
Hierarchical Memory Learning for Fine-Grained
Scene Graph Generation

Youming Deng1 Yansheng Li1(�) Yongjun Zhang1 Xiang Xiang2

Jian Wang3 Jingdong Chen3 Jiayi Ma4

1School of Remote Sensing and Information Engineering, Wuhan University
2School of Artificial Intelligence and Automation, Huazhong University of Science

and Technology 3Ant Group
4 Electronic Information School, Wuhan University

Abstract. Regarding Scene Graph Generation (SGG), coarse and fine
predicates mix in the dataset due to the crowd-sourced labeling, and the
long-tail problem is also pronounced. Given this tricky situation, many
existing SGG methods treat the predicates equally and learn the model
under the supervision of mixed-granularity predicates in one stage, lead-
ing to relatively coarse predictions. In order to alleviate the impact of
the suboptimum mixed-granularity annotation and long-tail effect prob-
lems, this paper proposes a novel Hierarchical Memory Learning (HML)
framework to learn the model from simple to complex, which is similar to
the human beings’ hierarchical memory learning process. After the au-
tonomous partition of coarse and fine predicates, the model is first trained
on the coarse predicates and then learns the fine predicates. In order to
realize this hierarchical learning pattern, this paper, for the first time,
formulates the HML framework using the new Concept Reconstruction
(CR) and Model Reconstruction (MR) constraints. It is worth noticing
that the HML framework can be taken as one general optimization strat-
egy to improve various SGG models, and significant improvement can be
achieved on the SGG benchmark.

Keywords: Scene Graph Generation, Mixed-Granularity Annotation,
Hierarchical Memory Learning

1 Introduction

The task of Scene Graph Generation (SGG) [51] is a combination of visual
object detection and relationship (i.e., predicate) recognition between visual ob-
jects. It builds up the bridge between computer vision and natural language.
SGG receives increasing attention since an ideal informative scene graph has a
huge potential for various downstream tasks such as image caption [17,54] and
VQA [1,31]. To pursue the practical application value, SGG models keep working
towards generating an informative scene graph where the fine-grained relation-
ship between two objects should be predicted. Earlier works like [43,53,57] only
design models for feature refinement and better representation. However, they

ar
X

iv
:2

20
3.

06
90

7v
5

 [
cs

.C
V

]
 2

1
O

ct
 2

02
3

2 Y. Deng et al.

Layer1
Layer2

on

sitting on parked onabove …...

near

between …... in front of

playing eating…...

…...

…...

on

parked on

sitting on

above

…...

near

in front of

between
…...

playing
eating

…...
…...

Layer 1
(e.g., “on”)

Layer 2
(e.g., “ parked on”)

Coarse Model

Fine Model

sidewalkseat wheel

bike

parked on

plate

K
n

o
w

le
d

ge

bike-on/parked on?-sidewalk
plate-on/on back of?-bike

Clustering

Fig. 1: Automatic Predicate Tree Construction and visualization of the
HML Framework. After constructing a hierarchical predicate tree via clus-
tering, the model is trained with the HML framework to make the fine-grained
predicate prediction.

ignore the dataset and task properties, limiting the performance. In order to
deal with the long-tail effect and various biases [42] within the dataset, recent
works including [7,16,39,42] move towards designing the learning framework to
improve the overall performance of several classic SGG models. Even with this
progress, making the fine-grained predicate prediction is still challenging.

Generally speaking, two factors lead to a frustrating result. The first is
the mixed-granularity predicates caused by artificial subjective annotation. The
predicate recognition in the dataset is much trickier than the image classifica-
tion tasks. For instance, although Microsoft coco [29] has super categories, it
does not require a model to have the ability to make a different prediction like
“bus” and“vehicle” for a visually identical object. However, in the SGG task, a
more general predicate like “on” and a more informative one like “parked on”
will be learned and predicted simultaneously. Under this training condition, it
is a dilemma for models since machines cannot understand why almost identical
visual features have different annotations and require them to make different
prediction results. The second one is the long-tail effect which exists objectively
in nature. Some of the dominant predicate classes are almost 1,000 times as
many as less-frequent ones, leading to a bad performance on those less frequent
predicates. Too many general predicates like “on” in training will lead to insuf-
ficient training for less-frequent ones like “eating” and drifting preference away
from fine ones such as “parked on”. Some methods, including re-weighting and
re-sampling, seem to be suitable choices. However, due to the hierarchical anno-
tation in the dataset, the improvement seems to be limited according to [42].

HML for SGG 3

When training the deep network, problems like the long-tail effect and mixed-
granularity annotation are universal but catastrophic to the deep network train-
ing. In contrast, humans seem capable of handling these complicated problems.
As shown in cognitive psychology research [14], human beings appear to learn
gradually and hierarchically. Coincidentally, the semantic structure of predicates
in VG is similar to our real-life naming, consisting of mixed-granularity infor-
mation. For instance, parents often teach their kids to recognize “bird” first
and then go for the specific kinds like “mockingbird” or “cuckoo”. Inspired by
this, we realize that it is plausible to design a hierarchical training framework
to resolve the abovementioned problems by imitating human learning behavior.

This work proposes a Hierarchical Memory Learning (HML) framework for
hierarchical fashion training with the abovementioned consideration. At the very
beginning, we cluster predicates, establish a hierarchical tree in Fig. 1 and sep-
arate the dataset by the tree layers without any extra manual annotation. To
realize hierarchical training, Concept Reconstruction (CR) is used to inherit
the previous model’s predicate recognition ability by imitating its output. For a
similar purpose, Model Reconstruction (MR) directly fits the parameters in the
previous model as a stronger constraint. Under this training scenario, the model
gets less chance to confront the previously discussed dilemma and is much easier
to train with a relatively small and balanced fraction of predicates.

The proposed HML framework is a general training framework and can train
any off-the-shelf SGG model. Fig. 1 shows the scene graph generated by the
hierarchical training scenario. The scene graph predicted by the model trained
with the HML framework is more comprehensive and fine-grained. The predicted
relationships such as “bike-parked on-sidewalk” and “plate-on back of-bike” are
more informative and meaningful than“bike-on-sidewalk” and “plate-on-bike”.

