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ABSTRACT

Multisource remote sensing data provide the abundant and
complementary information for land cover classification. In
this paper, we propose a deep hashing-based feature extrac-
tion and fusion framework for joint classification of hyper-
spectral and LiDAR data. Firstly, HSIs and LiDAR data are
fed into a two-stream network to extract deep features after
data preprocessing. Then, we adopt hashing technique to con-
strain single-source and cross-source similarities, i.e., sam-
ples with same classes should have small feature distance and
samples with different classes should have large feature dis-
tance. Furthermore, a feature-level fusion strategy is exploit-
ed to fuse the two kind of multisource information. Final-
ly, we design an object function to consider the similarity in-
formation between sample pairs and semantic information of
each sample, which can deliver the discriminative features for
classification. The experiments on Houston data demonstrate
the effectiveness of the proposed method over some competi-
tive approaches.

Index Terms— Hyperspectral images (HSIs), Light de-
tection and ranging (LiDAR), classification, deep learning,
hashing, feature extraction.

1. INTRODUCTION

The recent advances in sensor technology have made it possi-
ble to simultaneously acquire different source remote sensing
data of same investigated region. For instance, hyperspec-
tral images (HSIs) are usually composed of several hundreds
of spectral bands spanning from the visible-to-infrared spec-
trum. With the rich spectral information, HSIs are widely
used to discriminate the different materials [1–3]. Howev-
er, due to lacking of the elevation information, it is difficult
to distinguish the building roof and the road that made up of
concrete using HSIs. On the other hand, light detection and
ranging (LiDAR) data record the elevation information about
the surveyed area, which can be acquired even under cloud-
cover conditions. Though LiDAR data can accurately classify
land covers with different heights, it cannot discriminate roof-
s with different materials (e.g., asphalt and steel). Thus, joint
use of HSI and LiDAR data has been widely investigated in

the remote sensing field to enhance the interpretation accura-
cy for the study area.

In order to make full use of the complementary informa-
tion between HSI and LiDAR data, a large number of works
have been investigated in the past several years. Among them,
feature-level fusion and decision-level fusion are two widely-
used techniques. For the former one, the features of HSIs
and LiDAR are separately extracted, and then fused to im-
prove the ability of representation of features. For example,
the spatial and spectral features of HSI extracted from a dual-
tunnel CNN were combined with the spatial information of
LiDAR extracted from a cascade network [4]. Du et al. [5]
proposed a graph fusion network to extract a fused feature
from multisource data, where feature extraction and fusion
are integrated into a single network. In addition, the extinc-
tion profiles of HSI and LiDAR data were fused with sparse
and low-rank component analysis [6]. For decision-level fu-
sion, there are also some successful application. For instance,
a decision-level fusion method for HSI and LiDAR data clas-
sification was presented in [7], and liner and nonlinear fea-
tures were fused in a decision phase [8]. In addition, Hang
et al. [9] adopted a weighted summation strategy to perform
the decision-level fusion for the joint classification of HSI and
LiDAR data. Although the above feature-level and decision-
level fusion approaches have shown satisfactory performance
for classification task, the correlations between samples are
not well excavated. Due to lacking of the constraints in sim-
ilarities between samples, the previous methods may deliver
an unsatisfactory classification result when dealing with the
high intra-class and low inter-class variabilities for some com-
plex classes.

To this end, we propose a novel deep hashing-based fea-
ture extraction and fusion method for the joint classification
of HSI and LiDAR data. First of all, we build a two-stream
CNN to extract the spectral-spatial feature of HSIs and spatial
feature of LiDRA data, respectively. Then, the hashing tech-
nique is imposed on the above extracted features to constrain
the similarities between single/cross-source samples. Further-
more, the features of HSI and LiDAR data are fused in a fully
connected layer to improve the ability of representation. Fi-
nally, we elaborately design an object to simultaneously con-
sider the similarity information of sample pairs and seman-
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Fig. 1: The architecture of the HDRN. Residual block m, n, and k refers to low, middle, high layer, respectively.

tic information of each sample. The experimental results on
Houston data demonstrate that the proposed method can ob-
tain the better classification results.

