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JSH-Net: joint semantic segmentation and height estimation 
using deep convolutional networks from single 
high-resolution remote sensing imagery
Bin Zhang , Yi Wan, Yongjun Zhang and Yansheng Li

School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, China

ABSTRACT
Semantic segmentation for high-resolution remote sensing ima-
gery is a pivotal component of land use and land cover categoriza-
tion, and height estimation is essential for rebuilding the 3D 
information of an image. Because of the higher intra-class variation 
and smaller inter-class dissimilarity, these two challenging tasks are 
generally treated separately. This paper proposes a fully convolu-
tional network that can tackle these problems simultaneously by 
estimating the land-cover categories and height values of pixels 
from a single aerial image. To handle these tasks, we develop 
a multi-task learning architecture (JSH-Net) that employs a shared 
feature representation and exploits their potential consistency 
across tasks, resulting in robust features and better prediction 
accuracy. Specifically, we propose a novel skip connection module 
that aggregates the contexts from the encoder part to the decoder 
part, bridging the semantic gap between them. In addition, we 
propose a progressive refinement strategy to recover detailed 
information about the objects. Moreover, we also proposed 
a height estimation branch on the head of the model to utilize 
shared features. The experiments we conducted on ISPRS 2D 
Labelling dataset verified that our network provided precise results 
of semantic segmentation and height estimation from two output 
branches and outperformed other state-of-the-art approaches.
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1. Introduction

High-resolution remote sensing (RS) image interpretation and recognition are among of 
the most touchy topics in the RS field (Ball, Anderson, and Chan 2017; Ma et al. 2019; 
Zhang, Zhang, and Du 2016). Among them, one of the most difficult issues in the RS field 
is the semantic labelling and height estimation of high-resolution RS images (Amirkolaee 
and Arefi 2019; Marmanis et al. 2018). Semantic segmentation of high-resolution RS 
imagery plays a crucial role in land use and land cover categorization (LULC) (Marcos 
et al. 2018), building segmentation (Maggiori et al. 2017a), road detection (Mnih 2013), 
and change detection (Zheng et al. 2021), etc. Height estimation also is necessary for 
rebuilding the 3D information of an image (Srivastava, Volpi, and Tuia 2017). Due to 
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higher intra-class variance and smaller inter-class dissimilarity of high-resolution RS 
imagery, semantic segmentation and height estimation are both challenging tasks.

For semantic segmentation, the specific regions of an image are labelled according to 
their class based on what is being shown (Thoma 2016). To put it another way, every pixel 
in the image is labelled with the corresponding class of visual appearance. As a result, 
semantic segmentation is a pixel-level categorization task. High-resolution RS images with 
sub-metre ground sampling distance (GSD) have recently been accessible, making it 
difficult to distinguish things such as roads and buildings based on their spectral signa-
ture. Therefore, semantic segmentation requires richer semantic representation as well as 
contextual information (Sherrah 2016). For height estimation, the goal for each pixel in an 
image is to assign height values between the ground and objects (Mou and Zhu 2018). In 
RS, the relative height images are usually named as the normalized digital surface model 
(nDSM). A similar problem in computer vision is depth estimation. There are several 
methods for obtaining elevation data in photogrammetry, such as stereo matching for 
pair-wise images or airborne LiDAR point clouds, which are not always possible. This begs 
the question of if height values can be estimated from a single image. However, since 
there are estimating height values from the monocular image is problematic, the task is 
inherently ambiguous and there is a large source of uncertainty (Eigen, Puhrsch, and 
Fergus 2014). However, we believe that certain clues, such as object size, perspective 
change, texture, shading, object occlusion, the effects of atmosphere, and so on, may be 
used to estimate height values from a single image. (Eigen, Puhrsch, and Fergus 2014). 
Thus, one of the most important aspects of height estimation is capturing the long-range 
contextual knowledge to model these cues between objects.

Deep convolutional neural networks (CNN) are currently driving advances in image 
classification (He et al. 2016; Simonyan and Zisserman 2015) and semantic segmentation 
(Long, Shelhamer, and Darrell 2015) in computer vision and are achieving state-of-the-art 
results. Simultaneously, CNNs also are applied for depth estimation (Eigen, Puhrsch, and 
Fergus 2014). Semantic segmentation models in computer vision have been employed for 
high-resolution RS imaging, based on the effectiveness of FCN-based semantic segmen-
tation on natural images (Sherrah 2016). RS data is multimodal when compared to natural 
images due to the unique characteristics of RS. The fusion of multimodal information is 
now considered the typical scenario in the exploitation of RS semantic segmentation. 
Thus, many prior works have used elevation data (DSM or nDSM) as the input of the 
network by using the dual-input network (or the Siamese network) (Audebert, Le Saux, 
and Lefèvre 2018; Audebert, Saux, and Lefèvre 2016; Marmanis et al. 2018, 2016; 
Paisitkriangkrai et al. 2016) or stacking together with multispectral imagery (Liu et al.  
2018a, 2017a; Maggiori et al. 2017b; Marcos et al. 2018; Nogueira et al. 2019; Volpi and 
Tuia 2017). However, the following problems remain to be solved for RS semantic 
segmentation. (1) For objects which present different visual characteristics in high- 
resolution imagery, such as buildings, it is hard to obtain a correct class. (2) Small objects, 
such as cars, due to CNN continuously reducing the size of the feature maps, are too small 
to obtain a precise mask. (3) Last but not least, a key issue remains as far as how multi- 
source data can be used effectively. For example, some methods use height data as input, 
which requires a delicate model design to fuse RGB images and height data; furthermore, 
their models can be used only for images with elevation data only when this data is 
available.

6308 B. ZHANG ET AL.



On the one hand, semantic segmentation extracts the semantic properties of objects 
from images, on the other hand, height estimation focuses on geometric properties. 
Both of them require rich contextual information and can be modelled as a pixel-wise 
labelling problem. With a trainable network, CNNs can extract high-level features in an 
end-to-end manner. To simulate the relationship between the image and various tasks, 
we employed CNN to learn the complicated nonlinear mapping. In the past, these two 
tasks were addressed separately. However, they actually are complementary and con-
sistent. Specifically, semantic segmentation and height estimation both require rich 
contextual information to extract high-level features. Multi-task learning can train multi-
ple different but common tasks simultaneously by leveraging shared feature represen-
tation. As a consequence, we apply multi-task learning to solve them all at once by 
leveraging their similarities across tasks, resulting in robust features and higher predic-
tion accuracy.