The main contributions of this work can be summarized as follows:

– Inspired by human learning behavior, we propose a novel HML framework,
and its generality can be demonstrated by applying it to various classic
models.

– We present two new CR and MR constraints to consolidate knowledge from
coarse to fine.

– Our HML framework overperforms all existing optimization frameworks. Be-
sides, one standard model trained under HML will also be competitive among
various SGG methods with the trade-off between fine and coarse prediction.

2 Related Work

2.1 Scene Graph Generation

SGG [44,51,57] has received increasing attention in the computer vision com-
munity because of it’s potential in various down-stream visual tasks [19,46,54].
Nevertheless, the prerequisite is the generation of fine-grained and informative
scene graphs. Recent works consider SGG mainly from three perspectives.

4 Y. Deng et al.

Model Design. Initially, some works designed elaborate structures for better
feature refinement. [51] leveraged GRUs to pass messages between edges and
nodes. [59] explored that the feature of objects and predicates can be repre-
sented in low-dimensional space, which inspired works like [20,50,36]. [57] chose
BiLSTM for object and predicate context encoding. [43] encoded hierarchical and
parallel relationships between objects and carried out a scoring matrix to find
the existence of relationships between objects. Unfortunately, the improvement
is limited to elaborate model design alone.
Framework Formulation. Later works tried to design the optimization frame-
work to improve the model performance further. Based on causal inference, [42]
used Total Direct Effect for unbiased SGG. [39] proposed an energy-based con-
straint to learn predicates in small numbers. [56] formulated the predicate tree
structure and used tree-based class-balance loss for training. [56] and our work
both focus on the granularity of predicates and share some similarities.
Dataset Property. The long-tail effect was particularly pronounced in VG,
making studying this problem very important. [7] utilized dynamic frequency
for the better training. [9] proposed a novel class-balance sampling strategy to
capture entities and predicates distributions. [16] sought a semantic level balance
of predicates. [27] used bipartite GNN and bi-level data re-sampling strategy to
alleviate the imbalance. However, another problem (mixed-granularity annota-
tion) in the dataset is not fully explored, which inspires this work. Our concurrent
work [11] also borrowed the incremental idea to overcome this problem. We add
semantic information for the separation and stronger distill constraint for better
head knowledge preserving, while [11] learns better at the tail part.

2.2 Long-Tail Learning

Only a few works like [7,9,16,27] cast importance on the long-tail effect in VG.
In fact, many long-tail learning strategies can be used in SGG. The previous
works tackling the long-tail effect can be roughly divided into three strategies.
Re-sampling. Re-sampling is one of the most popular methods to resolve class
imbalance. Simple methods like random over or under-sampling lead to over-
fitting the tail and degrading the head. Thus, recent work like [13,21,47,61]
monitored optimization process of depending only instance balance.
Cost-sensitive Learning. Cost-sensitive learning realizes class balance by ad-
justing loss for different classes during training. [8,29,38] leveraged label fre-
quency to adjust loss and prediction during the training. [40] regarded one
positive sample as a negative sample for other classes in calculating softmax
or sigmoid cross-entropy loss. Other works [4,22] tried to handle the long-tail
problem by adjusting distances between representation features and the model
classifier for different classes.
Transfer or Incremental Learning. Those methods help to transfer informa-
tion or knowledge from head to tail and enhance models’ performances. [30,55]
proposed a guiding feature in the head to augment tail learning. [48] learned to
map few-shot model parameters to many-shot ones for better training. Works
like [15,28,32] helped to distill knowledge directly from the head to the tail.

HML for SGG 5

3 Approach

We will first introduce how to automatically construct a hierarchical predicate
tree via clustering (Sec. 3.1). And then turn back to explain our HML framework
in (Sec. 3.2), along with loss formulation for CR (Sec. 3.3) and MR (Sec. 3.4).

3.1 Soft Construction of Predicate Tree

In order to form a predicate tree for our training scenario, we firstly embed
all 50 predicates in the dataset into feature vectors with the pre-trained word
representation model in [33]. After that, motivated by reporting bias [34], we
cluster predicates into different groups and do some soft manual pruning (e.g.,
re-classifying some mistakes into different groups). We finally pick up the top-K
frequent predicates within each group as the first K layers of the tree.

As for clustering, we choose the traditional distributed word embedding
(DWE) algorithm [33], since we wish to eliminate the context from objects or
subjects which can provide extra information [57] to the predicate embedding.
We iterate through all 50 predicates from frequent to less-frequent for cluster-
ing. The first predicate is automatically divided into the first group and records
its embedding vector to be the initial value of the first group representation
R1 = DWE(x1). As for the following ones, we calculate the cosine distance
among all current group representations:

SSij =
Ri ·DWE(xj)

||Ri|| × ||DWE(xj)||
, (1)

where SSij is the semantic similarity between current iterated predicate xj and
ith group representations Ri. DWE(x) represents distributed word embedding
function on the predicate. Max cosine distance SSij

max will be recorded and com-
pared with the empirical threshold TSS whose setting is mentioned in Sec. 4.3.
If SSij is larger than the threshold, the currently iterated predicate xj will be
added to the existing group. Otherwise, we create a new group for it. The group
representations will be updated in the following rule:{

RN+1 = DWE(xj), SS
ij
max < TSS

Ri =
n·Ri+DWE(xj)

n+1 , SSij
max ≥ TSS

, (2)

where N is the current number of groups and n is the number of predicates in
the ith group.

After clustering, the most frequent predicates are assigned to the first layer,
the second frequent predicates are assigned to the second layer, etc. It is worth
noticing that during this clustering, some human actions such as “looking at”,
“playing”, “says”, “eating”, and “walking in” will become a single group as one
single predicate. We automatically divide them into the last layer since those
human action predicates are almost 100 to 1000 times less than predicates in
the other layer. The most suitable number of layers depends on the dataset itself.
Sec. 4.6 analyzes the best layer number for the VG dataset.

