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Abstract—Remote sensing image retrieval (RSIR), aiming at
searching for a set of similar items to a given query image,
is a very important task in remote sensing applications. Deep
hashing learning as the current mainstream method has achieved
satisfactory retrieval performance. On one hand, various deep
neural networks are used to extract semantic features of remote
sensing images. On the other hand, the hashing techniques
are subsequently adopted to map the high-dimensional deep
features to the low-dimensional binary codes. This kind of
methods attempts to learn one hash function for both the query
and database samples in a symmetric way. However, with the
number of database samples increasing, it is typically time-
consuming to generate the hash codes of large-scale database
images. In this paper, we propose a novel deep hashing method,
named asymmetric hash code learning (AHCL), for RSIR.
The proposed AHCL generates the hash codes of query and
database images in an asymmetric way. In more detail, the hash
codes of query images are obtained by binarizing the output
of the network, while the hash codes of database images are
directly learned by solving the designed objective function. In
addition, we combine the semantic information of each image
and the similarity information of pairs of images as supervised
information to train a deep hashing network, which improves
the representation ability of deep features and hash codes. The
experimental results on three public datasets demonstrate that
the proposed method outperforms symmetric methods in terms of
retrieval accuracy and efficiency. The source code is available at
https://github.com/weiweisong415/Demo AHCL for TGRS2022.

Index Terms—Remote sensing image, scene retrieval, deep
neural network, hashing learning, asymmetric.
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AS a result of the rapid development of Earth observation
technologies, remote sensing images collected by satel-

lites or aerial vehicles have been dramatically enhanced both in
volume and resolution. How to effectively manage and analyze
these massive amounts of remote sensing images has become
an urgent challenge. Remote sensing image retrieval (RSIR),
which aims at searching for a set of similar images or scenes
to a given query image, has been attracted wide attention in
the remote sensing community [1].

In early research of RSIR, most methods exploited an-
notated tags (e.g., geographical location, acquisition time,
or sensor type) to search similar images. Since the used
annotated tags can not fully represent image content, this
kind of methods usually delivers imprecise retrieval results.
By contrast, content-based image retrieval (CBIR) methods
employ image features to represent the visual content of re-
mote sensing images, which obtains satisfactory performance.
Generally speaking, a CBIR framework includes two main
modules: feature extraction and a similarity measure. Fig. 1
demonstrates a typical retrieval framework for RSIR.

For the feature extraction procedure, the query images and
database images are all represented by the designed feature
descriptors. The extracted features can be divided into hand-
crafted features and deep features. The hand-crafted features
include low-level features and mid-level features. In the past
decades, low-level features were widely used in RSIR, such as
texture features [2], spectral features [3], and shape features
[4], [5]. In addition, various encoding techniques, e.g., bag-
of-visual words (BoVW) [6], Fisher vector (FV) [7], and
vector of locally aggregated descriptors (VLAD) [8] were
also exploited to encode the low-level features into mid-
level features, which delivered satisfactory retrieval results.
However, the representation ability of hand-crafted features
is limited to accurately describing the semantic information
of remote sensing images, which is also called as “semantic
gap”. With the progress of deep learning in the computer
visual field, convolutional neural networks (CNNs) have been
widely applied in remote sensing applications, including land
cover classification [9]–[14], scene recognition [15], [16], and
image fusion [17]–[20]. In recent years, researchers have also
exploited high-level features extracted by CNNs for RSIR and
achieved great success [21]–[23].

Once the remote sensing image features have been obtained,
a similarity measure is subsequently applied to compute the
similarity between query and database images. Most of the
existing methods adopt Euclidean distance to measure the
similarity. However, it is time-consuming for computing the
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Fig. 1. Illustration of a typical retrieval framework for RSIR.

Euclidean distance between two real-valued features, espe-
cially for high-dimensional deep features [24]. In order to
solve the above problem, hashing techniques have been largely
developed for image retrieval [25], [26]. The main idea behind
hashing methods is to learn a set of hash functions that map
the high-dimensional image features to low-dimensional hash
codes (i.e., binary codes). Different from the complex compu-
tation of Euclidean distance, the feature distance between two
binary codes (i.e., Hamming distance) can be easily computed
via the simple XOR operation.

