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Because of its wide potential applications, remote sensing (RS) image semantic segmentation has
attracted increasing research interest in recent years. Until now, deep semantic segmentation network
(DSSN) has achieved a certain degree of success on semantic segmentation of RS imagery and can
obviously outperform the traditional methods based on hand-crafted features. As a classic data-driven
technique, DSSN can be trained by an end-to-end mechanism and is competent for employing low-
level and mid-level cues (i.e., the discriminative image structure) to understand RS images. However,
its interpretability and reliability are poor due to the nature weakness of the data-driven deep
learning methods. By contrast, human beings have an excellent inference capacity and can reliably
interpret RS imagery with the basic RS domain knowledge. Ontological reasoning is an ideal way
to imitate and employ the domain knowledge of human beings. However, it is still rarely explored
and adopted in the RS domain. As a solution of the aforementioned critical limitation of DSSN, this
study proposes a collaboratively boosting framework (CBF) to combine the data-driven deep learning
module and knowledge-guided ontology reasoning module in an iterative manner. The deep learning
module adopts the DSSN architecture and takes the integration of the original image and inferred
channels as the input of the DSSN. In addition, the ontology reasoning module is composed of
intra- and extra-taxonomy reasoning. More specifically, the intra-taxonomy reasoning directly corrects
misclassifications of the deep learning module based on the domain knowledge, which is the key to
improve the classification performance. The extra-taxonomy reasoning aims to generate the inferred
channels beyond the current taxonomy to improve the discriminative performance of DSSN in the
original RS image space. On the one hand, benefiting from the referred channels from the ontology
reasoning module, the deep learning module using the integration of the original image and referred
channels can achieve better classification performance than only using the original image. On the other
hand, better classification results from the deep learning module further improve the performance of
the ontology reasoning module. As a whole, the deep learning and ontology reasoning modules are
mutually boosted in the iterations. Extensive experiments on two publicly open RS datasets such as
UCM and ISPRS Potsdam show that our proposed CBF can outperform the competitive baselines with
a large margin.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

As a fundamental task of remote sensing (RS) image inter-
retation, RS image semantic segmentation [1,2], which aims to
nnotate each pixel of the RS imagery with one type of land-
se/land-cover (LULC) type, plays an important role in wide appli-
ations such as land-cover mapping, natural resource protection,
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intelligent agriculture, and ecological assessment [3]. Generally,
RS image semantic segmentation is similar to natural image se-
mantic segmentation [4]. Compared with natural images, RS im-
ages often present more complex image structures [5], which lead
to additional challenges in RS image semantic segmentation [6].

Based on hand-crafted features, shallow classifiers such as
support vector machine (SVM) [7,8], maximum likelihood esti-
mate (MLE) [9], and decision tree (DT) [10] have been widely
applied to RS image semantic segmentation [11]. However, the
performance of these handcrafted feature-based semantic seg-

mentation methods is still very limited. Along with the rapid
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evelopment of deep networks [12] such as deep detection net-
ork [13,14], deep recognition network [15], deep hashing net-
ork [16,17], and deep semantic segmentation network (DSSN)
18], deep networks have led to remarkable improvements for
S image semantic segmentation [19] because of their obvious
uperiority in learning the network parameters via an end-to-
nd manner. However, due to the black-box characteristics of
eep learning, the interpretability and reliability of DSSN are still
xtremely weak [20]. Hence, how to further improve the semantic
egmentation performance by reinforcing DSSN deserves much
ore attention.
DSSN is competent for employing low-level and mid-level

ues to interpret RS images but lacks the high-level inference
bility [21]. By contrast, human beings, who have an excellent
nference capacity, can reliably interpret the RS imagery. The
eason why RS experts can interpret RS images quickly and accu-
ately is that they have the necessary prior domain knowledge to
ake the interpretation decisions through knowledge reasoning.
lthough data-driven learning attracts wide research interest,
nowledge-driven reasoning is still regarded as one of the most
mportant research directions by the RS community [22]. As
ell known, ontology [23] has a strong capability in knowl-
dge representation, commonsense inference, semantic cogni-
ion, and knowledge sharing [24]. However, as not all of the
omain experts’ prior knowledge can be fully modeled, the on-
ology reasoning performance is still very limited in the RS image
nterpretation task.

Generally speaking, the data-driven methods have advan-
ages in terms of accuracy and accessibility while their relia-
ility is poor. On the contrary, the knowledge-driven methods
ave strong interpretability but insufficient performance. Thus,
he advantages and disadvantages of data-driven methods and
nowledge-driven methods are complementary to a considerable
xtent. The combination of ontology reasoning and deep learning
an make full use of the advantages of knowledge-driven and
ata-driven methods. Therefore, coupling data-driven deep learn-
ng and knowledge-guided ontology reasoning is a promising way
o achieve truly intelligent interpretation of RS imagery [25,26].
n the one hand, ontology reasoning helps to directly correct
isclassifications and improve the interpretability of the classifi-
ations. On the other hand, additional information such as DEM,
hadow data, and infrared band data can effectively enhance the
nti-interference ability of deep networks against visual similar-
ty [21]. However, additional information is usually difficult to
btain. Generating estimated data of the additional information
hrough ontology reasoning will considerably reduce the pressure
n data acquisition. Therefore, ontology reasoning effectively
olves the interpretability problem of data-driven methods.
Based on the above analysis, we propose a collaborative boost-

ng framework (CBF) to combine data-driven deep learning and
nowledge-guided ontology reasoning for RS image semantic
egmentation, which realizes the interaction between the data-
riven and knowledge-guided methods. It not only adopts the
SSN to learn the low-level and mid-level cues from RS im-
ges, but also applies ontology reasoning to make the classifica-
ion result interpretable and credible with high-level knowledge.
ntra- and extra-taxonomy ontology reasoning are designed for
he reasoner in the CBF. The former directly corrects the mis-
lassification of the DSSN. The latter, performed on the corrected
lassification result from the intra-taxonomy reasoning, aims to
rovide a better estimation of shadow and elevation as additional
hannels to enhance the anti-interference capability of the DSSN,
hich makes the classification result more reliable. In the CBF, the
SSN autonomously learns low-level and mid-level features from
S images. As a whole, ontology reasoner uses high-level domain

nowledge to guide interpretation including directly correcting

2

misclassifications of the DSSN and indirectly extracting additional
information to assist the DSSN. The whole process forms a closed
loop and performs continuous iterations until the CBF converges.
The proposed CBF has been evaluated on two publicly open
RS datasets such as UCM and ISPRS Potsdam. The experimental
results show that it not only improves the interpretability and
reliability of the classification result but also further promotes
the classification accuracy. As a whole, the main contributions of
this paper are summarized as follows:

• A unified framework called CBF is proposed to mutually
reinforce data-driven deep learning and knowledge-guided
ontology reasoning in an iterative way, which organically
realizes coupling of deep learning and knowledge reasoning.
Notably, our CBF is a general framework, and more variants
can be designed based on the specific task requirements.