6 Y. Deng et al.

…… ……

on
…

has above
…

with

……

parked
on
...

playing

Stage1:
Learning Coarse Predicate

（e.g., “On”）

Trained Model in
Stage1

Stage2:
 Learning Intermediate Predicate

（e.g., “Above”）

StageN:
 Learning Fine Predicate

（e.g., “Parked On”）

on
…

has
above
…

with

on
…

has

MR Loss CR Loss

……

……

on
…

has

Trained Model in
Stage2

CR Loss

……

above
…

with

on
…

has

MR Loss

Fig. 2: Overview of HML Framework. We train the model in a coarse to
fine fashion. In each step, the model calculates CR and MR for knowledge as-
similation. Meanwhile, the importance scores and empirical Fisher Information
Matrix are calculated after updating the model. The importance score and em-
pirical Fisher Information Matrix are passed down at the end of each stage. For
the VG dataset, we set the stage number to be 2 and explain in Sec. 4.6.

3.2 Hierarchical Memory Learning Framework

Most SGG models comprise two steps. In the beginning, an image is fed into an
ordinary object detector to get bounding boxes, corresponding features of these
regions, and the logits over each object class. These detection results are used
to predict the scene graph in the next step. The feature of a node is initialized
by box features, object labels, and position. Some structures like LSTM [37,57]
are used to refine nodes’ features by passing and incorporating the messages.
After that, the object labels are obtained directly by refined feature, while the
predicates are predicted from the union features refined by the structures of
BiLSTM [57], BiTreeLSTM [37], GRU [10], or GNN [27].

Nevertheless, most models are still trained on the whole dataset at one
time, making the task challenging. To address the long-tail effect and mixed-
granularity annotation, we believe it is a better solution to disentangle semantic-
confusing predicate classes by dealing with general relationships (e.g., “on”,
“has”) and informative ones (e.g., “sitting on”, “using”) separately in different
stages. In this training scenario, the model in its stage can only focus on a small
fraction of predicates with relatively similar granularity and then congregate the
knowledge from previous stages step by step.

Since the SGG task is similar to the human learning pattern, absorbing
knowledge from coarse to fine, it is natural to model how humans learn. Given
the model trained in the previous stage, the current training model needs to

HML for SGG 7

gain the ability to do well in previous classes while learning how to deal with
new classes. A naive way is to sample some images in the last stage for review.
Nevertheless, this strategy is unsuitable for our situation since it reintroduces
mixed-granularity predicates. Thus, for better knowledge consolidation, we adopt
Concept Reconstruction (CR) and Model Reconstruction (MR) which
will be further explained in Sec. 3.3 and Sec. 3.4. CR will be adopted to de-
crease the distance between the prediction logits produced by the two models.
This process is similar to how human students imitate teachers to solve prob-
lems. Human brain cortical areas have different functional networks [14]. It is
the same for the parameters in an SGG model. MR respects the hypothesis that
different parameters in a model serve for different relationship recognition. As
is shown in Fig. 2, in the second to N th stage, the model will fit the predic-
tion and parameters for knowledge passing. At the same time, the gradient and
parameters’ change will be stored for the online update of the empirical Fisher
Information Matrix (Sec. 3.4) and importance scores (Sec. 3.4).

Does a deep network have parameter redundancy? Some earlier work did
answer this question. Hinton et al. [18] came up with knowledge distillation for
the first time to compress and transfer knowledge from a complicated model
to a more compact one that is easier to deploy. Moreover, it was verified in [3]
that a cumbersome model can be compressed into a compact one. We assume
that the whole model comprises many parameters based on these works. These
parameters or “activated” neurons in an SGG network should target specific
predicate classes, as shown in Fig. 1. To verify this assumption, we compare
the mean of importance scores, which will be further illustrated in Sec. 3.4 and
verified in supplementary material from the experimental perspective, of all the
parameters in each layer and find out that the values vary between different
stages. This mechanism is similar to how the human brain works. Each region in
the brain has its’ own function and works together to finish complex tasks [14].
After learning through all stages, the model will classify all classes with fine-
grained preference.

The total loss for the HML framework is given by:

ℓ = ℓnew + ℓCR + λℓMR, (3)

where λ is a hyper-parameter. ℓCR is Concept Reconstruction loss, and ℓMR is
Model Reconstruction loss.

ℓnew in Eq. (3) is Class-Balance loss [8] and used to learn current stage
predicates:

ℓnew = −WB

C∑
i=1

yi log
ezi∑C
j=1 e

zj
, (4)

where z represents the model’s output, y is the one-hot ground-truth label vec-
tor, and C is the number of predicate classes. WB = 1−γ

1−γni
, γ denotes the

hyper-parameter that represents the sample domain, and ni denotes number of
predicate i in current stage.

8 Y. Deng et al.

3.3 Concept Reconstruction Loss

In order to prevent activation drift [3], CR is applied. It is an implicit way to
keep the prediction of previous predicates from drifting too much. Thus, we need
to find the distance between two predictions from different stages of the same
visual relationship and reduce it. The CR loss can be represented by:

ℓCR(Xn, Zn) =

∑Nn

i=1

∑Cold

j=1

(
Softmax

(
xij
n

)
− Softmax

(
zijn
))2

Nn
, (5)

where xi
n and zin are the output logits vector for the prediction. Nn is the number

of outputs. We choose L2 distance [2] as the distance metric. Compared with the
traditional loss function such as L1 loss and cross-entropy loss with the soft label,
L2 loss is a stronger constraint but is sensitive to outliers. Fortunately, since the
training process is coarse to fine, the representations will not drastically deviate,
making L2 loss practical. With the consideration mentioned earlier, L2 distance
is used in CR, receiving better performance in experiments. This is also verified
in [60]. More ablation results of CR can be found in the supplementary material.

In a word, CR is used to help the current model learn how to make the same
prediction as the previous model.

3.4 Model Reconstruction Loss

The parameters of the model determine the ability to recognize visual relation-
ships. Thus, it is a more straightforward way to learn directly from parameters.
A feasible solution is to determine which parameters are crucial in the previous
stage classification and fit them with greater attention in the following stage.