Recently, deep hashing methods have become the main-
stream methods for RSIR. On one hand, deep neural networks
are used to extract semantic features for effective content
representation. On the other hand, hashing techniques are
subsequently adopted to learn binary codes for fast similarity
computation. In the past several years, a number of deep hash-
ing methods have been developed for RSIR. For example, Li et
al. proposed deep hashing neural networks (DHNNs) for large-
scale RSIR [27]. Specifically, a pre-trained CNN and a hashing
network were exploited to learn high-level semantic features
and compact hash codes, respectively. Tang et al. embedded
hash learning in the generative adversarial framework to ensure
the coding balance intuitively [28]. In addition, a cohesion
intensive deep hashing model was developed for RSIR, where
the cohesiveness of image hash codes within one class was
intensified via a weighted loss strategy [29]. In [30], Shan et al.
combined hash code learning with hard probability sampling
in a deep network to improve retrieval performance. In [31], a
feature and hash (FAH) learning method, which consists of a
deep feature learning model and an adversarial hash learning
model, was proposed for RSIR. In [32], Song et al. proposed a
novel deep hashing network simultaneously for remote sensing
image retrieval and classification. The above methods attempt
to learn one hash function for both query and database samples
in a symmetric way. Specifically, the hash codes of query and
database images are all obtained by binarizing the output of
the network. However, with the number of database samples

increasing, the training of this kind of symmetric deep hashing
networks becomes typically time-consuming.

To achieve fast image retrieval, Jiang et al. [33] proposed
an asymmetric deep supervised hashing (ADSH) method to
generate the hash codes of query and database images in
an asymmetric way. In more detail, the hash codes of query
images are obtained via the feedback computation of the deep
hashing network, while the hash codes of database images are
directly learned by solving the designed objective function.
Motivated by [33], in this paper, we propose a novel asym-
metric hashing method named asymmetric hash code learning
(AHCL) for RSIR. Different from ADSH that only considered
similarity information between image pairs, we elaborately
design a better object function which simultaneously combines
the semantic information of each image and similarity infor-
mation between image pairs to train a deep hashing network
in an end-to-end way. By fusing multiple kinds of supervised
information in object function, our proposed method can
extract the more discriminative deep features to represent the
complex remote sensing images. The main contributions of
this paper can be summarized as follows:
• A novel asymmetric way is developed to generate hash

codes of query and database images, respectively. Com-
pared with the existing symmetric deep hashing ap-
proaches, the proposed AHCL can significantly improve
the efficiency of generating hash codes. To our knowl-
edge, this is the first time to adopt an asymmetric hashing
method for RSIR.

• A loss function is elaborately designed to train the
propsoed AHCL in an end-to-end way. This loss function
combines the semantic loss of each image and similarity
loss of pairs of images simultaneously, which improves
the representation ability of deep features.

• Comprehensive experiments are performed on three pub-
lic datasets. The experimental results demonstrate that
the proposed AHCL outperforms other competitive deep
hashing methods not only in terms of retrieval efficiency
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but also in terms of retrieval accuracy.
The remaining parts of this paper are organized as follows.

Section II briefly introduces the related work. Section III
describes in detail different steps of the proposed method.
Comprehensive experiments and discussions are exhibited in
Section IV. Finally, conclusions are presented in Section V.

II. RELATED WORK

A. Learning to Hash

Similarity search is a fundamental problem in information
retrieval and data mining applications [34]. With the rapid
growth of image data, the search time for similar items
is typically expensive or impossible. Approximate nearest
neighbor (ANN) search has become a hot research topic in
recent years. Among ANN techniques, hashing has become
one of the most popular and effective techniques due to its
encouraging efficiency in both speed and storage. The goal of
hashing is to learn a set of hash functions that map the image
points from the original space into a Hamming space. Through
the hashing transformation, each image is represented by a
compact binary code and the similarity in the original space
is also preserved. Existing learning to hash methods can be
roughly divided into two categories: unsupervised hashing and
supervised hashing.

For unsupervised hashing methods, the hash functions are
learned from unlabeled training data. Spectral hashing (SH)
[35], iterative quantization (ITQ) [36], and density sensitive
hashing (DSH) [37] are the typical unsupervised hashing
methods. Due to the low capacity of hash codes, unsupervised
hashing methods are usually not robust to noise and image
transformations. By contrast, supervised hashing methods try
to utilize supervised information to learn hash codes. The
supervised information can be given in three different forms:
point-wise labels, pairwise labels and ranking labels. The
representative supervised hashing methods include supervised
hashing with kernels (KSH) [38] and sparse embedding and
least variance encoding (SELVE) [39]. In addition, a series
of deep hashing methods have been developed in the past
several years. For example, Xia et al. decomposed the hash
learning process into a stage of fitting approximate binary
codes, followed by a stage of simultaneously fine-tuning the
image features and hash functions via a CNN [40]. Li et al.
adopted pairwise labels information to simultaneously perform
feature learning and hash code learning for image retrieval
[41]. In addition, Zhang et al. utilized pseudo labels to train
a deep hashing network in an unsupervised way for scalable
image retrieval [42].