• This study presents a new unified ontology reasoning ap-
proach which includes intra- and extra-taxonomy
ontology reasoning. The former directly corrects misclas-
sifications of the deep learning module, which is the key
to improve the classification performance. The latter im-
proves the deep learning module with additional estimated
information from the input perspective.

The rest of this paper is organized as follows. Section 2 de-
scribes the related work. The proposed methods are detailed
in Section 3. Section 4 analyzes and discusses the experimental
results. Finally, Section 5 summarizes the work of this paper and
points out some potential research directions.

2. Related work

In recent years, deep learning has been widely employed in
semantic segmentation of high-resolution RS imagery [27–30].
Basaeed et al. used a convolutional neural network (CNN) to per-
form multi-scale analysis on each channel [31], which included
fusion and morphological operations on the boundary confidence
map to obtain a hierarchical segmentation map. Langkvist et al.
applied DSSN to achieve fast and accurate pixel-by-pixel clas-
sification on multispectral images [32]. Audebert et al. trained
variants of the SegNet structure and introduced multi-core con-
volutional layers to quickly aggregate predictions on multiple
scales [33]. Maggiori et al. designed a CNN that combined features
at different resolutions to integrate local and global information
in an efficient manner [34]. Kampffmeyer et al. mapped the urban
land-cover on RS imagery by a novel deep CNN [35], which
detected small objects effectively while achieving high overall
accuracy. Generally, these existing deep learning-based methods
follow a data-driven learning mechanism [36,37]; however, they
still cannot make full use of the high-level knowledge of domain
experts, which leads to poor interpretability and reliability of the
classification.

On another research avenue, ontology-based knowledge mod-
els have great advantages in expressing and applying knowledge.
By solving the major limitations of deep learning methods in
knowledge cognition, ontology-based knowledge models have
the potential to promote the long-term development of RS [38].
Sarker et al. proposed a system based on a knowledge model for
explaining the classification [24]. Codescu et al. applied the OSM
ontology to geographic information system (GIS) [39]; however,
the application of ontology was limited. Gui et al. extracted
buildings from TerraSAR-X imagery by the RS ontology [40].
Andres et al. used the ontology-based spectral rules to classify the
Landsat images [41], without considering other information such
as the shape, texture, and spatial relationship of objects. Khitem
et al. constructed regional adjacency maps and completed the
classification according to the spatial and spectral attributes of
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ntological regions [42]. Geographic object-based image analysis
GEOBIA) adopts the object information and expert knowledge
o interpret images. Gu et al. proposed an ontology-based se-
antic segmentation method for high-resolution RS imagery [43],
hich aims to make full use of the advantages of GEOBIA and
ntology. Ontology reasoning in the above methods enhances
he interpretability and reliability of classification; however, its
erformance is very limited compared with that of deep learning-
ased methods because modeling all the domain knowledge is
till an open problem.
Apparently, combining deep learning and ontology reason-

ng is a promising way to coordinate between data-driven and
nowledge-driven methods [44]. As the first attempt toward this
irection, Alirezaie et al. proposed a method called Semantic
eferee which combined the ontology reasoner and a DSSN-based
lassifier [21], where the ontology reasoner was responsible for
enerating an estimation of shadow, elevation, and inconsistent
patial relationship and returned the estimation as additional
hannels to DSSN to assist the classification. The research showed
hat, as an additional input to the DSSN, extra information can
ffectively improve classification accuracy. However, Semantic
eferee has two limitations: (1) the ontology reasoner only assists
SSN from the input perspective but does not directly correct
isclassifications of the classifier, which limits the performance
nd interpretability of the classification. (2) Extra information ob-
ained by directly reasoning on the results which contain misclas-
ifications is not sufficiently accurate for DSSN. Therefore, how to
everage knowledge reasoning to improve the interpretability and
eliability of the interpretation requires further exploration.

. Methodology

In view of the aforementioned limitations, this paper pro-
oses a unified framework (i.e., CBF) to comprehensively couple
ata-driven deep learning and knowledge-guided ontology rea-
oning, where the ontology reasoning module connects intra- and
xtra-taxonomy reasoning in series. The intra-taxonomy reason-
ng module is designed to directly correct misclassifications of
he DSSN, which improves the interpretability of classification.
n addition, the extra-taxonomy reasoning module is performed
n the corrected classification result to provide better estimation
nformation for the DSSN, which indirectly makes the interpre-
ation more reliable. Different from Semantic Referee, our CBF
ocuses on predicting the information of shadow and elevation as
he estimation from the extra-taxonomy reasoning is sufficiently
ccurate for the DSSN, which effectively reduces the computation.
As visually shown in Fig. 1, our proposed CBF includes two

ain modules, i.e., the DSSN-based classification module and
ntology reasoning module. These two modules interact in an
terative manner to optimize the output of the entire system,
here the DSSN-based classification module completes train-

ng of DSSN and the initial semantic segmentation of images,
nd the ontology reasoning module comprises intra- and extra-
axonomy reasoning for estimating additional information. More
pecifically, our CBF runs via an iterative manner. Remote sensing
ntology (RSOntology) is established for the interpretation of RS
mages. According to RS domain knowledge, we design ontology
ules for intra- and extra-taxonomy ontology reasoning. In each
teration of the training phrase, DSSN is firstly trained and out-
uts the initial semantic segmentation. Then, the intra-taxonomy
ntology reasoner directly corrects misclassifications from DSSN
ccording to the ontology rules, and the extra-taxonomy ontology
easoner extracts the estimation of shadow and elevation. The
stimation is more accurate because the extra-taxonomy ontol-
gy reasoning operates on the corrected classification. Finally,
stimation information is employed as an additional channel for
3

training DSSN in the next iteration, which indirectly enhances
the classifier’s anti-interference ability to the visual similarity.
Notably, only the trained DSSN and the intra-taxonomy ontology
reasoning are adopted to perform classification in the testing
phase. Given an iteration, the output of DSSN is denoted as the
result of Stage I, and the refined output from the intra-taxonomy
ontology reasoning is denoted as the result of Stage II.

3.1. Learning deep semantic segmentation network (DSSN)

In the DSSN-based classification module, DSSN is employed
as a classifier to perform the initial classification. DSSN usually
takes images with RGB channels as an input. Different from the
traditional practice, two estimated input channels are added to
enhance the DSSN’s anti-interference ability. Thus, we train DSSN
by RGB channel images with the inferenced additional channels.
The specific implementation details are introduced as follows.

Assume that original RS image is I and its corresponding
additional channels are E (E , which represents the estimated
information of shadow and elevation, is set to 0 in the first
iteration step and can be adaptively generated in the subsequent
iteration steps). θ denotes the parameters of DSSN. After forward
propagation, DSSN outputs the classification confidence map F
and the category map C .

F = ϕ ((I, E) , θ) (1)

C = ArgMax(F ) (2)

where ϕ represents the hierarchical mapping function of DSSN.
Based on the optimization function J , θ is updated by the

backward propagation algorithm. Generally, the cross-entropy
loss function in Eq. (3) is adopted as J .