KL-divergence is a mathematical statistics measure of how a probability dis-
tribution is different from another one [25]. KL-divergence, denoted as in the
form of DKL(pθ||pθ+∆θ), can also be used to calculate the difference of the con-
ditional likelihood between a model at θ and θ+∆θ. Since changes of parameters
are subtle (i.e., ∆θ → 0) during the optimization, we will get the second-order
of Taylor approximation of KL-divergence, which is also the distance in Rieman-
nian manifold induced by Fisher Information Matrix [26] and can be written as
DKL(pθ||pθ+∆θ) ≈ 1

2∆θ⊤Fθ∆θ, where the Fθ is known as empirical Fisher In-
formation Matrix [35] at θ and the approximate will be proved in supplementary
material, is defined as:

Fθ = E(x,y)∼D

[(
∂ log pθ (y|x)

∂θ

)(
∂ log pθ (y|x)

∂θ

)⊤
]
, (6)

where D is the dataset and pθ (y|x) is the log-likelihood. However, in practice,
if a model has P parameters, it means Fθ ∈ RP×P , and it is computationally
expensive. To solve this, we compromise and assume parameters are all indepen-
dent, making Fθ diagonal. Then the approximation of KL-divergence looks like:

DKL(pθ||pθ+∆θ) ≈
1

2

P∑
i=1

Fθi∆θ2i , (7)

HML for SGG 9

where θi is the ith parameters of the model and P is the total number of it.
Fθ will be updated in each iteration, following the rule:

F t
θ =

F t
θ + (t− 1) · F t−1

θ

t
, (8)

where t is the number of iterations.
Although the empirical Fisher Information Matrix captures static informa-

tion of the model, it fails to capture the influence of each parameter during
optimization in each stage. Thus, we adopt the method in [58] to search for
essential parameters. Intuitively, if the value of a parameter changes a little in
a single step, but it contributes a lot to the decrease of the loss, we think it is
essential, at least for the current task. So, the importance of a parameter during
an interval (from t to ∆t) can be represented as:

Ωraw (θi) =

t+∆t∑
t

∆ℓt+1
t (θi)

1
2F

t
θi
(θi (t+ 1)− θi (t))

2
+ ϵ

, (9)

Ωt+∆t
t (θi) = σ

(
log10

P ×Ωraw (θi)∑P
i=1 Ωraw (θi)

)
, (10)

where σ is the sigmoid function, numerator∆ℓt+1
t (θi) is the change of loss caused

by θi in one step, ϵ > 0 aims to avoid the change of loss θi (t+ 1) − θi (t) = 0,
and the denominator is the KL-divergence of θi between t and t+ 1.

To be more specific, ∆ℓt+1
t (θi) represents how much contribution does θi

make to decrease the loss. Since the optimization trajectory is hard to track, to
find the change in loss caused by θi, we need to figure out a way to split the
overall loss form into the sum of each parameter’s contributions. The solution is
a first-order Taylor approximation:

ℓ (θ (t+ 1))− ℓ (θ (t)) ≈ −
P∑
i=1

t+1∑
t=t

∂ℓ

∂θi
(θi (t+ 1)− θi (t)) = −

P∑
i=1

∆ℓt+1
t (θi),

(11)
where ∂ℓ

∂θi
is the gradient of θi and θi (t+ 1) − θi (t) is the value change of θi

during a single step. If ℓ (θ (t+ 1))− ℓ (θ (t)) > 0, we set ∆ℓt+1
t (θi) to be 0, since

we consider only when the loss become smaller, a step of optimization can be
regarded as effective.

The empirical Fisher Information Matrix is used twice. The first is to calcu-
late the difference in probability distributions of two models in different stages,
and the second is to find the changes of a model in a nearby iteration within a
single stage.

So, after figuring out how important each parameter is, the MR loss can be
written as:

ℓMR =

∑P
i=1

(
F k−1
θi

+ (Ω
t0+∆t

t0
)k−1 (θi)

) (
θki − θk−1

i

)2
P

, (12)

10 Y. Deng et al.

where P is the number of parameters for relationship prediction in the model
and k represents the current stage. F k−1

θi
and (Ωt0+∆t

t0)k−1 are both calculated
in previous stage.

Fisher Information Matrix Fθ and importance scores Ω
tk−1

t0 are used to rep-
resent the importance of parameters from static and dynamic perspectives, re-
spectively.

4 Experiment

4.1 Dataset and Model

Dataset. In the SGG task, we choose Visual Genome (VG) [24] as the dataset
for both training and evaluation. It comprises 75k object categories and 40k
predicate categories. However, due to the scarcity of over 90% predicates are
less than ten instances, we applied the widely accepted split in [6,37,57], using
the 150 highest frequency objects categories and 50 predicate categories. The
training set is set to be 70%, and the testing set is 30%, with 5k images from
the training set for finetuning. [42].
Model. We evaluate HML framework on three models and follow the setting
in [41]: MOTIFS [57], Transformer [12,45], and VCTree [37].

4.2 Evaluation

Sub-Tasks: (1)Predicate Classification: given images, object bounding boxes,
and object labels, predicting the relationship labels between objects. (2) Scene
Graph Classification: given images and object bounding boxes, predicting ob-
ject labels and relationship labels between objects. (3) Scene Graph Detec-
tion: localizing objects, recognizing objects, and predicting their relationships
directly from images.
Relationship Recall. We choose Mean Recall@K (mR@K) [43] as a metric
to evaluate the performance of SGG models. As is shown in [42], regular Re-
call@K (R@K) will lead to the reporting bias due to the imbalance that lies in
the data (e.g., a model that only correctly classifies the top 5 frequent predicates
can reach 75% of Recall@100). Thus, we introduce Mean@K which calculates
the average score of all three sub-tasks R@K and mR@K under identical K.
Mean@K is a metric to evaluate overall performance on both R@K and mR@K.
We will further explain the reason and necessity of using this metric in the
supplementary material.

