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Abstract— Radiometric calibration of the medium-resolution
satellite data is critical for monitoring and quantifying changes in
the Earth’s environment and resources. Many medium-resolution
satellite sensors have irregular revisits and, sometimes, have
a large difference in illumination viewing geometry com-
pared with a reference sensor, posing a great challenge for
routine cross-calibration practices. To overcome these issues,
this study proposed a cross-calibration method to calibrate
medium-resolution multispectral data. The Chinese Gaofen-4
(GF-4) panchromatic and multispectral sensor (PMS) data with
large viewing angles were used as the test data, and Landsat-
8 operational land imager (OLI) data were used as the reference
data. A bidirectional reflectance distribution function (BRDF)
correction method was proposed to eliminate the effects of
differences in illumination viewing geometry between GF-4 and
Landsat-8. The validation using concurrent image shows that the
mean relative error (MRE) of cross calibration is less than 6.65%.
Validation using ground measurements shows that our calibration
results have an improvement of around 14.8% compared with
the official released calibration coefficients. The time series cross
calibration reveals that, without the requirements of simultaneous
nadir observations (SNOs), our calibration activities can be
carried out more often in practice. Gradual and continuous
radiometric sensor degradation is identified with the monthly
updated calibration coefficients, demonstrating the reliability and
importance of the timely cross calibration. Besides, the cross-
calibration approach does not rely on any specific calibration
site, and the difference in illumination viewing geometry can be
well considered. Thus, it can be easily adapted and applied to
other optical satellite data.

Index Terms— Bidirectional reflectance distribution function
(BRDF), Gaofen-4 (GF-4), Landsat-8, radiometric calibration.

I. INTRODUCTION

RADIOMETRIC calibration is the conversion from satel-
lite recorded digital numbers to values with absolute
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units of at-sensor radiance for optical bands and bright-
ness temperatures for thermal bands [1]. Frequent sensor
calibration is critical for change detection, time series analysis,
and quantitative retrieval of biogeophysical properties with
remote sensing data [2]. However, for a sensor without an
onboard calibration system, the calibration is usually taken
using in situ measurements obtained from fixed calibration
sites [3]. Because of its high time consumption, labor intensity,
and cost, field-based calibration activities are carried out at a
low frequency (mostly once a year), thus making it difficult
to track the sensor degradation [3], which is one of the major
challenges using data without the onboard calibration system.

Radiometric cross calibration of in-orbit sensors is an essen-
tial technique to ensure the calibration frequency of remote
sensing data and the radiometric consistency of different
sensors [1]. It uses well-calibrated in-orbit satellite data as a
reference to cross calibrate the target sensor data [2], [4]–[6].
A variety of cross-calibration methods have been applied to
the Earth observation data. For example, Angal et al. [7] used
the near-simultaneous image pairs of the Moderate Resolution
Imaging Spectroradiometer (MODIS) and Landsat-7 Enhanced
Thematic Mapper Plus (ETM+) over a pseudoinvariant cal-
ibration site to cross calibrate the Landsat-7 ETM+ data.
Farhad et al. [8] used the near-nadir view and cloud-free
image pairs over six pseudoinvariant calibration sites located
in Africa to carry out the cross calibration of the Landsat-
8 operational land imager (OLI) and the Sentinel-2A mul-
tispectral instrument (MSI). A basic requirement of classic
cross calibration is that observations from the target sensor
and reference sensor use the same ground target, spectral band,
overpass time, and illumination viewing geometry [9].

However, it is unlikely to satisfy all of the above require-
ments in practice. The reference sensor and target sensor may
have a difference in spectral and illumination viewing geome-
try. The difference will cause uncertainties in cross calibration.
The spectral difference is related to their spectral range and
relative spectral responses (RSRs) [10], [11]. The calibration
deviation caused by the difference in spectral range and RSRs
of different sensors can reach up to 10% [12]. The difference
in illumination viewing geometry is mainly associated with the
bidirectional reflectance distribution function (BRDF) effects
[13], which may introduce as much as 15% bias in the cross
calibration [14].

To account for the effect of the spectral difference, using
radiative transfer equations to estimate the reflectance of the
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target sensor through the observation of a hyperspectral sensor
is a good solution [15]. However, due to the discontinuity in
spatial and temporal coverages, hyperspectral data in specific
scenes are often unavailable. Another way is to use the RSR
and ground measured spectral library to estimate the spectral
band adjustment factor (SBAF) of the related band through
unary linear regression [16], [17]. However, the SBAF may not
be suitable for a target sensor that has bands with significant
differences in spectral coverages and RSRs [18], [19].