J = −

∑
i

∑
j

(
n∑

c=1

yci,j log(p
c
i,j)) (3)

where c = C i,j and pci,j = F c
i,j. n is the number of classes, and

pci,j denotes the classification confidence of the pixel with the
cth class located at the image coordinate (i, j). If the forward
prediction is the same as the label, yci,j is 1, otherwise it is 0.

3.2. Generating inference units

After the RS image semantic segmentation using the DSSN,
we need to refine the initial classification result by ontology
reasoning. The ground object exists in the form of an individual;
thus, reasoning is based on objects. The appropriate size is crucial
to the selection of the object units. The most ideal situation is
that the segmentation block is segmented along the boundary of
the ground object. However, it is difficult to achieve such accurate
segmentation using the existing methods [45]. Taking a step back,
the superpixel scale is between the pixel scale and real object
scale. Each superpixel is composed of spatially neighboring pixels
with similar spectra. Therefore, the interior of one superpixel is
homogeneous and retains part of the boundary of the ground
object. Therefore, the superpixel can represent a part of the
ground object. According to the above reasoning, we performed
superpixel segmentation on the original image. To restore the
ground object as much as possible, we cluster superpixels in the
neighborhood according to the initial classification. The specific
process is as follows.

Superpixel segmentation is performed on the original image
I to obtain the superpixel set G with k superpixels, as shown in
Eq. (4).

G = {S , S , . . . , S |S = Segment I , 1 ≤ i ≤ k} (4)
1 2 k i ( )
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Fig. 1. Workflow of the proposed CBF. (a) General diagram of the workflow, which is shown in detail in (b). The workflow includes two main modules: DSSN-
based classification module and ontology reasoning module. RSOntology was constructed for the interpretation of RS imagery. In each iteration, the deep semantic
segmentation network is first leaned, inference units are generated, and then ontology reasoning including the intra- and extra-taxonomy ontology reasoning are
performed finally.
u

where Si denotes the ith superpixel.
Next, the number of pixels of each category in each super-

ixel area are calculated according to the initial classification,
nd the category with the largest proportion is used as the
haracterization category of the superpixel. Furthermore, in the
patial neighborhood, superpixels with the same characteriza-
ion category are merged into a new superpixel in Fig. 2. After
lustering-based aggregation, the new superpixels are taken as
he inference units S ′, as shown in Eq. (5).
′
= {Si|Ci = C, Si Adjacent to S, 1 ≤ i ≤ k} (5)

From F , the network outputs values representing the clas-
sification confidence for each pixel. The larger the value, the
higher the classification reliability. Similarly, we need a value
that characterizes the classification confidence of the inference
unit to distinguish areas in which the classification is unreliable.
Therefore, we denote the average confidence of the pixels in each
inference unit as the classification confidence of the inference
4

unit. The classification confidence can be used as a basis for
judging whether the classification is correct. An inference unit
with low confidence (i.e., F < Ft ) is taken as the misclassification
nit where Ft is an empirical threshold.

3.3. Constructing ontology of remote sensing (RSOntology)

Ontology, as a formal expression of concepts and semantic
relationships in the domain of interest, has significant advantages
in knowledge representation, semantic reasoning, and knowledge
sharing [46]. Ontology is constituted by a set of object types,
attributes, and relationships, which describe the research domain
with semantics. Ontology can be implemented with standard
language such as the Web Ontology Language (OWL) which is
a World Wide Web Consortium (W3C) standard related to de-
scription logics (DLs). In OWL, semantics consists of three parts:
classes (or concepts), properties (or relationships) and entities
(or instances). Concepts are the abstraction of the category of
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Fig. 2. Schematic for the generation of the inference unit. (a) Superpixels from the raw image. In the clustering process, the reference units (c) are generated
according to (a) and initial classification (b).
Fig. 3. Example of applying RSOntology to define the geographic object from RS images. Ontology is composed of three parts: class, entity, and property with value.
In this framework, relationships between objects (e.g. car and building) are denoted by properties (e.g. hasID, adjacentTo and hasClass) with the corresponding values.
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objects (e.g., ‘‘Car’’, ‘‘Airplane’’ and ‘‘Ship’’ belong to the class
of ‘‘Transportation’’). Properties are used to express the inher-
ent characteristics of objects and relationships between objects
(e.g., ‘‘ID’’ and ‘‘adjacent to’’). Entities, which are the instances of
concepts, represent objects in the real world (e.g., ‘‘Yangtze River’’
and ‘‘Yellow River’’ are the instances of ‘‘Water’’).

In terms of knowledge expression, ontology provides a unified
interface for multi-source heterogeneous data, which eliminates
the gap between data. In terms of semantic reasoning, ontol-
ogy expresses highly abstract domain knowledge in a regular
form, which is helpful for integrating data-type information and
knowledge-type information. In terms of knowledge sharing, on-
tology is a multi-level open semantic model, which is easy to
extend, reuse, and transfer for experts in different domains. In
view of the importance of expression and application of geo-
graphic knowledge, we design a RS ontology (RSOntology) with
OWL for RS image interpretation. As shown in Fig. 3, RSOntology
is a generalized knowledge model for representing ground objects
in terms of conceptual, semantic, and contextual aspects.

The top-down and bottom-up approaches are adopted to
implement collaborative domain ontologies [47]. The top-down
method summarizes the entities of the whole domain and con-
structs a hierarchy of ontology with abstract concepts, whereas
the bottom-up approach allows domain experts to formally ex-
press relevant data and knowledge in a local ontology. In fact,
both methods should be considered as complementary and nec-
essary, providing ontologies an essential role in the articula-
tion of knowledge-driven and data-driven approaches in RS.
From the top-down perspective, we constructed a hierarchical

system of classes and relationships for the instantiation of RS

5

entities. As shown in Fig. 4, the hierarchical system of RSOn-
tology is divided into three layers, namely the domain abstrac-
tion layer, the category collection layer, and the object category
layer. At top of the class hierarchy, rso : GeoObject denoting RS
objects is the root class, which has the broadest representa-
tion, in which prefixes rso, geo, and oe stand for the uniform
resource identifiers (URIs) of RSOntology, the geographic relation-
ship, and the ontology entity, respectively. In the category collec-
tion layer, rso :ManmadeArea, rso :Ground, rso : Transportation,
so :Vegetation, rso :Water , and rso : Segment are all subclasses
f rso :GeoObject . Man-made spatial entity possesses the class of
so :ManmadeAreawhich includes rso :Building , rso : Pavement ,
nd rso : Railway. rso : Bareland and rso : Desert belong to
so : Ground, but there is a difference between the two, that
s, the former is the wasteland left over by urban construction,
hereas the latter is the ground formed by natural degradation.
so : Airplane, rso : Car , rso : Ship, and rso : Train are subclasses
f rso : Transportation. The class rso : Water is composed of
so : River , rso : Lake, and rso : Sea in the RSOntology. Simi-
arly, the class rso :Vegetation includes rso :Grass and rso : Tree.
n particular, categories of some ground objects are uncertain
r inaccurate in the process of classification. Therefore, a cat-
gory must be defined to represent these objects, and then,
he corresponding class must be assigned to them according
o the classification. We adopt the class rso : UnknownObject
o represent ground objects whose category needs to be deter-
ined. rso : ClassifiedObject , rso : MisClassifiedObject , and rso :