The rest of this paper is organized as follows. In Section
2, the proposed method is described in detail. The experimen-
tal results are presented in Section 3. Section 4 makes some
concluding remarks.

2. PROPOSED METHOD

In this paper, we propose a novel feature extraction and fusion
framework for the joint classification of HSI and LiDAR da-
ta. Fig. 1 shows the whole framework, which can be mainly
divided into three steps, i.e., data preprocessing, deep feature
extraction, and loss function design. In the following parts,
we will describe the procedures in detail.

2.1. Data preprocessing

Let H ∈ RM×N×C and L ∈ RM×N×1 be a HSI and the
corresponding LiDAR data, respectively, where M × N is
the spatial size of image and C is the number of channel-
s of HSI. Considering that the original HSIs usually contain
the abundant redundant information within server handers of
spectral bands, we perform principal component analysis (P-
CA) algorithm on the original HSI to extract the most in-
formative components. Here, we preserve three components
to meet the need of input of the following pre-trained net-
work. The dimensionality-reduced HSI can be represented by
H′ ∈ RM×N×3. On the other hand, we perform extended
morphological profiles (EMP) algorithm [10] on the original
LiDRA data to extract the spatial information of LiDAR via
morphological operations. Specifically, the processed LiDAR
data can be represented by L′ ∈ RM×N×3.

2.2. Deep feature extraction

We adopt the classic AlexNet [11] as the pre-trained model,
where the last classification layer is discarded. Here, we build
a two-stream AlexNet model to extract deep spectral-spatial
features of HSI and deep spatial features of LiDAR data.

For a pair of sample (xi, xj), where xi and xj are the im-
age patches with size of p × p. Here, xi and xj can be from
same source or different sources, i.e., xi,xj ∈ {H′,L′}. The
label of image patch is determined by the label of centered
pixel. Then, (xi, xj) is input into the above two-stream net-
work, which can be represented by the following formulation:

ft = Φ(xt; θ), t = i, j (1)

where Φ is the network function characterized by the param-
eter θ existed in the first seven layers of AlexNet.

In addition, we build a hash layer and a semantic layer on
the top of AlexNet to extract the hash-like codes and semantic
features, respectively [12]. Furthermore, we fuse features of
two hash layers to improve the ability of representation. The
above procedures can be represented by:

ut = σ(Wt
hft + vt

h), t = i, j (2)

uf = σ(Wh(fi + fj) + vh) (3)

zt = (Wt
sut + vt

s), t = i, j, f (4)

where Wh and Ws are the weights of hash layer and seman-
tic layer respectively, vh and vs are the corresponding biases.

2.3. Loss function design

As shown in Fig. 1, there are three kinds of losses are con-
sidered in our method. Specifically, for pairs of samples from
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Table 1

Class Class Training CNN-PPF FDSSCN CRNN Context Two-branch Coupled Our
No. Name /Test CNN CNN CNN method
1 Healthy grass 198/1053 83.57 85.53 83.00 84.89 83.10 98.51 85.33
2 Stressed grass 190/1064 98.21 84.61 79.41 87.40 81.20 97.83 86.91
3 Synthetic grass 192/505 98.42 99.43 99.80 99.86 100 70.60 87.23
4 Tree 188/1056 97.73 94.13 90.15 93.49 92.90 99.06 96.99
5 Soil 186/1056 96.50 100 99.71 100 99.81 100 98.46
6 Water 182/143 97.20 98.15 83.21 98.77 100 41.11 91.96
7 Residential 196/172 85.82 92.11 88.06 82.81 92.54 83.14 96.90
8 Commercial 191/1053 56.51 65.03 88.61 78.78 94.87 98.39 95.37
9 Road 193/1059 71.20 66.21 66.01 82.51 83.85 94.81 89.64
10 Highway 191/1036 57.12 71.88 52.22 59.41 69.89 92.98 72.32
11 Railway 181/1054 80.55 84.53 81.97 83.24 86.15 90.88 97.27
12 Parking lot 1 192/1041 62.82 98.54 69.83 92.13 92.60 91.02 81.89
13 Parking lot 2 184/285 63.86 90.41 79.64 94.88 79.30 97.09 92.89
14 Tennis court 181/247 100 100 100 99.77 100 100 100
15 Running track 187/473 98.10 100 100 98.79 100 97.85 85.52
OA - - 83.33 86.60 88.55 86.90 88.91 90.43 90.65
AA - - 83.21 88.20 90.30 89.11 90.42 90.22 90.48