B. Deep Hashing in RSIR

Traditional RSIR methods exploit hand-crafted features to
represent image content. However, the hand-crafted features
cannot accurately describe the semantic information of remote
sensing images, which delivers suboptimal retrieval results.
With the great progress of deep learning in the computer
visual field, combining CNNs with hashing techniques has
become the mainstream method of RSIR. In the past several

years, many related algorithms have been developed. For
example, Li et al. introduced deep hashing neural networks
(DHNNs) for single-source RSIR [27] and cross-source RSIR
[43], respectively. In [28], a semi-supervised deep adversarial
hashing (SDAH) was proposed for large-scale RSIR tasks.
In such a work, a residual auto-encoder (RAE) was used
to generate the class variable and hash code. Then, two
multi-layer networks were constructed to regularize the above
vectors. In [30], Shan et al. proposed hard probability sampling
hash retrieval method to improve retrieval performance. In
[31], Liu et al. adopted a deep feature learning model and
an adversarial hash learning model to extract dense features
of images and map the dense features onto the compact hash
codes, respectively. In addition, Song et al. designed a unified
deep-hashing framework to simultaneously achieve retrieval
and classification of remote sensing images [32].

III. PROPOSED METHOD

Recently, a large number of deep supervised hashing meth-
ods adopt a symmetric way to learn one hash function for both
query images and database images. In more detail, the hash
codes of all images are generated by binarizing the output of
the network. The retrieval phase of this kind of symmetric
deep hashing methods is typically time-consuming due to the
repeated feedback computation.

To improve the retrieval efficiency, we propose a novel
asymmetric deep hashing method for RSIR. Figure 2 presents
the schematic of the proposed approach. In the following part,
the corresponding procedures are introduced in detail.

A. Deep Feature and Hash Code Extraction

In this section, we construct a deep hashing convolutional
neural network (DHCNN) to simultaneously extract deep
features and hash codes of remote sensing images [32]. The
bottom right of Fig. 2 presents the structure of DHCNN,
which mainly consists of three parts. First, a pre-trained deep
network is transformed as the backbone network, where the
last classification layer is discarded. Note that a number of
existing successful deep networks can be used as the backbone
network, such as CNN-F [44], AlexNet [45], VGG [46], and
ResNet [47]. Then, a new fully connected layer named as
the hash layer is built on the backbone network to learn the
compact hash codes. Here, we denote K as the size of the hash
layer. Finally, another fully connected layer with a softmax
activation function, named as the semantic layer, is added after
the hash layer to generate the label probability distribution.
The size of the semantic layer equals the number of classes
in a dataset, which denotes as C.

Let Q = {xqi}
m
i=1 and D =

{
xdj

}n
j=1

be the query sample
dataset and database sample dataset, respectively, where m and
n are the number of samples. The corresponding label datasets
are represented as Yq = {yqi}

m
i=1 and Yd =

{
ydj

}n
j=1

,
where yqi and ydj are the one-hot vectors with the dimension
of C × 1. To exploit the supervised information of the labels,
the similarity matrix S = {sij} ∈ {−1,+1}m×n between the
query images and database images can be defined such that
sij = 1 if xqi and xdj

come from the same class and sij = 0
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Fig. 2. The flow chart of the proposed AHCL for RSIR.

otherwise. For a query image xqi ∈ Q, we can extract its deep
feature (i.e., the output of the backbone network) denoted as
fqi via the feedback computation of DHCNN

fqi = Φ(xqi ; θ), i = 1, 2, ...m (1)

where Φ is the network function characterized by the pa-
rameter θ existed in the pre-trained network. This feedback
computation actually performs a series of nonlinear and linear
transformations, including convolution, pooling, and nonlinear
mapping. Then, the high-dimensional deep feature is mapped
to low-dimensional hash code with K bits via binarizing the
output of the hash layer, which can be represented as:

bqi = sign(uqi) (2)

where uqi = Whfqi + vh refers to a hash-like code,
Wh ∈ RK×4096 and vh ∈ RK×1 denote the weight matrix
and bias vector of the hash layer, respectively. Here, sign(·)
performs an element-wise operation for a matrix or a vector,
i.e., sign(x) = 1 if x > 0 and −1 otherwise.

B. Loss Function Definition

Due to the complex imaging condition, there exist large
intraclass and low interclass variabilities in remote sensing
images. To this end, we adopt the product loss between the

query images and database images to learn the similarity-
preserving deep features, which can be defined as:

L1(Bq,Bd) =

m∑
i=1

n∑
j=1

(bT
qibdj

−Ksij)2 (3)

where Bq = {bqi}
m
i=1 ∈ {−1,+1}m×K and Bd ={

bdj

}n
j=1
∈ {−1,+1}n×K represent the hash code matrixes

of query image dataset Q and database image dataset D,
respectively. As mentioned above, the hash codes of query
images is obtained by DHCNN. Thus, the above Equation (3)
can be rewritten as:

L2(Bq,Bd) =

m∑
i=1

n∑
j=1

[sign(WhΦ(xqi ; θ) + vh)Tbdj

−Ksij ]2.
(4)