We propose a fully convolutional network based on an encoder-decoder topology to 
solve the problems encountered by earlier studies. Specifically, to extract the abstract 
features, the encoder network is a CNN pre-trained on the large image classification 
dataset, with the last two stages modified by dilated convolution to maintain the shape 
of the feature map identical and the spatial information preserved. Then, to recover the 
detailed information, we use a progressive refinement strategy in the decoder network. In 
this process, the high-level features from the decoder network and corresponding high- 
resolution features from the encoder network are fused in this method to generate 
a feature map with high resolution. Unfortunately, combining these two types of feature 
maps by copying original features or using a simple 1� 1 convolution does not provide 
enough detailed and contextual information. Thus, we propose a dilated pyramid skip 
connection module to relieve the semantic mismatch between the encoder layers and the 
decoder layers. Finally, for the semantic segmentation and height estimation tasks, we 
combine the features from various layers to create a shared feature representation. We 
used the ISPRS 2D Labelling dataset as experimental data, and the results indicated that 
our multi-task learning network outperforms existing state-of-the-art approaches.

In summary, the following are the significant contributions of our proposed method:

(1) To aggregate the contexts from the encoder to the decoder, a dilated pyramid skip 
connection module is proposed. The semantic gap between the layers is well 
relieved by making use of contextual information, which makes confusing objects 
distinguishable.

(2) A multi-task learning network JSH-Net is proposed for semantic segmentation and 
height estimation from monocular high-resolution RS images. It achieved state-of- 
the-art performance on two challenging benchmarks: Vaihingen and Potsdam 
datasets in ISPRS Semantic Labelling Challenge. For RS image labelling and height 
estimation, our network establishes a new baseline.

The following is a description of the paper’s organization. Recent methods and develop-
ments in RS image labelling and height estimation are discussed in Section 2. In Section 3, 
the suggested multi-task learning network is explained. The experimental data collection 
and analysis are given in Section 4. Finally, in Section 5, we present our conclusions and 
future research.
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2. Related work

2.1. Semantic segmentation

2.1.1. In the computer vision field
Fully convolution network (FCN) based methods (Badrinarayanan, Kendall, and Cipolla  
2017; Chen et al. 2018b; Long, Shelhamer, and Darrell 2015; Ronneberger, Fischer, and 
Brox 2015; Zhao et al. 2017) can achieve effective feature extraction and end-to-end 
training and thus have become the most optimal choice for semantic segmentation. In 
FCN (Long, Shelhamer, and Darrell 2015), the fully connected layers were converted to 
convolutional layers and the last feature map was upsampled to match the original 
input size. Further, on the PASCAL VOC and Cityscapes datasets, a series of works 
based on FCN have achieved state-of-the-art performance. Contextual information 
played a crucial role in a variety of vision tasks, especially semantic segmentation. To 
extract more effective contexts and to alleviate the problem of limited receptive fields, 
dilated convolutions (or atrous convolutions) were widely used (Chen et al. 2017a,  
2017b, 2018b). To compensate for too small and coarse output feature maps, many 
works have used encoder-decoder structure to refine spatial information gradually 
(Badrinarayanan, Kendall, and Cipolla 2017; Lin et al. 2017; Ronneberger, Fischer, and 
Brox 2015). Pyramid modules, such as atrous spatial pyramid pooling (ASPP) (Chen 
et al. 2017a, 2017b, 2018b) and pyramid pooling module (Zhao et al. 2017), were 
designed to separate multi-scale features and to embed the contextual information. 
Recently, attention modules also have been introduced in semantic segmentation to 
model the long-range dependencies in spatial and channel dimensions and then 
capture useful contexts and extract discriminative features (Fu et al. 2019; Zhang 
et al. 2018).

2.1.2. In remote sensing field
Some past works combined CNN and hand-crafted features, and they frequently 
employed post-processing, such as CRF, to refine the final results (Liu et al. 2017b; 
Paisitkriangkrai et al. 2015). Paisitkriangkrai et al. (2015) proposed a semantic labelling 
network using CNN features, hand-crafted features, and CRFs as post-processing, but their 
predictions only classified the centre pixel every time, which led to excessive redundant 
calculations.

To use multi-sensor data as input, many researchers have combined both the image 
and the DSM data to offer more information to improve performance. Some methods 
adopted the Siamese network for working on two different inputs, e.g. visible images and 
DSM, see Figure 1(a). Sherrah (2016) proposed a network, in which the aerial images were 
used as input of a pretrained VGG network, and the DSM data was used as another FCN 
trained from scratch, then the feature maps from these two networks were concatenated 
to predict the label. Marmanis et al. (2016) presented a Siamese network to integrate the 
images and the DSM data. Their improved version suggested a network that included 
edge detection and semantic segmentation. However, their model is complicated and 
requires phased training (Marmanis et al. 2018). Audebert, Saux, and Lefèvre (2016) 
presented a variant encoder-decoder model with a multi-kernel layer for merging predic-
tions from multiple scales. Then, they created a new network by using FuseNet to 
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accomplish semantic labelling of multi-modal multi-scale RS data (Audebert, Le Saux, and 
Lefèvre 2018).

Other methods exploited multi-modal data by staking them together as the input of 
the network, see Figure 1(b). Volpi and Tuia (2017)) presented an encoder-decoder net-
work, in which the deconvolutions were used to upsample feature maps to the original 
input size. Maggiori et al. (2017b) proposed a CNN framework, which combined different 
layers to obtain hypercolumn features. Liu et al. (2017a) proposed an encoder-decoder 
network to predict semantic labels, and their subsequent work then introduced a novel 
edge loss function to increase the segmentation accuracy at the edge (Liu et al. 2018a). 
Marcos et al. (2018) presented a CNN to enhance the rotation equivariance of the neural 
network. Nogueira et al. (2019) proposed a FCN, which was trained with different sizes of 
images to capture multi-scale features and extract context information.

In addition, some researchers who only used image data as input also obtained 
remarkable results. Wang et al. (2017) proposed a gated segmentation network for 
adaptive information propagation between different levels of feature maps progressively. 
Chen et al. (2018a) introduced two semantic segmentation frameworks with dense 
residual connection modules. Bui et al. (2018) proposed a neural network based on FCN 
and neural search network architecture. Liu et al. (2018b) proposed a FCN, which succes-
sively aggregated contexts from large to small scale. Both Bai et al. (2021) and Li, Lei, and 
Kuang (2021) proposed a module to extract multi-scale contextual features to improve 
the accuracy of semantic segmentation. Wang et al. (2021) used a new transformer as the 
backbone to capture long-term dependencies.