To mitigate the BRDF effect, choosing the image pairs
over simultaneous nadir observations (SNOs) has been widely
adopted [20], [21]. However, it is not practical to obtain the
SNOs for sensors with medium to high spatial resolutions
because their swaths are usually small and the orbits do not
usually overlap. Another way to eliminate the BRDF effect
is to build a model to normalize the directional reflectance
differences between the reference sensor and the target data
when SNOs are not available. A few methods have been
proposed to build the angular normalization model in recent
years: 1) obtaining the accurate BRDF characterizations of the
calibration site by ground measurements [17], [22]; 2) choos-
ing pseudoinvariant targets and using the multiyear top-of-
atmosphere (TOA) reflectance of the reference sensor to build
the BRDF model [23], [24]; and 3) using the MODIS BRDF
products to estimate BRDF characterizations of the calibration
site [25], [26].

Among the three BRDF correction methods, using MODIS
BRDF products instead of surface BRDF modeling has been
widely used [27]. It has been applied to Landsat-7 ETM+
[12] and Sentinel-2A MSI [26] that are generally considered
to be a narrow field of view (FOV) satellite data. In addition,
the MODIS BRDF products have been used in the cross
calibration of sensors with wide FOV (WFV). For example,
Liu et al. [28] used the MODIS BRDF products to estimate
the BRDF characteristics of the Dunhuang calibration site
and simulate the TOA reflectance of Gaofen-1 (GF-1) data,
in which the view zenith angle (VZA) can reach to 40◦ to carry
out the cross calibration. Calculating the ratio of the directional
reflectance in two illumination viewing geometries using the
MODIS BRDF product and using the ratio to estimate the
reflectance under the illumination viewing geometry of the tar-
get sensor is a good solution [29]. However, due to the coarse
spatial resolution of MODIS BRDF product (500 m), the direc-
tional reflectance estimation of medium-resolution satellite
data (e.g., 30 m) will suffer from the effect of “mixed pixels”
[27]. Thus, previous methods based on a simple relationship
(e.g., linear ratios) of directional reflectances between two
sensors may not work because of the nonlinear relationship
when the mixed pixels with mixed BRDFs are included in
samples.

Every spaceborne sensor will suffer from the degradation
processes during its operational time, one of which is the
change in the response of the instrument’s radiation measure-
ment [30], [31]. In the case of satellites without on-board cal-
ibration capabilities, such as Air Force Satellite-C (FASat-C)
[32], Operational Line-scan System of Defense Meteorology
Satellite Program (DMSP-OLS) [33], and the WFV on-board
the GF-1 satellite launched by China, the degradation of the

sensor must be monitored and compensated relying on radio-
metric calibration. Thus, accurate and frequent calibrations are
urgently needed for deriving useful and reliable quantitative
information from the satellite data [34].

The Gaofen-4 (GF-4) is China’s first high-resolution geo-
stationary optical satellite launched on December 29, 2015.
It is equipped with a panchromatic and multispectral sen-
sor (PMS) and a staring optical imager, which has a 50-m
spatial resolution in the visible and near-infrared (VNIR) range
and 400-m resolution in medium wave infrared [35], and the
VZA can reach to 70◦ [36]. It has the highest resolution among
the geostationary orbit satellites in the world [35], [37]. The
high spatial resolution and short revisit period enable GF-4 to
provide fast, reliable, and stable optical remote sensing data for
various applications, such as environmental protection, disaster
risk forecasting, and forest fire monitoring, when accurate
and timely radiometric calibration can be maintained [38].
However, because of the sensor degradation, radiometric errors
could reach 30% [14] without timely calibration activities,
particularly during the early period after its launch.

There are several difficulties in the cross calibration of GF-4
data: 1) the spectral characteristics (bandwidth and RSR) of
GF-4 PMS are different from those of existing satellite sensors,
leading to different reflectance between the GF-4 PMS and
other sensors; 2) the viewing geometries of GF-4 is quite dif-
ferent from the polar-orbiting satellite sensors commonly used
for cross calibration (e.g., Landsat and MODIS), and therefore,
the BRDF effects need to be considered when ray-matched
observations are scarcely available; and 3) different from other
medium-resolution satellites, GF-4 PMS is a task-based sensor
without continuous observations over the same region or with
the same repeating cycle, and therefore, traditional methods
that require observations over certain calibration sites cannot
be applied to such sensors.

To mitigate the effect of differences in the spectral and
illumination viewing geometry of GF-4 PMS and reference
sensors and, finally, to achieve the near-real-time calibration of
GF-4 data, we proposed a data harmonization method, which
includes band conversion and BRDF correction to estimate the
observation of GF-4 PMS by Landsat-8 OLI. The Landsat-
8 OLI has similar spectral bands and spatial resolutions to
that of GF-4 PMS in the VNIR spectral range, the data of
which are freely available and have a global land coverage.
The uncertainty of calibration for OLI is within ±3% [3],
and the mean bias of surface reflectance in each band is
within 5% [39]. It is suitable for choosing the Landsat-8 OLI
data as the reference data to calibrate the GF-4 PMS data.

