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Few-Shot Scene Classification of Optical Remote
Sensing Images Leveraging Calibrated Pretext Tasks
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Abstract— Small data hold big artificial intelligence (AI) poten-
tial. As one of the promising small data AI approaches, few-
shot learning has the goal to learn a model efficiently that can
recognize novel classes with extremely limited training samples.
Therefore, it is critical to accumulate useful prior knowledge
obtained from large-scale base class dataset. To realize few-shot
scene classification of optical remote sensing images, we start
from a baseline model that trains all base classes using a standard
cross-entropy loss leveraging two auxiliary objectives to capture
intrinsical characteristics across the semantic classes. Specifically,
rotation prediction learns to recognize the 2-D rotation of an
input to guide the learning of class-transferable knowledge, and
contrastive learning aims to pull together the positive pairs
while pushing apart the negative pairs to promote intraclass
consistency and interclass inconsistency. We jointly optimize two
such pretext tasks and semantic class prediction task in an end-to-
end manner. To further overcome the overfitting issue, we intro-
duce a regularization technique, adversarial model perturbation,
to calibrate the pretext tasks so as to enhance the generalization
ability. Extensive experiments on public remote sensing bench-
marks including Northwestern Polytechnical University (NWPU)-
RESISC45, aerial image dataset (AID), and Wuhan University
(WHU)-remote sensing (RS)-19 demonstrate that our method
works effectively and achieves best performance that significantly
outperforms many state-of-the-art approaches.

Index Terms— Adversarial model perturbation (AMP), few-
shot scene classification, multitask learning, optical remote sens-
ing image, pretext task.

I. INTRODUCTION

SCENE classification of optical remote sensing images
has attracted remarkable attention and usually relies on

powerful high-capacity models with trainable parameters rang-
ing from millions to tens of millions, requiring a substantial
amount of annotated training data. However, in practice, the
lack of intensive annotations becomes the bottleneck to make
precise and timely decisions. For instance, in the research of
remote-sensing-based post-disaster assessment and rescue, it is
fairly labor-intensive and time-consuming to collect a large
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Fig. 1. Illustration of the proposed framework. (a) Training phase containing
semantic class prediction Lb , rotation prediction Lr , and contrastive prediction
Lc. (b) Test phase that makes decision by a nearest-neighbor rule. The
distances between query images and support images are computed by cosine
similarity.

amount of training data and may even risk the danger of life.
Inspired by the ability of human to learn new concepts very
quickly, recent advances develop a new mechanism to perform
few-shot classification [8], [44], where a model could gener-
alize to new-coming classes with extremely limited training
samples. In this manner, the learned models can be applied
to a variety of fields, such as land-use land-cover classifica-
tion [63], disaster monitoring [31], and urban planning [65],
meanwhile having the ability to recognize novel classes that
were unseen in the training.

Over the past years, few-shot learning has received increas-
ing attention for its big artificial intelligence (AI) potential.
The research literature on this community shows great diver-
sity, following the core idea of transferring knowledge or
experience from seen tasks (sampled from base class data)
to previously unseen tasks (sampled from novel class data).
Formally, a task takes the form of K -way N-shot, which
consists of K classes with each class N training samples and
M testing samples. The goal is to classify the K × M testing
samples into K classes after observing the K × N training
samples (usually, K = 5, N = 1, M = 15). Among the
available few-shot learning algorithms, an intuitive method,
termed as baseline model, is training all base classes with a
standard cross-entropy loss, followed by a naive fine-tuning
step. However, this simple transfer learning method tends
to overfit due to data scarcity. To overcome this limitation,
meta-learning is proposed to train a model on a variety of
learning tasks, and in such tasks the data are sampled from
a large-scale base class data to mimic the real-world few-
shot scenarios, such that it can solve new learning tasks
using only a small number of training samples [8], [44], [47].
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Although a variety of meta-learning-based approaches have
designed sophisticated algorithms and network architectures,
such methods still suffer from severe model overfitting [45]
and the resulting performance is far from satisfactory.

Rather than focusing on the design of network architec-
tures and classifiers, superior feature embedding has proved
critical to improve few-shot learning performance. To learn
a favorable representation, recent efforts introduce auxiliary
objectives to promote feature robustness [28], [33], [37], [60].
These auxiliary objectives usually take the form of pretext
task learning so as to build an embedding that can be used
for other downstream tasks [1], [10], [14], [19]. Traditionally,
the pretext tasks are predefined and the supervisory signals
are generated from the data itself (self-supervision) leveraging
their structure, such as grayscale image colorizing [62], image
jigsaw puzzle [35], and image rotation [13]. Most recently, the
robustness and simplicity of such pretext tasks have fueled
wide applicability in other areas beyond self-/un-supervised
representation learning [15], [22], [58], and their great ben-
efits in few-shot learning have been verified with convincing
results [12], [21], [22], [28], [33], [37]. In particular, rotation
prediction [33], [37], [60] and contrastive prediction [21], [28],
[37] have been studied independently to improve the few-shot
learning capability. Despite the efforts reported in studying the
role of single pretext task in few-shot learning, such paradigm
has not been fully explored yet, ignoring the potential of
ensemble effect of multiple pretext tasks.

In the task of remote sensing scene classification, few-shot
learning has reported encouraging results [4], [23]–[25]. Most
of these methods leverage meta-learning framework to learn a
prototype representation to cluster the testing samples. Regard-
ing the auxiliary techniques, only one available approach SCL-
metric learning network (MLNet) [25] has incorporated a
self-supervised contrastive prediction task to perform scene
classification, following the meta-learning pipeline. In short,
most of the available methods have underestimated the poten-
tial of transfer learning in few-shot task of optical remote
sensing images, let alone the effectiveness of training different
pretext tasks and their combinations.

