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Temporal knowledge graph (TKG) representation learning embeds relations and entities into a continuous
low-dimensional vector space by incorporating temporal information. Latest studies mainly aim at learning
entity representations by modeling entity interactions from the neighbor structure of the graph. However,
the interactions of relations from the neighbor structure of the graph are neglected, which are also of sig-
nificance for learning informative representations. In addition, there still lacks an effective historical relation
encoder to model the multi-range temporal dependencies. In this article, we propose a dual graph convolution
network based TKG representation learning method using historical relations (DACHA). Specifically, we first
construct the primal graph according to historical relations, as well as the edge graph by regarding histor-
ical relations as nodes. Then, we employ the dual graph convolution network to capture the interactions
of both entities and historical relations from the neighbor structure of the graph. In addition, the temporal
self-attentive historical relation encoder is proposed to explicitly model both local and global temporal de-
pendencies. Extensive experiments on two event based TKG datasets demonstrate that DACHA achieves the
state-of-the-art results.
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1 INTRODUCTION

Temporal knowledge graphs (TKGs) [32], containing temporally annotated knowledge, are
regarded as multi-relational graphs, which have played crucial roles in various applications, e.g.,
international relation prediction [9] and social network analysis [1, 10].

The Global Database of Events, Language, and Tone (GDELT) [22] and The Integrated
Conflict Early Warning System (ICEWS) [4] are typical event based TKGs, and the events in
them are denoted as (head entity, relation, tail entity, and timestamp), abbreviated as (s, r, 0, t). For
example, for event (United States, make optimistic comment, China, 20180103), “United States”
and “China” refer to head entity and tail entity, respectively, “make optimistic statement” refers to
relation, and “20180103” refers to timestamp. TKG representation learning embeds relations and
entities into a continuous low-dimensional vector space by incorporating temporal information,
which is of significance for downstream tasks, e.g., link prediction [32].

Traditional TKG representation learning methods directly model timestamps as corresponding
hyperplanes [8], representations [20], or fixed format encodings [13]. These methods simply embed
associated timestamps into a low-dimensional vector space, failing to explicitly model the temporal
dependency.

Some researchers have tried to introduce sequence models, e.g., Recurrent Neural Networks
(RNNs) [19] and its variants [7, 12] to model the temporal dependency. For example, Know-Evolve
[32] learns entity representations by employing RNNs to model historical relations. A historical
relation is a sequence of relations augmented with timestamps between a pair of entities. As shown
in Figure 1, the historical relation between “United States” and “China” is {(make optimistic com-
ment, 20180103), (impose embargo, boycott, or sanctions, 20180322), (reject economic coopera-
tion, 20180707), etc.}. We can infer that the two countries might further reduce cooperation, as the
temporal evolving of the historical relation is of help for portraying “United States” and “China”.
However, all of the above-mentioned methods neglect the interactions among entities from the
neighbor structure of the graph. To deal with this problem, RE-NET [16] learns entity represen-
tations by using Graph Convolution Networks (GCNs) to model entity interactions from the
neighbor structure of the graph. Despite the promising results of introducing GCNs, there still
exist some limitations needed to be improved.

First, existing methods fail to capture the interactions among relations from the neighbor struc-
ture of the graph. However, capturing the correlation between relations, especially historical rela-
tions, is of help for predicting the relations between entities in the future. For example, as shown
in Figure 1, ignoring the interaction among historical relations from the neighbor structure of the
graph, only considering the historical relation between “United States” and “Russia” (the blue line
with an arrow), “United States” is likely to further strengthen cooperation with “Russia”. Consid-
ering the correlation between historical relations of “United States” and “China”, as well as “United
States” and “Russia” (the blue line and orange line with an arrow), the relation between “United
States” and “Russia” is less likely to be positive in the future, as “United States” has adopted a rela-
tively austere economic policy (e.g., “impose embargo, boycott, or sanction” and “reject economic
cooperation”) to “China” since March, which will affect the relation between “United States” and
“Russia”.

Second, existing methods ignore the influences of different ranges of temporal dependency.
However, information in different ranges indicates distinct relation trends. The local temporal de-
pendency indicates the relation trend in a short time, while the global temporal dependency indi-
cates the overall relation trend in a long time. In addition, the information in different ranges plays
different roles, which should not be treated equally. The closer the relations in history are to the
relation needed to be predicted, the more important they are. For example, when an event (United
States, reject economic operation, China, 20180707) occurs, the relations between “United States”
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Fig. 1. The illustration of historical relations.

and “China” in the near future are less likely to be positive, and relation “reject economic operation”
is more important for predicting the relations between “United States” and “China” in July 2018.
To address the aforementioned problems, we propose a dual graph convolution network
based TKG representation learning method using historical relations (DACHA). DACHA
not only considers entity interactions from the neighbor structure of the graph, but also captures
historical relation interactions from the neighbor structure of the graph, and leverages multi-range
temporal dependencies. The main contributions of our work are summarized as follows:

(1) Propose DACHA, which introduces the dual graph convolution network to learn the rep-
resentations of entities by capturing the interactions of both entities and historical rela-
tions from the neighbor structure of the graph. The primal graph is constructed based on
historical relations, and the edge graph is constructed by regarding historical relations as
nodes.