nClassifiedObject , which belong to rso : UnknownObject , de-
ote the correctly classified object, the misclassified object, and
he unclassified object, respectively. To generalize the inherent
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a
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Fig. 4. Visual illustration of hierarchy of RSOntology. The hierarchical system of RSOntology is divided into three levels: the first level is the domain abstraction
layer which denotes geographic objects by rso :GeoObject . The second and third levels are the category collection layer and object category layer, respectively.
characteristics of objects and relationships between objects, ab-
stract properties are defined in RSOntology. The following are the
core properties: in terms of the subordinate relationship, geo : isA
nd geo : hasSubclass are the subclass attribute and the upper

class attribute, respectively, which are used to build the hierarchi-
cal relationship of the ontology. In terms of individual character-
istics, geo : hasID, geo : Size, and geo : hasClass denote the ID, area,
nd category of objects, respectively. The property geo :MaxClass

represents the most likely category of the object. In terms of
relationships between objects, the attributes of spatial relation-
ship are composed of adjacency (geo : adjacentTo), surrounding
(geo : surroundedBy), disjointing (geo : disjointWith), intersec-
tion (geo : intersectWith), and direction (geo : hasDirectionOf ).
From the bottom-up perspective, the inference units in Sec-
tion 3.2, which represent ground objects, are used to instanti-
ate the ontology and construct the relationship network with
the defined properties. Moreover, we regularize expert knowl-
edge under the framework of RSOntology to facilitate knowledge
reasoning in Section 3.4.

3.4. Ontology reasoning

As a bridge connecting knowledge-driven and data-driven
methods, ontology reasoning plays an important role in the CBF,
which simulates the way humans work to process data with
the domain knowledge. As shown in Fig. 5, in the proposed
method, ontology reasoning is divided into two parts: intra-
and extra-taxonomy ontology reasoning. Expert knowledge is
usually abstract and vague, which is difficult to directly apply
in the procedural process. For example, objects adjacent to each
other in space have similar characteristics, while it is difficult
to quantify machines. In view of the powerful knowledge ex-
pression of ontology, we regularized expert knowledge under
the framework of RSOntology. According to ontology reasoning
rules representing expert knowledge, intra-taxonomy ontology
reasoning directly corrects misclassification within the category
taxonomy and extra-taxonomy ontology reasoning extracts the
estimated information of shadow and elevation as the additional
channel of DSSN to indirectly assist in classification. In RSOntol-
ogy, the inference units in Section 3.2 are used to instantiate the
ontology for reasoning. oe : entity and oe : entity1 are instances
of the inference unit that is correctly classified, satisfying Eqs. (6)
and (7). oe : misEntity is the instance of the misclassified unit,
satisfying Eq. (8).
rso : ClassifiedObject (oe : entity) (6)

6

rso : ClassifiedObject (oe : entity1) (7)

rso :MisClassifiedObject (oe :misEntity) (8)

3.4.1. Intra-taxonomy ontology reasoning
Because deep learning is a data-driven method, it is easily

affected by noise, leading to classification errors that are usually
reflected in the following aspects: (1) hole phenomenon (marked
as 1 in Fig. 6): small heterogeneous areas appear in a large
homogeneous area, for example, there are buildings in the middle
of a large area of water or vegetation. (2) Inconsistent spatial
relationships (marked as 2 in Fig. 6): the repulsiveness of spa-
tial relationship between specific ground objects is not satisfied;
for example, an airplane is adjacent to water. Notably, these
two types of misclassification are common and representative
in the image interpretation. Thus, we apply ontology reason-
ing called intra-taxonomy ontology reasoning to directly correct
misclassifications within the category taxonomy.

As shown in Table 1, expert knowledge for the reasoner is
symbolized as ontology rules divided into two types. One type
is prepared for eliminating the hole phenomenon during clas-
sification. According to the principle of spatial correlation, the
misclassified holes are more likely to be similar to the sur-
rounding objects. Therefore, rules 1–6 are designed to adjust
the category of the misclassified objects to be consistent with
the category of the surrounding objects. For example, if an area
misclassified as vegetation is surrounded by buildings, the true
category of this area should be a building. The other type is used
to correct misclassifications of inconsistent spatial relationships.
The true category of misclassification is most likely to be the
category in the neighborhood, which is expressed by rules 7–9.
For example, misclassified water is adjacent to one car, so its
class is more likely the category with the largest proportion in its
neighborhood. Fig. 5 illustrates the process of intra-taxonomy on-
tology reasoning, where units in red are misclassified as ground:
rso : Ground (oe :misEntity). After reasoning, the misclassifica-
tions are corrected as the pavement according to the category of
surrounding units: rso : Pavement (oe : Entity).

3.4.2. Extra-taxonomy ontology reasoning
DSSN has a strong learning ability, whereas its poor anti-

interference against visual similarity is obvious, e.g. dividing
shadow areas into water and classifying buildings as pavements
in Fig. 7. One possible solution to this problem is to include
additional sources of information as part of the input data to
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Fig. 5. Example of ontology reasoning. Intra- and extra-taxonomy ontology reasoning are shown, where intra-taxonomy ontology reasoning corrects misclassifications
directly and the extra-taxonomy ontology reasoning extracts the estimation of shadow and elevation for the next iteration.
Table 1
Ontology rules of the intra-taxonomy ontology reasoning.
Num Description Expression based on DL

Rule 1 If an inference unit, misclassified as vegetation, is surrounded by ground, pavements,
buildings, or water, its class should be corrected to the category of objects around it.

rso : Vegetation (oe :misEntity) ,

rso : geoClass ⊑ rso :Ground ⊔ rso : geoClass ⊑ rso : Pavement
⊔ rso : geoClass ⊑ rso : Building ⊔ rso : geoClass ⊑ rso :Water,
∀oe : entity ∈ (∀ geo : adjacentTo.oe :misEntity)
rso : geoClass (oe : entity) ,

H⇒ rso : geoClass(oe :misEntity)

Rule 2 If an inference unit, misclassified as ground, is surrounded by pavements, buildings,
or water, its class should be corrected to the category of objects around it.

rso :Ground (oe :misEntity) ,

rso : geoClass ⊑ rso : Pavement ⊔ rso : geoClass ⊑ rso : Building
⊔ rso : geoClass ⊑ rso :Water,
∀oe : entity ∈ (∀ geo : adjacentTo.oe :misEntity)
rso : geoClass (oe : entity) ,

H⇒ rso : geoClass(oe :misEntity)

Rule 3 If an inference unit, misclassified as a building, is surrounded by ground or water,
its class should be corrected to the category of objects around it.

rso : Building (oe :misEntity) ,

rso : geoClass ⊑ rso :Ground ⊔ rso : geoClass ⊑ rso :Water,
∀oe : entity ∈ (∀ geo : adjacentTo.oe :misEntity)
rso : geoClass (oe : entity) ,