To overcome the aforementioned challenges and shortcom-
ings, we propose a framework to realize few-shot scene clas-
sification of optical remote sensing images leveraging two
calibrated pretext tasks, rotation prediction and contrastive
prediction. Specifically, the former learns to recognize the 2-D
rotation of an input to guide the learning of class-transferable
knowledge since class-agnostic supervision is adopted, and the
latter aims to pull together the positive pairs (e.g., input and its
transformation) while pushing apart the negative pairs under
fully supervised setting to promote intraclass consistency and
interclass inconsistency. During training, we jointly optimize
the above two pretext tasks and semantic class prediction
task in a multitask learning framework. To ease the dilemma
of overfitting, we introduce adversarial model perturbation
(AMP) [64], which has strong theoretical justifications for
regularizing the network, into our model to calibrate the
aforementioned pretext tasks to facilitate training. As shown
in Fig. 1, we build a robust feature extractor by training
a multitask model and then perform few-shot classification
with cosine-based nearest-neighbor rule in the inference stage.

In summary, the main contributions of our work can be
summarized as follows. 1) To our best knowledge, our work
is the first attempt of few-shot remote sensing scene classifi-
cation leveraging multiple pretext tasks. We shed new light
on few-shot learning in remote sensing topics by devising
auxiliary objectives and their synergies. 2) We justify the
utilization of the AMP regularization technique in few-shot
learning tasks, which facilitates network training and improves
the resulting performance. 3) We conduct extensive experi-
ments to demonstrate the effectiveness of our multitask learn-
ing framework and verify the contribution of each ingredient.
We show that our framework achieves the best performance
on public remote sensing datasets, including Northwestern
Polytechnical University (NWPU)-RESISC45 [5], aerial image
dataset (AID), [55], and Wuhan University (WHU)-remote
sensing (RS)-19 [6].

The remainder of this article is organized as follows.
Section II discusses related works. Section III is devoted to
the details of few-shot classification via calibrated pretext task
learning. Section IV presents our extensive experiments and
analysis, and the conclusion is summarized in Section V.

II. RELATED WORKS

We here review some related works that are closely relevant
to our work in the following topics.

A. Transfer Learning

Transfer learning has the goal to transfer knowledge learned
from the source domain to the target domain [30], [46]. In few-
shot learning, the source and target domains correspond to
the seen and previously unseen tasks, respectively. Such two
types of tasks are separately sampled from base and novel
class datasets, whose semantic classes are relevant but disjoint.
To solve this knowledge transfer problem, an intuitive baseline
model is to train base class data using a standard cross-entropy
loss, followed by fine-tuning a new linear classifier on each
novel task [2]. In its variant baseline++, the linear classifier
was replaced by a distance-based classifier. Besides, rather
than the above two parametric fine-tuning strategies, a nearest-
neighbor classifier [3] can be applied over the learned features
to make predictions directly. Based on the baseline model,
some researchers apply auxiliary techniques to improve the
performance [33], [37]. In [33], self-supervision techniques
augmented with Manifold Mixup [51] (S2M2) were adopted
to enforce the model to learn representations that are robust
to small changes in data distribution. Spatial contrastive learn-
ing (SCL) was proposed by [37] to promote class-independent
discriminative patterns. In summary, the naive baseline model
and its variants are prone to overfit due to data scarcity, which
inspires the application of auxiliary techniques. However, most
existing works overlooked the value of such techniques in
remote sensing field and do not explore the usefulness of
multitask learning, and our work tries to fill the gap.

B. Meta-Learning

Meta-learning aims to learn a representation that is broadly
suitable for many tasks via mimicking practical few-shot
scenarios, and the techniques can be further categorized into
metric-based and gradient-based.

Authorized licensed use limited to: Wuhan University. Downloaded on March 08,2024 at 09:09:19 UTC from IEEE Xplore.  Restrictions apply. 



JI et al.: FEW-SHOT SCENE CLASSIFICATION OF OPTICAL REMOTE SENSING IMAGES LEVERAGING CALIBRATED PRETEXT TASKS 5625513

Metric-based learning methods learn a similarity metric that
can be used to compare or cluster the query samples [29],
[36], [44], [47], [52]. Therein, matching networks [52] pro-
posed a nonparametric approach to solve few-shot problem,
leveraging the long short-term memory (LSTM) [17] module
over a learned embedding of support set to perform classifi-
cation on query set with a cosine-similarity-based classifier.
ProtoNet [44] adopted class mean classifier to address the
overfitting problem of few-shot learning, where average class
features of support set are used to classify the query samples
using Euclidean distance. RelationNet [47] extended ProtoNet
by formulating a convolutional neural network (CNN)-based
module to compare the relationship between images such
that it can learn a transferable deep metric. Gradient-based
learning methods intend to optimize the model with a few
training samples and a small number of training steps [8].
To this end, it learns a meta-learner capable of producing
parameters for a task-specific network after observing the
support set. The task-specific network is then evaluated on
the query set, and the gradient is used to update the meta-
learner. Model-agnostic meta-learning (MAML) [8] explicitly
modeled such an optimization process using two learning
loops during each iteration. Based on this, Reptile [34], Meta-
stochastic gradient descent (SGD) [26], latent embedding opti-
mization (LEO) [42], and meta-transfer learning (MTL) [45]
further improved upon the adaptation ability. Furthermore,
the memory-based module (e.g., LSTM-based meta-learner)
is used to capture both short-term and long-term knowledge
for training a meta-learner such that the knowledge can be
generalized to unseen tasks [38].

Although meta-learning has achieved encouraging results,
it is still confronted with the risk of overfitting and the
performance is far from satisfactory. In this work, we care-
fully devise auxiliary objectives to enhance the representation,
bypassing complex learning strategies in meta-learning.