(2) Propose a temporal self-attentive historical relation encoder to model temporal informa-
tion, which can explicitly model both local and global temporal dependencies, and auto-
matically learn the importance of different relations in a historical relation.

(3) Conduct extensive experiments on two real-world datasets, i.e., GDELT18 and ICEWS18.
Experimental results show that the proposed method DACHA achieves the state-of-the-
art results on the task of link prediction for TKGs.

The rest of this article is organized as follows. Section 2 reviews the existing studies related to
this work. Section 3 gives the definitions of related terms and task. Section 4 describes the details
of the proposed DACHA. Section 5 presents and discusses the experimental results. Section 6
concludes the article and presents the future work.

2 RELATED WORK

In this section, a review of the related work is presented, which includes static Knowledge graphs
(KGs) representation learning methods, TKG representation learning methods, and heteroge-
neous graph representation learning (HGLR) methods.

2.1 Static KG Representation Learning Methods

KGs include a plenty of structured information for entities and relations, which have been success-
fully applied to various fields, e.g., question answering [27], information extraction [23], document
clustering [35], and recommendation [14]. Static KGs usually model multi-relational information
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with triples represented as (head entity, relation, tail entity), abbreviated as (s, r, 0). Static KG rep-
resentation learning methods, aiming at learning the representations of entities and relations, can
be used to efficiently measure the semantic correlations of entities and relations and alleviate spar-
sity issues in static KGs.

Existing studies on static KGs can be mainly classified into three categories, translation models
[3, 24, 30, 31, 36, 38], semantic matching models [26, 33, 37], and GCN based models [2, 25, 28].
TransE [3] is a typical translation model, which regards the relation r as the translation from
the head entity s to the tail entity o, and uses s + r = o as the optimal objective. TransE performs
well with one-to-one relations, but has issues with one-to-many, many-to-one, and many-to-many
relations. To address the issue, a lot of improved models based on TransE are proposed [24, 30, 31,
36, 38]. For example, Wang et al. [36] proposed TransH, which differentiates relations by projecting
entities into different hyperplanes decided by relations. Lin et al. [24] proposed TransR, which
supposes relations and entities belonging to different semantic spaces, and projects entities into
relation-specific spaces. RESCAL [26] is a typical semantic matching model, which employs the
bilinear model to capture the semantic similarity between entities in each relation. To address
the problem of excessive parameters in RESCAL, Yang et al. [37] proposed a simplified model,
DistMult, which uses diagonal matrices to represent relations. R-GCN [28] is a typical GCN based
model, which learns the weights of different relations, as well as the representations of entities in
KGs, by utilizing GCNs to accumulate the representations of neighbor entities. Existing translation
models and semantic matching models solely utilize triple, i.e., (s, r, 0), while R-GCN exploits the
information from the neighbor structure of the graph, which can improve the representations of
entities.

2.2 TKG Representation Learning Methods

Event based TKGs include temporally annotated knowledge, which have played crucial roles in
various applications, e.g., international relation prediction [9] and social network analysis [1]. The
events in them are denoted as (head entity, relation, tail entity, timestamp), abbreviated as (s, r, o, t).
TKG representation learning methods, embedding relations and entities into a continuous low-
dimensional vector space by incorporating temporal information, can be used to efficiently model
the evolving of entities or relations in TKGs.

Some TKG representation learning methods have attracted wide attention [8, 11, 13, 15, 16, 20,
32]. HyTE [8], TTransE [20], and TA-TransE [13] directly model timestamps as corresponding hy-
perplanes, representations, and fixed format encodings, respectively. These methods simply embed
associated timestamps into a low-dimensional vector space, ignoring the temporal dependency.
Recently, some researchers have tried to introduce sequence models, e.g., RNNs and its variants,
to model the temporal dependency. For example, Trivedi et al. [32] proposed Know-Evolve, which
models the occurrence of an event as a temporal point process, and employs RNNs to model his-
torical relations. However, these methods ignore the interactions of entities from the neighbor
structure of the graph. To deal with the problem, Jin et al. [16] proposed RE-NET, which learns
entity representations by using GCNs to model entity interactions from the neighbor structure of
the graph, as well as GRUs to model entity interactions from the neighbor structure of the graph in
history. However, RE-NET fails to capture the interactions of relations from the neighbor structure
of the graph, especially historical relations. In addition, existing methods ignore the influences of
multi-range temporal dependencies.

2.3 Heterogeneous Graph Representation Learning Methods

Heterogeneous graphs, where there are multiple types of nodes or edges, have become ubiquitous
in real-world scenarios, e.g., KGs and social networks. HGRL methods aim to learn representations
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in a continuous low-dimensional vector space while preserving the heterogeneous structures and
semantics. To incorporate relation heterogeneity into the graph representation learning, meta-path
based HGRL methods have received increasing attention. For example, Wang et al. [39] proposed
HAN, which uses a hierarchical attention mechanism to capture the importance between a node
and its meta-path based neighbors. MAGNN [40] improves HAN by taking the intermediate nodes
in a meta-path into consideration. To model heterogeneous graph structures and node attributes,
Zhang et al. [41] proposed HetGNN, which samples heterogeneous neighbors by random walk
and aggregates node and type information with specific RNNs. In these methods, meta-paths are
manually defined, requiring plenty of domain knowledge. To address this problem, Hwang et al.
[42] proposed SELAR, which automatically generates meta-paths without manual labeling and
facilitates the link prediction task by introducing an auxiliary task to predict various meta-paths
with node representations. However, these methods only model the multiple relations between
nodes, which fail to capture the interactions among relations from the neighbor structure of the
graph.