2.2. Height estimation

In the computer vision field, depth estimation is most related to height estimation. Before 
the deep learning methods brought the breakthroughs, depth estimation from a single 
image was generally formulated with a probabilistic graphical model (Liu, Salzmann, and 
He 2014; Saxena, Chung, and Ng 2005, 2008). Eigen, Puhrsch, and Fergus (2014) solved 
this task for the first time by stacking two deep networks. In their extended work, a single 
multi-scale CNN was proposed to address three different computer vision tasks (Eigen and 
Fergus 2015).

Few studies have focused on the height estimation of a single high-resolution RS 
image until recently. Srivastava, Volpi, and Tuia (2017) first estimated the land-cover types 
and height values of pixels simultaneously from a single RS image by utilizing multi-task 

Figure 1. (a). Using multi-sensor data by Siamese network fashion. (b) Using multi-sensor data by 
multi-channel input network.
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learning. Our work in this paper extended their work to further prove the superiority of 
multi-task learning. Ghamisi and Yokoya (2018) used a generative adversarial network to 
predict the high values from a single image. Mou and Zhu (2018) proposed an encoder- 
decoder network to learn the connection between the single RS images and height data. 
Amirkolaee and Arefi (2019) proposed an encoder-decoder CNN to estimate the height 
values from a single image. Liu et al. (2021) proposed a height-embedding context 
reassembly network to predict semantic labels and height values.

3. The proposed method

In this section, the presented multi-task learning network architecture (denoted as JSH- 
Net) for semantic segmentation and height estimation from the single high-resolution RS 
images is illustrated. Our proposed network has two basic components: an encoder 
network and a decoder network. See Figure 2.

3.1. Encoder network

The encoder network was built using a deep neural network pre-trained on ImageNet. 
Generally, the CNN models used for the classification task are not suitable for the dense 
prediction task. To use these models, the final fully-connected layers are deprecated and 
previous convolution layers are used for extracting the high-level abstract features. In this 
paper, for fair comparison with other methods, we used VGG (Simonyan and Zisserman  
2015) and ResNet (He et al. 2016) as the backbone for our encoder network. The output 
feature map of CNN is 32 times smaller than the input resolution size in the conventional 
image classification task, which is harmful for semantic segmentation. Due to the succes-
sive pooling and convolutions with the striding operation, detailed information related to 
the objects is missing. For example, the width of a car usually is about 20 pixels in the 
Vaihingen dataset, which is invisible after reducing it 32 times. Thus, state-of-art networks 
for semantic segmentation usually have a down-sampling rate of 8, which benefits from 
dilated convolution. For example, in DeepLabV3 the backbone adopted different atrous 
rates by the multi-grid method (Chen et al. 2017b). To preserve small and thin objects in 
images and alleviate the grid effect, we used the hybrid dilated convolution in the 

Figure 2. The general network structure for joint semantic segmentation and height estimation.
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encoder network. Specifically, for the fourth stage in ResNet, we grouped every 4 blocks 
and changed their dilation rates to 1, 2, 5, and 9, respectively. For the fifth stage, we set 
the dilation rates to 5, 9, and 17. Therefore, the output stride of our encoder was 8.

After the encoder network, we used the atrous spatial pyramid pooling (ASPP) module 
to capture rich context information. Then, a 1� 1 convolution was employed to reduce 
the channel dimension. The output denotes FASPP 2 R C0�H=8�W=8.

3.2. Context-aggregation skip connection (CASC)

In U-Net, the skip connection was first proposed to connect the encoder part and the 
corresponding decoder part to recover detailed information (Ronneberger, Fischer, and 
Brox 2015). Since then, this structure generally has been used in many related fields. A skip 
connection is usually implemented by copying features directly or using a 1� 1 convolu-
tion. However, this is too simple to capture enough context and detailed information. 
Since encoder features are low-level and their corresponding decoder features are high- 
level, thus there is a semantic mismatch. A simple skip connection can hinder the network 
from extracting the context information correctly.

To handle this problem, inspired by the ASPP module, we proposed a novel skip 
connection architecture CASC to alleviate the gap between the encoder and the 
decoder by capturing the multi-scale features. As illustrated in Figure 3(a), given feature 
maps f 2 R C�h�w from the encoder, we first fed it into a 1� 1 convolution to generate 
new features f1 2 R C0=4�h�w . Then, we fed f into a small parallel network with three 
paths, which included three average pooling operations with different kernel sizes and 
three 3� 3 dilated convolutions with various dilation rates. Specifically, for average 
pooling operations, the kernel sizes were set to s1, s2, s3, and the stride was set to 1. For 
the dilated convolution operations, the dilation rates were set to d1, d2, and d3. After 
that, we had three new feature maps f2; f3; f4f g 2 R C0=4�h�w . Finally, we aggregated 
these feature maps f1; f2; f3, and f4 by a concatenation operation to obtain the final 
feature map f 0 2 R C0�h�w . Compared to copy features directly in the original skip con-
nection, our context aggregation skip connection module has three extra paths to 
capture context information to minimize the gap between the encoder and decoder 

Figure 3. (a) Context-aggregation skip connection. (b) Block in decoder part.
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network. In our approach, the s1, s2 and s3 are set to 3, 5, 7, and d1, d2, and d3 are set to 4, 
8, 12.

3.3. Decoder network

The decoder network is used for restoring feature maps to the input size and mapping 
features from the feature domain to the label domain. To restore the edge information 
accurately, we adopted a direct progressive upsampling approach. As illustrated in 
Figure 3(b), we summed the feature maps from the skip connection and the output of 
the last decoder network for simplicity.

At the same time, the feature maps from the ASPP module FASPP and decoder part 
( F2; F3; F4f g 2 R C0�H=8�W=8) were interpolated to stride 4 to match the size of F1. After 
that, FASPP, F4, F3, F2 and F1 were aggregated to generate the final feature map 
F0 2 R 5C0�H=4�W=4. To conduct semantic segmentation and height estimation simulta-
neously, we used two 1� 1 convolutions to generate a class response map and to 
regress the height values. Finally, two output feature maps were interpolated to the 
input size. The output feature maps denote Fcls 2 R C�H�W and Fheight 2 R1�H�W , 
respectively.

3.4. Loss function

To train a network to handle semantic segmentation and height estimation simulta-
neously, our loss function includes two parts: Lseg and Lheight . For segmentation, we 
employ the usual cross-entropy loss. The sum of the L1 and L2 losses is used to estimate 
height. An additional scaling parameter, λ, has been incorporated into our total loss. For 
simplicity, we set its value to 1. 