C. Pretext-Task-Based Representation Learning

Pretext tasks were initially proposed for learning effective
visual representations in an annotation-free manner. Typically,
a pretext task is a predefined task for networks to learn an
embedding where images that are semantically similar are
close, while semantically different ones are far apart. Toward
this end, an input X of a model is first transformed to X �,
whose outputs Y and Y � are supposed to be close (e.g.,
in Euclidean space). Examples of such pairs {X, X �} include
luminance and chrominance color channels of an image [48],
patches [35], rotated copies [13], or Contrastive Learning of
visual Representations (SimCLR)-type [1] transformations of
an image, and different frames of a video [54], etc. Among
them, image rotation prediction [13] and contrastive predic-
tion [1] are two representative approaches, where the former
uses spatial context structure of an image and the latter is
based on context similarity [20].

In the context of few-shot learning, rotation prediction
and self-supervised contrastive prediction have been indi-
vidually studied to boost the performance [33], [37], [60].
Besides, strong supervision signals are also used to train other
surrogate tasks, e.g., fully supervised contrastive prediction

using class information [28], [37], or feature learning based
on extra semantic annotations [59]. In our work, we use a
self-supervised rotation prediction task and a fully supervised
contrastive prediction task for remote sensing scene classifi-
cation, and the AMP regularization technique is investigated
to calibrate the tasks to facilitate training. Different from
S2M2 [33] that relies on a two-stage training strategy, our
model converges after one round training.

D. Few-Shot RS Scene Classification

In the few-shot remote sensing scene classification, we can
roughly divide the available methods into transfer learn-
ing [18], [40] and meta-learning [9], [41]. In practice, meta-
learning is currently the dominant strategy for few-shot scene
classification of optical remote sensing image. Following the
idea of metric-based learning paradigm, a Siamese-prototype
network (SPNet) with prototype self-calibration and intercal-
ibration was proposed by [4] to improve the performance of
prototype-based classification. Scaled cosine similarity was
adopted by [61] to measure the distance between query data
and support data. Other distance metrics such as CNN rela-
tion module [23], [24], [32], [56] and Euclidean distance
[27], [53] were also used to train various metric-based learning
frameworks.

In SCL-MLNet [25], the contrastive prediction task has been
applied to facilitate few-shot remote sensing scene classifica-
tion. However, the effectiveness and potentials of pretext tasks
have not been fully explored yet, and our work tries to shed
new light on this topic.

III. OUR METHOD

This section is dedicated to the details of our proposed
method, including the subsections of notation introduction, full
objective, rotation prediction task, contrastive prediction task,
and network regularization.

A. Notation and Preliminary

In this section, we introduce the formulation of few-shot
learning and briefly review the baseline model. In the few-
shot classification, given a large amount of labeled data Dbase

with a set of classes Cbase, the goal is to train a model that
could generalize to novel data Dnovel with a set of novel classes
Cnovel. Note that Cbase∩Cnovel = ∅. In each task, we sample K
classes from the dataset. Therein, the support data are denoted
as S ={(xi , yi)}N K

i=1 (i.e., each class contains N examples) and
the query data are Q ={(xi , yi)}M K

i=1 . xi and yi ∈ {1, 2, . . . , K }
represent the input data and corresponding category label,
respectively. We term {S,Q} as a K−way N−shot few-shot
task. Notably, our method follows a transfer learning pipeline,
where the samples are datapoints (instead of tasks as in meta-
learning) in the training phase. In the inference phase, a set
of tasks are sampled from Dnovel to evaluate the model. Given
support set S as training data, the final evaluation is done by
testing the query set Q.

For training, the baseline model trains a feature extrac-
tor fθ (parameterized by the backbone network θ ) and a
linear classifier E(.|Wb) (parameterized by a weight matrix
Wb ∈ R

d×|Cbase|) via minimizing a standard cross-entropy
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Fig. 2. Overview of the whole framework. It contains a shared feature extractor for three tasks, namely, (a) semantic class prediction to recognize the image
category, (b) rotation prediction to identify the 2-D rotation degree, and (c) contrastive prediction to cluster the matching images and push apart unmatching
images. Therein, AMP is applied on the parameter space to calibrate the pretext tasks.

loss. The classifier E(.|Wb) is constituted by a linear layer
W�b fθ (xi) and a Softmax operation (xi ∈ Dbase). For inference,
a nearest-neighbor rule is used to perform classification for
each novel task {S,Q}. Suppose Sk = {(xi , yi)}Ni=1 denotes
the support data of kth category, the average feature is com-
puted as its prototype, i.e., ck = (1/|Sk |) ∑

xi∈Sk
fθ (xi). For a

query x ∈ Q, the probability distribution is given by a Softmax
operation over its distance with each class prototype

pθ (ŷ = k|x) = exp (� fθ (x), ck�)∑
k exp (� fθ (x), ck�) (1)

where �·, ·� is the cosine similarity operator. The prediction of
the query is performed by finding the nearest class prototype.

Algorithm 1: Pipeline of the Proposed Method
Input: Datasets Dbase, Dval , and Dnovel

Output: Feature extractor fθ
1 � Training
2 while θ not converged do
3 for (x, y) ∈ Dbase do
4 Optimize θ by (11)
5 end
6 Select best θ using Dval

7 end
8 Output fθ
9 � Inference

10 for {S,Q} ∈ Dnovel do
11 Perform classification by (1)
12 end

B. Full Objective

The overall framework of our proposed method is depicted
in Fig. 2, which consists of three modules. The three tasks

in these modules are jointly learned in an end-to-end manner.
To this end, we propose a full objective as

Lfull = Lb + αLr + βLc (2)

where Lb, Lr , and Lc are the losses of semantic class
prediction learning, rotation prediction learning that relies
on class-agnostic supervisory signal, and contrastive pre-
diction learning that maps a representation vector to a
low-dimensional vector and attracts the vectors of positive
sample pairs in the embedding space, respectively. To calibrate
the two pretext tasks, we apply the AMP technique in the
parameter space, and the regularized objective is then written
as (11). The hyperparameters α and β control the contribution
of each pretext task. After the network converges, we obtain a
feature extractor fθ and resort to the nearest-neighbor rule for
inference. Algorithm 1 summarizes the process of the training
and inference stages.