3 PRELIMINARIES

In this section, we give some basic definitions of related terms and task, and introduce the technical
details of GCNs.

3.1 Problem Formulation

A TKG is a multi-relational graph, which can be represented as a set of events. Formally, a TKG is
represented as G = {(s,r,0,1t)|s,0 € E,r € R,t € T}, where & is the set of entities, R is the set of
relations, and T is the set of timestamps.

A historical relation is a sequence of relations augmented with timestamps between a pair
of entities, which can be formulated as h = {(r1, t1), (r2,t2), ..., (*k» t)s - . ., (r1, t1)}, where t; <
tk+1(1 < k < I), and I is the length of the historical relation.

Entities and relations in a KG can be represented as nodes and edges in a graph, respectively. In
this work, the primal graph and the edge graph are used to model entity interactions and historical
relation interactions from the neighbor structure of the graph, respectively.

Let the current moment be ¢, given events in [t — T”" + 1 : t], the task of link prediction in TKGs
is to predict the relations or entities in [t +1: ¢ + T'].

3.2 Graph Convolution

GCNs [5, 18] are a kind of deep neural networks, which conduct convolution operation on a graph.
Formally, the graph convolution operator gc applied in our model is defined as follows:

ge (X) = ¢(LX0), (1)

where X is the input signal, A is the adjacent matrix with self-connection, i.e., A=A +1Iy.Listhe
normalized adjacent matrix, with L. = DA, where D is the corresponding diagonal degree matrix.
¢ is a nonlinear activation function, and 6 is learnable parameters. One-layer graph convolution
can aggregate information from 1-hop neighbors. By stacking the one-layer graph convolutions,
we can extend the receptive range of neighbors.

4 METHODOLOGY

This section gives the detailed description of the proposed method DACHA. We first give the
framework of DACHA, and then present the details of the temporal self-attentive historical relation
encoder, dual graph convolution network, and link prediction.
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Fig. 2. The overall flow diagram of DACHA: (1) Temporal dependency modeling; (2) Interaction modeling;
and (3) Link prediction. TSA denotes the temporal self-attentive historical relation encoder. DGCN denotes
the dual graph convolution network.

4.1 Framework

In this section, we introduce the technical details of the proposed method. The overall flow diagram
of DACHA is shown in Figure 2, which consists of three parts: (1) Temporal dependency modeling;
(2) Interaction modeling; and (3) Link prediction.

In the temporal dependency modeling part, the temporal self-attentive historical relation en-
coder is employed to encode historical relations, which can model multi-range temporal dependen-
cies. In the interaction modeling part, the primal graph is constructed based on historical relations,
and the edge graph is constructed by regarding historical relations as nodes. The dual graph con-
volution network contains several primal graph convolution layers and edge graph convolution
layers, which are explicitly applied to model the interactions of both entities and historical rela-
tions from the neighbor structure of the graph. In the link prediction part, the semantic matching
model DistMult is utilized to predict the relations between entities.

4.2 Temporal Self-Attentive Historical Relation Encoder

Equipped with positional encoding or positional mask, self-attention mechanism is widely used
in sequence modeling [29, 34, 21]. To encode temporal information, we propose the temporal
self-attentive historical relation encoder to leverage multi-range temporal dependencies, which
employs positional encoding to consider the relative positions of the relations in the historical
relations. Figure 3 shows the structure of the temporal self-attentive historical relation encoder. It
consists of intra-block temporal self-attention mechanism and inter-block temporal self-attention
mechanism, which can model local and global temporal dependencies, respectively, and automat-
ically learn the importance of different relations or blocks.

We first split the input historical relation h into M blocks with equal length, ie., h = [z,
z,...,2zm]. Each block contains N relations. There is no overlap between blocks, and padding
can be applied to the last block if necessary. r,,, , denotes the nth relation in block z,,. t,, , denotes
the timestamp of relation r,, ,. The intra-block temporal self-attention mechanism can model the
local temporal dependency by learning the importance of different relations in each block, which
is formulated as follows:

mn = Wilntrao,(wizntrarmm + Wi3ntra n + bilntra) + bizntra’ (2)

exp(em,n)

Am.n = softmax (ep,n) = -
n’'=1 exp(em, n')

®)
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Fig. 3. The structure of the temporal self-attentive historical relation encoder.

where Wilntra, Wizmra, ngra, bilntm, and bizmra are learnable parameters. Pm.n is the relative time
between each relation in block z,, and relation ry, 5, i.e, p,, , = [(tm.1 = tm.n)s (bm.2 = tmn)s - - -
(tm.N = tm.n)]Y. 0 is an activation function. r, , is the representation of relation r,, ,, which is
randomly initialized and jointly learned during the training process.