Kappa - - 81.88 85.59 87.56 85.89 87.96 89.68 89.95

single source, the similarity loss is formulated by taking the
negative log-likelihood of the observed pairwise labels, i.e.,

Lsin = −
∑

sij∈Sh

log p(sij |B)−
∑

sij∈Sl

log p(sij |B)

= −
∑

sij∈Sh

(sijωij − log(1 + eωij ))

−
∑

sij∈Sl

(sijωij − log(1 + eωij )).

(5)

where sij is the label of pair of samples (xi, xj) such that
sij = 1 if xi and xj share same label and 0 otherwise. B is
the hash code matrix such that the element bt = sign(ut).
ωij = 1

2b
T
i bj

For pairs of samples from different source, the similarity
loss is also represented by:

Lcro = −log p(S|B)−
∑

sij∈Shl

(sijωij − log(1 + eωij )).

(6)

For each sample, the sematic loss is represented by the fol-
lowing formulation

Lsem =− 1

K

∑
xi∈H′

< yi, logti > −
1

K

∑
xj∈L′

< yj , logtj) >

− 1

K

∑
xi∈H′,xj∈L′

< yf , logtf >

(7)

where y is the true label of the corresponding sample, t =
softmax(z), K is the number of training samples. In addi-
tion, we also consider the quantitative loss, i.e.,

Lqua =

K∑
i,j=1

‖ui − bi‖22 + ‖uj − bj‖22 (8)

Finally, the object function is defined by:

J = minL = min(αLsin + βLcro + γLsem + λLqua) (9)

where α, β, γ, and λ are the regularization parameters. The
above function can be solved by stochastic gradient descent
(SGD) algorithm.

3. EXPERIMENTAL RESULTS

3.1. Data Description

To verify the effectiveness of the proposed method, we con-
duct classification experiments on Houston data. This scene
was acquired by an airborne sensor over the area of University
of Houston and neighboring area in 2012. This scene contains
a HSI and LiDAR data, both of which consist of 349 × 1905
pixels with a spatial resolution of 2.5 m. The HSI has 144
spectral bands across the spectral range from 0.38 to 1.05 µm.
15 classes of interest are considered for this dataset.

3.2. Experimental Results

In experiments, we adopt the standard sets of training and test
samples which are provided by this dataset. The proposed
method is compared with other competitive methods, includ-
ing CNN-PPF [13], two-branch CNN [4], FDSSCN [14], con-
text CNN [15], CRNN [16], and Coupled CNN [9]. For the
proposed method, the size of image patch is set to 15 × 15,
α, β, γ, and λ are set to 10, 0.5, 1, and 5, respectively. Other
compared methods are implemented with optimal parameters.

Table 1 shows the classification results on this dataset.
Note that the results of all compared methods are reported ac-
cording to the reference [17]. From this table, we can see that
our method is obviously superior to other methods. Specifi-
cally, its improvement is about 7.32%, 4.05%, 2.10%, 3.75%,
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1.74%, and 0.22% over CNN-PPF, FDSSCN, CRNN, Con-
text CNN, Two-branch CNN, and Coupled CNN, respective-
ly. The above experimental results demonstrate that the pro-
posed method can obtain a better classification accuracy than
other comparison baselines due to more effective information
utilization including single/cross-source similarity informa-
tion and semantic information.

4. CONCLUSIONS

In this paper, we propose a novel feature extraction and fu-
sion framework for the joint classification of HSI and LiDAR
data. The designed object function takes full consideration
of single/cross-source similarity and semantic information,
which delivers a discriminative feature representation for sub-
sequent classification. Experimental results demonstrate the
proposed method outperforms other competitive methods.
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