Ltotal I;Gs;Gh; θð Þ ¼ Lseg þ λ � Lheight (1) 

Lseg I;Gs; θð Þ ¼
1
n

X

i2I

� logpi ¼
1
n

X

i2I

� log
eF

Gi
s

cls

PC
k¼1 eFk

cls

(2) 

Lheight I;Gh; θð Þ ¼
1
n

X

i2I

Fheight � Gh
�
�

�
�þ Fheight � Gh
�
�

�
�2

� �
(3) 

Where I, Gs and Gh denote input image, ground truth segmentation mask, and height 
map, correspondingly; θ denotes weights of the network; pi denotes probability when the 
class of pixel i belongs to Gi

s; C denotes the number of classes.

4. Experiments and analysis

4.1. Dataset

To validate the performance of the proposed multi-task learning network, we tested it on 
the Vaihingen dataset and Potsdam dataset. The two datasets were classified into six of 
the most common land cover classes: impervious surfaces, building, low vegetation, tree, 
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car, and clutter/background. In semantic segmentation, there must be some error in the 
categories of manual labelling, especially in the adjacent edges between categories. To 
reduce the impact of uncertainty in the classification of the edge during the evaluation, 
the benchmark also provided eroded label images where the edges of the objects were 
eroded 3 pixels. Those boundaries were ignored during the inference.

4.1.1. Vaihingen dataset
This dataset consists of 33 images of various sizes, each consisting of an image cropped 
from a large aerial true orthoimage. The dataset includes three-band images which 
correspond to the near-infrared (IR), red (R), green (G) bands, and DSM. The normalized 
DSM (nDSM) data also was provided for our experiments. The GSD of both, the TOP and 
the nDSM, was 9 cm. Following the works of (Liu et al. 2018a, 2017a; Maggiori et al. 2017b; 
Marcos et al. 2018; Sherrah 2016; Volpi and Tuia 2017), 11 images were utilized in the 
training set, while 5 images were used in the validation set. A test set of the remaining 17 
images was created.

4.1.2. Potsdam dataset
This dataset consists 38 images of the same size. Every image is an aerial true orthoimage 
with four-band that corresponds to the near-infrared (IR), red (R), green (G), and blue (B) 
bands. The dataset also provided DSM and nDSMs. The GSD of both was 5 cm for all 
patches. We selected 16 images as the training set and 8 images as the validation set. The 
remaining 14 images were used as a test set.

It is worth noting that only the IRRG and nDSM images were utilized for training in the 
Vaihingen and Potsdam datasets. For evaluation of the test dataset, all the training and 
validation data are used as the training set. Table 1 summarizes the detailed information 
about the Vaihingen dataset and Potsdam datasets, and Figure 4 shows the number of 
pixels in each class in both datasets. It can be seen that the number of pixels of ‘car’ and 
‘clutter’ is quite small compared to the other classes both in Vaihingen and Potsdam 
datasets, which leads to sampling imbalances between the categories, making it difficult 
to identify them correctly.

4.2. Evaluation metrics

To validate the performance of different methods for semantic segmentation, four 
indicators were used, including per-class F1-score, mean F1-score (mF1), overall accuracy, 

Table 1. Detailed information on the ISPRS 2D semantic labelling challenge dataset.
Vaihingen Potsdam

Total images 33 38
Image size around 2500×2000 6000×6000
GSD 9cm 5cm
Bands IR, R, G, nDSM IR, R, G, B, nDSM
Training images 1, 3, 5, 7, 13, 17, 21, 23, 26, 32, 37 2_10, 2_12, 3_10, 3_11, 4_11, 4_12, 5_10, 5_12, 

6_8, 6_9, 6_10, 6_11, 7_7, 7_9, 7_11, 7_12
Validation images 11, 15, 28, 30, 34 2_11, 3_12, 4_10, 5_11, 6_7, 6_12, 7_8, 7_10
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and mean intersection over union (mIoU). For height estimation, we used MAE and RMSE 
as the criteria. 

precision ¼
TP

TPþ FP
recall ¼

TP
TP þ FN

(4) 

F1 ¼ 2
precision � recall

precisionþ recall
(5) 

These values can be calculated by a pixel-based accumulated confusion matrix, which 
is simply the sum of all the individual confusion matrices. The overall accuracy is derived 
by the normalization of the trace from the accumulated confusion matrix. The IoU is 
a well-known metric for determining how similar two sets are. The IoU is defined as the 
intersection size divided by the union size of two sets. By averaging the per-class IoU, the 
mIoU may be calculated. 

IoU ¼
Rg \ Rp
�
�

�
�

Rg [ Rp
�
�

�
�
¼

Rg \ Rp
�
�

�
�

Rg
�
�
�
�þ Rp
�
�
�
� � Rg \ Rp
�
�

�
�

(6) 

where Rg and Rp indicate the label and prediction pixels, respectively, and �j j denotes the 
number of pixels in the set.

4.3. Implementation details

The following data augmentation approach was employed to alleviate the over-fitting 
problem. First, we used a random set of brightness, contrast, and saturation disturbances. 
The training images were then randomly sampled by flipping them horizontally or 
vertically and rotating them randomly. Finally, the sample patches were randomly 
cropped to 512� 512 pixels. Besides, the dropout also was used to alleviate this problem. 
We employed stochastic gradient descent with a batch size of 8. The weight decay and 
momentum were set to 0.0001 and 0.9, respectively, and the adjustment strategy for the 
learning rate was the poly method. The learning rate was set at 0.01 and the models were 
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Figure 4. (a). Class distribution in the Vaihingen dataset. (b). Class distribution in the Potsdam dataset.
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trained for 80,000 iterations in total. Due to the limitations of GPU memory, RS imagery is 
generally known to be too huge to send into a network. Thus, the test images were 
cropped to 512� 512 patches with 20% overlap in our experiments. To achieve better 
performance, we used multi-scale inference, including horizontal flip, vertical flip, and 
scaling. Then, we averaged the output of each prediction to generate the final output. To 
evaluate our method more accurately, each experiment was conducted three times to 
calculate the mean values.

For the baseline, we used the VGG-16 as the backbone, which was pre-trained on the 
ImageNet dataset. Furthermore, the dilated convolution was used to make the output stride 
8. Finally, a convolutional layer was added at the end of the network for classification.

4.4. The experiments on validation set

The validation set was used to conduct ablation studies to assess the effectiveness of the 
proposed network.

The segmentation results of the ablation study for the CASC module on the Vaihingen 
validation set were presented in Table 2. In this experiment, we performed four simplified 
versions of CASC modules. The first module operated on the channel dimension of the 
encoder features through a 1 × 1 convolution, which increased the accuracy by 2.14 mIoU. 
The second module contains three parallel 3 × 3 convolutions in addition to a 1 × 1 
convolution, and the mIoU reaches 81.16. The third and fourth modules add pooling 
operations with different kernel sizes and convolutions with different dilation rates based 
on the second module, respectively. We observed that adding pooling or dilated con-
volutions further improved the accuracy. If our proposed CASC module was used, the final 
accuracy could reach 81.61 mIoU, which was 2.89 higher than the baseline.