4.3 Implementation Details

Object Detector. We pre-train a Faster-RCNN with ResNeXt-101-FPN [49]
and freeze the previously trained weight during the SGG training period. The
final detector reached 28 mAP on the VG test set.
Relationship Predictor. The backbone of baseline models is replaced with an
identical one, and hierarchical trained in the same setting. We set the batch size

HML for SGG 11

Model Framework
Predicate Classification Scene Graph Classification Scene Graph Detection

mR@20 mR@50 mR@100 mR@20 mR@50 mR@100 mR@20 mR@50 mR@100

Transformer [45]

Baseline 14.1 17.9 19.4 8.2 10.1 10.8 6.3 8.5 10.1
CogTree [56] 22.9 28.4 31.0 13.0 15.7 16.7 7.9 11.1 12.7
BPL+SA [16] 26.7 31.9 34.2 15.7 18.5 19.4 11.4 14.8 17.1
HML(Ours) 27.4 33.3 35.9 15.7 19.1 20.4 11.4 15.0 17.7

MOTIFS [57]

Baseline 12.5 15.9 17.2 7.4 9.1 9.7 5.3 7.3 8.6
EBM [39] 14.2 18.0 19.5 8.2 10.2 11.0 5.7 7.7 9.3
SG [23] 14.5 18.5 20.2 8.9 11.2 12.1 6.4 8.3 9.2

TDE [42] 18.5 25.5 29.1 9.8 13.1 14.9 5.8 8.2 9.8
CogTree [56] 20.9 26.4 29.0 12.1 14.9 16.1 7.9 10.4 11.8

DLFE [7] 22.1 26.9 28.8 12.8 15.2 15.9 8.6 11.7 13.8
BPL+SA [16] 24.8 29.7 31.7 14.0 16.5 17.5 10.7 13.5 15.6

GCL [11] 30.5 36.1 38.2 18.0 20.8 21.8 12.9 16.8 19.3
HML(Ours) 30.1 36.3 38.7 17.1 20.8 22.1 10.8 14.6 17.3

VCTree [43]

Baseline 13.4 16.8 18.1 8.5 10.5 11.2 5.9 8.2 9.6
EBM [39] 14.2 18.2 19.7 10.4 12.5 13.5 5.7 7.7 9.1
SG [23] 15.0 19.2 21.1 9.3 11.6 12.3 6.3 8.1 9.0

TDE [42] 18.4 25.4 28.7 8.9 12.2 14.0 6.9 9.3 11.1
CogTree [56] 22.0 27.6 29.7 15.4 18.8 19.9 7.8 10.4 12.1

DLFE [7] 20.8 25.3 27.1 15.8 18.9 20.0 8.6 11.8 13.8
BPL+SA [16] 26.2 30.6 32.6 17.2 20.1 21.2 10.6 13.5 15.7

GCL [11] 31.4 37.1 39.1 19.5 22.5 23.5 11.9 15.2 17.5
HML(Ours) 31.0 36.9 39.2 20.5 25.0 26.8 10.1 13.7 16.3

(a) Comparison between HML and various optimization frameworks.

Model+Framework
Predicate Classification Scene Graph Classification Scene Graph Detection

Mean@50/100
mR@50/100 R@50/100 mR@50/100 R@50/100 mR@50/100 R@50/100

MOTIFS-TDE [42] 25.5/29.1 46.2/51.4 13.1/14.9 27.7/29.9 8.2/9.8 16.9/20.3 22.9/25.9
MOTIFS-DLFE [7] 26.9/28.8 52.5/54.2 15.2/15.9 32.3/33.1 11.7/13.8 25.4/29.4 27.3/29.2

Transformer-CogTree [56] 28.4/31.0 38.4/39.7 15.7/16.7 22.9/23.4 11.1/12.7 19.5/21.7 22.7/24.2
PCPL [52] 35.2/37.8 50.8/52.6 18.6/19.6 27.6/28.4 9.5/11.7 14.6/18.6 26.1/28.1

DT2-ACBS [9] 35.9/39.7 23.3/25.6 24.8/27.5 16.2/17.6 22.0/24.4 15.0/16.3 22.9/25.2
SHA-GCL [11] 41.6/44.1 35.1/37.2 23.0/24.3 22.8/23.9 17.9/20.9 14.9/18.2 25.9/28.1

Transformer-HML(Ours) 33.3/35.9 45.6/47.8 19.1/20.4 22.5/23.8 15.0/17.7 15.4/18.6 25.2/27.4
MOTIFS-HML(Ours) 36.3/38.7 47.1/49.1 20.8/22.1 26.1/27.4 14.6/17.3 17.6/21.1 27.1/29.3
VCTree-HML(Ours) 36.9/39.2 47.0/48.8 25.0/26.8 27.0/28.4 13.7/16.3 17.6/21.0 27.9/30.1

(b) A more comprehensive comparison between HML and various SOTAs.

Table 1: Result of Relationship Retrieval mR@K [43] and R@K.

to 12 and used SGD optimizer with an initial learning rate of 0.001, which will
be decayed by 10 after the validation performance plateaus. The experiment was
carried out on NVIDIA TITAN RTX GPUs.

Hierarchical Predicate Tree Construction. For Visual Genome (VG), the
whole predicates are split into two disjoint subsets (tasks) following the construc-
tion in Sec. 3.1. The threshold is set to be TSS ∈ [0.65, 0.75] in Eq. (2). However,
due to the small semantic variance within VG, this Predicate Tree Construction
degenerates to simply separating frequent “on” or “has” with minority ones,
similar to the separation in [11]. We believe a larger semantic variance dataset
will need this kind of semantic information for more reasonable separation.

Hierarchical Training. In our experiment, two identical models will be trained
separately in two stages. Moreover, the first model will be initialized randomly,

12 Y. Deng et al.

building

tire

bike

seat

street building

tire

bike

seat

street

across

beach
mouse

horse

man

o
n

on

earmouse

jean hat

beach
mouse

horse

man

rid
in

g

earmouse

jean hat

walking
on

beach
shirt

man

board

ca
rryin

g

hair

h
a

s

logo

shoe

standing
on

beach
shirt

man

board

h
a

s

hair

logo

on

shoe

building

Windshield

bus
behind

ac
ro

ss

person

street

st
an

d
in

g
o

n

leaf

tree

gr
o

w
in

g
o

n

across

window

has

building

Windshield

bus

person

street

o
n

leaf

tree

o
n

window

on

Fig. 3: Qualitative Results. The basic model generates yellow scene graphs,
and the same basic model predicts pink ones under HML training.

and the previous stage models will not be used to initialize the following model.
If not, the model will meet the intransigence [5] problem. Besides, we set the
max iterations to 8000 and 16000 in the first and second stages. Nevertheless,
models will usually converge around 8000 in both stages. The λ in an overall
loss is set to 0.5 for the best performance, as is shown in Tab. 3a.