The representations of each block are obtained by weighted sum, which can be formulated as:

N

Zm = Zam,nrm,n- (4)

n=1
The inter-block temporal self-attention mechanism can model the global temporal dependency
by learning the importance of different blocks, which is formulated as follows:
em = Vvilnter(r (Wiznterzm + Wisnterqm + bilnter) + biznter’ (5)
exp (em)
M ’
N exp (em)
where Wilnter, Wiznter, Wgnter, bilnter, and b;nter are learnable parameters. o is an activation function.
q,, is the relative time between the first relation in each block and the first relation in block zp,,

ie,q,, =[(ti = tm1)s (b1 = tm1)s - (tar1 — tm1)] T
The representations of each historical relation are obtained by weighted sum, which can be

formulated as follows:
M
h= Z AmZm. (7)
m=1

(6)

am = softmax (e,;) =
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4.3 Dual Graph Convolution Network

Chen et al. [6] proposed edge-GCN to conduct convolution operation on the edge graph, which
can model the interactions among the edges from the neighbor structure of the primal graph. In-
spired by this, we first construct the primal graph based on historical relations and the edge graph
by regarding historical relations as nodes. Once we obtain the representations of each historical
relation using the temporal self-attentive historical relation encoder and initialize the entity rep-
resentations, we introduce the dual graph convolution to model the interactions of both entities
and historical relations from the neighbor structure of the graph, and thus achieve informative
representations.

4.3.1 The Construction of Primal Graph and Edge Graph. To use the significant information
contained in historical relations to portray entities, first, we construct the primal graph GPrimal =
(Vprimal, Eprimal,APrimal), where VPimal js the set of nodes (i.e., entities), Eprimal g the set of edges
(i.e., historical relations), and AP"™a! is an adjacency matrix representing the connection between
entities. The adjacency matrix AP"™a! js formulated as follows:

®)

A= 1, thereis a historical relation from entity s; to entity s;
710, otherwise :

To utilize the correlation between historical relations, we construct the edge graph Ged¢ =
(VEdge, Eedee Aedge) by regarding the edges (i.e., historical relations) in Gprimal 45 the nodes in Gedee,
ie., |Vedge| = |pprimal| Ap edge in G®de¢ is defined based on whether a pair of edges in GPrimal have
a connection. Specifically, if two edges in GP"™2! share a node, they will be correlated in G*%¢. The
adjacency matrix A®€ is formulated as follows:

Wisju—v, edgei— jandu — v share a node
0, otherwise ’

Aedgei—y‘,u—w = { (9)

Chen et al. [6] regard A%, _,; ., = 1, if edge i — j and u — v share a node. Different from
the design of this adjacency matrix, we measure the interaction intensity of historical relations
from the neighbor structure of the graph to construct the edge graph. If the shared node has more
neighbors in the primal graph, the interaction intensity between edge i — j and edge u — v will
be weaker, as it is susceptible to other neighbors. Weight w;_, ; ;. is formulated as follows:

1
~+a, n>2
Wisju—v = {{]’ = 2’ (10)

where 7 is the number of neighbors that the shared node has. « is a hyper-parameter, and 0 < o <
0.5.

4.3.2  Dual Graph Convolution. With the constructed primal graph and edge graph, as shown
in Figure 4, the dual graph convolution contains primal graph convolution layers and edge graph
convolution layers, which can explicitly model the interactions of both entities and historical re-
lations from the neighbor structure of the graph.

In the primal graph convolution, we obtain the representations of entities by aggregating the
representations of neighbor entities in the primal graph and the representations of historical re-
lations in the edge graph. Similarly, in the edge graph convolution, we obtain the representations
of historical relations by aggregating the representations of neighbor historical relations in the
edge graph and the representations of entities in the primal graph. The dual graph convolution is
formulated as follows:

xM = (p(iX(O)Gnode(O))» (11)
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Fig. 4. The architecture of the dual graph convolution network.
X = [EXU V000170, MY 00,1, (12)
YD = (p[l:edgeY(l_z)Gedge(l_z), (M“e)TX(l_l)Gne(l_l)], forl=2,...,L, (13)

where X is the input of the primal graph, which is the randomly initialized representations of
entities and jointly learned during the training process. Y ¥ is the input of the edge graph, which is
the representations of historical relations, obtained by using the temporal self-attentive historical
relation encoder. L is the layer of the dual graph convolution. X is the output of the Ith primal
graph convolution layer, and Y=Y is the output of the (I — 1) th edge graph convolution layer. L
and L% are the normalized adjacent matrix of the primal graph and the edge graph, respectively.
Onodes Oens Ocdge, and Oy are learnable parameters, and [+, -] is the concatenation operation. M™ is
the incidence matrix that encodes the connections between nodes and edges, which is defined as:
M"¢; ;5 = M™; ki = 1, and 0 otherwise, where i, j, k € yprimal apdg i jk—ie Eprimal

After conducting dual graph convolution, we use XY, the output of the dual graph convolution,
as the ultimate entity representations for link prediction, which are integrated representations
considering historical relations as well as the interactions of both entities and historical relations
from the neighbor structure of the graph.

