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ABSTRACT 

 

As various sensors appear, extracting information from 

multimodal data becomes a prominent topic. Current 

multimodal approaches for image and LiDAR normally 

discard the point-to-point topology relationship of the latter 

to keep the dimension matched.   To tackle this task, we 

propose a cascaded cross-modal network (CCMN) to extract 

the joint-features from high-resolution aerial imagery and 

LiDAR point directly, instead of their abridged derivatives. 

Firstly, point-wise features are extract from raw LiDAR data 

by a forepart 3D extractor. Subsequently, the LiDAR-

derived features are executed spatial reference conversion to 

project and align to the imagery coordinate space. Finally, 

the cross-modal compounds containing the obtained feature 

maps and the corresponding images are placed into a U-

shape structure to generate segmentation results. The 

experiment results indicate that our strategy surpasses the 

popular multimodal method by 6% on mIoU. 

 

Index Terms— Semantic segmentation, aerial images, 

LiDAR, multimodal data, convolutional neural network 

 

1. INTRODUCTION 

 

Semantic segmentation, i.e., pixel-level visual interpretable 

classification, has long been one of the basic tasks for the 

computer vision community, and has been widely used in 

fields such as autonomous driving [1], medical image 

recognition [2], and so on. As deep learning methods shine 

in the field of computer vision, convolutional neural 

networks have also been introduced into semantic 

segmentation tasks. Canonical methods such as FCN [3] and 

UNet [4] provide robust baselines for subsequent research. 

Although a variety of researches have been emerging, there 

is still a long way toward human-level high-precision scene 

descriptions. 

Semantic segmentation of remote sensing data is an 

important prerequisite for remote sensing information 

extraction, and of great significance for various automated 

monitoring tasks. Compared with natural images in 

computer vision, a prominent character of remote sensing 

data is the diversity of sensors and data types, such as 

optical image, infrared image, synthetic aperture radar 

(SAR), Light Detection and Ranging (LiDAR), etc. Each 

type of data exhibits individual characteristic and is suitable 

for different application scenarios. High-resolution aerial 

images have rich texture information and continuous 

features, but there are the phenomena of different objects 

with the same spectra characteristics and the same 

spectrum with different objects, which bring difficulties to 

image interpretation. Infrared remote sensing plays a critical 

role in geological structure detection and pollution 

monitoring, but the quality of the obtained data is greatly 

affected by the weather. As an active detection method, 

LiDAR is not restricted by natural conditions such as light 

and weather, and performs outstandingly in harsh and 

complex environments. To overcome the limitations of the 

single data source, multimodal data is used for remote 

sensing semantic segmentation. Among them, the 

combination of optical image and LiDAR can access more 

informative features due to the complementary perception of 

their stereo structure and texture mode. 

Since the 3D point clouds and the 2D optical images 

belong to different metric spaces, it is not convenient to 

integrate both seamlessly for the nonnegligible domain gap. 

Some studies have discarded some LiDAR fields and only 

exploit the elevation and its derivations as the auxiliary data 

for images. Sherrah [5] concatenated the optical images and 

its corresponding digital surface model (DSM) as an 

enhanced input for FCN to get the pixel-wise semantic 

labels. Audebert et al. [6] designed a dual-stream SegNet 

architecture with IRRG images (near-infrared, red, and 

green channel) and the abridged LiDAR features (DSM and 

the normalized DSM (NDSM)) as double inputs. Furtherly, 

they proposed two schemes, i.e. early fusion and late fusion, 

to obtain the multimodal joint-features [7]. Liu et al. [8] 

proposed an unsymmetrical structure where one branch 

handled the optical imagery and the other dealt with the 

hand-crafted LiDAR feature such as height, height 

variations, and surface norm. Sun et al. [9] split the original 

LiDAR data into three channels of NDSM, intensity, and 

number of returns, which all had the same size as the image 

counterpart. These channels concatenated with the 

difference of Gaussians derived from the source image were 

then put into the multi-filter CNN together to utilize 

information from the two modals. These studies compressed 

the dimension of LiDAR crudely, leading to the 
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Figure 1. Illustration of CCMN. S&G represents sampling and grouping operation. 

