.0987 0.4230 0.2577
KLGCN 0.3548 0.2972 0.1748 0.1221 0.4333 0.2621

• Compare with all baselines, KLGCN outperforms by a significant
margin over all datasets in most cases. Particularly, KLGCN im-
proves over the best baselines 𝑤.𝑟.𝑡 recall@20 by 5.00%, 24.32%
and 1.05% in MovieLens-20M, Book-Crossing and Last-fm, re-
spectively. As to ndcg@20, it surpasses by 2.17%, 23.71% and
1.71% in the three datasets, respectively. By jointly aggregating
information from historical interaction graph and item KG, and
applying the information to recommendation directly, KLGCN
captures the high-order connectivity as well as enhances the
collaborative signal and semantic information via supplementing
feature similarities of items to achieve better performance, while
KGCN only utilizes KG, NGCF and LightGCN only capture signals
from interaction graph, KGAT and CKE refine the final embedding
through KGE. It demonstrates that the interaction graph and the
item KG are beneficial to each other in recommendation.

5.4.2. Performance comparison w.r.t cold-start scenarios
One of the main purposes of introducing the item KG to recommen-

dation is to alleviate the limitation of cold-start. To explore the ability
of KLGCN in confronting cold-start issues, we vary the ratio of training
set to the original training set from 1.0 to 0.2 and keep the test set fixed.
The results of Book-Crossing and Last-fm are shown in Fig. 5. Jointly
analyzing the two subfigures, we have the following finds:

• The item KG can help resist the cold-start problem, especially in
the case of extremely lack of data – when the ratio decreases to
0.2, the three best performing models are KGCN, KGAT and KL-
GCN, all of which aggregate features from the item KG – since the
useful information about cold-start items, such as the connection
about the cold-start items and the personalized interest of users in
the cold-start items, can be injected into the final embedding, and
therefore, the lack of information about these items can be made
up for to a certain extent and the performance can be maintained.

• Our proposed model KLGCN is able to maintain superior perfor-
mance in cold-start scenarios. In book recommendation, KLGCN
shows the best performance in all sparsity. As to music recom-
mendation, KLGCN shows the best performance when the ratio
decreases to 0.8, and with the ratio decreases, it still maintains
top-3 performance.

5.5. Ablation study of KLGCN

In GCN-based models, the layer of graph convolutional plays a
vital role since it determines the depth of feature aggregation. It has
been verified that 3 layers of LightGCN could lead to a satisfactory
performance, so we keep the layer of LGC fixed and change the layer of
LUCGC and explore its influence. We then study the sampled neighbor
size of LUCGC which determines the width of feature aggregation.
Thirdly, we investigate the effect of the attention mechanism of LUCGC.
Finally, we simply explore the sensitivity 𝑤.𝑟.𝑡 the weights used to

generate the final embedding, i.e., 𝜔 and 𝜇.
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Fig. 5. Performance comparison 𝑤.𝑟.𝑡 different ratio of the training set on Book-Crossing and Last-fm. Training set ratio indicates the ratio to the original training set.
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5.5.1. Impact of LUCGC layer number
To explore how the layer number influences the performance, we

vary it from 1 to 5 while keep other hyperparameters fixed. The results
are summarized in Table 5, wherein LUCGC-l𝑖 indicates LUCGC with 𝑖
layers, the mark — indicates out-of-memory and hence without result.
Analyzing Table 5 we have the following observations:

• The best performance can be achieved in a shallow layer – the
optimal layers of the three datasets are 1, 4 and 1, respectively
– since as the layer deepens, the expansion of neighbor nodes
is inevitable, and there will be over-smoothing issues, i.e., the
representation of nodes tends to be similar, which will cause the
network to be unable to identity the item that users are interested
in.

• Deeper layer means more positive information. Below the optimal
layers, as the number of layers deeps from 1 to 4, recall@20 on
Book-Crossing separately increases 2.23%, 10.34% and 11.41%.