Since the sign function is not derivable, the gradient cannot
be prorogated to the former layers of DHCNN. To this end,
we adopt the hyperbolic tangent function to approximate the
sign function, i.e.:

L3(Bq,Bd) =

m∑
i=1

n∑
j=1

[tanh(WhΦ(xqi ; θ) + vh)Tbdj

−Ksij ]2.
(5)

In most cases, the query dataset is randomly sampled from
the database dataset, i.e., Bq = BΩ

d , where BΩ
d refers to the
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dataset indicated by the index set Ω. Here, let Γ = {1, 2, ..., n}
and Ω = {i1, i2, ..., im} ∈ Γ be the database sample index set
and query sample index set, respectively. Based on the above
definition, the loss function is rewritten as:

L4(Bq,Bd) =
∑
i∈Ω

∑
j∈Γ

[tanh(WhΦ(xdi ; θ) + vh)Tbdj

−Ksij ]2.
(6)

Considering that Ω ∈ Γ, there are two representation ways of
the hash code for query image xdi

. The one is the element
of database hash code matrix, i.e., bdi

; the other is the hash-
like code (i.e., the output of the hash layer) ũdi

= tanh(udi
),

where udi = WhΦ(xdi ; θ)+vh. Based on the above analysis,
the designed loss function should consider the approximation
error. Thus, we add an extra constraint in Equation (6) to make
the above two representation ways be as close as possible, i.e.:

L5(Bq,Bd) =
∑
i∈Ω

∑
j∈Γ

(ũT
di
bdj
−Ksij)2

+ λ
∑
i∈Ω

[bdi − ũdi ]
2

(7)

where λ is a hyper-parameter which is used to constrain the
representation error.

Equation (7) exploits the similarity information between
image pairs to learn similarity-preserving deep features. By
minimizing Equation (7), images from the same classes should
be encoded as closely as possible and images from the
different classes should be encoded far from each other in the
feature space. However, apart from information on the simi-
larity between images, each image has its own rich semantic
information. To improve the representation ability of features,
the semantic information should be considered in the designed
loss function. First, the class probability distribution can be
computed via the semantic layer with a softmax activation
function, i.e.:

tdi = softmax(Wsudi + vs), i ∈ Ω (8)

where Ws ∈ RC×K and vs ∈ RC×1 refer to the weight
matrix and bias vector of the semantic layer, respectively.
Finally, the cross-entropy loss function is used to minimize the
error between the predicted label and the ground-truth label
and further added into Equation (7). The final loss function is
rewritten as:

L6(Bq,Bd) =
∑
i∈Ω

∑
j∈Γ

(ũT
di
bdj −Ksij)2

+ λ
∑
i∈Ω

(bdi
− ũdi

)2 + γ(
∑
i∈Ω

−ydi
logtdi

)
(9)

where γ is a hyper-parameter which is used to balance the
similarity loss and semantic loss.

In Equation (9), the first term is used to preserve the similar-
ity information between images. The second term constrains
the approximation error between two representation ways of
hash codes of query images. The third term considers the
sematic loss of each image between the predicted label and
ground-truth label.

C. Objective Function Solving

After defining the loss function, the objective function can
be written as:

J = min
Θ,Bd

L6 = min

∑
i∈Ω

∑
j∈Γ

(ũT
di
bdj
−Ksij)2

+ λ
∑
i∈Ω

(bdi
− ũdi

)2 + γ(
∑
i∈Ω

−ydi
logtdi

)

}
.

(10)

In the above objective function, the variables
need to be learned including network parameter
Θ = {θ,Wh,vh,Ws,vs } and database hash code matrix
Bd. Motivated by [33], we adopt an alternating optimization
algorithm to learn the above two variables. More specifically,
we solve one variable with the other one fixed. The specific
procedures are as follows.

1) Solve Θ with Bd fixed: In order to clearly present
the solving process, this section deduces the gradient of the
objective function to the parameters of the semantic layer (i.e.,
Ws and vs), the parameters of the hash layer (i.e., Wh and
vh), and the parameters of the pre-trained network (i.e., θ) in
turn. First, the partial derivative of the objective function with
respect to the predicted class distribution tdi

is calculated:

∂J
∂tdi

=
∂L6

∂tdi

= −γydi

tdi

. (11)

Then the gradient of the objective function with respect to the
parameters of the semantic layer can be calculated:
∂J
∂Ws

=
∂J
∂tdi

∂tdi

∂odi

∂odi

∂Ws
=

∂J
∂tdi

�tdi
�(ydi

−tdi
)uT

di
(12)

∂J
∂vs

=
∂J
∂tdi

∂tdi

∂odi

∂odi

∂vs
=

∂J
∂tdi

� tdi � (ydi − tdi) (13)

where odi = Wsudi + vs, the operator � represents an
element-by-element multiplication. Furthermore, the partial
derivative of the objective function with respect to udi

can
be represented as:

∂J
∂udi

=

[2
∑
j∈Γ

(ũT
di
bdj
−Ksij)bdj

] + 2λ[bdj
− ũdi

]


� (1− ũ2

di
) + γ(−WT

s (ydi
− tdi

)).
(14)

After obtaining the above partial derivatives, the gradient of
the objective function with respect to the parameters of the
hash layer is further calculated, i.e.:

∂J
∂Wh

=
∂J
∂udi

∂udi

∂Wh
=

∂J
∂udi

fTdi
(15)

∂J
∂vh

=
∂J
∂udi

∂udi

∂vh
=

∂J
∂udi

. (16)

Finally, the gradient of the objective function with respect to
the parameters of the pre-trained network is also calculated:

∂J
∂θ

=
∂J
∂udi

∂udi

∂Φ(xdi ; θ)

∂Φ(xdi
; θ)

∂θ

= WT
h

∂J
∂udi

∂Φ(xdi
; θ)

∂θ
.

(17)
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When the gradients of all parameters are obtained, the stan-
dard gradient descent algorithm (SGD) is used to update all
parameters, i.e.:

ξ = ξ − µ∂J
∂ξ

, ξ = Ws,Wh,vs,vh, θ (18)

where µ refers to the learning rate.
2) Solve Bd with Θ fixed: When Θ is fixed, Equation (10)

can be rewritten in a matrix form, i.e.:

J = min
Bd

L6 =min
Bd

{‖ŨdB
T
d −KS‖2F

+ λ‖BΩ
d − Ũd‖2F + γ(−YdlogTd)}

=min
Bd

{‖ŨdB
T
d ‖2F − 2Ktr(BT

d S
T Ũd)

− 2λtr(BΩ
d Ũ

T
d ) + const}.

(19)

where Ũd, Bd, S, Yd, and Td are the matrix form of the
corresponding variables. BΩ

d denotes the hash code matrix for
the samples in the database indexed by Ω. “const” represents
a constant independent of Bd. After that, we define a new
variable Ud = {udj

}nj=1, i.e.:

udj
=

{
ũdj

, ifj ∈ Ω
0, otherwise.

(20)

Thus, Equation (19) can be rewritten as:

J =min
Bd

{‖BdŨ
T
d ‖2F − 2tr(Bd[KŨT

d S + λUd]T ) + const}

=min
Bd

{‖BdŨ
T
d ‖2F + tr(BdQ

T
d ) + const}

(21)
where Qd = −2KSTBdŨd − 2λUd.

Based on the above definition, we learn the whole Bd by
updating one column of Bd successively and fixing the other
columns. Assume that Bd∗k , Ũd∗k , and Qd∗k are the kth
columns of Bd, Ũd, and Qd, respectively, and that B̂dk

, Ûdk
,

and Q̂dk
are the matrices of Bd, Ũd, and Qd excluding the kth

columns, respectively. The objective function can be further
rewritten as:

J = min
Bd∗k

{‖BdŨ
T
d ‖2F + tr(BdQ

T
d ) + const}

= min
Bd∗k

{tr(Bd∗k [2ŨT
d∗k

Ûdk
B̂T

dk
+ QT

d∗k
]) + const}.

(22)

By solving Equation (22), we can gradually update Bd∗k , i.e.:

Bd∗k = −sign(2B̂dk
ÛT

dk
Ũd∗k + Qd∗k). (23)

After training, for a unseen query image fqi , its hash code
is obtained by using the following equation:

bqi = sign(uqi) = sign(WhΦ(xqi ; θ) + vh). (24)

IV. EXPERIMENTS

To verify the effectiveness of the proposed method for
RSIR, we compare the proposed AHCL against some state-
of-the-art methods on three public remote sensing image
datasets. In the following part, Section IV-A introduces the
used datasets. Section IV-B describes the experimental set-
tings. Section IV-C reports the experimental results. Section
IV-F discusses the effects of two important parameters of the
proposed method on retrieval results.

A. Datasets

We select three remote sensing image datasets to conduct
RSIR experiments. The detailed descriptions of these datasets
are as follows:
• The first dataset is the University of California, Merced

dataset (UCMD) [48] which was extracted from the
United States Geological Survey (USGS). It contains 21
land cover categories and each category includes 100
images. The size of the images is 256 × 256, and the
spatial resolution of each pixel is 0.3 m. Some examples
of different scenes are presented in Fig. 3.

• The second dataset is the WHU-RS dataset [49] which
was collected from Google Earth. The images are divided
into 19 classes, each class has approximately 50 images
with 600×600 pixels. Some examples of different scenes
are presented in Fig. 4.

• The third dataset is the aerial image dataset (AID) [50]
which was collected with the goal of advancing the state-
of-the-art for the scene classification of remote sensing
images. The dataset has a number of 10000 images within
30 classes. Each class consists of 220 to 420 images of
size of 600 × 600 pixels. Some examples of different
scenes are presented in Fig. 5.