C. Rotation Prediction Task

Given an image, the goal of rotation prediction is to tell
which one of the several rotations this image undergoes, e.g.,
four rotations with {0◦, 90◦, 180◦, and 270◦}, and thus it can be
formulated as a four-way classification task. Fig. 3 visualizes
some images that are rotated by different rotation degrees.
Formally, we define a set of rotation operators as G = {gr }Rr=1,
where xr = gr (x) denotes the transformed image by a rotation
degree and R is the number of rotations. In practice, the
number and magnitude of recognized rotations are flexible,
thereby forming different rotation recognition tasks. Given
rotation classifier parameters Wg = [w1, w2, . . . , wR], the
likelihood on input xi is

p
(

ŷg
i = r |xi

) = exp
(
w�r fθ (gr (xi))

)
∑R

r=1 exp
(
w�r fθ (gr(xi))

) . (3)
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Fig. 3. Visualization of images rotated by different rotation degrees.

The loss function can then be formulated as a standard
cross-entropy loss

Lr = −
B∑

i=1

R∑

r=1

I
(

yg
i = r

)
log

(
p
(

ŷg
i = r |xi

))
. (4)

Different from semantic class labels, here the supervisory
signal is class-agnostic, which significantly promotes the infor-
mation sharing across classes. More importantly, the insight
behind rotation supervisory signal is that the neural networks
should have recognized the classes and learned the object parts
before it effectively performed rotation recognition task.

In [7], quantitative results are released to show a strong
linear correlation between rotation prediction and semantic
classification accuracies when training such two tasks simul-
taneously. Such observation hints that rotation supervisory
signal may have a positive effect on semantic classification.
Nevertheless, the authors do not see obvious gains in semantic
classification accuracy using a multitask framework. In con-
trast, in our work, we observe that the rotation prediction
task is helpful for the few-shot remote sensing classifica-
tion accuracy. We conjecture this is due to task discrepancy:
1) whole classification denotes the task where training and
testing classes are the same, which follows the common
definition of generalization and 2) few-shot classification
denotes the task where training and testing classes are dis-
joint. Because distributions of the training and testing sets in
few-shot classification are much more far apart than that of
whole classification, information sharing across classes is more
critical in the few-shot setting. Such universal information
usually contains some intrinsical characteristics. Therefore
few-shot classification can benefit from the rotation prediction
task.

Besides, in the training process, all the rotated copies of
an image are fed into the network simultaneously. Because
each transformed image has a semantic class label in addition
to the rotation label, these rotated copies are expected to
share certain rotation-irrelevant features. Consequently, the
semantic classifier should be trained to recognize the category
information of all transformed images and their originates. The
semantic classification loss is then formulated as

Lb = −
B R∑

i=1

C∑

c=1

I(yi = c) log(p(ŷi = c|xi)). (5)

Given classifier parameters Wb = [w1, w2, . . . , wC ], the
likelihood is calculated as

p(ŷi = c|xi) = exp
(
w�c fθ (gr(xi))

)
∑C

c=1 exp
(
w�c fθ (gr (xi))

) . (6)

D. Contrastive Prediction Task

Contrastive learning aims to learn an embedding that
can separate samples from two different distributions. Over
the train set Dbase that consists of a collection of samples
{vi = (xi , yi)}Hi=0, the goal is to contrast congruent and
incongruent pairs, i.e., samples from the same distribution
ζ ∼ p(v1, v2) are considered as a positive pair, while samples
μ ∼ p(v1)p(v2) from the product of marginals are considered
as a negative pair. Next we are going to introduce the details
of recognizing these positive and negative pairs.

Let fθ map the input x to a feature vector r ∈ R
d , which

is then mapped into a lower dimensional embedding vector
z ∈ R

d � , i.e., z = C(r|�). The projection network C(.|�) can
be developed as either a multilayer perceptron (MLP) or just
a single linear layer. Here, we instantiate it by a single fully
connected layer with the dimension of 128. We normalize the
output of this network, which makes it feasible to compute
the cosine similarity using inner product.

For a minibatch with B input images, there are B pairs
randomly augmented samples for training. To identify the
positive counterpart zp for each sample zi (p ∈ A(i), A(i)
is the set of indices of all positives in a training batch distinct
from i ), the contrastive loss holds the following form:

Lc =
2B∑

i=1

−1

|A(i)|
∑

p∈A(i)

log
exp

(
τ �zi , zp�

)
∑2B

j=1 I( j �= i)exp
(
τ �zi , z j�

)

(7)

where τ is a scaling factor and set to 10 in this work.
It is clear that Lc is trained to obtain a high similarity value

for positive pairs and low for negative pairs. We discuss such
loss function in two cases, or consider the positive pairs in two
cases, for each sample: 1) self-supervised setting that only the
another augmented sample originating from the source sample
is seen as a positive (|A(i)| = 1) and 2) fully supervised
setting that all the samples belonging to the same semantic
class as the origin are seen as positives (|A(i)| ≥ 1). As a
result, there would be an increasing number of positive pairs
when semantic class information is accessible.

E. Network Regularization

The AMP aims to find a flat minima of empirical risk. Such
a flat minima is a large connected region in weight space where
the error remains approximately constant [16] and corre-
sponds to a low-complexity (e.g., less fit parameters) network.
It is commonly believed that intermediate model complexities
strike a balance between underfitting and overfitting and thus
benefit model generalization (e.g., less sensitive to quirks like
noise of the training set) [39], [43]. In Fig. 2, we show the
decision boundary before and after calibration during train-
ing. Obviously, the network tends to be high-complexity and
overfitting (i.e., capture complicated statistical relationships in
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Fig. 4. Example that shows empirical loss curve (left) and the corresponding
AMP loss curve (right). It can be observed that AMP loss can generate optimal
parameters at the flatter minima.