II. DATA AND METHODS

A. Data

The Landsat-8 OLI Collection 1 Level 2 surface reflectance
product [40], [41] was collected from the United States Geo-
logical Survey (USGS) (https://earthexplorer.usgs.gov/). The
basic information about GF-4 PMS and Landsat-8 OLI is
listed in Table I. In this study, we have four criteria for the
image selection, which includes: 1) the images should include
multiple types of land cover (e.g., vegetation, water, and bare
soil); 2) the VZA of the images should be within 60◦; 3) the
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TABLE I

BASIC INFORMATION OF GF-4 PMS AND LANDSAT-8 OLI

acquisition time of the GF-4 should be within five days of the
Landsat-8 over the same region; and 4) the overlapping area of
the two images should be cloud-free. Based on the image pair
composition criteria, we collected a total of 39 image pairs
from June to December 2016. We selected two image pairs
per month: one for the calculation of calibration coefficient
and the other one for the validation. There were 14 image
pairs composed of GF-4 and Landsat-8 data used to carry
out the calibration and validation. Seven of them were used
to calculate calibration coefficients, and the other seven were
used for validation. The information of the images used in the
calibration and validation is listed in Table II.

The aerosol optical depth (AOD) contained in the MODIS
aerosol product (MOD04) [42], [43] from the Terra satellite
was used in the radiative transfer simulation of this study. The
MODIS aerosol product has a spatial resolution of 10 × 10
km, which can be downloaded from the official website of
the National Aeronautics and Space Administration (NASA)
(https://search.earthdata.nasa.gov/). In this article, we assumed
that the MODIS AOD obtained on the same day as the GF-
4 data acquisition could be used to represent the aerosol
properties of the GF-4 images.

The MODIS BRDF product (MCD43A1) Collection 6 [44]
was used to provide the surface BRDF model parameters.
The product provides three parameters that are the inputs of
the Ross–Li BRDF model [13], [45] to simulate the direc-
tional reflectance of certain illumination viewing geometry.
The MCD43A1 data are generated by combining the Terra
and Aqua data and have an accumulation of 16 days. The
spatial resolution is 500 m. The MCD43A1 was obtained
from the Level-1 and Atmosphere Archive & Distribution
System (LAADS) Distributed Active Archive Center (DAAC)
(https://ladsweb.modaps.eosdisnasa.gov/).

The field measurements of surface spectra were taken in
June 2016 in Dunhuang to help validate our calibration results,
provided by the China Center for Resources Satellite Data and
Application (CRESDA), including three surface reflectance
spectra of gypsum, desert, and water.

The illumination viewing geometries of GF-4 and Landsat-
8 images are plotted in Fig. 1. The angles of the satellite and
the sun represent the center pixel of each image. As shown
in Fig. 1, the major difference is the VZAs of GF-4 and
Landsat-8. The Landsat-8 is considered to be a nadir view
satellite, and the VZAs of the images used in the experiment
are all within 5.5◦. In comparison, the VZAs of the GF-
4 images are much larger, and the maximum VZA exceeds
50◦. The absolute deviation of the solar azimuth angle (SAA)
between GF-4 and Landsat-8 exceeds 60◦.

B. Cross-Calibration Method of GF-4

In this article, a radiometric cross-calibration technique
for GF-4 PMS with Landsat-8 OLI was used. The surface
reflectance of GF-4 PMS was calculated from the Landsat-
8 OLI surface reflectance through band conversion and BRDF
correction. Then, the TOA reflectance of GF-4 was simulated
with the second simulation of the satellite signal in the
solar spectrum (6S) radiative transfer model [46]. Finally,
the cross calibration of GF-4 was performed. The procedure is
illustrated in Fig. 2, and the major steps are discussed below
in detail.

1) Band Conversion: The differences in observations of
two sensors that arise from the different RSRs need to be
considered. The bandwidths and RSRs of Landsat-8 OLI and
GF-4 PMS are plotted in Fig. 3. The GF-4 PMS has a
broader spectral coverage among the four VNIR compared
with Landsat-8 OLI and also has a significant difference in
RSRs, especially in the blue and NIR bands. Thus, a spectral
band conversion should be conducted to mitigate the effects
of RSRs differences.