H⇒ rso : geoClass(oe :misEntity)

Rule 4 If an inference unit, misclassified as water, is surrounded by vegetation, buildings, or
pavements, its class should be corrected to the category of objects around it.

rso :Water (oe :misEntity) ,

rso : geoClass ⊑ rso : Vegetation ⊔ rso : geoClass ⊑ rso : Building
⊔ rso : geoClass ⊑ rso : Pavement
∀oe : entity ∈ (∀ geo : adjacentTo.oe :misEntity)
rso : geoClass (oe : entity) ,

H⇒ rso : geoClass(oe :misEntity)

Rule 5 If an inference unit, misclassified as airplane, is surrounded by vegetation, buildings,
or water, its class should be corrected to the category of objects around it.

rso : Airplane (oe :misEntity) ,

rso : geoClass ⊑ rso : Vegetation ⊔ rso : geoClass ⊑ rso : Building
⊔ rso : geoClass ⊑ rso :Water,
∀oe : entity ∈ (∀ geo : adjacentTo.oe :misEntity)
rso : geoClass (oe : entity) ,

H⇒ rso : geoClass(oe :misEntity)

Rule 6 If an inference unit, misclassified as car, is surrounded by vegetation or water, its
class should be corrected to the category of objects around it.

rso : Car (oe :misEntity) ,

rso : geoClass ⊑ rso : Vegetation ⊔ rso : geoClass ⊑ rso :Water
∀oe : entity ∈ (∀ geo : adjacentTo.oe :misEntity)
rso : geoClass (oe : entity) ,

H⇒ rso : geoClass(oe :misEntity)

Rule 7 If an inference unit is misclassified as an airplane, with none of the correctly
classified objects which have adjacent pavements, its class should be the category
with the most correctly classified objects in its neighborhood.

rso : Airplane (oe :misEntity) ,

∀oe : entity ∈ (∀ geo : adjacentTo.oe :misEntity)
oe : entity ∈ ¬rso : Pavement,
H⇒ oe :misEntity ∈ geo :MaxClass(oe : entity)

Rule 8 If an inference unit is misclassified as a car, with none of the correctly classified
objects which have adjacent pavements, its class should be the category with the
most correctly classified objects in its neighborhood.

rso : Car (oe :misEntity) ,

∀oe : entity ∈ (∀ geo : adjacentTo.oe :misEntity)
oe : entity ∈ ¬rso : Pavement,
H⇒ oe :misEntity ∈ geo :MaxClass(oe : entity)

Rule 9 If an inference unit is misclassified as a ship, with none of the correctly classified
objects which have adjacent water, its class should be the category with the most
correctly classified objects in its neighborhood.

rso : Ship (oe :misEntity) ,

∀oe : entity ∈ (∀ geo : adjacentTo.oe :misEntity)
oe : entity ∈ ¬rso :Water,
H⇒ oe :misEntity ∈ geo :MaxClass(oe : entity)
7
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Fig. 6. Major misclassifications of the DSSN: hole phenomenon (marked as 1) and inconsistent spatial relationships (marked as 2). (a) Raw image and (b) classification
of the DSSN. (c) Result of ontology reasoning on (b) from (b) to (c); both holes and inconsistent spatial relationships are corrected by the ontology reasoning.
DSSN. Additional information such as DEM, shadow data, and
infrared band data can effectively enhance the deep network’s
anti-interference ability against visual similarity. Because of light
occlusion, shadows are commonly present in RS images. When
shadows are projected on the ground objects, it will change
the reflection spectrum of ground objects. Because DSSN mainly
adopts spectral information as the basis for discrimination, the
appearance of shadows will seriously affect the performance of
the classifier. In addition, although some objects have similar
spectral characteristics in images, such as buildings, roads, grass,
and trees, their elevations are distinguishable. Therefore, ele-
vation information is beneficial to improve the discriminative
ability of the classifier. However, additional information is usually
difficult to obtain. Thus, generating estimation of the additional
information through ontology reasoning considerably reduces the
pressure on data acquisition. Based on the above considerations,
we select the shadow estimation and the elevation estimation for
the classifier, which indicates that the input of DSSN will have
five color channels (three RGB channels + 1 shadow estimation
hannel + 1 elevation estimation channel) instead of the original
hree RGB channels.

In the CBF, the extra-taxonomy ontology reasoning is applied
o estimate shadow and elevation. The ontology rules for the
xtra-taxonomy ontology reasoning in Table 2 are divided into
wo types. One type is used to estimate shadows, including rules
–4. For example, if an object that is misclassified as pavements,
round, water, or cars is adjacent to correctly classified buildings,
here is most likely a shadow in the corresponding area. In the
xtra channel, pixels are assigned with values of 1 (shadow),
(uncertain), and −1 (not shadow). The other type is used

o extract the estimation of elevation, including rules 5–7. For
xample, if an object is correctly classified as a building, it has
high elevation. In the extra channel, pixels are assigned values
f 2 (high elevation), 1 (medium elevation), and 0 (low elevation).
ig. 5 illustrates the process of the extra-taxonomy ontology
easoning, where units in red are misclassified as a car and are
8

adjacent to buildings. According to Rule 1, the corresponding
areas exist as shadows (marked with black).

3.5. Overview of the proposed CBF

In general, the process of the CBF is composed of three steps
above including initial semantic segmentation based on DSSN,
generating inference units, and ontology reasoning, which is
briefly summarized in Algorithm 1.

Algorithm 1. Collaboratively boosting data-driven deep
learning and knowledge-guided ontology reasoning for
semantic segmentation of RS imagery
Input: RSOntology, the RS image dataset DT ; the number of
superpixels k; the number of iteration N .
1. Regions segmented by the unsupervised segmentation
algorithm are used as superpixels S = {s1, s2, · · · , sk} for each
image in DT .
2. while i < N do
3. Train DSSN with samples from DT .
4. Generate initial classification O1 (the output of Stage I)
by DSSN.
5. Cluster superpixels according to O1 to generate the
inference units.
6. Implement the intra-taxonomy ontology reasoning on
O1 to correct misclassifications and get the corrected results O2
(the output of Stage II).
7. Implement the extra-taxonomy ontology reasoning to
produce estimation of shadow and elevation.
8. Return the estimation information to DSSN as the
additional input channel.
9. Iteration: i = i + 1
10. end while

Output: O1, O2 and the estimation of shadow and elevation.
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Table 2
Ontology rules of the extra-taxonomy ontology reasoning.
Num Description Expression based on DL

Rule 1 The misclassification is pavement, ground, water, or car. If there is a correctly
classified building in its neighborhood, there is a shadow in the area.

rso : geoClass ⊑ rso : Pavement ⊔ rso :Ground ⊔ rso :Water ⊔ rso : Car,
rso : geoClass (oe :misEntity) ,

∃oe : entitiy ∈ (∀ geo : adjacentTo.oe :misEntity)
rso : Building (oe : entitiy) ,

H⇒ rso : Shadow(oe :misEntity)