4.4 Quantitative Study

In Tab. 1a, our HML framework can consistently outperform the existing frame-
works under various fundamental models. By applying the HML framework to
different models, we notice that models will drastically improve the Mean Recall
for all three sub-tasks. The improvement scale is similar to different models such
as Motif, Transformer, and VCTree. In Tab. 1b, we compare HML with var-
ious SOTAs, which report R@K and mR@K simultaneously. After calculating
Mean@K, it turns out that HML can make the fine-grained prediction (demon-
strated by mR@K) and keep clear boundaries of general predicates (demon-
strated by R@K).

In Tab. 2, we notice a vital decrease in R@K. After analyzing each predicate,
we figure out that the decline mainly comes from the drop of general predicates
such as “on” and “has”. After HML training, the mR@100 of “on” and “has”
dropped from 79.98 to 31.01 and 81.22 to 58.34. The model’s preference for fine-
grained prediction causes this decrease. Thus, we replace the fine-grained one
with a general one and recalculate R@100, and the results of “on” and “has”
re-bounce to be 71.72 and 86.91, respectively. Works like [7,9,42,52,56] com-
pared in Tab. 1b can also make relatively fine-grained prediction (i.e., relatively
high mR@K) but all suffer from decrease of R@K partially due to the reason
mentioned above.

4.5 Qualitative Study

We visualize the qualitative result generated by original MOTIFS and MOTIFS
trained with the HML framework in Fig. 3. Compared with the original model,

HML for SGG 13

Model CR MR

Predicate Classification

mR@20 mR@50 mR@100 R@20 R@50 R@100

Transformer [45]

14.13 17.87 19.38 58.79 65.29 67.09
✓ 24.14 29.27 31.22 29.1 36.16 38.57

✓ 23.32 29.34 32.20 38.80 46.48 48.87
✓ ✓ 27.35 33.25 35.85 38.81 45.61 47.78

MOTIFS [57]

12.54 15.89 17.19 59.12 65.45 67.20
✓ 24.69 30.00 32.79 33.92 41.34 43.95

✓ 21.56 27.43 30.05 44.30 51.87 54.14
✓ ✓ 30.10 36.28 38.67 40.52 47.11 49.08

VCTree [43]

13.36 16.81 18.08 59.76 65.48 67.49
✓ 22.32 29.34 32.20 27.86 35.21 37.73

✓ 22.84 28.94 31.48 43.81 51.40 53.74
✓ ✓ 31.04 36.90 39.21 40.28 46.47 48.36

Table 2: Ablation on CR and MR. We explore the functionality of CR loss
and MR loss.

the model trained under HML will make informative predictions such as “parked
on”, “growing on”, “standing on”, “riding”, and “walking on” instead of the gen-
eral one “on”. Also, our model will tend to make fine-grained predictions such as
“wearing” and “carrying” instead of “has”. Besides, since we train a model hier-
archically, the model will obtain the ability to capture tail part predicates such as
“building-across-street” and position predicates such as “building-behind-bus”
and “tree-behind-bus”. Qualitative results with three stages are shown in the
supplementary material.

4.6 Ablation Studies

CR and MR. We further explore the contributions of each term to our overall
loss. In the SGG task, Recall@K and Mean Recall@K [43] restrict mutually with
each other. Recall@K represents how well the model performs for the predicate
classes’ head part. Thus, it reflects how well a model can imitate the previ-
ous model. On the contrary, Mean Recall@K [43] evaluates the model’s overall
performance. Suppose we want to figure out the functionality of the knowledge
consolidation term in the loss. In that case, it is reasonable to adopt Recall@K
since two terms of knowledge reconstruction aim to prevent the model from
forgetting previous knowledge. According to Tab. 2, if we add CR and MR sep-
arately, mR@K will get constant improvement. However, only when CR and
MR are used simultaneously will we get the highest mR@K and prevent R@K
from dropping too much. Also, after comparing the second and third row of each
model on R@K, it is obvious that MR is a more powerful constraint than CR.
Layer Number. The number of layers (i.e., stage) depends on how many top-
K frequent predicates we pick up after clustering. We conduct experiments in

14 Y. Deng et al.

layer
Predicates Classification

time (hr)
mR@20 mR@50 mR@100

1 12.54 15.89 17.19 17.85
2 30.10 36.28 38.67 29.43
3 25.24 31.95 34.44 44.65
4 15.66 21.96 25.32 60.13

(a) Ablation of Layer Number

λ
Predicates Classification

mR@20 mR@50 mR@100

0.00 25.24 31.95 34.44
0.25 30.97 35.91 37.88
0.50 30.10 36.28 38.67
0.75 29.73 34.36 36.79
1.00 29.20 33.47 35.69

(b) Ablation of λ

Table 3: Ablation on MOTIFS. We explore different numbers of layers and λ
with MOTIFS on the performance of Mean Recall@K.

Tab. 3a on different layers. We figured out that 2 is suitable for the VG dataset,
mainly due to the small number of predicate classes and limited granularity vari-
ance. HML training indeed needs more time to complete training during multi-
stage training. Nevertheless, the increase ratio (125%) of model performance is
way more significant than the one (65%) of training time. More time analysis
will be shown in the supplementary material. All experiments were carried out
on one identical GPU.
Hyperparameter λ. In order to figure out the effect of λ on the performance of
the model, we set 5 values in ablation to λ ∈ {0, 0.25, 0.50, 0.75, 1.00} in Tab. 3b.
λ represents how much information will be passed down to the next stage. If λ
is too high, the new model will stick to the original classes without learning new
ones. In contrast, low λ can not guarantee effective information passing. Based
on our experiment, λ = 0.5 is suitable for the HML framework on VG.

5 Conclusion

We propose a general framework to enable SGG models to make fine-grained pre-
dictions. In addition to the objective long-tail effect in the dataset, we uncover
mixed-granularity predicates caused by subjective human annotation. The simi-
larity between the human hierarchical learning pattern and the SGG problem is
obvious under this condition. Based on that, we designed the HML framework
with two new constraints (i.e., CR and MR) for efficient training. We observe
that the HML framework can improve performance compared to the traditional
training fashion models and achieves new state-of-the-art.