 

degeneration of the topological relationship between points 

in 3D space. 

To take full advantage of the respective information of 

multimodal data, we propose a cascaded cross-modal 

network (CCMN) which can be roughly divided into three 

stages to utilize imagery and raw LiDAR points directly. In 

the first stage, the raw LiDAR points with x, y and z 

coordinates are put into a 3D network. Subsequently, the 

point-wise feature vectors are registered to the 

corresponding pixels and executed dimensionality reduction 

by principal component analysis (PCA). In the last stage, the 

feature maps derived from LiDAR are concatenated with 

their image counterparts and put into the U-shape network 

to extract joint-features for the final segmentation. Our 

method preserves all the attributes of LiDAR data and 

realizes feature-level cross-modal mapping. The 

experimental results show that our proposed CCMN 

obviously surpasses the single-modal and the popular 

multimodal methods. 

 

2. METHODOLOGY 

 

Our CCMN consists of three parts as Figure 1 shown, which 

can also be formulated as follow. 

 r = G(Γ(F(x)) ⊕ y) (1) 

where r, x, and y are the final segmentation results, LiDAR 

points and image patches respectively. F stands for LiDAR 

feature extraction stage and G represents joint-feature 

extraction stage. Γ is the coordinate transformation stage 

from LiDAR space to imagery space. ⊕ is the symbol of 

concatenation. 

2.1. LiDAR feature extraction 

 

Compared with imagery, LiDAR is more complex and 

describes the real world in a detailed way as more features 

are encoded within. The difference of dimensions between 

these two types of data results in conceptual unbalance. A 

feasible way to solve this is to extract the 2D feature maps 

from LiDAR first. In our method, we select PointNet++ [10], 

an optimized version of PointNet [11], to handle point 

clouds. PointNet stacks several multi-layer perceptron (MLP) 

layers and a max pooling layer to generate discriminative 

features. In order to preserve the point-to-point relevance 

and increase the network's ability to integrate local 

information, PointNet++ uses sampling and grouping 

modules with different parameters to obtain the features of 

different scales and changes the concatenation strategy of 

PointNet to encoder-decoder structure equipped with skip 

connection. When extracting point cloud features, we 

discard the last convolution layer and keep the 128-

dimensional feature vectors as the output. 

 

2.2. Feature registration and reduction 

 

The LiDAR-derived features obtained in section 2.1 are 

based on the geodetic coordinate system, while the aerial 

image of the same region is based on the projection 

coordinate system. We perform spatial reference conversion 

on LiDAR-derived features to align them with the 

corresponding images. To balance the information quantity 

of two types of data, we reduce the dimension of LiDAR-

derived features from 128 to 3 through PCA. 
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Figure 2. Visualization of three qualitative results. 

 

2.3. Joint-feature extraction 

 

At the third stage, we connect features from LiDAR after 

the cross-modal projection with the images of the same area 

and use an U-shape network to extract joint-features. The 

downsampling phase of the network consists of four stacked 

modules, each of which contains two convolution layers of 

3×3 kernel size, one batch normalization layer, one 

activation function ReLU layer, and one max pooling layer. 

The output feature dimensions of each module are 64, 128, 

256, 512 in sequence. After each max pooling layer, the size 

of the feature map becomes half of the original. The 

upsampling phase is composed of four inverse processes 

corresponding to those of the downsampling stage. The 

downsampling and upsampling layers of the same level are 

connected by skip connection. 