Rule 2 The misclassification is car, ship, vegetation, or airplane. If there are no correctly
classified buildings in its neighborhood, there is no shadow in the area.

rso : geoClass ⊑ rso : Vegetation ⊔ rso : Car ⊔ rso : Ship ⊔ rso : Airplane,
rso : geoClass (oe : entity) ,

∃oe : entitiy ∈ (∀ geo : adjacentTo.oe :misEntity)
oe : entitiy ∈ ¬rso : Building,

H⇒ rso :NonShadow(oe : entity)

Rule 3 The correct classification is ground. If there are no correctly classified buildings
and vegetation in its neighborhood, there is no shadow in the area.

rso :Ground (oe : entity) ,

∃oe : entitiy1 ∈ (∀ geo : adjacentTo.oe : entity)
oe : entitiy1 ∈ (¬rso : Building

d
¬rso : Vegetation),

H⇒ rso :NonShadow(oe : entity)

Rule 4 If the correct classification is a building, there is no shadow in the area. rso : Building (oe : entity) ,

H⇒ rso :NonShadow(oe : entity)

Rule 5 If an object is correctly classified as vegetation, ground, pavements, or water, it
has low elevation.

rso : geoClass ⊑ rso : Vegetation ⊔ rso :Ground ⊔ rso : Pavement
⊔rso :Water,
rso : geoClass (oe : entity) ,

H⇒ geo : hasLowElevation(oe : entity)

Rule 6 If an object is correctly classified as an airplane, car, or ship, it has medium
elevation.

rso : geoClass ⊑ rso : Airplane ⊔ rso : Car ⊔ rso : Ship,
rso : geoClass (oe : entity) ,

H⇒ geo : hasMediumElevation(oe : entity)

Rule 7 If an object is correctly classified as a building, it has high elevation. rso : Buliding (oe : entity) ,

H⇒ geo : hasHighElevation(oe : entity)
Fig. 7. DSSN’s poor anti-interference against visual similarity. (a) Raw image. (b) Ground truth. (c) DSSN classification. Visual similarity leads the DSSN to make
misclassification (red box), e.g. dividing shadow areas into water, labeling pavements as ground, and classifying pavements as buildings.
4. Experiments and discussion

In this section, data description and details of the experimen-
al settings are introduced first. The experimental results and
nalysis are given after that.
9

4.1. Datasets and evaluation metrics

To fairly show the superiority of our method, experiments
were performed on the UCM dataset and the ISPRS Potsdam
dataset.

As visually illustrated in Fig. 8, the UCM dataset includes
2100 RS images with 0.3 m spatial resolution, and each image



Y. Li, S. Ouyang and Y. Zhang Knowledge-Based Systems 243 (2022) 108469

i
t
m
g
c
b
a
m
c
i
s
p

c
V
w
c
s
t
c
d
2
2

4

N
t
p
1
w
s
c
F
i
(
(

Fig. 8. Raw images and ground truth masks of the UCM dataset.
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n UCM is labeled with 17 categories for semantic segmenta-
ion [48]. Following [21], categories with similar semantics are
erged to fit the category system of reasoning. The new cate-
ories include Vegetation (trees, grass), Ground (bare soil, sand,
haparral), Pavement (pavement, dock), Building (building, mo-
ile home, tank), Water (water, sea), Airplane (airplane), Car (car),
nd Ship (ship). Images containing field or tennis court are re-
oved due to the category system of reasoning. Each category is a
ombination of the original categories in parentheses. The filtered
mages are randomly divided into the training set, validation
et, and test set, each with 1513, 189, and 190 images in the
roportions of 80%, 10%, and 10%, respectively.
As shown in Fig. 9, the Potsdam dataset was divided into six

ommon land-cover classes: Impervious Surfaces, Building, Low
egetation, Tree, Car, and Clutter (background). Clutter includes
ater, containers, tennis courts, swimming pools, etc. The dataset
ontains 38 aerial orthographic images of urban areas with 0.05 m
patial resolution and a pixel size of 6000 × 6000. Because of
he limitation of GPU memory, multiple 512 × 512 images are
ropped from each image. These cropped images are randomly
ivided into the training set, validation set, and test set, each with
758, 919, and 921 images in the proportions of 60%, 20%, and
0%, respectively.

.2. Experimental setup and evaluation metrics

As a classic deep network for semantic segmentation, U-
et [49] was adopted as the DSSN backbone in this implemen-
ation. The cross-entropy loss function and the Adam backward
ropagation optimization algorithm [50] with a learning rate of
0e−4 are applied for training DSSN. To generate inference units,
e used simple linear iterative clustering (SLIC) [51] to obtain
uperpixels. The number K of superpixel segmentation and the
onfidence threshold Ft are set to 1000 and 0.7, respectively.
or the evaluation of classification, the overall accuracy (OA), the
ntersection over union (IoU), the mean intersection over union
MIoU), and the frequency weighted intersection over union
FWIoU) were adopted as the evaluation metrics [52].

OA =
TP + TN

TP + FP + TN + FN
(9)

IoUi =
TPi

, i = 1, 2, . . . , n (10)

TPi + FPi + FNi

10
MIoU =
1
n

n∑
1

IoUi (11)

WIoU =

n∑
1

(IoUi ·
TPi + FNi

TPi + FPi + TNi + FNi
) (12)

where TP , TN , FP , and FN are the number of true positive points,
rue negative points, false positive points, and false negative
oints, respectively. n is the number of classes.

.3. Sensitivity analysis of critical parameters

In the proposed CBF, the DSSN-based classification module
nd the ontology reasoning module interact in an iterative man-
er to optimize the output of the complete system. These two
odules continue to promote each other in the iterations until

he accuracy converges. The former provides the initial semantic
egmentation for the latter, while the latter corrects misclassi-
ications and generates the estimation of shadow and elevation
rom the corrected segmentation. The estimation information is
sed as additional input for the former to enter the next iteration.
he iteration plays a vital role in the loop. As shown in Fig. 10,
long with an increase in the iterations, the classification accuracy
f Stage I and Stage II will continue to improve until the best is
chieved, which shows the effectiveness of the iterative strategy
nd demonstrates that the classification module and the ontology
easoning module promote each other. Two main reasons exist
or the decrease of accuracy at the end iteration: (1) In subse-
uent iterations, the estimation information becomes accurate.
ompared to complex RGB images, DSSN tends to learn from
he estimation information, which weakens the discriminative
ower of the network. (2) Because of the influence of closed loop
teration, some misclassifications that cannot be corrected by the
ystem will continue to accumulate. When the negative effects of
hese errors exceed the positive effects of reasoning, the segmen-
ation performance of the network will reduce. To circumvent
his problem, we can obtain the best performance by determining
he optimal iteration. The optimal iteration on the UCM dataset
nd the Potsdam dataset is 3 and 4, respectively. Moreover, the
erformances of both Stage I and Stage II are better than that
f the backbone, which demonstrate the good performance of
he CBF. The success of the intra-taxonomy ontology reasoning is
eflected in the fact that the accuracy of Stage II is much higher
han that of Stage I both in the UCM dataset and the Potsdam
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Fig. 9. Raw images and ground truth masks of the Potsdam dataset.
Fig. 10. Performance variation of the proposed method under different iterations. (a) and (b) Classification accuracy on the UCM dataset and the Potsdam dataset,
respectively. The blue line represents the classification accuracy of the backbone network (baseline). The green line depicts the trend of output of Stage I in the CBF.
After ontology reasoning on Stage I, Stage II outputs the refined results (red line).
dataset. This shows the feasibility of using knowledge reasoning
to directly correct the misclassification.