• Deeper layer also means more negative information. Over the op-
timal layers, as the number of layers deeps from 1 to 3, recall@20
on MovieLens-20M separately decreases 6.54% and 0.27%, and
on Last-fm, it drops 14.03% and 6.85%, respectively. A hypothesis
can be proposed, that is with the layer deepens, the noise will
gradually tend to be saturated, in other words, the performance
will be stable.

5.5.2. Impact of LUCGC sampled neighbor number
To investigate how the neighbor size affects the performance, we

search it in the range of {2, 4, 8, 16, 32}. Table 6 shows the result of
changing neighbor size in where LUCGC-n2 indicates that sampling 2
neighbors for each node from its neighbor set, and similar for other
symbols. We can find that

• Aggregating features of the entire neighbors might be subop-
timal because the performance drops as the neighbor size ex-
ceeds a threshold. The threshold can be set as 8 since the best
performance is generally achieved when neighbor size below 8.
10
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Table 5
Performance of LUCGC with different embedding layers.

MovieLens-20M Book-Crossing Last-fm

recall@20 ndcg@20 recall@20 ndcg@20 recall@20 ndcg@20

LUCGC-l1 0.3548 0.2972 0.1391 0.1020 0.4333 0.2621
LUCGC-l2 0.3316 0.2765 0.1422 0.1053 0.3725 0.2286
LUCGC-l3 0.3307 0.2794 0.1569 0.1146 0.3470 0.2184
LUCGC-l4 – – 0.1748 0.1221 – –
LUCGC-l5 – – 0.1429 0.0955 – –

• Below the threshold, as the neighbor size increases, the perfor-
mance of KLGCN improves significantly. For example, the neigh-
bor number increases from 4 to 8, recall@20 on the MovieLens-
20M and Last-fm increase by 4.17% and 9.17%, respectively.
Because the important local information of partial nodes will be
lost when the neighbor field is too small, and a larger neigh-
bor filed will bring more positive information to the feature
aggregation.

• As the threshold is exceeded, the performance of KLGCN drops
quickly with the growing of neighbor size. Recall@20 of
MovieLens-20M and Last-fm respectively drop by 5.48% and
7.47% when increasing neighbor number from 16 to 32, which
signifies that more noises are aggregated and the negative impacts
are gradually exceed the positive impacts.

.5.3. Impact of LUCGC attention mechanism
Neighbors contribute different to the central node, the attention

echanism could affect the model performance significantly. To ex-
lore its impact, we define various attention function by changing the
alues of 𝛼 and 𝛽. 𝑢𝑟 indicates that 𝛼 = 1, 𝛽 = 0, i.e., we only consider
he personalized interests in relations. 𝑐𝑟 indicates that 𝛼 = 0, 𝛽 = 1
hich means that neighbor roles are considered only. 𝑢𝑟&𝑐𝑟 is the base
ttention mechanism in which 𝛼 = 𝛽 = 1. The results are shown in
ig. 6, from which there are several observations we can find:



Expert Systems With Applications 195 (2022) 116513F. Wang et al.
Fig. 6. Performance comparison 𝑤.𝑟.𝑡 different attention mechanism on MovieLens-20M, Book-Crossing and Last-fm.
Fig. 7. Performance 𝑤.𝑟.𝑡 different weight of the LUCGC embedding 𝜇 on Book-Crossing and Last-fm.
Table 6
Performance of KLGCN with different LUCGC sampled neighbors.

MovieLens-20M Book-Crossing Last-fm

recall@20 ndcg@20 recall@20 ndcg@20 recall@20 ndcg@20

LUCGC-n2 0.3317 0.2847 0.1748 0.1221 0.3801 0.2328
LUCGC-n4 0.3406 0.2858 0.1753 0.1190 0.3970 0.2326
LUCGC-n8 0.3548 0.2972 – – 0.4333 0.2624
LUCGC-n16 0.3501 0.2898 – – 0.4043 0.2465
LUCGC-n32 0.3309 0.2640 – – 0.3741 0.2313

• Except ndcg@20 on MovieLens-20M, our model performs best
with 𝑢𝑟&𝑐𝑟 attention mechanism, which illustrates the importance
of both the personalized interests (𝑢𝑟&𝑐𝑟 performs better than 𝑐𝑟)
and neighbor roles (𝑢𝑟&𝑐𝑟 outperforms 𝑢𝑟).