For UCMD, WHU-RS, and AID datasets, we randomly
select 80%, 50%, and 50% of the labeled samples per class
as training samples, respectively, the rest of the samples are
regarded as the test set.

B. Experimental Settings

To extract remote sensing image deep features, we adopt
VGG11 [46] as the pre-trained network (i.e., backbone net-
work), which includes eight convolutional layers and three
fully connected layers. In experiments, the last classification
layer of VGG11 is discarded. We systematically compare
our method with some traditional hashing methods and deep
hashing methods. The traditional methods include SELVE
[39] and KSH [38]. The deep hashing methods include deep
pairwise-supervised hashing (DPSH) [41], and DHNNs with
the L2 regularization (DHNNs-L2) [27], asymmetric deep
supervised hashing (ADSH) [33], FAH [31], and DHCNN
[32]. In addition, another approach named graph relation
network with scalable neighbor discriminative loss with binary
cross entropy (GRN-SNDL-BCE) [23] is also regarded as
baseline. For traditional methods, each remote sensing image
is represented by 4096-dimensional CNN features extracted
from the penultimate layer of VGG11. For deep hashing
methods, all images are first resized to be of 224× 224 pixels
and then directly fed into the deep networks. The parameters
of the compared methods are set to default values according
to the original papers. For our proposed AHCL method, the
parameters λ and γ are set to 200 and 20, respectively.
All experiments are performed on a computer equipped with
an Intel Core i7-9700 with 3.0 GHz, 64G memory, and an
NVIDIA GeForce RTX 2060 SUPER GPU.

To evaluate the performance of the retrieval methods, we
adopt four metrics, i.e., Mean Average Precision (MAP), Pre-
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Fig. 3. Examples of different scenes in the UCMD.

Fig. 4. Examples of different scenes in the WHU-RS.

Fig. 5. Examples of different scenes in the AID.
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Fig. 6. The query examples with the top-50 retrieved images on the UCMD and AID datasets, where the green rectangle marks the true positives and the
red rectangle marks the false positives.

cision@k, Recall@k, and Precision-Recall. The descriptions
of these metrics are as follows:

• MAP: In the query phase, we firstly rank all database
samples in ascending order by computing the Hamming
distance between the query sample and the database
samples. Once obtaining the ranked list, we can get the
average precision (AP) for each query image. Finally, the
MAP can be computed via averaging the AP of all query
images, which is defined as:

MAP =
1

|Q|

|Q|∑
i=1

1

ni

ni∑
j=1

P (i, j) (25)

where |Q| is the volume of the query image set, ni is
the number of images relevant to ith query image in the
searching database, and P (i, j) is the precision of the top
jth retrieved image of ith query image.

• Precision@k: This metric measures the precision value
of the top k retrieved images, which is defined as:

Precision@k =
n

k
(26)

where k and n are the numbers of all images and similar
images to the query image in the top k list, respectively.

• Recall@k: Recall@k computes the recall rate between the
number of similar images to the query image in the top

k retrieved image and all similar images in the database,
which is defined as:

Recall@k =
n

r
(27)

where r and n are the number of similar images in the
database and the top k retrieved images, respectively.

• Precision-Recall: The Precision-Recall metric is another
popular evaluation protocol in image retrieval, which
plots the precision and recall rates at different searching
Hamming radius. The first point of the Precision-Recall
curve represents the precision and recall rate at the
Hamming radius equals 0; the next point means the
precision and recall rate at the Hamming radius equals
1, and so on.

C. Retrieval Results

In the first place, we compare the proposed AHCL with five
competitive deep hashing methods, including DPSH, DHNNs-
L2, ADSH, FAH, and DHCNN, in terms of qualitative re-
trieval results. Fig. 6 presents query examples with the top-
50 retrieved images on the UCMD and AID datasets, where
the green rectangle marks the true positives and the red
rectangle marks the false positives. Due to the limitation of
space, we only visually show the top-12 retrieved images
and count the number of true positives out 50 returns. From
this figure, we can see that DPSH obtains the worse result
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TABLE I
IMAGE RETRIEVAL RESULTS IN TERMS OF MAP WITH 16, 32, AND 64 HASH BITS ON THE THREE DATASETS. NOTE THAT GRN-SNDL-BCE [?] IS

NOT HASHING-BASED METHOD, WE SET THE LENGTH OF FEATURE TO 64 FOR COMPARISON.