the underlying data distribution) before calibration, while the
calibrated decision boundary is smoother and a simpler net-
work is preserved for testing. Subsequently, we will elaborate
the details of applying the AMP regularization technique into
our multitask learning model. Suppose ζ denotes the whole
training parameters of our model, which is defined in a weight
space �. For each training sample {(x, y)} ∈ Dbase, we use
Lfull(x, y; ζ ) to denote its full loss of our model with respect to
the ground truth y (includes class label and those from pretext
tasks). Based on the empirical risk minimization principle [50],
we write an empirical loss

LEMR(ζ ) := 1

|Dbase|
∑

(x,y)∈Dbase

Lfull(x, y; ζ ). (8)

To overcome overfitting, instead of minimizing the empir-
ical loss LEMR, we minimize an AMP loss LAMP. As shown
in Fig. 4, LAMP essentially forces the network to a find flatter
minima. Formally, for any positive ε and η ∈ �, suppose
B(η; ε) be a norm ball in the high-dimensional space � with
radius ε centered at η

B(η; ε) := {ζ ∈ � : ζ − η ≤ ε} (9)

where the norm ball is defined over the L2 norm.
Then, an AMP loss is defined as the following form:

LAMP(ζ ) := max

∈B(0;ε)

1

|Dbase|
∑

(x,y)∈Dbase

Lfull(x, y; ζ +
).

(10)

During training, the network proceeds by optimizing over a
large number of batches which consist of B randomly sampled
images and their augments corresponding to each pretext task.
Thus, AMP loss LAMP could be approximated by the loss that
is computed over a random batch B, namely

LAMP,B(ζ ) = max

B∈B(0;ε)

1

|B|
∑

(x,y)∈B
Lfull(x, y; ζ +
B). (11)

To optimize the above objective, we first obtain a perturba-
tion vector 
B on parameters ζ and then minimize LAMP,B(ζ ).
We describe our detailed steps in Algorithm 2. To be specific,
each training step contains two loops where the inner loop
aims to update 
B along the direction of increasing empirical
loss LEMR so as to access LAMP,B (line 6–13); the outer loop
follows a common SGD algorithm to minimize LAMP,B (line

Algorithm 2: AMP Training
Input: Dataset Dbase; Batch size B; Loss functions Lb,

Lr , and Lc; Learning rate μ1 and μ2; Loss
weights α and β; Rotation operator {gr}Ri=1 and
SimCLR-type transformation operator hs

Output: Model parameters ζ

1 Randomly initialize ζ ; k = 0
2 while ζ k not converged do
3 k = k + 1; Sample B = {(xi , yi)}Bi=1 from Dbase

4 Augment B by rotation operator {gr }R−1
i=0 and

SimCLR-type transformation operator hs

5 Initialize perturbation: 
B ← 0
6 for n← 1 to T do
7 Compute full loss: L f ull = Lb + αLr + βLc

8 Compute gradient:
∇LAMP,B ←∑B

i=1 ∇ζL f ull(xi , yi; ζ k +
B)/B
9 Update perturbation: 
B ← 
B + μ1∇LAMP,B

10 if 
B2 ≥ ε then
11 Normalize perturbation: 
B ← ε
B/
B2

12 end
13 end
14 Compute gradient:

∇LAMP,B ←∑B
i=1 ∇ζL f ull (xi , yi; ζ k +
B)/B

15 Update parameters: ζ k+1 ← ζ k − μ2∇LAMP,B
16 end

TABLE I

FIVE-WAY CLASSIFICATION ACCURACY (%) ON NWPU-RESISC45 WITH

95% CONFIDENCE INTERVALS, FOR CHOOSING THE BEST � ARCHI-
TECTURE. † AND ‡ DENOTE USING RESNET12 AND CONV-4-256

AS BACKBONE, RESPECTIVELY. THE BEST RESULTS OF EACH

MODEL ARE HIGHLIGHTED

14–15). Readers are referred to [64] for detailed theoretical
justifications about AMP.

IV. EXPERIMENTS

In this section, we evaluate our framework on standard
few-shot learning tasks. Below we describe the remote sensing
datasets used in this work and implementation details, fol-
lowed by analysis of the learned representations, the compar-
isons with the state-of-the-art methods, and an ablation study
regarding the ingredients of our method.

A. Datasets

We conduct experiments on three benchmarks and set splits
for training, validation, and testing as prior works [24].

NWPU-RESISC45 covers more than 100 countries and
regions all over the world with different resolutions. In total,
there are 45 classes with 700 samples of 256 × 256 images
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per class. All the classes are split into 25, 10, and 10 classes
for training, validation, and testing, respectively. AID was
collected from Google Earth imagery and consists of 10 000
images divided into 30 land-use classes with 200–420 samples
of 600 × 600 images per class. The base, validation, and
novel class splits are 16, 7, and 7, respectively. WHU-RS-19
has been widely used to evaluate many scene classification
approaches, with spatial resolution up to 0.5 m per pixel.
In contrast, it is a smaller dataset with 19 classes (1005 red
green blue (RGB) images) of 600 × 600 pixels. These classes
are grouped into nine, five, and five classes, respectively, for
training, validation, and testing.

We also set whole-classification splits on the three datasets
to further verify our conjecture in Section III-C. Specifi-
cally, all the classes of each dataset are used for training,
validation, and testing. The splits are set as follows. For
NWPU-RESISC45, each class is partitioned into 450, 50, and
200 samples. For AID, its class distribution is unbalanced.
Thus, each class is partitioned into 60%, 10%, and 30%
samples. For WHU-RS-19, since the number of samples for
each class starts from 50 (too few), each of them is divided into
two equal parts for training and testing, without validation.