 

3. EXPERIMENTAL RESULTS AND DISCUSSIONS 

 

3.1. Datasets and metrics 

 

To the best of our knowledge, there has been no image-

LiDAR combined dataset up till now. To fill this gap, we 

make an experimental united dataset where the aerial 

imagery is downloaded from National Agriculture Imagery 

Program (NAIP) and the corresponding LiDAR point clouds 

are from the United States Geological Survey (USGS). The 

study area covers most part of Santa Clara County, 

California, U.S. The proportion of samples in training, 

validation, and testing dataset is 8:1:1. The LiDAR point 

clouds are voxelized and subsequently split into 1234 blocks 

each containing less than 65536 points. The aerial images 

are cut into 512×512 pieces with 20% overlap. The 

annotations of point clouds and images all come from the 

“classification” attribute of LiDAR. 

We select accuracy (Acc), mean intersection-over-union 

(mIoU), and mean F1-score (mF1) as the evaluation 

measure. Acc indicates the proportion of the pixels correctly 

predicted. Intersection-over-union (IoU) is the ratio of the 

intersection and union of pixels predicted as a certain class 

and those actually belonging to this class. F1-score 

represents the harmonic mean of precision and recall. The 

mean values of them on different categories are mIoU and 

mF1 respectively. 

 

3.2. Implement details 

 

All experiments are completed on a Windows 10 PC 

equipped with an NVIDIA GeForce RTX 3090 24G GPU 

and PyTorch deep learning framework. The optimizer is 

SGD during the whole procedure. In the LiDAR feature 

extraction stage, 8192 points are randomly sampled from 

each patch. For the network in this stage, the batch size is 

scheduled to 16, and a total of 8 epochs are trained. The 

learning rate decays linearly with initial value and decay 

rate set to 0.001 and 0.7 respectively. PCA compresses the 
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channel of feature map from 128 to 3. When extracting 

joint-features, the patches are cropped into 512×512. The 

batch size is 8, and the total number of iterations is 80,000. 

The learning rate is originally set to 0.01 and adjusted by the 

cosine annealing strategy. 

 

3.3. Results and analysis 

 

We conduct comparison experiments on baseline method 

UNet, hybrid UNet [5], our CCMN with PCA and CCMN 

without PCA. We select the network models that get the 

highest scores for mIoU on the validation dataset to 

implement inference. The results on the test dataset are 

summarized in Table 1. 

Table 1. Comparison of different methods 

Network Input Acc mIoU mF1 

UNet(baseline) Image 0.8748 0.6267 0.7119 

hybrid UNet [5] Image + DSM 0.9169 0.7080 0.7819 

CCMN-PCA (ours) Image + LiDAR 0.9189 0.7224 0.8023 

CCMN (ours) Image + LiDAR 0.9314 0.7601 0.8370 

 

Table 1 illustrates that our strategy to combine image and 

LiDAR surpasses the standard practice to cascade image and 

DSM by large margins, namely 1.5% on Acc, 6% on mIoU 

and more than 5% on mF1. While using PCA lowers the 

superiority to a certain extent, it can greatly reduce the 

calculation. 

We visualize the intermediate and final output of our 

CCMN in Figure 2. The input images are shown in the first 

column, with LiDAR-derived features, final segmentation 

results, and ground truths following sequentially. In the last 

two columns, the ground, tree, buildings, and other classes 

are marked in gray, green, yellow, and black respectively. 

Figure 2 displays that many pixels belonging to buildings 

are misclassified as grounds in the LiDAR-derived feature 

maps. However, concatenated input of images and LiDAR-

derived features significantly improves the segmentation 

accuracy. 

 

4. CONCLUSION 

 

In this paper, we propose a cascaded cross-modal network to 

utilize imagery and LiDAR data directly, instead of the 

derivatives such as DSM. By using raw LiDAR data without 

additional dimension compression, our method takes full 

advantage of the properties of point clouds and remains the 

topological relationship between points in 3D space. The 

experiment results present that our method surpasses single-

modal and popular multimodal methods. Our future research 

will focus on the end-to-end solution to cross-modal 

information fusion, as well as the plug-in inter-modal 

projection. 
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