The reflectance for an object in a certain band can be
estimated by [14], [29]

ρ =
∫ b

a
f (λ)�(λ)dλ

/∫ b

a
�(λ)dλ (1)

where ρ is the simulated reflectance of GF-4 PMS and
Landsat-8 OLI, λ is the wavelength, �(λ) is the RSR, a
and b are the spectral ranges of a specific band, and f (λ)
is the in situ measured spectrum. In this article, 245 surface
reflectance spectrum samples were collected from the USGS
and Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) spectral libraries [47]. These samples
included vegetation, soil, rock, water, snow, and ice [48],
[49]. The surface spectrum was then used to establish the
relationship between PMS and OLI by a multiple linear
regression (MLR) model [19], and then, the simulated spectral
reflectance of GF-4 PMS by the true Landsat-8 OLI surface
reflectance can be obtained

ρ �
PMS( j) =

4∑
i=1

ρOLI(i) · Ci (2)

where ρ �
PMS( j) is the simulated reflectance of GF-4 in band

j , ρOLI(i) is the true surface reflectance of Landsat-8 in band
i , and Ci is the SBAFs.

2) BRDF Correction: As shown in Fig. 1, the absolute
difference in VZAs between GF-4 PMS and Landsat-8 OLI
is greater than 45◦, and the difference in SAAs is 60◦. The
angular effect would lead to disparities between the observa-
tions of these two sensors. Thus, the reflectance of Landsat-
8 OLI cannot represent the true observation of GF-4 PMS
directly due to the effect of surface BRDF and the reflectance
from different atmospheric paths introduced by the different
illumination viewing geometry [29].

In this article, we proposed a general method to implement
the BRDF correction with the help of the MODIS BRDF
product (MCD43A1). Because GF-4 PMS and Landsat-8 OLI
observed the same target with different illumination viewing
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TABLE II

BASIC INFORMATION ABOUT THE IMAGES USED IN THE CALIBRATION AND VALIDATION

Fig. 1. Illumination viewing geometries of the 14 image pairs used in
(a) calibration and (b) validation. The red circles and squares represent the sun
and sensor’s locations of GF-4 data. The blue circles and squares represent
the sun and the sensor’s locations of Landsat-8 data. These angles can be
obtained from the metadata.

geometries, the MODIS products were used as a bridge to
simulate the directional reflectance of GF-4 PMS by the
directional reflectance of Landsat-8 OLI.

The reflectances under the two illumination viewing geome-
tries were simulated by MCD43A1 first through the Ross–Li
kernel-driven model [50], [51]⎧⎪⎪⎪⎨

⎪⎪⎪⎩
R(θs, θv , ϕ) = fiso + fvol Kvol(θs, θv , ϕ)

+ fgeo Kgeo(θs, θv , ϕ)

R�(θ �
s, θ

�
v , ϕ

�) = fiso + fvol Kvol(θ
�
s, θ

�
v , ϕ

�)
+ fgeo Kgeo(θ

�
s, θ

�
v , ϕ

�)

(3)

where R and R� are the directional reflectances of GF-4 PMS
and Landsat-8 OLI, θs, θv, and ϕ are the solar zenith angle
(SZA), VZA, and relative azimuth angle (RAA) of the sensor
and the sun of GF-4 PMS, θ �

s, θ
�
v , and ϕ � are the SZA, VZA,

and RAA of the sensor and the sun of Landsat-8 OLI, Kgeo

and Kvol are the kernels representing the geometric optical
mutual shadowing and volumetric scattering components of
the surface reflectance, respectively, fgeo and fvol are the
weights of the two components, and fiso is the isotropic
reflectance component [51]. fgeo, fvol, and fiso are provided
by MCD43A1. The simulation of surface reflectance in any
specific illumination viewing geometry can be taken through
(3) when the SZA, VZA, and RAA are determined.

Then, we established the relationship between R and R�.
Considering the effect of “mixed pixel”, we chose the homo-
geneous pixels in the R and R� to build the BRDF correction
model. The homogeneous pixels were chosen by the coeffi-
cient of variation (CV, the ratio of the standard deviation to
the mean value). A 15 × 15 window was built on the ρ �

PMS
based on the selected pixels in R�. If the CV of the pixels

Fig. 2. Workflow of the radiometric cross-calibration method. ρOLI is the
surface reflectance of Landsat-8 OLI, RSR represents the normalized RSR,
ρ�

PMS is the simulated spectral reflectance of GF-4 PMS, NDVI represents
the normalized difference vegetation index, CV represents the coefficient of
variation, θs , θv , ϕ and θ �

s , θ
�
v , ϕ� are the SZAs, VZAs, and RAAs of the GF-

4 PMS and Landsat-8 OLI images, R and R� are the simulated directional
reflectances under the illumination viewing geometries of GF-4 PMS and
Landsat-8 OLI, Pij , Qij and pi j , qi j are the BRDF correction coefficients,
ρPMS and LPMS are the surface directional reflectance and the TOA radiance
of GF-4 PMS, respectively, and DN represents the digital number.

within the window is less than 1%, the corresponding pixels
in the R and R� could be considered a homogeneous pixel
pair [16].