4.4 Link Prediction

Following Schlichtkrul et al. [28], we employ DistMult [37] to predict the relations or entities
between entities. Specifically, we use the score function of DistMult as our score function, which
is formulated as follows:

£ (s,r,0) = (s"M;o0), (14)

where s and o are the representations of head entity and tail entity, respectively, which corre-
spond to the rows of X', M is the diagonal matrix corresponding to a relation, which is defined
as: M; = diag(Wr;), where diag() is a diagonal matrix transformation function that transforms a
vector to a diagonal matrix, W is a learnable parameter, and r; is the representation of a relation,
which is jointly learned in the temporal self-attentive historical relation encoder. After conducting
the temporal self-attentive historical relation encoder and dual graph convolution, the temporal
information and interaction information from the neighbor structure of the graph have been en-
coded into the representations of entities and relations.
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Table 1. The Statistics of Datasets

Dataset #Relation #Entity #Train set #Validation set #Test set Time granularity
GDELT18 240 7,691 1,734,399 238,765 305,241 15 mins
ICEWS18 256 23,033 373,018 45,995 49,545 24 hours

We model the link prediction task as a ranking problem. Taking relation prediction as an ex-
ample, the relations between entities can be predicted by calculating the score function. For each
observed positive sample (s, r, 0), the negative samples are generated by randomly replacing r. A
cross-entropy loss function is used as our training objective, which is formulated as follows:

Loss = — Z ylog [Sigmoid (f (s,r,0)) ]+ (1 —y) log[ 1 — Sigmoid (f (s,r,0))], (15)
D

where D is the set of positive samples and negative samples from the history with the length of
T”, Sigmoid is the logistic sigmoid function, and y € {0, 1} is the label. For positive samples y is
set to 1, and 0 otherwise.

5 EXPERIMENTS

In this section, we present the experiments to empirically evaluate the proposed method DACHA.
First, we introduce the two datasets used in the experiments. Second, we give the details of evalua-
tion metrics and parameter settings. Then, we present and discuss the experimental results. Finally,
we give the complexity analysis and sensitivity analysis.

5.1 Datasets

We evaluate our method on two real-world datasets, i.e., GDELT18 and ICEWS18, which are col-
lected from GDELT [22] with the time granularity of 15 minutes, and ICEWS [4] with the time
granularity of 24 hours, respectively. GDELT18 and ICEWS18 contain the records of events, which
are collected from Jan 1st 2018 to Jan 31st 2018 and from Jan 1st 2018 to Oct 31st 2018, respec-
tively. The time steps of two datasets are set as 1 day. Both datasets are split in chronological order
with 80% for training, 10% for validation, and 10% for testing. Detailed statistics of the datasets are
shown in Table 1.

5.2 Experimental Settings

We evaluate our method on the task of link prediction. Let the current moment be ¢, given evens
in [t = T” 4+ 1:t], the task of link prediction in TKGs is to predict the relations or entities in
[t +1:¢+T']. In experiments, we aim to predict the relations or entities over one day or one
week in the future, given the events in the last two weeks, i.e., T"” =14 and T’ =1 or 7. For the link
prediction in a future horizon (i.e., specified test triples with relations or entities missing), we
fill the missing parts with each relation or entity in a TKG to obtain candidate triples. Then, we
compute the scores of candidate triples by Equation (14) and obtain a list in ascending order.

The number of layers in the dual graph convolution network is set to 2. The number of blocks in
the temporal self-attentive historical relation encoder is set to 5. The number of hidden units is set
to 100. We use Adam [17] to optimize the parameters of DACHA. The epoch number is set to 100.
The initial learning rate is set to 0.01 with a decay rate of 0.6 per 10 epochs. The batch size is set
to 64. The dimension of representations is set to 200. « (see Section 4.3.1) is set to 0.4. For the dual
convolution network, the nonlinear activation function ¢ is the ReLU function. For the temporal
self-attentive historical relation encoder, the activation function o is the tanh function. We adopt
a sliding window training approach with the time step of 1 day. Mean Reciprocal Rank (MRR)
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and Hits@k are used as evaluation metrics. MRR denotes the average of the reciprocal ranks of
correct relations. Hits@k denotes the percentage of correct relations ranked at top k. Higher MRR
and Hits@k indicate better performance.

5.3 Baselines

To demonstrate the effectiveness of DACHA, we compare it with other static KG representation
learning methods and TKG representation learning methods. The detailed descriptions and exper-
imental settings of these methods are as follows:

Static KG representation learning method:

TransE [3] regards relations as the translation operations between head entities and tail entities.

DistMult [37] uses diagonal matrices to represent relations.

R-GCN [28] learns the weights of different relations, as well as the representations of entities
in KGs, by utilizing GCNs to accumulate the representations of neighbor entities.

For static KG representation learning methods, i.e., TransE, DistMult, and R-GCN, we ignore
temporal information and use triples to conduct experiments. The dimension of representations
is set to 200. The negative sampling ratios in TransE, DistMult, and R-GCN are set to 1, 1, and
10, respectively. The learning rates in TransE, DistMult, and R-GCN are set to 0.01, 0.1, and 0.01,
respectively.

TKG representation learning method:

TTransE [20] models timestamps as corresponding representations. In experiments, the dimen-
sion of representations is set to 200, the negative sampling ratio to 1, and the learning rate is set
to 0.01.

HyTE [8] models timestamps as corresponding hyperplanes. In experiments, we use every
timestamp as a hyperplane. The dimension of representations is set to 128, the negative sampling
ratio is set to 5, and the learning rate is set to 0.001.