The semantic segmentation result and estimation information
f the CBF on the UCM dataset are visually shown on Fig. 11.
n the first and third iterations, the segmentation result of Stage
I is significantly better than that of Stage I mainly because of
he help of intra-taxonomy ontology reasoning. The red cycles
n Fig. 11 represent places to be corrected. Misclassifications of
tage I are corrected by reasoning ((c) to (d), (e) to (f)), such
s ground changed to pavement, water divided into buildings,
nd buildings corrected as pavement. Simultaneously, the intra-
axonomy ontology reasoning eliminates the noises of the initial
lassification, making classification more accurate ((d) and (f)).
fter three iterations, the network performance is optimal where
he classification errors are significantly reduced. At the same
tage, with an increase in the iteration, the segmentation be-
omes better. This is because of the direct correction of ontology
easoning and the indirect assistance of estimation information.
his clearly shows that the estimation of shadow and elevation
enerated by the extra-taxonomy ontology reasoning is more
ccurate in the iterative process ((g) to (h), (i) to (j)), which is
ttributed to the corrected output of Stage II and the improve-
ent of DSSN’s anti-interference. Conversely, accurate estimation
11
information also improves the network performance. Therefore,
in the CBF, the ontology reasoning and the classification modules
complement each other in iterations.

Fig. 12 presents the semantic segmentation and estimation
information on the Potsdam dataset of the CBF. In Stage I, misclas-
sifications, which are presented by the red cycles, are corrected
by ontology reasoning ((d) to (c), (f) to (e) in the figure), such
as buildings divided into impervious surface, clutters classified
as buildings, and low vegetation corrected as buildings. With the
help of intra-taxonomy ontology reasoning, the segmentation of
Stage II is significantly better than that of Stage I in the first and
third iterations. Meanwhile, noise holes in the classification are
eliminated by intra-taxonomy ontology reasoning ((d) and (f)),
which improves the accuracy of classification. With an increase
in the iteration, the segmentation improves. After three iterations,
the network performance is optimal where the classification er-
rors are significantly reduced. It can be clearly seen that the
segmentation results ((c) to (e), (d) to (f)) and the estimation of
shadow and elevation ((g) to (h), (i) to (j)) are more accurate in
the iterative process, which demonstrates the effectiveness of the
CBF framework.
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Fig. 11. Semantic segmentation and estimation information of the CBF on the UCM dataset. (a) and (b) Input images and ground truth, respectively. In the first
iteration, (c) and (d) show the classifications of Stage I and Stage II, respectively. (g) and (i) Estimation of shadow and elevation, respectively. In the third iteration,
(e) and (f) present the classification of Stage I and Stage II, respectively. (h) and (j) Estimation of shadow and elevation, respectively. The red cycles of Stage I
represent the places to be corrected in Stage II.

Fig. 12. Semantic segmentation result and estimation information of the CBF on the Potsdam dataset. (a) and (b) Input images and ground truth, respectively. In the
first iteration, (c) and (d) show classification of Stage I and Stage II, respectively. (g) and (i) Estimation of shadow and elevation, respectively. In the third iteration,
(e) and (f) present the classification of Stage I and Stage II, respectively. (h) and (j) Estimation of shadow and elevation, respectively. The red cycles of Stage I
represent the misclassifications to be corrected in Stage II.

12
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Table 3
Overall accuracy (OA) (%) of semantic segmentation on the UCM dataset.
Method Vegetation Ground Pavement Building Water Car Ship Airplane Overall (OA)

Baseline 75.76 81.79 76.08 86.27 85.36 92.38 97.66 86.26 80.26
Semantic Referee 77.60 78.57 80.34 92.38 88.64 92.61 97.66 73.21 82.28
Stage I (Ours) 81.71 80.21 81.44 91.08 88.27 91.78 98.19 63.58 83.74
Stage II (Ours) 86.41 81.94 83.95 90.93 90.05 87.87 95.93 61.63 85.92
4.4. Comparison with the state-of-the-art methods

To fairly show the effectiveness of the proposed CBF, ex-
eriments were conducted on two datasets. As aforementioned,
ew studies have been conducted on coupling deep learning and
nowledge reasoning in the field of RS image interpretation. Se-
antic Referee [21], which couples DSSN and knowledge reason-

ng for RS image semantic segmentation, is adopted as a compari-
on method. For fair comparison, U-Net [49] is adopted as the net-
ork backbone of the Semantic Referee and our CBF. In addition,
-Net is taken as the baseline in the following experiments.

.4.1. Results on the UCM dataset
The OA of different semantic segmentation methods on the

CM dataset is shown in the last column of Tables 3 and 4. Stage
corresponds to the initial semantic segmentation result of the
BF, and Stage II denotes the result corrected by ontology reason-
ng on the classification of Stage I. Compared with the baseline,
he OA/MIoU/FWIoU increases by 3.48%/2.79%/4.87% for Stage I
nd Stage II raises the OA/MIoU/FWIoU by 5.66%/4.92%/8.12%.
his significant improvement proves the effectiveness of inte-
rating DSSN and ontology reasoning in the CBF. Compared with
emantic Referee, the OA/MIoU/FWIoU of Stage I increases by
.46%/1.05%/2.15% and that of Stage II increases by
.64%/3.18%/5.4%, which demonstrates the superiority of the CBF.
n addition, Stage II raises the OA/MIoU/FWIoU by
.18%/2.13%/3.25% compared to Stage I, which indicates that
isclassifications are directly corrected by the intra-taxonomy
ntology reasoning and shows that the intra-taxonomy ontology
easoning is the key to improve the classification performance.
ables 3 and 4 report the OA and the IoU of semantic segmenta-
ion of each category on the UCM dataset, respectively. Among
ll methods, the CBF (including Stage I and Stage II) almost
chieves the best classification accuracy for each category. After
ntra-taxonomy ontology reasoning, Stage II completes better
emantic segmentation on the basis of Stage I, especially for
egetation, Ground, Pavement, and Water, which account for a
arge proportion in the UCM dataset. However, it can be easily
een that the proposed method does not work well on the Car,
hip, and Airplane categories. Especially, a considerable reduction
n the Airplane category exists when compared to the baseline.
his is because these three types of objects are so small that
hey are easily misclassified by the reasoner. In addition, the
irplane category occupies the smallest proportion in the dataset,
o its segmentation accuracy is more susceptible to reasoning
orrection. If it is necessary in practical applications, particular
ntology reasoning rules can be designed for such categories to
void performance degradation.
Visible semantic segmentation results of different methods on