As shown in Table 3, adding the ASPP module with VGG as the backbone brought 
about 2.13 and 2.94 improvements in mF1 and mIoU, respectively. This verified that the 
pyramid module can extract multi-scale features to enhance context information. As we 
can see, the CASC module also can capture context information to decrease the mismatch 
between the encoder and the decoder. In addition, the module also can restore edge 
information accurately using low-level features, which leads to 89.61 in mF1 and 81.57 in 
mIoU. When combining ASPP and CASC at the same time, the performance can be further 
improved, with mF1 up to 89.77 and mIoU up to 81.80. In these experiments, we show 
that the performance can be improved by making use of context information.

Then, we added a branch on the head of the decoder network to predict height values 
to conduct joint training, which further boosts the performance of segmentation. In detail, 
combining HEB and ASPP yielded a result of 81.78 in mIoU, which brought 0.24 

Table 2. Segmentation results of the ablation study for the CASC module on the Vaihingen validation 
set.

Method dilation rates pool kernel size Surf. Building Veg. Tree Car mIoU

baseline 90.88 94.88 79.36 87.86 84.28 78.72
- - 91.33 95.40 79.56 88.54 91.05 80.86

1,1,1 - 91.44 95.55 79.82 88.49 91.48 81.16
1,1,1 3,5,7 91.57 95.50 80.00 88.62 91.49 81.28

4,8,12 - 91.97 95.58 79.78 88.56 91.42 81.34
CASC 4,8,12 3,5,7 92.12 95.92 80.18 88.75 91.19 81.61
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improvement. Similarly, combined CASCs and HEB can reach 81.79 mIoU. Further, com-
bining ASPP, CASC and HEB simultaneously can reach 81.91 mIoU and 89.83 mF1. This 
confirmed joint training improved prediction accuracy for the semantic segmentation 
task by using a shared representation to exploit commonalities across the tasks.

We also employed the ResNet-50 and ResNet-101 as the backbone. As can be seen, our 
proposed network based on ResNet-50 and ResNet-101 performed better than the net-
work based on the VGG-16 network and had 0.39 and 0.72 improvements in mIoU, 
respectively. It is noted that the F1 score of the car class achieved 92.04 with a large 
margin compared to the network based on VGG16.

Beyond that, we also compared our method with other state-of-the-art approaches on 
the Vaihingen validation dataset for a comprehensive evaluation, including ADL, 
RotEqNet, CNN-FPL, DST 2, ERN, MLP, and HCANet. The numerical results are shown in 
Table 3, which shows a considerable improvement between other methods and ours. It is 
demonstrated that our network outperformed the other methods in terms of the mF1 and 
the overall accuracy, which indicated the effectiveness of our method. Besides, our 
method also remarkably surpassed other methods for the class of the car.

In addition, the results on the Potsdam validation dataset are included in Table 4. The 
mF1, overall accuracy, and mIoU were improved by 1.45, 1.62, and 2.42 respectively after 

Table 3. Segmentation results on the Vaihingen validation set. ASPP: atrous spatial pyramid pooling, 
CASC: context-aggregation skip connection, HEB: height estimation branch.

Method Surf. Building Veg. Tree Car mF1 Acc mIoU

ADL (Paisitkriangkrai et al. 2015) 89.10 94.30 77.36 86.25 71.91 83.78 86.89 -
RotEqNet (Marcos et al. 2018) 89.50 94.80 77.50 86.50 72.60 84.18 87.50 -
CNN-FPL (Volpi and Tuia 2017) - - - - - 83.58 87.83 -
DST 2 (Sherrah 2016) 90.41 94.73 78.25 87.25 75.57 85.24 87.90 -
ERN (Liu et al. 2018a) 91.48 95.11 79.42 88.18 89.00 88.64 88.88 -
MLP (Maggiori et al. 2017b) 91.69 95.24 79.44 88.12 78.42 86.58 88.92 -
HCANet (Bai et al. 2021) 92.20 95.55 80.66 88.92 87.36 88.94 89.71
Baseline VGG16 90.96 94.81 79.48 88.04 85.64 87.78±0.06 88.68±0.07 78.60±0.10
VGG16+ASPP 91.85 95.76 80.62 88.78 91.03 89.61±0.10 89.61±0.13 81.54±0.17
VGG16+CASC 91.91 95.73 80.10 88.72 91.58 89.61±0.08 89.54±0.12 81.57±0.15
VGG16+ASPP +CASC 92.09 95.86 80.81 89.01 91.07 89.77±0.03 89.81±0.06 81.80±0.04
VGG16+ASPP+ HEB 92.14 95.98 80.86 88.89 90.91 89.76±0.10 89.83±0.05 81.78±0.15
VGG16+CASC+ HEB 91.82 95.72 80.64 88.90 91.73 89.76±0.05 89.65±0.05 81.79±0.08
VGG16+ASPP +CASC + HEB 92.14 95.92 80.75 89.00 91.34 89.83±0.04 89.84±0.09 81.91±0.07
Ours ResNet 50 92.57 96.39 80.76 88.75 91.76 90.05±0.06 90.00±0.11 82.30±0.10
Ours ResNet 101 92.66 96.46 81.25 88.87 92.04 90.26±0.08 90.17±0.09 82.63±0.16

Table 4. Segmentation results on the Potsdam validation set. ASPP: atrous spatial pyramid pooling, 
CASC: context-aggregation skip connection, HEB: height estimation branch.

Method Surf. Building Veg. Tree Car Clutter mF1 Acc mIoU

Baseline VGG16 90.56 94.07 83.51 85.30 94.22 70.25 89.53±0.13 87.97±0.10 81.34±0.21
VGG16+ASPP 92.26 95.42 85.32 86.16 95.74 75.41 90.98±0.07 89.59±0.10 83.76±0.10
VGG16+CASC 91.99 95.32 85.22 85.99 95.87 74.47 90.87±0.03 89.43±0.03 83.59±0.04
VGG16+ASPP +CASC 92.30 95.56 85.38 86.07 95.88 77.16 91.04±0.10 89.73±0.11 83.86±0.17
VGG16+ASPP+HEB 92.27 95.67 85.34 85.89 95.95 77.02 91.03±0.07 89.70±0.14 83.85±0.11
VGG16+CASC+HEB 92.13 95.48 85.28 86.13 95.81 76.09 90.97±0.02 89.62±0.09 83.74±0.04
VGG16+ASPP +CASC 

+HEB
92.28 95.57 85.60 86.13 95.97 77.52 91.13±0.06 89.84±0.06 84.02±0.09

Ours ResNet 50 92.89 95.88 85.37 86.34 96.60 76.66 91.41±0.04 90.00±0.09 84.54±0.07
Ours ResNet 101 92.57 96.01 85.63 86.33 96.72 76.97 91.48±0.02 90.05±0.05 84.60±0.05
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adding the ASPP module. It shows an increase of 1.46 mIoU when adding the CASC 
module. Add combining ASPP and CASC also boosted performance, which can reach 
91.04 mF1 and 83.86 mIoU. For the class of clutter, the mF1 was improved by 6.91 with 
a large margin compared with the baseline. This also shows that the performance can be 
improved by making use of context information in images.