Methods UCMD WHU-RS AID
16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits

AHCL (Our method) 0.9709 0.9762 0.9854 0.9661 0.9811 0.9843 0.8990 0.9537 0.9559
DHCNN [32] 0.9682 0.9718 0.9822 0.9412 0.9694 0.9743 0.8935 0.9457 0.9502

GRN-SNDL-BCE [23] - - 0.9833 - - 0.9808 - - 0.9506
FAH [31] 0.9010 0.9561 0.9653 0.7776 0.9508 0.9649 0.8494 0.9248 0.9281

ADSH [33] 0.9651 0.9689 0.9810 0.9334 0.9494 0.9739 0.8898 0.9472 0.9493
DHNNs-L2 [27] 0.9232 0.9569 0.9649 0.8923 0.9243 0.9502 0.8239 0.8632 0.9221

DPSH [41] 0.8382 0.9135 0.9225 0.7245 0.7941 0.8532 0.7532 0.8037 0.8822
KSH-CNN [38] 0.7755 0.8475 0.8792 0.6953 0.7532 0.8073 0.5043 0.6053 0.6531

SELVE-CNN [39] 0.3863 0.4254 0.4308 0.4238 0.4929 0.5032 0.3508 0.3907 0.3840

(a) (b) (c)

Fig. 7. The retrieval results on UCMD with 64-bit hash code. (a) Recall@k; (b) Precision@k; (c) Precision-Recall.

results, DHNNs-L2 and FAH perform good for the simple
scene (e.g., overpass of UCMD dataset) but perform bad for
the complex class (e.g., square of AID dataset). In addition, we
also observe that ADSH and DHCNN obtain the competitive
retrieval results, but there still exist several false positives
in their retrieved images. By contrast, the proposed AHCL
returns all true positives for the two examples, which demon-
strates the advantages of our method over other compared
approaches. In addition, the quantitative retrieval results in
terms of MAP are also reported. Table I shows the MAP
of different methods with different hash bits on the three
datasets. Considering that GRN-SNDL-BCE is not hashing
method, we set the length of feature to 64 and compare
it with other hashing approaches with 64 hash bits. From
this table, we can obtain the following conclusions: (1) the
length of hash codes has a great influence on the retrieval
results, and the retrieval performance with short hash bits is
generally suboptimal due to their insufficient representation
ability; (2) the deep hashing methods are significantly superior
to the traditional hashing methods with deep features; (3) by
fusing the similarity information and semantic information,
the proposed AHCL delivers the better retrieval results than
ADSH; (4) GRN-SNDL-BCE obtains the competitive retrieval
results, the main reason is the relations between samples are
well excavated via a graph relation network and a designed
loss function. In addition, GRN-SNDL-BCE adopts the more
powerful backbone architecture (i.e., ResNet18 [47]) than
our pre-trained network (i.e., VGG11 [46]); (5) the proposed
AHCL obtains the highest MAP values with different hash bits
on three datasets.

Apart from the MAP metric, we also report other three
important metrics, i.e., Recall@k, Precision@k, and Precision-
Recall curves. In this part, we exclude the traditional hashing
methods with deep features (i.e., KSH-CNN [38] and SELVE-
CNN [39]) due to their poor performance. In addition, consid-
ering that the Precision-Recall curves are based on Hamming
radius in this paper, thus, the Precision-Recall curve of GRN-
SNDL-BCE is not compared with others. Figs.7-9 show the
corresponding retrieval results of different methods on the
three datasets, where the hash bit is set to 64. As can be seen
from Figs. 7-9, DPSH and DHNNS-L2 show poor retrieval
performance. On the contrary, other methods have achieved
satisfactory retrieval results. In addition, the proposed AHCL
method has obtained the higher retrieval values than other
compared methods in most cases.

D. Effects of Different Training Samples on MAP
In this section, we conduct experiments to analyze the effect

of different number of training samples on retrieval result
under 64-bit hash codes. Here, we only compare the proposed
AHCL with GRN-SNDL-BCE [23], FAH [31], ADSH [33],
and DHNNs-L2 [27], the rest of compared approaches are
excluded due to the poor retrieval results obtained by these
methods. The ratio between training and all samples are set
to 0.2, 0.4, 0.6, and 0.8 for three datasets.

The retrieval results in terms of MAP are shown in Fig. 12.
From this figure, we can see that DHNNs-L2 is very sensitive
to the number of training samples. When small amount of
training samples are available, the retrieval results of DHNNs-
L2 on three datasets dramatically decrease. By contrast, the



10

(a) (b) (c)

Fig. 8. The retrieval results on WHU-RS with 64-bit hash code. (a) Recall@k. (b) Precision@k. (c) Precision-Recall.

(a) (b) (c)

Fig. 9. The retrieval results on AID with 64-bit hash code. (a) Recall@k. (b) Precision@k. (c) Precision-Recall.

TABLE II
COMPARISON OF RUNNING TIME (IN SECONDS) OF DIFFERENT METHODS.