Because of the nonlinear relationship between the
directional reflectances under different viewing geometries of
GF-4 PMS and Landsat-8 OLI, we built a piecewise linear
model to calculate the BRDF correction coefficient between
R and R�. An assumption was made that the same land
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Fig. 3. RSRs for the corresponding bands in the GF-4 and Landsat-8. The
blue plots represent GF-4 PMS RSRs; the red plots represent Landsat-8 OLI
RSRs. The blue, green, red, and NIR bands correspond to bands 2, 3, 4, and
5 of GF-4 PMS and Landsat-8 OLI, respectively.

cover type has the same BRDF shape, but the magnitude
of reflectance may vary [52]–[54]. The normalized difference
vegetation index (NDVI) was used as an index to distin-
guish different land cover types (e.g., bare soils, vegetation,
snow/ice, and water). For the same land cover type, variations
in BRDF shape throughout a year are limited and linked to
the NDVI [55], [56]. The homogeneous pixels were divided
into several classes with an interval of 0.2 (>0, 0–0.2, 0.2–0.4,
0.4–0.6, and 0.6<) based on NDVI [54]. Then, a linear model
was built on each class for each band in R and R�, as shown
in (4). Equation (5) shows a combined set of regression
coefficients for all the NDVI intervals for a spectral band

Ri j = R�
i j · Pi j + Qi j (4)

P = P1 ∪ P2 ∪ P3 · · · ∪ Pi ; Q = Q1 ∪ Q2 ∪ Q3 · · · ∪ Qi

(5)

where P and Q are BRDF correction coefficients, i is the
class index, and j is the band index. After the linear models
of all classes were built, the piecewise linear BRDF correction
model for a spectral band in a scene can be obtained.

In order to apply the BRDF correction coefficients derived
by R and R� to ρ �

PMS, we assumed that the BRDF shape
is dependent on land cover type and independent of the
spatial resolution [27]. Then, we calculated the NDVI of ρ �

PMS
and divided it into several classes with an interval of 0.2.
We applied P and Q to the same class in each band derived
by ρ �

PMS

pi j = Pi j ; qi j = Qi j (6)

where p and q are the BRDF correction coefficients for
GF-4 PMS. Therefore, the directional reflectance under the
illumination viewing geometry of GF-4 PMS can be simulated
by ρ �

PMS through

ρPMS(i, j) = ρ �
PMS(i, j) · pi j + qi j (7)

where ρPMS is the simulated 30-m surface directional
reflectance under the illumination viewing geometry of
GF-4 PMS by ρ �

PMS.
3) Calculation of Calibration Coefficients: After the esti-

mation of surface reflectance at a specific spectral band under
the illumination viewing geometry of GF-4 PMS by Landsat-
8 OLI surface reflectance, we used the 6S to obtain the TOA
radiance of GF-4 PMS by the forward simulation model. The
TOA reflectance can be obtained by [46]

ρTOA
PMS (θs, θv, ϕ) = ρa(θs, θv , ϕ) + T (θs)T (θv )ρPMS(θs, θv , ϕ)

1 − SρPMS(θs, θv, ϕ)
(8)

where ρTOA
PMS is TOA reflectance of GF-4, ρa is the atmospheric

path reflectance, S is the spherical albedo of the atmosphere,
and T (θs) and T (θv) are the total downward and upward
transmittances, respectively. Then, ρPMS

TOA was converted to TOA
radiance by

LPMS = ρTOA
PMS ESUNPMS cos(θs)

πd2
(9)

where LPMS is the TOA radiance, d is the Earth–Sun distance,
and ESUNPMS is the solar spectral radiance at the TOA
of GF-4 PMS, which is published by CRESDA. Finally,
LPMS and the digital number (DN) value of GF-4 PMS were
used to calculate the calibration coefficients through a linear
calibration model

LPMS = gains · DNPMS + offset (10)

where DNPMS is the DN value of GF-4 PMS, and gains
and offset are the calibration coefficients. To mitigate the
mismatching of the footprints of LPMS and DNPMS, we carried
out a geometric registration between those two data. Similarly,
we chose the homogeneous pixel to build the linear calibration
model. Based on LPMS (30 m) and DNPMS (50 m), 5 × 5
and 3 × 3 windows were built on the corresponding pixel,
respectively. When the CVs of the pixels in the two windows
are all less than 1%, the center pixel of the two windows can
be chosen for building the calibration model.