When predicting the land-cover types and height values of pixels simultaneously, the 
accuracy can be promoted further. Similar to the results on the Vaihingen dataset, 
combining ASPP, CASC, and HEB modules at the same time, the highest accuracy can 
be achieved. That demonstrated that more robust features can be learned by using multi- 
task learning. We also tried to utilize ResNet-50 and ResNet-101 as the backbone and the 
result exhibited the best overall performance. Compared to the results on the Vaihingen 
dataset, we noted that the performance of the car class was higher. We argued that the 
images of the Potsdam dataset have higher GSD, thus cars occupy more pixels, which 
makes cars easier to classify.

Furthermore, the visualization results of different modules on the Vaihingen validation 
set are shown in Figure 5. Combining the CASC and HEB modules produces the most 
comprehensive segmentation for the entire building, further validating the effectiveness 
of our proposed module.

4.5. Comparison with state-of-the-arts on the Vaihingen and Potsdam dataset

In this section, the state-of-the-art approaches and our proposed method were compared 
on ISPRS Vaihingen and Potsdam datasets.

4.5.1. Vaihingen dataset
We evaluated our approach on the Vaihingen test set and the evaluation is shown in 
Table 5 alongside other state-of-the-art approaches. In general, our method achieved 
91.4% overall accuracy, which exceeded most of the other methods. Our method per-
formed well in all the given classes. More specifically, although the pixels of the car and 
clutter classes only accounted for a small part of the total image pixels, our results 
achieved better performance, resulting in 90.4 and 63.5 on the F1 score. Some methods 

Figure 5. Qualitative comparison with different modules on ISPRS Vaihingen validation set.
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used post-processing such as CRF to refine their prediction (Marmanis et al. 2016; 
Paisitkriangkrai et al. 2015; Sherrah 2016). However, our method did not use any post- 
processing. In addition, some works combined both image and elevation data as input to 
offer more information to get better performance (Audebert, Le Saux, and Lefèvre 2018; 
Audebert, Saux, and Lefèvre 2016; Marmanis et al. 2018, 2016; Nogueira et al. 2019; 
Piramanayagam et al. 2018; Volpi and Tuia 2017). In our case, we used nDSM as the 
output to estimate height values, which made the network learn more robust features 
and leads to stronger regularization. Although HCANet and MACANet propose a skip 
connection module, our network can achieve higher segmentation accuracy. In addition, 
HECR-Net proposed the same idea as ours (using multi-task learning to predict segmenta-
tion maps and relative height maps simultaneously). However, our method is more 
accurate in the building and vehicle classes. BANet uses a new lightweight Transformer 
backbone. However, our method achieves higher performance than theirs.

A confusion matrix is shown in Table 6. It is easy to see that the class most likely to be 
misclassified is the clutter (background) class. Because the number of clutter category 
samples was very small and contained a wide variety of object categories, it was difficult 

Table 5. Segmentation results on the Vaihingen test set.
Method Surf. Building Veg. Tree Car Clutter mF1 Acc

UZ_1 (Volpi and Tuia 2017) 89.2 92.5 81.6 86.9 57.3 4.6 81.5 87.3
ADL_3 (Paisitkriangkrai et al. 2015) 89.5 93.2 82.3 88.2 63.3 - 83.3 88.0
CVEO (Chen et al. 2018a) 90.5 92.4 81.7 88.5 79.4 38.3 86.5 88.3
Ano2 (Zhang et al. 2017) 90.4 93.0 81.4 88.6 74.5 47.5 85.6 88.4
DLR_2 (Marmanis et al. 2016) 90.3 92.3 82.5 89.5 76.3 - 86.2 88.5
VNU4 (Bui et al. 2018) 91.2 93.6 81.5 88.2 77.7 45.1 86.4 89.0
DST_2 (Sherrah 2016) 90.5 93.7 83.4 89.2 72.6 - 85.9 89.1
UFMG_5 (Nogueira et al. 2019) 91.0 94.6 82.7 88.9 82.5 - 87.9 89.3
ONE_7 (Audebert, Saux, and Lefèvre 2016) 91.0 94.5 84.4 89.9 77.8 - 87.5 89.8
RIT_7 (Piramanayagam et al. 2018) 91.7 95.2 83.5 89.2 82.8 - 88.5 89.9
V-FuseNet (Audebert, Le Saux, and  

Lefèvre 2018)
91.0 94.4 84.5 89.9 86.3 - 89.2 90.0

DLR_9 (Marmanis et al. 2018) 92.4 95.2 83.9 89.9 81.2 - 88.5 90.3
GSN3 (Wang et al. 2017) 92.2 95.1 83.7 89.9 82.4 48.7 88.7 90.3
NLPR2 (Sun et al. 2017) 92.6 95.3 84.7 90.0 81.0 53.2 88.7 90.7
CASIA2 (Liu et al. 2018b) 93.2 96.0 84.7 89.9 86.7 50.4 90.1 91.1
DDCM-Net (Liu et al. 2020) 92.7 95.3 83.3 89.4 88.3 - 89.8 90.4
EaNet (Zheng et al. 2020) 93.4 96.2 85.6 90.5 88.3 - 90.8 91.2
CCANet (Deng et al. 2021) 93.3 94.3 82.0 88.6 86.6 - 89.0 91.1
BANet (Wang et al. 2021) 92.2 95.2 83.8 89.9 86.8 - 89.6 90.5
HCANet (Bai et al. 2021) 92.5 95.0 84.2 89.4 84.0 - 89.0 90.3
MACANet (Li, Lei, and Kuang 2021) 88.4 91.6 77.8 85.6 78.5 - 84.4 -
HECR-Net (Liu et al. 2021) 93.6 95.5 85.8 90.4 89.1 - 90.9 91.5
JSH-Net 93.3 96.3 85.0 90.0 90.4 63.5 91.0±0.11 91.4±0.03

Table 6. Confusion matrix on the Vaihingen test set.
predicted

Surf. Building Veg. Tree Car Clutterreference

Surf. 0.937 0.022 0.043 0.008 0.057 0.012
Building 0.024 0.966 0.011 0.001 0.007 0.007
Veg. 0.030 0.009 0.843 0.100 0.003 0.004
Tree 0.008 0.001 0.083 0.910 0.001 0.003
Car 0.003 0.001 0.000 0.000 0.878 0.002
Clutter 0.009 0.007 0.000 0.000 0.008 0.464
Precision 0.927 0.960 0.860 0.893 0.921 0.942
Recall 0.937 0.966 0.843 0.910 0.878 0.464
F1 0.932 0.963 0.851 0.901 0.899 0.622
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for the networks to distinguish this class. The other two confusing categories were low 
vegetation and tree. We think it is difficult to distinguish these two classes simply by 
relying on the texture information in the image. To improve recognition accuracy, more 
extra information is needed.