he UCM dataset are visually shown in Fig. 13 to qualitatively
erify the aforementioned statement. Fig. 13 shows that Stage I
f the proposed CBF achieves more accurate and consistent clas-
ification results compared to the baseline and Semantic Referee.
oreover, semantic segmentation of Stage II is significantly better

han that of Stage I, which highlights the effectiveness of ontology
easoning to improve the results of semantic segmentation.
13
4.4.2. Results on the Potsdam dataset
The last column of Tables 5 and 6 shows the OA of differ-

ent semantic segmentation methods on the Potsdam dataset.
The OA/MIoU/FWIoU of Stage I is higher than the baseline by
3.69%/4.64%/5.52%, which shows that the estimation information
generated by the extra-taxonomy ontology reasoning improves
the discrimination performance of DSSN. It verifies the effective-
ness of the proposed CBF that Stage II raises the OA/MIoU/FWIoU
by 4.63%/5.56%/4.76% compared with the baseline. Compared to
Semantic Referee, the OA/MIoU/FWIoU of Stage I increases by
1.98%/2.12%/3.49%, and the OA/MIoU/FWIoU of Stage II increases
by 2.92%/3.04%/2.73%, which demonstrates the advancement of
the CBF. In addition, Stage II raises the OA/MIoU by 0.94%/0.92%
compared to Stage I, which indicates that the intra-taxonomy on-
tology reasoning directly corrects misclassifications. The FWIoU
of Stage II is slightly lower than that of Stage I is because of
the bad performance on Clutter caused by the intra-taxonomy
ontology reasoning’s focus on main categories rather than Clutter.
The significant improvement of classification in Stage II shows
that the intra-taxonomy ontology reasoning is the key to the CBF.
The OA and the IoU of semantic segmentation of each category on
the Potsdam dataset are shown in Tables 5 and 6, respectively.
Among all the methods, the CBF (including Stage I and Stage II)
almost achieves the best classification accuracy for each category.
After intra-taxonomy ontology reasoning, Stage II completes bet-
ter semantic segmentation on the basis of Stage I, especially in
Impervious Surface, Building, and Low Vegetation, which account
for a large proportion in the Potsdam dataset.

The visible semantic segmentation results of different methods
on the Potsdam dataset are visually shown in Fig. 14. Stage I
of the proposed CBF achieves better classification compared to
the baseline and the Semantic Referee. In addition, semantic
segmentation of Stage II is significantly better than that of Stage
I, which shows the effectiveness of ontology reasoning to correct
misclassifications in the initial semantic segmentation.

5. Conclusion

To improve the interpretability and reliability of deep
learning-based RS image semantic segmentation methods, this
study presents a novel CBF to couple data-driven deep learning
and knowledge-guided ontology reasoning for RS image semantic
segmentation, which realizes an interaction between the data-
driven and knowledge-guided methods in an iterative manner. In
the CBF, the deep learning module autonomously learns low-level
and mid-level features from RS images, and ontology reasoning
comprises intra- and extra-taxonomy ontology reasoning. The
intra-taxonomy reasoning directly corrects misclassifications of
the deep learning module, which helps to improve the classifica-
tion performance. The extra-taxonomy reasoning calculates the
estimates of shadow and elevation from the corrected results as
additional information to enhance the anti-interference capabil-
ity of the deep learning module, thus improving the reliability
of the interpretation. Ontology reasoner applies high-level do-
main knowledge to guide the interpretation including directly
correcting misclassifications and indirectly extracting additional
information to assist the deep learning module. The whole pro-
cess forms a closed loop and iterates continuously until the



Y. Li, S. Ouyang and Y. Zhang Knowledge-Based Systems 243 (2022) 108469

o

Fig. 13. Visible semantic segmentation on the UCM dataset. (a) and (b) Input images and ground truth data, respectively. (c) and (d) Output of baseline and output
f Semantic Referee, respectively. In the proposed CBF, semantic segmentation results of Stage I and Stage II are shown in (e) and (f), respectively.
Table 4
Intersection over union (IoU) (%) of semantic segmentation on the UCM dataset.
Method Vegetation Ground Pavement Building Water Car Ship Airplane Overall (MIoU) Overall (FWIoU)

Baseline 67.00 64.10 68.66 64.16 81.97 62.22 68.34 52.04 66.06 67.34
Semantic referee 68.53 65.44 71.64 72.33 82.88 63.35 66.98 51.23 67.80 70.06
Stage I (Ours) 70.95 66.18 74.22 75.26 83.60 69.75 67.37 43.42 68.85 72.21
Stage II (Ours) 75.83 72.20 76.06 75.23 87.02 69.46 67.60 44.45 70.98 75.46
Table 5
Overall accuracy (OA) (%) of semantic segmentation on the Potsdam dataset.
Model Imp. Sur. Building Low Veg. Tree Car Clutter Overall (OA)

Baseline 78.83 88.28 82.81 73.20 95.67 67.50 81.05
Semantic Referee 76.90 93.75 76.93 88.52 91.90 65.20 82.76
Stage I (Ours) 83.23 93.82 80.96 81.40 94.25 70.17 84.74
Stage II (Ours) 85.42 93.97 82.38 81.38 88.50 70.78 85.68
Table 6
Intersection over union (IoU) (%) of semantic segmentation on the Potsdam dataset.
Model Imp. Sur. Building Low Veg. Tree Car Clutter Overall (MIoU) Overall (FWIoU)

Baseline 71.90 81.83 65.06 63.33 69.27 67.50 64.17 71.37
Semantic Referee 72.68 88.75 65.61 63.01 72.13 65.20 66.69 73.40
Stage I (Ours) 76.88 90.26 68.73 68.95 71.61 70.17 68.81 76.89
Stage II (Ours) 78.26 90.31 69.86 68.53 68.58 42.84 69.73 76.13
14
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Fig. 14. Visible semantic segmentation on the Potsdam dataset. (a) and (b) Input images and ground truth, respectively. (c) and (d) Output of the baseline and
Semantic Referee, respectively. In the proposed CBF, semantic segmentation results of Stage I and Stage II are shown in (e) and (f), respectively.
classification framework converges, which effectively improves
the classification performance. Extensive experiments on two
publicly open datasets highlight that the proposed CBF not only
improves the classification interpretability and reliability but also
further promotes the classification accuracy.

The presented CBF mainly considers the spatial distribution
knowledge, which has effectively improved the classification per-
formance. Naturally, more types of domain knowledge will help
to further improve the classification performance. In future work,
we will introduce more kinds of expert knowledge such as Gestalt
rules into the ontology reasoning module to further improve the
classification performance. Although the intra-taxonomy ontol-
ogy reasoning effectively improves the classification performance,
the performance may be inevitably affected by the aforemen-
tioned rigid confidence parameter. How to adaptively determine
the confidence parameter will be explored in future work. More-
over, this study only couples deep learning and ontology rea-
soning from the input and output perspectives. In future work,
15
we will explore how to integrate deep learning and knowledge
reasoning at a deeper level.
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