B. Implementation Details

1) Network Architectures: We describe the details of model
architectures, including feature extractor parameters θ , seman-
tic classifier parameters Wb, rotation classifier parameters Wg,
and contrastive prediction head parameters �. For θ , we imple-
ment a shallow backbone Conv-4-256 and a deeper backbone
ResNet12 [14]. Concretely, Conv-4-256 consists of four layers
with 3 × 3 convolutions and finally produces a 256-D feature
vector after a global average pooling layer. The number of
filters starts from 32 and is doubled every layer. ResNet12
is composed of four residual blocks, and each block contains
three convolutional layers with 3 × 3 kernels. It eventually
produces a 640-D feature vector after a global average pooling
layer. The number of filters of those blocks is 64, 160, 320,
and 640, respectively. Moreover, DropBlock [11] is applied on
the feature maps of the last two blocks. For Wb and Wg, they
are both instantiated by a single fully connected layer, and the
latter with a dimension of 4 (four rotations in our work). For
�, we empirically find that a single fully connected layer is
more effective in our case. As shown in Table I, we observe
that the performance drops with the increase in the number of
layers.

2) Training Setup: We implement the image rotations by
90◦, 180◦, and 270◦ (0◦ is the image itself). The contrastive
learning uses SimCLR type [1] transformation to obtain
matching pairs for each sample. Thus, at each iteration the
network totally sees eight times more images than the batch
size (32 in this work). All the models are trained with an SGD
optimizer with momentum 0.9. The learning rate is initialized
as 0.01 and the weight decay is 5e-4. The total training epochs
are set to 120 for the above three datasets. Their corresponding
decay steps of learning rate are [80,100]. The decay factor is
set to 10. For AMP, ε is set to 0.3. At each iteration, we train
the inner loop with one step with a learning rate of 0.01,

Fig. 5. Visualization of attention maps by trans baseline (top) and our full
model (bottom). Each triplets denotes the input image and the corresponding
attention maps. Red circles give the class-specific image regions.

except by 0.1 for the NWPU-RESISC45 dataset when adopting
ResNet12. This is because NWPU-RESISC45 is a relatively
large dataset, and thus larger learning rate should be applied
to make greater perturbation regarding the deeper backbone.
The loss weights α and β of (2) are both set to 1. We have
also tried other choices like 0.5 for these two weights, but
the resultant accuracies have no obvious differences with the
current results. For evaluation, we randomly sample 2000 tasks
for five-way classification, with query samples per task. The
performance is evaluated in terms of the average accuracy with
95% confidence intervals. The entire model is implemented
using the PyTorch framework.

3) Ablative Settings: To demonstrate the contribution of
each ingredient, we carefully design several ablative settings:
two baselines without pretext task learning but only classic
learning, named as trans∗, three baselines of jointly training
with different pretext tasks, named as pre∗, and three baselines
of regularizing the above models with AMP, named as AMP∗.
We note that all these models, as well as our method, use the
nearest-neighbor rule during test phase. Table VII shows the
results under such settings. The bullet names adopted in this
table are explained as follows.
trans baseline (or rotation). These are naive transfer learning
models. trans baseline trains with a standard cross-entropy
loss. trans rotation trains with Lb of (5), which uses image
rotation as augmentation but without self-supervision.
pre rotation (or contrast or [rotation; contrast]). These are
used to evaluate the individual pretext task and their ensemble
effect, without the AMP regularization technique.
AMP trans (or rotation or contrast). These are used to evaluate
the AMP regularization technique, applied to different models.

C. Analysis of Learned Representations

1) Visualization of Representations: In Fig. 5, we visualize
some attention maps generated by the trans baseline and
our full model. Such attention maps are obtained based on
the magnitude of activations at each spatial cell of the last
convolutional layer and reflect where the network highlights
(i.e., brighter areas in the Fig. 5) to recognize the images.
While those classes have not been seen during training, the
network can locate the right regions of them in the image.
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Fig. 6. Nearest-neighbor retrieval results. We show the six nearest neighbors of trans baseline, AMP contrast, AMP rotation, and our method. Queries
are randomly selected from novel classes of NWPU-RESISC45. The semantic labels of the four queries are “parking lot,” “medium residential,” “basketball
ground field,” and “circular farmland,” respectively. Semantically related and unrelated retrievals are separately marked with green and red boxes, respectively.

TABLE II

FIVE-WAY CLASSIFICATION ACCURACY (%) ON NWPU-RESISC45 AND AID DATASETS. THE BEST AND SECOND BEST RESULTS ARE HIGH-
LIGHTED. FEW-SHOT LEARNING (FSL) MEANS FEW-SHOT LEARNING. NOTE THAT THE STANDARD VARIANCE DEPENDS ON THE NUMBER OF

TEST TASKS AND THE CLASS SPLITS. OUR SETTINGS FOLLOW SCL-MLNET [25] AND SPNET [4]

In particular, we can observe that the targets are more spa-
tially scattered and indeed show great orientation variations
compared with that of natural scene images. Under these
circumstances, both the networks still work by putting focus on
key regions. For example, for the “airport” class, they highlight
the airstrip intersection areas. Besides, for other classes that
are relatively compact like “basketball court,” the networks can
produce compact attention maps, even if the target is occluded

by trees. Furthermore, comparing the two networks, we find
that ours performs better, e.g., for the “ground track field”
class, our model can accurately localize class-specific image
region instead of missing certain information. For the “sparse
residential” class, our model focuses more on the key region
and do not highlight other irrelevant areas like road.

2) Nearest-Neighbor Retrieval: We conduct nearest-
neighbor retrieval to evaluate the networks’ ability of
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TABLE III

FIVE-WAY CLASSIFICATION ACCURACY (%) ON THE WHU-RS-19
DATASET. THE BEST AND SECOND BEST

RESULTS ARE HIGHLIGHTED

capturing object relationships. We randomly select five
classes with 15 samples per class and compute the cosine
distances between these samples and an arbitrary query that
belongs to the selected five classes. As shown in Fig. 6,
we give the six nearest neighbors that are arranged from left
to right in terms of increasing distance.