Figure 6 displays some of the qualitative results on large patches of the Vaihingen test 
set. The results of other methods were obtained from the website. As can be seen, our 
method produced more accurate and finer structures compared to the other methods. 
For big buildings (first, third, and fourth images), the other methods’ results often 
produced incomplete segmentation results. These manmade structures were irregular 

Figure 6. Qualitative comparison with other competitors’ methods on small patches of ISPRS 
Vaihingen challenge TEST SET.
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in shape, the roof material was very different from the other buildings and some buildings 
had vegetation on the roof, which made these buildings confusing, see the first, second, 
third, and seventh small patches in Figure 7, especially the seventh image. For fine- 
structured objects, such as cars and clutter, the other methods tended to obtain inaccu-
rate recognition. For example, there are many cars in the parking lot in the fourth image. 
The other methods tended to identify cars as buildings. However, our method achieved 
coherent labelling for fine-structured objects. In addition, as seen in the fifth and sixth 
images, our approach for the clutter class was more robust for the intricate scenarios.

4.5.2. Potsdam dataset
Similarly, we showed the evaluation predictions on the Potsdam test set in Table 7 and 
compared with the other state-of-the-art approaches, from which a conclusion was drawn 
similar to that for the Vaihingen dataset. Our method achieved 92.0% overall accuracy and 
93.9 mF1. For the six classes, our results also demonstrated the best performance. 
Similarly, the classes of impervious surfaces, building, car, and clutter achieved better 
performance compared to the other methods. Moreover, we observed a relatively small 
increase in the Potsdam dataset in the vehicle and background categories compared to 

Figure 7. Qualitative comparison with other competitors’ methods on small patches of ISPRS 
Vaihingen challenge TEST SET.
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the Vaihingen dataset. We suspect this was attributable to the lower intra-class variance of 
the Potsdam dataset. We also show a confusion matrix in Table 8. The two most confusing 
categories were low vegetation and tree, which is also consistent with the Vaihingen 
dataset. We argue that the low vegetation and tree classes have a smaller inter-class 
variance, which makes their recognition accuracy relatively low.

We also visualized some of the results from the large whole patches and small 
patches on the test set of the Potsdam dataset in Figures 8 and 9. Compared to the 
other methods, our results contained more accurate detailed information. For build-
ings, our approach was more robust to building diversity. For example, the other 
methods did not accurately identify the buildings in the second image of Figure 9, 
and there were flaws in their results. Although the results of our models also had 
a few flaws, our method achieved a relatively more consistent segmentation result 
and precise edges. For fine-grain objects, our results achieved clear and precise 
results. In the fifth image of Figure 9, it is noted that a grid pattern exists in the 
lower vegetation in the results of DST5 and CASIA2 while our results did not. 
However, our results in some of the complicated scenes struggled with the clutter 
class, such as the first and fifth images in Figure 8, which we believe that more 
contextual information or more training data would improve the results.

Table 7. Segmentation results on the Potsdam test set.
Method Surf. Building Veg. Tree Car Clutter mF1 Acc

UZ_1 (Volpi and Tuia 2017) 89.3 95.4 81.8 80.5 86.5 29.3 86.7 85.8
UFMG_4 (Nogueira et al. 2019) 90.8 95.6 84.4 84.3 92.4 49.5 89.5 87.9
RIT_L7 (Liu et al. 2017b) 91.2 94.6 85.1 85.1 92.8 46.8 89.8 88.4
CVEO (Chen et al. 2018a) 91.2 94.5 86.4 87.4 95.4 40.2 91.0 89.0
DST_5 (Sherrah 2016) 92.5 96.4 86.7 88.0 94.7 56.2 91.7 90.3
RIT4 (Piramanayagam et al. 2018) 92.6 97.0 86.9 87.4 95.2 54.4 91.8 90.3
V-FuseNet (Audebert, Le Saux, and 

Lefèvre 2018)
92.7 96.3 87.3 88.5 95.4 - 92.0 90.6

CASIA2 (Liu et al. 2018b) 93.3 97.0 87.7 88.4 96.2 59.1 92.5 91.1
DDCM-Net (Liu et al. 2020) 92.9 96.9 87.7 89.4 94.9 - 92.4 90.8
BANet (Wang et al. 2021) 93.3 96.7 87.4 89.1 96.0 - 92.5 91.1
HCANet (Bai et al. 2021) 93.1 96.6 87.0 88.5 96.1 61.2 92.3 90.8
MACANet (Li, Lei, and Kuang 2021) 90.6 94.3 83.5 84.0 90.0 - 88.5 -
HECR-Net (Liu et al. 2021) 93.8 97.4 88.7 89.2 95.4 - 92.9 91.8
JSH-Net 94.3 97.7 88.5 89.1 97.2 63.2 93.9±0.05 92.0±0.06

Table 8. Confusion matrix on the Potsdam test set.
predicted

Surf. Building Veg. Tree Car Clutterreference

Surf. 0.952 0.009 0.036 0.022 0.003 0.042
Building 0.007 0.982 0.003 0.004 0.000 0.021
Veg. 0.017 0.003 0.910 0.061 0.000 0.049
Tree 0.010 0.002 0.081 0.878 0.012 0.010
Car 0.000 0.000 0.000 0.001 0.975 0.002
Clutter 0.031 0.017 0.025 0.005 0.018 0.521
Precision 0.935 0.970 0.862 0.904 0.966 0.808
Recall 0.952 0.982 0.910 0.878 0.975 0.521
F1 0.943 0.976 0.885 0.891 0.971 0.633
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4.6. The results of height estimation on Vaihingen and Potsdam dataset