TA-TransE [13] models timestamps as fixed format encodings. In experiments, the fixed format
encoding is year, month, and day for the ICEWS18 dataset and year, month, day, hour, and minute
for the GDELT18 dataset. The batch size is set to 1,024, the dimension of representations is set to
200, the negative sampling ratio is set to 1, and the learning rate is set to 0.001.

Know-Evolve [32] models the occurrence of an event as a temporal point process, and employs
RNNs to model historical relations. In experiments, the batch size is set to 200, the dimension of
representations is set to 100, and the learning rate is set to 0.0005.

RE-NET [16] learns entity representations by using GCNs to model entity interactions from the
neighbor structure of the graph, as well as GRUs to model entity interactions from the neighbor
structure of the graph in history. In experiments, the batch size is set to 1,024, the dimension of rep-
resentations is set to 200, the negative sampling ratio is set to 10, and the learning rate is set to 0.001.

For all the baselines, on the task of link prediction, we compute the scores of candidate triples
by their own score functions.

For fairness, all compared methods follow the same experimental protocol and the hyper-
parameters are all well-tuned. To avoid the influence of random factors, all methods are evaluated
five times and the average results are reported. To statistically measure the significance of
performance differences, pairwise t-tests at 95% significance level are conducted between DACHA
and compared methods.

5.4 Comparisons with Static KG and TKG Representation Learning Methods

To demonstrate the effectiveness of DACHA, we compare it with static KG and TKG representation
learning methods. Table 2 presents the average MRR, Hits@1, Hits@3, and Hits@10 of DACHA
and baseline models on both datasets on the task of relation prediction over one day and one week
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Table 2. The Performances of DACHA and the Compared Methods on the Task of Relation Prediction

Method GDELT18 ICEWS18
MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10
TransE 18.44 £ 0*  3.17 £ 0* 19.79 £ 0*  31.75+0.01" 19.72 £ 0* 2,91+ 0* 23.15+ 0" 34.33 +£0.01°
DistMult 20.78 £ 0.01* 10.86 + 0" 27.13 £ 0"  40.17 £0*°  20.94+0°  15.96 + 0.03" 30.25 + 0*  43.72 + 0.01"
R-GCN 22.85 £ 0" 17.69 +0.02* 29.32 + 0 43.67 £0°  25.08 £0°  19.77 £ 0.02" 33.48 £ 0*  45.73 + 0"
1 TTransE 11.04 £ 0*  1.83 0" 19.25 £ 0.02% 29.56 + 0.02* 11.96 £ 0*  3.97 = 0” 12.79 + 0.01* 24.33 = 0”
Day HyTE 19.47 £ 0.01% 5.69 + 0* 23.86 £ 0.01* 40.43 £ 0  21.85+ 0"  6.86 +0° 25.64 £ 0" 41.86 £ 0"

TA-TransE ~ 19.62 £ 0*  3.58 + 0" 20.77 £0* 3879 +0" 2179+ 0" 3.84 +0" 32.18 £ 0" 4334+ 0"
Know-Evolve 23.09 + 0* 1140 £0° 3148 £0°  46.37 £0* 2538 £ 0" 14.75 £ 0% 33.75 + 0.02" 49.87 + 0*

RE-NET 4212 +0° 3572+ 0" 4596 £0°  51.59 +0.01" 42.25 £ 0.01* 33.81 +£ 0  44.98 +0°  52.72 = 0"
DACHA 46.78 £ 0 39.72 £ 0.01 49.89+0 57.92+0 47.87 0 4091 £0.02 5047 +£0 58.69 £ 0
TransE 17.55 + 0.02* 2.93 + 0* 18.27 £ 0*  30.17 £0*  19.08 + 0.02* 2.41 + 0* 22.28 +0.01* 32.23 + 0*
DistMult 19.68 + 0.01* 10.07 + 0.02* 25.26 + 0.01* 39.09 + 0.01* 20.11 + 0.02* 14.16 +£ 0*  28.01 £0*  42.02 + 0.01"
R-GCN 22.35 + 0" 16.39 £ 0 28.28 £ 0"  42.17 £0*  23.48 £0.02" 18.75+ 0"  32.03 £ 0* 44.13+ 0"
1 TTransE 10.74 £ 0 231+ 0" 10.25 £ 0 24.36 £ 0.01" 11.26 £ 0*  3.01 = 0" 11.92 + 0°  23.43 +£0.02*
Week HyTE 19.07 £ 0 4.55+ 0" 23.16 £ 0.01* 39.03 £ 0 21.01 +£0*  5.96 + 0 2478 £ 0" 40.86 + 0"

TA-TransE ~ 19.12 + 0.01* 2.78 + 0* 19.37 £ 0*  37.15+0.02" 21.09 + 0*  3.57 £ 0* 31.77 £ 0" 42.58 + 0"
Know-Evolve 22.28 £ 0*  11.08 £ 0  30.19 £ 0*  45.75+ 0"  24.08 + 0* 1337 £0°  32.01+£0° 4817 +0.01"
RE-NET 40.78 £ 0 3334 £ 0"  44.96 £ 0.02* 52.07 £ 0°  43.05+ 0.01* 35.61 £ 0*  46.28 +0*  54.11 = 0"
DACHA 43.02+0 3735+ 0 48.06 £ 0.01 56.62 =0 46.97 £0.01 38.99 +£0.01 49.78 £0.01 57.06 =0

(meanzstd). * Indicates that DACHA is Statistically Superior to the Compared Method (Pairwise -test at 95% Significance
Level).