Acknowledgments This work was partly supported by the National Natu-
ral Science Foundation of China under Grant 41971284; the Fundamental Re-
search Funds for the Central Universities under Grant 2042022kf1201; Wuhan
University-Huawei Geoinformatics Innovation Laboratory. We sincerely thank
our reviewers and ACs for providing insightful suggestions.

HML for SGG 15

References

1. Agrawal, A., Batra, D., Parikh, D., Kembhavi, A.: Don’t just assume; look and
answer: Overcoming priors for visual question answering. In: CVPR. pp. 4971–4980
(2018) 1

2. Ba, J., Caruana, R.: Do deep nets really need to be deep? In: NIPS. pp. 2654–2662
(2014) 8

3. Buciluǎ, C., Caruana, R., Niculescu-Mizil, A.: Model compression. In: KDD. pp.
535–541 (2006) 7, 8

4. Cao, D., Zhu, X., Huang, X., Guo, J., Lei, Z.: Domain balancing: Face recognition
on long-tailed domains. In: CVPR. pp. 5671–5679 (2020) 4

5. Chaudhry, A., Dokania, P.K., Ajanthan, T., Torr, P.H.: Riemannian walk for in-
cremental learning: Understanding forgetting and intransigence. In: ECCV. pp.
532–547 (2018) 12

6. Chen, L., Zhang, H., Xiao, J., He, X., Pu, S., Chang, S.F.: Counterfactual critic
multi-agent training for scene graph generation. In: ICCV. pp. 4613–4623 (2019)
10

7. Chiou, M.J., Ding, H., Yan, H., Wang, C., Zimmermann, R., Feng, J.: Recovering
the unbiased scene graphs from the biased ones. In: ACMMM. pp. 1581–1590
(2021) 2, 4, 11, 12

8. Cui, Y., Jia, M., Lin, T.Y., Song, Y., Belongie, S.: Class-balanced loss based on
effective number of samples. In: CVPR. pp. 9268–9277 (2019) 4, 7

9. Desai, A., Wu, T.Y., Tripathi, S., Vasconcelos, N.: Learning of visual relations:
The devil is in the tails. In: ICCV. pp. 15404–15413 (2021) 4, 11, 12

10. Dhingra, N., Ritter, F., Kunz, A.: Bgt-net: Bidirectional gru transformer network
for scene graph generation. In: CVPR. pp. 2150–2159 (2021) 6

11. Dong, X., Gan, T., Song, X., Wu, J., Cheng, Y., Nie, L.: Stacked hybrid-attention
and group collaborative learning for unbiased scene graph generation. In: CVPR.
pp. 19427–19436 (2022) 4, 11

12. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.:
An image is worth 16x16 words: Transformers for image recognition at scale. In:
ICLR (2021) 10

13. Feng, C., Zhong, Y., Huang, W.: Exploring classification equilibrium in long-tailed
object detection. In: ICCV. pp. 3417–3426 (2021) 4

14. Genon, S., Reid, A., Langner, R., Amunts, K., Eickhoff, S.B.: How to characterize
the function of a brain region. Trends in cognitive sciences 22(4), 350–364 (2018)
3, 7

15. Goodfellow, I.J., Mirza, M., Xiao, D., Courville, A., Bengio, Y.: An empirical
investigation of catastrophic forgetting in gradient-based neural networks. In: ICLR
(2014) 4

16. Guo, Y., Gao, L., Wang, X., Hu, Y., Xu, X., Lu, X., Shen, H.T., Song, J.: From
general to specific: Informative scene graph generation via balance adjustment. In:
ICCV. pp. 16383–16392 (2021) 2, 4, 11

17. Hendricks, L.A., Burns, K., Saenko, K., Darrell, T., Rohrbach, A.: Women also
snowboard: Overcoming bias in captioning models. In: ECCV. pp. 771–787 (2018)
1

18. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network.
CoRR (2015) 7

16 Y. Deng et al.

19. Hudson, D.A., Manning, C.D.: Gqa: A new dataset for real-world visual reasoning
and compositional question answering. In: CVPR. pp. 6700–6709 (2019) 3

20. Hung, Z., Mallya, A., Lazebnik, S.: Contextual translation embedding for visual
relationship detection and scene graph generation. TPAMI 43(11), 3820–3832 (Nov
2021) 4

21. Kang, B., Xie, S., Rohrbach, M., Yan, Z., Gordo, A., Feng, J., Kalantidis, Y.:
Decoupling representation and classifier for long-tailed recognition. ICLR (2020) 4

22. Khan, S., Hayat, M., Zamir, S.W., Shen, J., Shao, L.: Striking the right balance
with uncertainty. In: CVPR. pp. 103–112 (2019) 4

23. Khandelwal, S., Suhail, M., Sigal, L.: Segmentation-grounded scene graph genera-
tion. In: ICCV. pp. 15879–15889 (2021) 11

24. Krishna, R., Zhu, Y., Groth, O., Johnson, J., Hata, K., Kravitz, J., Chen, S., Kalan-
tidis, Y., Li, L.J., Shamma, D.A., et al.: Visual genome: Connecting language and
vision using crowdsourced dense image annotations. IJCV 123(1), 32–73 (2017)
10

25. Kullback, S., Leibler, R.A.: On information and sufficiency. The annals of mathe-
matical statistics 22(1), 79–86 (1951) 8

26. Lee, J.M.: Riemannian manifolds: an introduction to curvature, vol. 176. Springer
Science & Business Media (2006) 8

27. Li, R., Zhang, S., Wan, B., He, X.: Bipartite graph network with adaptive message
passing for unbiased scene graph generation. In: CVPR. pp. 11109–11119 (2021)
4, 6

28. Li, T., Wang, L., Wu, G.: Self supervision to distillation for long-tailed visual
recognition. In: ICCV. pp. 630–639 (2021) 4

29. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft coco: Common objects in context. In: ECCV. pp. 740–755
(2014) 2, 4

30. Liu, J., Sun, Y., Han, C., Dou, Z., Li, W.: Deep representation learning on long-
tailed data: A learnable embedding augmentation perspective. In: CVPR. pp. 2970–
2979 (2020) 4

31. Manjunatha, V., Saini, N., Davis, L.S.: Explicit bias discovery in visual question
answering models. In: CVPR. pp. 9562–9571 (2019) 1