Methods
16 bits 32 bits 64 bits

Training Retrieval Training Retrieval Training Retrieval
time time time time time time

AHCL (Our method) 1243.52 24.17 1244.45 24.09 1249.75 24.26
DHCNN [32] 1064.56 67.69 1067.45 70.43 1071.78 72.85
ADSH [33] 1237.29 24.21 1239.25 24.57 1244.95 24.28

DHNNs-L2 [27] 1049.56 69.49 1045.45 74.57 1058.78 78.32
DPSH [41] 1047.20 75.05 1049.45 75.04 1056.78 78.76

(a) UCMD (b) WUH-RS (c) AID

Fig. 10. The effects of λ on MAP
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(a) UCMD (b) WUH-RS (c) AID

Fig. 11. The effects of γ on MAP

(a) (b) (c)

Fig. 12. The retrieval results under different number of training samples on the (a) UCMD, (b) WHU-RS, and (c) AID.

MAP values of other methods steadily rise with the number
of training samples increasing. Although DHCNN and GRN-
SNDL-BCE obtain the competitive results, we can still see
that the proposed AHCL delivers the highest MAP values
for all separation scenarios on three datasets. Based on the
above analyses, we can conclude that the proposed AHCL
can achieve satisfactory retrieval performance under different
separation scenarios of samples, and at the same time, exhibit
advantage over other compared methods to some extent.

E. Computing Time

In addition to the quantitative metrics, retrieval efficiency is
also an important factor when designing a retrieval algorithm.
Thus, we further compare the proposed AHCL method with
four deep hashing methods in terms of running time. The
experiments are performed on the AID dataset and the training
ratio is set to 0.5 per class. Table II shows the comparison
of the training and retrieval time of different methods with
16, 32, and 64 hash bits. From this table, we can see that
the training time of DHCNN is slightly higher than that of
DHNNS-L2 and DPSH. At the same time, the proposed AHCL
also takes more training time than that of ADSH. The main
reason for the above experimental phenomenon is that AHCL
and DHCNN add a semantic layer after the hash layer to
consider the semantic information of images. Therefore, these
two methods need more time to train the additional parameter
layer. In addition, we can also observe that the retrieval time

of the AHCL and ADSH methods is much lower than that
of other three symmetric hashing methods, which verifies the
efficiency of the asymmetric strategy for hash code learning.

F. Parameter Analysis

As can be seen from Equation (10), the proposed AHCL
method contains two important hyper-parameters, i.e., λ and
γ. The variable λ is used to constrain the representation error
between two hash code representations for query images. The
variable γ is used to balance the similarity loss and semantic
loss. In the following parts, the effects of the above two hyper-
parameters on MAP values are analyzed in detail.

1) The effects of λ on MAP: In order to analyze the effect
of λ on the retrieval performance, the γ value is set to 20
according to experience [32]. Figure 10 shows the changing
curve of the MAP values with the increase of λ on the UCMD,
WHU-RS, and AID datasets, where the hash bits K are set to
16, 32 and 64, respectively. As can be seen from this figure,
when the hash bit K increases, the MAP values improve
significantly. In addition, when λ = 0, MAP values reach the
lowest value, the main reason is that the objective function
cannot effectively constrain the approximation error between
the hash-like codes and the hash codes to be enough small.
For both UCMD and AID datasets, the best MAP values are
achieved when λ = 200 for all hash bits. Although for the
WHU-RS dataset, the MAP values under λ = 200 do not
reach the maximum values, the results at this time are still
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very close to the maximum values. Thus, we set λ = 200 as
the optimal value for the three datasets.

2) The effects of γ on MAP: Before analyzing the effects of
γ on MAP, the λ value is set to 200 for all three datasets. Fig.
11 shows the effects of γ on the MAP values. From this figure,
we can see that when γ approaches to 0, the MAP values
significantly decrease for all scenarios. The main reason for
the above experimental phenomenon is that objective function
under the condition of γ = 0 only considers the similar
information between images, while ignoring the semantic
information of each image. When γ > 0, the MAP values
increase significantly and become stable with the increase of
γ. Through the above observation, it is found that the proposed
method can obtain satisfactory retrieval results on all datasets
when γ equals 20.

V. CONCLUSIONS

Currently, deep hashing-based RSIR methods attempt to
learn one hash function for both query and database samples
in a symmetric way. Specifically, the hash codes of query
and database remote sensing images are all obtained by
binarizing the output of the network. However, it is typically
time-consuming to generate the hash codes of huge database
images. To this end, we proposed a novel asymmetric deep
hashing method for fast RSIR. In more detail, the hash codes
of query images are obtained via the feedback computation of
the deep hashing network, while the hash codes of database
images are directly learned by solving the objective function.
The proposed asymmetric strategy improves the generation
efficiency of hash codes, which is vital for the large-scale
retrieval task. In addition, the designed loss function simul-
taneously exploits the semantic information and similarity in-
formation of images to enhance the ability of feature represen-
tation. Finally, the experimental results validate the superiority
of the proposed method over the compared approaches.
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