The quantitative results of height estimation were reported in Table 9 and the 
qualitative results were shown in Figure 10. Because the benchmark did not provide 
height estimation results, we only compared our results with the ground truth. Our 
model reached 0.037 and 0.067 for MAE and RMSE on the Vaihingen dataset, respec-
tively. For a simple scene, height estimation can get good performance. We believe 
that semantic segmentation and height estimation are complementary and consistent 

Figure 8. Qualitative comparison with other competitors’ methods on large tiles of ISPRS Potsdam 
challenge TEST SET.
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and predicting only the semantic class can cause model over-fitting. However, multi- 
task learning can improve the generalization capability of the model due to shared 
features, which can be thought of as a kind of regularization. For example, in the first 
and fourth images of Figure 6, because there is the vegetation on the roof of the big 
buildings, the other methods identified the buildings as low vegetation. But in our 
case, the big buildings were recognized correctly, which means that height estimation 
can conduce to semantic segmentation. The same situation also occurred in the 
Potsdam dataset. In addition, the generated nDSM contained some flaws because of 
the restriction of the algorithm. For example, in the area of the big building, the 

Figure 9. Qualitative comparison with other competitors’ methods on small patches of ISPRS 
Vaihingen challenge TEST SET.

Table 9. The results of height estima-
tion on the Vaihingen and Potsdam test 
set.

dataset MAE RMSE

Vaihingen 0.037 0.067
Potsdam 0.047 0.098
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elevation in ground truth is missing in the second row of Figure 10, which will lead to 
the wrong supervised signal to train the model.

4.7. The analysis of the proposed network

4.7.1. Computational cost analysis
To evaluate the computational cost of our method and other state-of-the-art methods, we 
compared the number of parameters, computational cost (FLOPs), inference time, and 
mIoU on the Vaihingen validation set. The cost and inference time were calculated when 
the input image size was 512 × 512 and the GPU was NVIDIA GTX 3090. As shown in 
Table 10, when using VGG16 as the backbone, our method has higher mIoU than FCN and 
UNet, but its parameters and computational cost are relatively high. However, it is 
worthwhile that the proposed method leverages multi-task learning to improve semantic 
segmentation results. When using ResNet50 as the backbone, the proposed method still 
achieves higher mIoU than PSPNet, DeeplabV3, and DANet. Moreover, compared to 

Figure 10. Qualitative comparison for results of height estimation.
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DeeplabV3, the proposed method requires a small number of parameters, less computa-
tional cost, and less inference time.

4.7.2. Comparison with the state-of-the-art methods
Compared with the methods using only image information networks, our approach differs 
from others in that we take into account the mismatch between encoder and decoder 
features and propose a new skip connection module that aggregates contextual informa-
tion, alleviating the divide in its corresponding features and improving the ability of the 
network to segment complex features. Compared with other methods that directly input 
elevation information as auxiliary data into the network, the main advantage of our 
approach is that our network does not narrow the application of the network. Inputting 
elevation information as auxiliary data into the network requires that elevation informa-
tion must be available for use in tests or real-world situations. In contrast, our network is 
tested under the same conditions as other networks that use image information.

Some networks share our approach of using height-assisted data as output, such as 
Srivastava, Volpi, and Tuia (2017). However, our approach differs from others in that our 
method improves the network’s ability to handle complex scenes by introducing a skip- 
join module that aggregates contextual information and validates multi-task learning 
effectiveness. Compared with HECR-Net (Liu et al. 2021) and CI-Net (Gao et al. 2021), 
which explore the use of predicted height maps to improve semantic segmentation 
results further, CI-Net designs a scene understanding module and a feature complemen-
tation module based on a self-attentive mechanism. Our approach is similar in that both 
use a single image to predict the semantic map and the depth map (or height map) via 
a multi-task network. Our approach differs because our network aggregates features at 
different scales to train discriminative features. Our approach is complementary to both 
methods.

4.7.3. Limitations of the proposed method
The above experiments show that the proposed method improves the accuracy of 
semantic segmentation, especially for buildings and cars. However, the proposed method 
still suffers from some limitations as follows:

(1) We observe that the segmentation results are not good enough when dealing with 
some complex buildings or buildings affected by shadows (see the first four rows of 
Figure 11). A possible solution to this problem is to fuse images and elevation data 
to further improve building segmentation accuracy.

Table 10. Comparison of computational cost with state-of-the-art methods.

Models Backbones
Params 
(Million)

FLOPs 
(Giga)

Inference time 
(ms) mIoU

FCN (Long, Shelhamer, and Darrell 2015) VGG16 16.2 80.73 10.67 74.29
UNet (Ronneberger, Fischer, and Brox 2015) VGG16 24.6 113.69 14.33 81.61
PSPNet (Zhao et al. 2017) ResNet50 46.6 178.45 30.07 82.04
DeepLab V3 (Chen et al. 2017b) ResNet50 65.74 269.65 35.65 81.76
DANet (Fu et al. 2019) ResNet50 47.46 199.07 31.89 81.86
JSH-Net VGG16 26.95 152.58 18.29 81.97
JSH-Net ResNet50 51.52 213.59 35.37 82.22
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(2) The correctness of segmentation is greatly reduced when encountering samples 
with different distributions or unseen categories (last row of Figure 11). In the 
future, this can be mitigated by domain adaptation methods using a large number 
of unlabelled samples.

(3) The proposed network requires a large number of high-precision labelled samples. 
In practical applications, the available annotated samples may be very limited. 
A way to overcome this problem is to incorporate prior knowledge in the field of 
remote sensing into deep networks, such as using remote sensing knowledge 
graphs to assist semantic segmentation, and another way is to use a large number 
of unlabelled samples to improve the accuracy of the network through semi- 
supervised learning.

5. Conclusion

We proposed a multi-task learning convolutional network for semantic segmentation and 
height estimation in this research. In detail, a dilated pyramid skip connection module was 
proposed, which can aggregate context information from the encoder part and alleviate 
the semantic mismatch between the encoder network and decoder network. Its main 
objective is to increase the ability of the network to recognize objects of different scales 
and sizes. The experimental results on two ISPRS datasets show that using the CASC 
module can increase the recognition ability of complex objects (such as buildings with 
shadows) and small objects (cars). Furthermore, the progressive refinement strategy was 
proposed to recover detailed information about objects. Moreover, we also proposed 
a height estimation branch on the head of the model to utilize shared features and exploit 
their potential similarity across the tasks, resulting in robust features and higher 

Figure 11. Segmentation results of complex objects.
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prediction accuracy. Our experiments verified that our approach can achieve state-of-the- 
art results on the ISPRS benchmarks by multi-task learning, which demonstrated that our 
method is effective for high-quality semantic segmentation and height estimation. In the 
future, we intend to further address the limitations in the proposed network and explore 
the application of multi-task learning in RS imagery.
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