It can be observed that our method tends to capture more
fine-grained similarity. For example, for the first query sample
that belongs to “parking lot” class, it is easy to confuse this
class with “intersection” class, which is marked with red box.
This is likely because the model retrieves similar background
rather than the foreground (i.e., vehicles). Obviously, the top
five retrievals of trans baseline appertain under “intersection”
class, for AMP contrast and AMP rotation three of six fall
into this class. However, for our model only the last retrieval
is “intersection” example. In addition, for the second query
sample that belongs to “medium residential” class, its most
similar class is “dense residential.” In this case, our model also
gives the best results. Besides, for other queries, our method
can successfully find the semantically similar samples, which
demonstrates our model’s discriminative ability.

D. Comparison to the State-of-the-Art

Tables II and III report the overall comparisons to relevant
works. For transfer learning, we evaluate the performance of
baseline and S2M2. For meta-learning, we follow previous
works [4] to compare with the gradient-based and metric-based
learning methods, i.e., MAML, Meta-SGD, MatchingNet, Pro-
toNet, and RelationNet. These methods are implemented by
open-source code [2] except for Meta-SGD which is borrowed
from [4]. We implement them by Conv-4-64, which is used
in the original articles. This architecture is similar to our
Conv-4-256, but has only 64 filters for every layer. We also
apply ResNet12 to the metric-based learning methods for a
fair comparison. Furthermore, we compare with those methods
for few-shot remote sensing classification, including lifelong

TABLE IV

FIVE-WAY CLASSIFICATION ACCURACY (%) ON NWPU-RESISC45,
FOR CHOOSING THE MOST PROPER ROTATION RECOGNITION TASK

learning for scene recognition (LLSR), discriminative learning
of adaptive (DLA)-MatchNet, SPNet, and iterative distribution
learning network (IDLN) [56].

NWPU-RESISC45. As seen in Table II, our model
achieves new state-of-the-arts for both one-shot and five-shot
tasks, respectively. It is clear that our model outperforms
meta-learning algorithms and those methods in remote sensing
field by large margins, which reveals the great potential of
transfer learning. Besides, compared with another transfer
learning method S2M2, our one-shot result surpasses it by
around 13.5% when ResNet12 is adopted. This confirms the
superiority of the multitask learning framework. Regarding
the network architecture, those models that use deeper back-
bones (i.e., ResNet12) obviously outperform Conv-4-64 and
Conv-4-256 models.

AID. In Table II, we also show the results on AID. “Ours
+ ResNet12” achieves the best performance on both one-shot
and five-shot tasks. Moreover, an interesting observation is that
the performance of DLA-MatchNet undergoes a sharp decline
from NWPU-RESISC45 to this smaller dataset AID, while our
method consistently performs well on these two datasets. This
validates the good generalization ability of our framework.

WHU-RS-19. In Table III, we show the results on the
smaller dataset WHU-RS-19. From the table, we again con-
firm that our method outperforms others. Besides, we also
observe that the gaps between Conv-4-256 and ResNet12 are
much smaller than that on NWPU-RESISC45 and AID, e.g.,
“Ours + Conv-4-256” achieves one-shot result of 80.30%,
which is 6% lower than the result of “Ours + ResNet12.”
Especially in the five-shot task, using ResNet12 only brings
around 0.5% gains over Conv-4-256. Differently, the margins
raise to about 12.0% and 8.5% on NWPU-RESISC45. It is
likely that the larger dataset is more sensitive to the depth of
networks.

E. Ablation Study

From Tables IV–VII, we show the ablative studies on the
above three datasets. We first confirm which are the best
rotation and contrastive prediction tasks for our framework,
followed by detailed ablative analysis on them and the AMP
technique, and eventually the efficiency of our method.

1) Performance of Different Rotation Recognition Tasks:
We analyze how the number of discrete rotations in the
prediction task affects the quality of learned features. To this
end, we define extra three rotation recognition tasks to train
pre rotation: (a) one with all the eight rotations shown in
Fig. 3(b), one with only 0◦ and 180◦, and Fig. 3(c) one
with only 90◦ and 270◦. As shown in Table IV, we observe
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TABLE V

FIVE-WAY CLASSIFICATION ACCURACY (%) ON TWO CLASSIFICATION TASKS. FEW-SHOT. AND WHOLE-CLS.
DENOTE THE FEW-SHOT CLASSIFICATION AND WHOLE-CLASSIFICATION TASKS, RESPECTIVELY

TABLE VI

FIVE-WAY CLASSIFICATION ACCURACY (%) USING ABLATIVE
CONTRASTIVE LOSSES ON THE NWPU-RESISC45 DATASET.

SELF-SUPERVISED (SS) AND FULLY SUPERVISED (FS). MEAN

SELF-SUPERVISED AND FULLY SUPERVISED LOSSES,
RESPECTIVELY. RESNET12 IS USED. THE BEST AND

SECOND BEST RESULTS ARE HIGHLIGHTED

that the four rotations’ setting outperforms the other three
settings. We believe that this is because the two rotations’ cases
contain too few classes for recognition, which cannot provide
enough supervisory information for the model. As for the eight
rotations’ setting, the geometric transformations in this case
are not distinguishable enough, and thus the performance is
inferior to the four rotations’ setting. Another observation is
that, for the two rotations’ settings, the model trained with 0◦
and 180◦ obtains better performance than that trained with 90◦
and 270◦. It is possibly because in the latter case the model
cannot see what the image really looks like (i.e., 0◦ rotation)
during training. Thus, we use the four rotations’ setting in this
work.