C. Validation of Calibration Coefficients

The evaluation of calibration accuracy is performed in two
ways. The first method is based on the image. In the validation
image pair, DNPMS was converted to the calculated TOA
reflectance, and ρPMS

TOA can be simulated by Landsat-8 OLI
through band conversion and BRDF correction. The second
method is based on the in situ measurements at the Dunhuang
calibration site conducted by the CRESDA in June 2016. The
in situ surface spectrum was converted to PMS equivalent
surface reflectance at a specific band by (1), and then, the TOA
reflectance calculated by the in situ measurement can be
obtained through 6S radiative transfer. We derived ρPMS

TOA of
the calibration site by the calibration coefficients through
the method proposed in this article and the official released,
respectively. A comparison of the two different reflectances
with the in situ simulated TOA reflectance was implemented at
last. The radiometric calibration accuracy can be quantified by
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Fig. 4. Band conversion results. The x-axis is the simulated reflectance
of Landsat-8 OLI, and the y-axis is the simulated reflectance of GF-4 PMS
using the surface spectra and sensors’ normalized RSR data. The blue points
represent the simulated reflectance pair of GF-4 PMS and Landsat-8 OLI
without band conversion. The red points are the simulated reflectance pair
after band conversion.

TABLE III

SBAFS OF LANDSAT-8 OLI AND GF-4 PMS

mean relative error (MRE) and root mean square error (RMSE)

MRE(%) = 100%

n

n∑
i=1

∣∣ρcalculated
TOA,i − ρPMS

TOA,i

∣∣
ρPMS

TOA,i

(11)

RMSE =
√∑n

i=1

(
ρPMS

TOA,i − ρcalculated
TOA,i

)2

n
(12)

where ρcalculated
TOA is the TOA reflectance calculated by the

calibration coefficients, ρPMS
TOA is the TOA reflectance sim-

ulated by the proposed method, and n is the number
of samples.

III. RESULTS AND DISCUSSION

A. Band Conversion Results

Fig. 4 plots the surface reflectances of GF-4 PMS and
Landsat-8 OLI simulated by in situ spectrum and RSRs. The
results suggested that the simulated reflectance closely
matches the PMS reflectance after band conversion, especially
for the blue band. The SBAFs of GF-4 PMS and Landsat-
8 OLI were obtained by fitting the simulated reflectance data
through MLR analysis, and the SBAFs are shown in Table III.
These SBAFs illustrate the necessity of using the MLR to
estimate the reflectance of GF-4 instead of calculating the scale
factor of each band separately.

Fig. 5. Directional reflectances simulated by MCD43A1 under the illu-
mination viewing geometries of GF-4 PMS and Landsat-8 OLI. The x-axis
represents the reflectance under the illumination viewing geometry of Landsat-
8 OLI, and the y-axis represents the reflectance under the illumination viewing
geometry of GF-4 PMS. The red line is the 1:1 line.

B. BRDF Correction Coefficients

The directional reflectances simulated by MCD43A1 under
the illumination viewing geometries of GF-4 PMS and
Landsat-8 OLI were plotted in Fig. 5. There is a nonlinear
distribution of reflectance in the two illumination viewing
geometries, especially in the visible bands.

Using the piecewise linear fitting method, the directional
reflectance under the illumination viewing geometry of GF-4
PMS can be estimated. For illustration, we took an image
pair consisted of GF-4 and near-concurrent Landsat-8. The
GF-4 data obtained on June 16, 2016, and the Landsat-8 data
obtained on June 19, 2016. The BRDF correction coefficients
of the directional reflectance under the two illumination view-
ing geometries of the homogeneous pixels among the five
different land cover types are listed in Table IV. Classes 1–5
represent five different land cover types approximated with an
interval of 0.2 in NDVI. N is the number of homogeneous pix-
els, and P and Q are the parameters of the linear model in (4).

Most of the R2 values are above 0.9 except for class 2
(NDVI ∈ (0.2, 0.4]) in the green and NIR bands and class 5
(NDVI > 0.6) in the NIR band. The slope of the fit line of the
five classes in each band shows a significant difference.
The slope of the blue band ranges from 0.869 to 0.936, and
the CV of the slope is 2.78%. The slope of the green band
ranges from 0.835 to 0.928, and the CV of the slope is 3.75%.
The slope of the red band ranges from 0.829 to 0.941, and
the CV of the slope is 4.97%. The slope of the NIR band
ranges from 1.080 to 1.178, and the CV of the slope is
3.74%. There is a certain nonlinear feature of the reflectance
in the two illumination viewing geometries according to the
distribution of the reflectance of all samples. This means that
using simple linear models to carry out the BRDF correction
in certain illumination viewing geometry may result in some
errors.
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TABLE IV

BRDF CORRECTION COEFFICIENTS OF GF-4 PMS DATA
OBTAINED ON JUNE 16, 2016

Fig. 6. Simulated TOA radiance with GF-4 spectral bands and view-
ing geometries against GF-4 PMS DN values. Linear fits resulted in
cross-calibration coefficients. The GF-4 data were obtained on June 16, 2016,
the acquisition time of Landsat-8 was June 19, 2016, and the path/raw is
141/30. The red line is the fitting curve.