Table 3. The Performances of DACHA and the Compared Methods on the Task of Entity Prediction, in
Which “Head” Means Predicting Head Entity and “Tail” Means Predicting Tail Entity

Method Head Tail
MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10
TransE 15.88 + 0 2.03 +0* 17.69 + 0 27.57 £ 0.01* 16.38 + 0.01* 2.97 + 0* 21.68 + 0.02" 31.23 + 0.05*
static DistMult 10.88 + 0.03* 10.11 £ 0.03* 23.76 + 0.02" 36.49 + 0*  18.14 + 0.04" 12.76 + 0.03* 25.37 £ 0*  40.08 + 0.02*
R-GCN 2044 £ 0" 1442 + 0"  25.28 £ 0.03" 40.17 £ 0*  20.88 £ 0%  17.19 + 0.03" 30.08 + 0.03* 42.43 + 0"
TTransE 10.64 £ 0 1.78 £ 0" 17.75 £ 0.03* 22.66 + 0.02* 10.56 + 0.01* 2.74 + 0* 17.89 + 0.02* 20.87 + 0.03*
HyTE 17.17 + 0.03* 4.09 + 0.02* 22.16 + 0.01* 37.23 + 0* 20.05 + 0* 475 + 0" 22.38 £ 0* 40.16 + 0.03*

temporal TA-TransE 1832 £ 0" 3.67 £ 0° 20.07 £0* 3549 +0" 2159+0" 3.74+0" 32.07 £ 0" 42.98 £ 0*
Know-Evolve 23.19 + 0°  10.40 + 0  30.48 +0*  45.97 +0* 22.08 +0* 14.29 +0* 30.32+ 0" 46.17 + 0"
RE-NET 37.42 £ 0" 30.54 + 0.01* 41.26 + 0.02* 50.67 £ 0°  40.25 + 0.02* 33.87 + 0.01* 43.38 + 0*  51.09 + 0.03*
DACHA 40.31 £ 0.01 3442+0 4526 £ 0 5372+ 0 4437 0 36.78 £ 0 46.45+0 5476 £ 0

(mean=std) * Indicates that DACHA is Statistically Superior to the Compared Method (Pairwise t-test at 95% Significance
Level).

in the future. Table 3 presents the average MRR, Hits@1, Hits@3, and Hits@10 of DACHA and
baseline models on dataset GDELT18 on the task of entity prediction over one week in the future.
From the results we can observe the following phenomena:

(1) R-GCN performs better than static KG representation learning methods, i.e., TransE and
DistMult, as well as TKG representation learning methods, i.e., TTransE, HyTE, and TA-
TransE, which indicates the effectiveness of R-GCN to learn the representations of entities
by modeling entity interactions from the neighbor structure of the graph.
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Table 4. The Comparison of DACHA and Variants Without the Dual Graph Convolution Network

Method GDELT18 ICEWS18

MRR Hits@10 MRR Hits@10
DACHA-single graph 41.88 £ 0.02*  52.93 + 0% 42.89 + 0.02* 53.87 = 0"
DACHA-meta-path 42.25 + 0* 54.09 + 0.03"  44.36 + 0~ 55.27 + 0*
DACHA-unweighted graph  45.01 £ 0.01*  56.21 + 0.02* 46.12 + 0” 57.17 £ 0.01*
DACHA 46.78 £ 0 57.92+0 4787 £ 0 58.69 £ 0

(meanzstd) * Indicates that DACHA is Statistically Superior to the Compared Method (Pairwise t-test at 95%
Significance Level)

(2) Know-Evolve and RE-NET perform better than TTransE, HyTE, and TA-TransE, which
indicates the effectiveness of modeling the temporal dependency. RE-NET performs better
than Know-Evolve and R-GCN, which indicates the effectiveness of RE-NET to learn the
representations of entities by modeling entity interactions from the neighbor structure of
the graph and the temporal dependency.

(3) DACHA performs the best, which further justifies the advantages of introducing the dual
graph convolution to model the interactions of both entities and historical relations from
the neighbor structure of the graph, and the temporal self-attentive historical relation
encoder to model the multi-range temporal dependencies.

5.5 Ablation Experiments

5.5.1 The Effectiveness of the Dual Graph Convolution Network. To verify the effectiveness of
introducing the dual graph convolution network to model the interactions of both entities and his-
torical relations from the neighbor structure of the graph, we compare DACHA with three variants,
including: (1) DACHA-single graph, which ignores the edge graph convolution and only utilizes a
two-layer GCN to learn the representations of entities. (2) DACHA-meta-path, which ignores the
edge graph convolution, automatically generates some meta-paths between entities, and utilizes
a two-layer GCN to learn the representations of entities. (3) DACHA-unweighted graph, which
replaces the edge graph in DACHA with the original edge graph in [6] that is an unweighted
graph.