• In all cases, our model with 𝑢𝑟 attention mechanism achieves con-
sistent improvement in contrast to with 𝑐𝑟 attention mechanism,
it verifies that personalized interests play an irreplaceable role in
recommendation which are more important than neighbor roles.
11
5.5.4. Impact of embedding generation weights
The weights 𝜔 and 𝜇 determine the contribution of the partial

embedding to the final embedding, thereby affecting the quality of the
final embedding. We assume 𝜔1 = 𝜔2, 𝜇1 = 𝜇2 and 𝜔𝑖 +𝜇𝑖 = 1, 𝑖 ∈ {1, 2}
to simplify the sensitivity exploration of these weights. In-depth weight
exploration for different datasets is encouraged. Performance change is
shown in Fig. 7, from which we can find that:

• As the weight of LUCGC embedding increases, the performance
shows a significant trend from falling to raising to falling, indi-
cating that the final embedding generation is weight sensitive.
Since the best performance is achieved in the process rather
than when 𝜇 = 0 (i.e., only aggregate information on user–item
interactions) or 𝜇 = 1 (i.e., only aggregate information on item
KGs), it is necessary to combine the information from the two
kinds of source data and an appropriate coupling is needed.

• The optimal value of the weight of LUCGC embedding for Book-
Crossing and Last-fm is 0.3 and 0.5, respectively. It indicates
that the collaborative signal from user–item interaction is more
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important than the semantic information from item KG for rec-
ommendation when combining the two kinds of information,
because the collaborative signal could better reflect the essential
relationship between the user and the item, and it might be
not enough to only reflect the user information in the attention
mechanism or the loss function.

. Conclusions and future work

In this paper, we explore the high-order structural and semantic
nformation in both the user–item interactions and the item KG for rec-
mmendation in a light and effective manner. We propose a new model
amed KLGCN which separately aggregates features from the two kinds
f source data with an end-to-end fashion. The core idea behind the
ggregation layer of KLGCN is removing the feature transformation and
onlinear activation, which are standard in GCL but bring negative
ffect to recommendation as well as highly increase the trainable pa-
ameters, but just adopting a sum aggregator for embedding generation.
n the prediction layer, a weighted sum is used to combine the output
mbeddings of the aggregation layer to fully merge the collaborative
ignal in the interaction graph and the semantic information in the
tem KG. Extensive experiments demonstrate that KLGCN significantly
utperforms state-of-the-art methods in MovieLens-20M, Book-Crossing
nd Last-fm datasets.

We point out four directions for future works: (1) Considering
hat aggregating features of the entire neighbors might be unsuitable
or large graphs and suboptimal for recommendation, the strategy
f sampling neighbors can be applied to both components of the
ggregation layer. Furthermore, exploring a reasonable sampler for
eighbor sampling rather than random sampling is an important direc-
ion. (2) Considering neighbors contribute different to the central node,
ttention mechanism can be also utilized in the feature aggregation
rocess on the user–item interaction graph. (3) Experimental results
ave proved that comparing to the model which only uses interaction
raphs, the model uses item KGs as auxiliary information can improve
he performance, so introducing more types of supplementary data,
ike visual data, for recommendation is a promising direction. (4)
onsidering the problems of time-consuming and resource consumption

n BP-based neural networks (Wang & Cao, 2018), introducing non-
terative training methods (Cao, Hu, Gao, Wang, & Ming, 2020; Cao,

ang, Ming, & Gao, 2018) is a direction worth trying.
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