C. Calibration and Validation Results
Based on the normalized Landsat-8 OLI reflectance with

the spectral bands and illumination viewing geometry of
GF-4 PMS, we calculated the corresponding TOA radiance
by (9). To eliminate mismatches of the footprints of Landsat-
8 OLI and GF-4 PMS, we used the homogeneous pixel to build
the calibration model. An example of the linear calibration
model is shown in Fig. 6.

The calibration results show that the calibration models
have high accuracy. R2 exceeds 0.85 for all four bands.
However, R2 for the blue band is slightly lower than the rest
bands, which is likely caused by the uncertainty of the AOD
estimation because the impact of aerosols tends to be stronger
in the shorter wavelength [40], [57]. There is a difference in
overpass times of MODIS and GF-4 PMS. Thus, the MODIS
aerosol products may not represent the atmospheric condition

Fig. 7. Validation of calibrated TOA reflectance of GF-4 using simulated
TOA reflectance from nonsimultaneous Landsat-8 data. The GF-4 data were
obtained on June 18, 2016, the acquisition time of Landsat-8 was June 15,
2016, and the path/raw is 129/32. The red line is the 1:1 line.

at the overpass time of the GF-4 PMS image accurately due
to the diurnal variation of AOD.

Correspondingly, another GF-4 PMS image obtained on
June 18, 2016, was used for validation. The simulated TOA
reflectance at a specific spectral band under the illumination
viewing geometry of GF-4 PMS through Landsat-8 OLI was
obtained by the data normalization method and radiative
transfer model. The calculated TOA reflectance was obtained
using the DN value of GF-4 PMS. We chose the homogeneous
pixels of the calculated TOA reflectance and simulated TOA
reflectance of the different bands via the homogeneous pixels
selection method. As shown in Fig. 7 the calibration coeffi-
cients have a high calibration accuracy of the four bands. The
mean bias of each band is −0.45%, and the mean RMSE of
the four bands is 0.008.

In order to compare the difference between the calibration
coefficients obtained in this article and the official release,
we calculated the TOA reflectance of the GF-4 PMS image
obtained on June 18, 2016, by the calibration coefficient
obtained in this article and the official release, respectively.
The MREs of TOA reflectance of red and NIR bands are
shown in Fig. 8. The relative difference of TOA reflectance
in the red band is concentrated in 7%–10%, and the relative
difference in the NIR band is concentrated in 2%–12%. This
means that the difference between calibration coefficients is
significant, and there is great uncertainty in the calculation of
the TOA reflectance using different calibration coefficients.

In addition, the field survey spectrum collected in
June 2016 was used to evaluate the accuracy of calibration
coefficients obtained from this article and the official release.
The result is shown in Fig. 9. The TOA reflectance calculated
by the coefficients obtained shows a more favorable agreement
than the official release coefficients with the in situ simulated
TOA reflectance. The validation using ground measurements
shows that our calibration results have an improvement of
around 14.8% compared with the official released calibration
coefficients.
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Fig. 8. Comparison of red and NIR band TOA reflectances calculated by the calibration coefficients provided in this article and the CRESDA. The GF-4 PMS
data obtained on June 18, 2016. The first row is the TOA reflectance of the red band, and the second row is the NIR band. The first column is the TOA
reflectance calculated by the calibration coefficients provided in this article, and the second column is the TOA reflectance calculated by the officially released
calibration coefficients. The third column is the relative difference (the absolute value of the difference in the two reflectances divided by the reflectance
calculated by the official released calibration coefficients) of the two TOA reflectances.

Fig. 9. Validations of the calibrated TOA reflectance of GF-4 using in
situ simulated TOA reflectance and calibrated TOA reflectance. The blue
squares are the TOA reflectance values calculated with the official calibration
coefficients. The red squares are the TOA reflectance values calculated with
the calibration coefficients obtained by the proposed method in this article.
The black dotted line is the 1:1 line.

D. Temporal Analysis of the Calibration Coefficients

In order to capture the degradation of the GF-4 PMS
in-orbit, we applied the same data normalization and
the cross-calibration method to the other six image pairs
obtained in 2016, and a set of calibration coefficients of
the time series were determined. The results are listed in
Table V.

The R2 values of the four bands in all periods exceed 0.82.
This means that the cross calibration that we proposed is stable

and reliable. However, the modeling performance of the blue
band is relatively poor compared with other bands, and the
average R2 value of the blue band is less than 7.9% that of
the red band. We also used the other image pairs in all seven
periods together and validated the calibration accuracy. The
results are shown in Table VI.

The validation results show a high calibration accuracy of
the four bands. The MRE of each band of cross calibration
is less than 6.65%. In some periods, the RMSE exceeds
1%, but the magnitude is not large. However, there remains
a slight underestimation in the blue band, but the error is
tolerable. This is possible because of the nonsimultaneous
AOD for the retrieval of the MODIS observation. Overall,
the method proposed in this article achieves good results in the
calibration of the GF-4 PMS with a significant difference in
the spectral character and illumination viewing geometry of the
Landsat-8 OLI.