Table 4 shows the average MRR and Hits@10 of DACHA and its variants on the task of relation
prediction over one week in the future, from which we can observe the following phenomena:
(1) DACHA-meta-path performs better than DACHA-single graph, which might be because
DACHA-meta-path captures the multiple relations between entities by modeling meta-paths.
(2) DACHA-unweighted graph performs better than DACHA-meta-path, which might be because
DACHA-unweighted graph considers the interactions of historical relations from the neighbor
structure of the graph. (3) DACHA performs better than DACHA-unweighted graph, which shows
the effectiveness of capturing the interaction intensity of historical relations from the neighbor
structure of the graph. By measuring the interaction intensity to construct the edge graph, the
dual graph convolution network of DACHA models the interactions of both entities and historical
relations from the neighbor structure of the graph more effectively.

5.5.2 The Effectiveness of the Temporal Self-Attentive Historical Relation Encoder. To further
verify the effectiveness of proposing the temporal self-attentive historical relation encoder to
model multi-range temporal dependencies, we compare DACHA with two variants, including:
(1) DACHA-self attention, which utilizes the vanilla self-attention mechanism to encode histori-
cal relations, and differentiates the effects of different relations in a historical relation, ignoring
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Table 5. The Comparison of DACHA and Variants Without the Temporal Self-Attentive
Historical Relation Encoder

Method GDELT18 ICEWS18
MRR Hits@10 MRR Hits@10
DACHA-RNN 4249 + 0°  53.27 = 0.03° 44.66 0" 55.48 0
DACHA-self attention  45.77 + 0*  56.03 = 0 4631 +0.01*  56.98 + 0
DACHA 4678 +0  57.92+0 4787 +0 58.69 + 0

(mean=std) * Indicates that DACHA Is Statistically Superior to the Compared Method (Pairwise #-test
at 95% Significance Level).

multi-range temporal dependencies. (2) DACHA-RNN, which utilizes RNNs to encode historical
relations and considers the information of different ranges equally.

Table 5 shows the average MRR and Hits@10 of DACHA and its variants on the task of relation
prediction over one week in the future, from which we can observe the following phenomena:
(1) DACHA-self attention performs better than DACHA-RNN, which might be because DACHA-
self attention can differentiate the effects of different relations in a historical relation. (2) DACHA
performs better than DACHA-self attention. The results verify the effectiveness of the temporal
self-attentive historical relation encoder, which can explicitly model both local and global temporal
dependencies, and automatically learn the importance of different relations in a historical relation.

5.6 Complexity Analysis

The time complexity of DAHCA consists of the main three modules. For the temporal self-attentive
historical relation encoder, the time complexity is ©(D X N), where D is the dimension of repre-
sentations, N is the length of historical relation. For the dual graph convolution network, the time
complexity of the primal graph convolution is ©(T” X |E| x D? +T” x |E| x D), where T” is
the length of history and |E| is the number of edges in the primal graph; the time complexity of
the edge graph convolution is @(T” x |V| X D?), where |V| is the number of nodes in the pri-
mal graph. Assuming that the numbers of nodes and edges in the primal graph are the same, the
total time complexity of the dual graph convolution network is ©(T”" x |E| x D?). For the link
prediction module, the time complexity is (D).

5.7 Sensitivity Analysis

We investigate the influence of several important parameters on the model performance, including
the number of layers in the dual graph convolution network and the number of blocks in the
temporal self-attentive historical relation encoder.

To explore the impact of the number of layers in the dual graph convolution network, we vary
it from 1 to 5. The experimental results on dataset GDELT18 are shown in Figure 5, from which we
can find that with the increase of the number of layers, first the model performance increases and
then decreases slightly. When the number is 2, the model achieves the highest Hits@1, Hits@3,
Hits@10, and MRR.

For the number of blocks in the temporal self-attentive historical relation encoder, we vary it
from {1, 5, 10, 15} in the experiment. The experimental results on dataset GDELT18 are shown in
Figure 6, from which we can find similar tendencies. As the number of blocks in the temporal self-
attentive historical relation encoder increases, the model performance ascends at the beginning
and then descends gradually. When the number of blocks in the temporal self-attentive historical
relation encoder is 5, the model achieves the best performance. The reason may be that the larger
the number of blocks is, the more parameters are needed to learn, which may cause overfitting.
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Fig. 6. The impact of the number of blocks in the temporal self-attentive historical relation encoder.
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6 CONCLUSIONS AND FUTURE WORK

We propose a dual graph convolution network based temporal knowledge graph representation
learning method using historical relations. Specifically, the dual graph convolution network is
proposed to capture the interactions of both entities and historical relations from the neighbor
structure of the graph. The primal graph is constructed according to historical relations, and the
edge graph is constructed by regarding historical relations as nodes. In addition, the temporal self-
attentive historical relation encoder is proposed to effectively leverage the multi-range temporal
dependencies. On two events based TKG datasets, our model achieves an average of 4.43% and
3.44% improvement in relation prediction and entity prediction task, respectively, than the state-
of-the-art results. The following conclusions can be derived from the ablation experiments results:
(1) The dual graph convolution network can effectively model the interactions of both entities and
historical relations from the neighbor structure of the graph. (2) The introduced temporal self-
attentive historical relation encoder can effectively capture multi-range temporal dependencies.

In the future, we will investigate how to discover implicit correlations between entities that
have not occurred in an event in history. We also plan to utilize the hierarchical information of
entities and relations to improve the learning process of representations.
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