2) Rotation Recognition on Different Classification Tasks:
In Table V, we explore how the rotation prediction task affects
the whole-classification and few-shot classification tasks on
remote sensing data. Clearly, we can see that rotation pre-
diction task can facilitate few-shot classification but has no
obvious gains on whole-classification accuracy. As discussed
in Section III-C, this is caused by the discrepancy underlying
such two tasks. Specifically, when train classes are congruent
to test classes, the rotation prediction task has little impact
on accuracy. Conversely, few-shot learning has the goal to
transfer knowledge from base classes to novel classes, and
rotation prediction task can promote knowledge transferring
across classes because it uses class-agnostic supervision. Per-
formance of different contrastive losses. Table VI shows
the results obtained with fully supervised and self-supervised
contrastive losses. We observe a great drop in one-shot and

Fig. 7. t-SNE visualization of the image features learned with (bottom)
and without (top) AMP regularization technique. The features are from six
NWPU-RESISC45 testing classes with 200 randomly selected images per
class.

five-shot results when adopting the self-supervised setting.
One potential reason is that the self-supervised loss con-
structs positive pairs with input transformation, while different
instances belonging to the same class are viewed as negative
pairs. This is contradictory to the idea of semantic classifica-
tion, i.e., those instances belonging to the same class should
be similar in the embedding space. Moreover, the benefit of
self-supervised contrastive learning is that it can merely use
the augmented samples and works in an unsupervised way.
However, in our few-shot classification task the model oper-
ates in a fully supervised setting rather than an unsupervised
setting. Therefore, it is very reasonable that fully supervised
contrastive learning outperforms self-supervised contrastive
learning. In this article, we use fully supervised loss to perform
contrastive prediction.

3) Effect of Pretext Tasks: As shown in Table VII, we first
study the effect of the two types of pretext tasks. We report
the results using Conv-4-256 and ResNet12, which are shown
on the top rows of each block. Overall, the three models
incorporating the pretext task learning clearly obtain better
results. This confirms the necessity of pretext task learning.
For the multitask learning model, i.e., pre [contrast; rota-
tion], it achieves better performance than individual pretext
task learning except for the results on NWPU-RESISC45
with Conv-4-256, i.e., 63.21% is slightly lower than 63.72%.
One possible reason is that for a relatively large dataset
NWPU-RESISC45, it is difficult for a shallow backbone Conv-
4-256 to optimize three tasks simultaneously. In contrast, for
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Fig. 8. Five-way one-shot classification test accuracy plots on the NWPU-RESISC45 dataset, using [(a), (b)] ResNet12 and [(c), (d)] Conv-4-256.

TABLE VII

FIVE-WAY CLASSIFICATION ACCURACY (%) USING ABLATIVE MODELS, ON THREE DATASETS. THE TOP BLOCK AND BOTTOM BLOCK USE CONV-4-64
AND RESNET12 AS BACKBONE, RESPECTIVELY. FOR EACH BLOCK, BEST AND SECOND BEST RESULTS ARE HIGHLIGHTED

a medium dataset AID and a much smaller dataset WHU-RS-
19, multitask learning is superior. Comparing the results of the
ResNet12 and Conv-4-256 models, we conclude that a deeper
backbone can better handle the three tasks simultaneously.

4) Effect of AMP: We hereby explore the impact of the
AMP technique by adding it to different models. The results
are shown in the bottom rows of each block of Table VII.
Clearly, it can improve the classification accuracy, both over
the baseline model and pre∗ models. This verifies that the
calibrated pretext tasks can indeed boost the resulting perfor-
mance. However, we find that AMP rotation performs worse
than pre rotation on WHU-RS-19 when we use ResNet12, i.e.,
78.03% versus 81.70%. It is potentially because there are too
many parameters to optimize for such a small dataset, and
the regularization technique fails to facilitate the rotation pre-
diction task learning to improve the final accuracy. This also
results in inferior performance of the corresponding full model
compared with pre [contrast; rotation]. In contrast, when we
adopt Conv-4-256, our full model has a slight advantage over
the pre [contrast; rotation]. In addition, as shown in Fig. 7, t-
Stochastic Neighbor Embedding (t-SNE) [49] visualization of
image features affirms the effectiveness of the AMP technique
in alleviating overfitting (e.g., reducing intraclass and increas-
ing interclass variances) and forming more defined decision
boundaries, and this aligns with our conceptually visualization
in Fig. 2.

5) Efficiency: In Fig. 8, we show the test accuracy with
respect to training epochs on the NWPU-RESISC45 dataset.

We can see that all the models converge to a good performance
after 100 epochs of training. Particularly, Fig. 8(a) shows
that AMP rotation obviously outperforms pre rotation, and
Fig. 8(b) shows that our full model obtains higher accura-
cies than AMP rotation. Such observations again confirm the
superiority of the AMP regularization technique and pretext
tasks. Besides, compared with Fig. 8(a) and (b), the curves of
Fig. 8(c) and (d) demonstrate that each individual ingredient
of our framework does not have impressive advantages over
the baseline when we train a shallow network Conv-4-256.
Furthermore, we conduct inference time experiments to inves-
tigate the computational efficiency of our model by calculating
the inference time required for a single five-way, one-shot
task, averaged over 2000 tasks. Using the ResNet12 (47.43 M
parameters) and Conv-4-256 (0.43 M parameters) backbones,
the results of 15 queries are both around 0.001 s per task.
Since we use the nearest-neighbor rule for inference and avoid
training a classifier as prior works [2], the inference speed can
readily meet real-time requirements.

V. CONCLUSION

In this work, we have presented a novel framework
leveraging calibrated pretext tasks for tackling the few-shot
remote sensing classification problem. The two types of pre-
text tasks, i.e., rotation prediction and contrastive prediction,
proved to be impressively effective for robust feature learning.
The comparison between few-shot classification and whole-
classification results verifies that rotation prediction task can
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learn class-transferable knowledge which is useful for few-
shot learning. The comparison between fully supervised and
self-supervised contrastive losses shows that the semantically
similar features are supposed to be close in embedding space
explicitly during training, when contrastive loss is used as an
auxiliary objective. To alleviate model overfitting, the AMP
regularization technique is introduced to minimize an AMP
loss instead of empirical loss. Unifying the two pretext tasks
and the AMP technique in a multitask learning framework, our
method achieves the best results on three representative remote
sensing benchmarks, including NWPU-RESISC45, AID, and
WHU-RS-19. The design of our framework is independent
of any specific model or architecture and can be further
generalized to other few-shot learning models in future work.
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