In general, the results show degradation of GF-4 PMS.
In light of the linear calibration model, the greater the slope,
the greater the degradation of the sensor. From June 18
to December 1, 2016, the gains of the blue band increased
from 0.176 to 0.297, the gains of the green band increased
from 0.207 to 0.263, the gains of the red band increased from
0.165 to 0.241, and the gains of the NIR band increased from
0.121 to 0.185. The fluctuation captured by the temporal
calibration according to the variation of the gains may be
caused by the unstable performance of the GF-4 PMS in the
early time after it was launched.
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TABLE V

CALIBRATION COEFFICIENTS FOR GF-4 AT DIFFERENT PERIODS

TABLE VI

EVALUATION OF CALIBRATED TOA REFLECTANCE OF GF-4 USING SIMULATED TOA REFLECTANCE FROM CONCURRENT LANDSAT-8

IV. CONCLUSION AND DISCUSSION

This article proposes a novel cross-calibration method for
medium-resolution multispectral data with a large view angle.
The main contributions of this article are as follows: 1) the
general data normalization approach can be easily adapted and
applied to other optical sensors as long as a suitable reference
data set is available and 2) the cross-calibration method does
not need actively monitored fixed calibration site and does
not rely on ray-matching or coincident matched data, which
requires ancillary information to prescribe the atmospheric and
surface conditions, including aerosol loadings, surface BRDFs,
and a land cover map.

In order to mitigate the difference in spectral coverage and
illumination viewing geometry of different sensors, an MLR
and piecewise linear model are used to normalize the obser-
vations of the different sensors. Choosing the best matching
spectrum based on the spectral reflectance of the reference
sensor has been widely applied to the implementation of the
spectral band conversion between the reference sensor and
the uncalibrated sensor [16], [29], [36]. However, due to the
small number of the spectrum and the similarity between the
in situ spectrum of the ground features, the SBAFs obtained
by previous methods may unstable.

Our method established the relationship of the
two-directional reflectances directly and did not use
the reflectance under the nadir view as an intermediate
variable [16], [29]. In addition, two directional reflectances
with huge difference in the illumination viewing geometry
may have an obvious nonlinear distribution when directional
reflectances from different land covers were put together
(see Fig. 5). This article used a piecewise linear method to
establish the relationship between the directional reflectances

under two illumination viewing geometries, which avoided
the error caused by a single linear model.

The VZAs of the GF-4 PMS images used in this article
can exceed 50◦. However, the VZA of MODIS is within
±55◦. The VZAs of GF-4 at middle and high latitude
regions are larger than MODIS. Thus, using the MODIS
BRDF parameter to estimate the directional reflectance of
GF-4 PMS in middle and high latitude regions may have
uncertainty.

This study chooses the homogeneous pixels to calculate the
BRDF correction coefficients, which can mitigate the error
caused by a significant difference in the spatial resolution
of Landsat-8 OLI and MODIS. The homogeneous pixels
are chosen based on the CV of the pixels in the moving
window. However, there are various criteria for the selection
of homogeneous pixels, such as the absolute deviation [57],
which is not compared in this study. Besides, the piecewise
linear fitting is implemented depending on the NDVI under
the assumption that the absolute deviation NDVI of the same
ground type was within 0.2. However, if the land use and
cover map of the calibration site are available, then the BRDF
correction coefficients of different ground types can be fixed
using a lookup map [54], [58].

The saturation of the images will affect the stability of
the calibration gains [59]. The small variation in calibration
gains of each month (see Table V) may be caused by the
situation of GF-4 PMS for the unstable performance of the
sensor in the early time after it was launched. To obtain stable
calibration coefficients, the saturated pixels cannot be used in
the calibration modeling [16]. Therefore, the GF-4 PMS image
that was largely affected by the saturation problem cannot be
used as a candidate image.
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The calibration method proposed in this article achieves
high-frequency radiometric calibration of GF-4 PMS through
Landsat-8 OLI. However, there are still differences in overpass
time for the reference sensor and the target sensor. The MODIS
aerosol products may introduce errors due to the diurnal
variation of AOD. There is a difference in overpass times of
MODIS and GF-4 PMS. Thus, the MODIS aerosol products
may not represent the atmospheric condition at the overpass
time of the GF-4 PMS image accurately. Besides, the longest
time interval of the image pair used in the calibration and val-
idation is five days (see Table II); thus, the surface reflectance
in the overleap region may have variations during the time
interval. Achieving the near-real-time calibration through short
revisit cycle data (e.g., MODIS) will be the focus of future
research.
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