32. McCloskey, M., Cohen, N.J.: Catastrophic interference in connectionist networks:
The sequential learning problem. In: Psychology of learning and motivation, pp.
109–165 (1989) 4

33. Mikolov, T., Grave, E., Bojanowski, P., Puhrsch, C., Joulin, A.: Advances in pre-
training distributed word representations. In: LREC (2018) 5

34. Misra, I., Lawrence Zitnick, C., Mitchell, M., Girshick, R.: Seeing through the
human reporting bias: Visual classifiers from noisy human-centric labels. In: CVPR.
pp. 2930–2939 (2016) 5

35. Pascanu, R., Bengio, Y.: Revisiting natural gradient for deep networks. ICLR
(2014) 8

36. Peyre, J., Laptev, I., Schmid, C., Sivic, J.: Detecting unseen visual relations using
analogies. In: ICCV. pp. 1981–1990 (2019) 4

37. Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: icarl: Incremental classifier
and representation learning. In: CVPR (July 2017) 6, 10

38. Ren, J., Yu, C., Sheng, S., Ma, X., Zhao, H., Yi, S., Li, H.: Balanced meta-softmax
for long-tailed visual recognition. In: NIPS. pp. 4175–4186 (2020) 4

39. Suhail, M., Mittal, A., Siddiquie, B., Broaddus, C., Eledath, J., Medioni, G., Sigal,
L.: Energy-based learning for scene graph generation. In: CVPR. pp. 13936–13945
(2021) 2, 4, 11

HML for SGG 17

40. Tan, J., Wang, C., Li, B., Li, Q., Ouyang, W., Yin, C., Yan, J.: Equalization loss
for long-tailed object recognition. In: CVPR. pp. 11662–11671 (2020) 4

41. Tang, K.: A scene graph generation codebase in pytorch (2020), https://github.
com/KaihuaTang/Scene-Graph-Benchmark.pytorch 10

42. Tang, K., Niu, Y., Huang, J., Shi, J., 8 Zhang, H.: Unbiased scene graph generation
from biased training. In: CVPR. pp. 3716–3725 (2020) 2, 4, 10, 11, 12

43. Tang, K., Zhang, H., Wu, B., Luo, W., Liu, W.: Learning to compose dynamic tree
structures for visual contexts. In: CVPR. pp. 6619–6628 (2019) 1, 4, 10, 11, 13

44. Tao, L., Mi, L., Li, N., Cheng, X., Hu, Y., Chen, Z.: Predicate correlation learning
for scene graph generation. TIP (2022) 3

45. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
 L., Polosukhin, I.: Attention is all you need. In: NIPS. pp. 5998–6008 (2017) 10,
11, 13

46. Wang, S., Wang, R., Yao, Z., Shan, S., Chen, X.: Cross-modal scene graph matching
for relationship-aware image-text retrieval. In: WACV. pp. 1508–1517 (2020) 3

47. Wang, T., Li, Y., Kang, B., Li, J., Liew, J., Tang, S., Hoi, S., Feng, J.: The devil
is in classification: A simple framework for long-tail instance segmentation. In:
ECCV. pp. 728–744 (202) 4

48. Wang, Y., Ramanan, D., Hebert, M.: Learning to model the tail. In: NIPS. pp.
7029–7039 (2017) 4

49. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations
for deep neural networks. In: CVPR. pp. 1492–1500 (2017) 10

50. Xiong, S., Huang, W., Duan, P.: Knowledge graph embedding via relation paths
and dynamic mapping matrix. In: Advances in Conceptual Modeling. pp. 106–118
(2018) 4

51. Xu, D., Zhu, Y., Choy, C.B., Fei-Fei, L.: Scene graph generation by iterative mes-
sage passing. In: CVPR. pp. 5410–5419 (2017) 1, 3, 4

52. Yan, S., Shen, C., Jin, Z., Huang, J., Jiang, R., Chen, Y., Hua, X.S.: Pcpl:
Predicate-correlation perception learning for unbiased scene graph generation. In:
ACMMM. pp. 265–273 (2020) 11, 12

53. Yang, J., Lu, J., Lee, S., Batra, D., Parikh, D.: Graph r-cnn for scene graph gen-
eration. In: ECCV. pp. 670–685 (2018) 1

54. Yang, X., Tang, K., Zhang, H., Cai, J.: Auto-encoding scene graphs for image
captioning. In: CVPR. pp. 10685–10694 (2019) 1, 3

55. Yin, X., Yu, X., Sohn, K., Liu, X., Chandraker, M.: Feature transfer learning for
face recognition with under-represented data. In: CVPR. pp. 5704–5713 (2019) 4

56. Yu, J., Chai, Y., Wang, Y., Hu, Y., Wu, Q.: Cogtree: Cognition tree loss for unbi-
ased scene graph generation. In: IJCAI. pp. 1274–1280 (2020) 4, 11, 12

57. Zellers, R., Yatskar, M., Thomson, S., Choi, Y.: Neural motifs: Scene graph parsing
with global context. In: CVPR. pp. 5831–5840 (2018) 1, 3, 4, 5, 6, 10, 11, 13

58. Zenke, F., Poole, B., Ganguli, S.: Continual learning through synaptic intelligence.
In: ICML. pp. 3987–3995 (2017) 9

59. Zhang, H., Kyaw, Z., Chang, S., Chua, T.: Visual translation embedding network
for visual relation detection. In: CVPR. pp. 3107–3115 (2017) 4

60. Zhang, J., Zhang, J., Ghosh, S., Li, D., Tasci, S., Heck, L., Zhang, H., Kuo, C.C.J.:
Class-incremental learning via deep model consolidation. In: WACV. pp. 1131–1140
(2020) 8

61. Zhang, X., Wu, Z., Weng, Z., Fu, H., Chen, J., Jiang, Y.G., Davis, L.S.: Videolt:
Large-scale long-tailed video recognition. In: ICCV. pp. 7960–7969 (2021) 4

https://github.com/KaihuaTang/Scene-Graph-Benchmark.pytorch
https://github.com/KaihuaTang/Scene-Graph-Benchmark.pytorch

	Hierarchical Memory Learning for Fine-Grained Scene Graph Generation

