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Abstract—Despite the impressive advancement achieved in
object detection, the detection performance of small object is
still far from satisfactory due to the lack of sufficient detailed
appearance to distinguish it from similar objects. Inspired by
the positive effects of super-resolution for object detection, we
propose a framework that can be incorporated with detector
networks to improve the performance of small object detection,
in which the low-resolution image is super-resolved via generative
adversarial network (GAN) in an unsupervised manner. In our
method, the super-resolution network and the detection network
are trained jointly. In particular, the detection loss is back-
propagated into the super-resolution network during training to
facilitate detection. Compared with available simultaneous super-
resolution and detection methods which heavily rely on low-/high-
resolution image pairs, our work breaks through such restriction
via applying the CycleGAN strategy, achieving increased gen-
erality and applicability, while remaining an elegant structure.
Extensive experiments on datasets from both computer vision
and remote sensing communities demonstrate that our method
obtains competitive performance on a wide range of complex
scenarios.

I. INTRODUCTION

Object detection is one of the most important fundamental
problems in computer vision, where tremendous efforts have
been devoted to. In spite of the great progress achieved in
object detection, especially the stunning success of deep con-
volutional neural network (DCNN) methods proposed in recent
years, such as[1–9], the detection performance of small object
is still far from satisfactory due to lacking of sufficient detailed
appearance to distinguish it from similar objects. As shown in
Fig. 1, there is a significant gap between the performance of
Faster R-CNN [7] on low-resolution (LR) image and its high-
resolution (HR) counterpart. Inspired by [10], it is intuitive
to consider SR and detection simultaneously to improve the
detection performance. Here, we propose a framework that
can be incorporated with object detector networks, resulting
in significant improvement.

Prior to the introduction of our work, several key problems
should be investigated and clarified. First, whether the peak

1This work was partially supported by Peng Cheng Laboratory.

Fig. 1. Example of LR image (bottom-left) and its HR counterpart (up-left)and
the overall error analysis of the Faster R-CNN++ detector trained on LR
images (bottom-right) and HR images (up-right). We follow [11] to obtain the
curves (C75 means mAP with IoU 0.75. C50 means mAP with IoU 0.5. Loc
indicates localization error. Sim indicates confusion with similar categories.
Oth indicates confusion with other categories. BG indicates confusion with
background. FN indicates false negative.) The comparison demonstrates the
large gap between the detection performance of HR images and LR images.

signal-to-noise ratio (PSNR) that is widely applied in signal
processing field for SR evaluation is also the suitable metric
for SR evaluation in the detection context. As verified in
[12], the answer is no. Given the original LR image, the
super-resolved (SR) image with the best PSNR value reported
unexpected detection errors. On the other hand, the super-
resolved image with the best detection results does not report
the best PSNR value. Therefore, our method back-propagates
the detection loss into SR network to facilitate detection. An-
other problem is about the requirement of low-/high-resolution
image pairs, which is the base and premise of most available
SR methods. Here we downgrade the available images to
generate LR counterparts. Benefiting from the strength and
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Fig. 2. Illustration of the pipeline of CycleGAN(up left), CycleGAN-like SR network(bottom left) and our framework(right). X and Y represent two image
domains. GX and GY are generators. DX and DY are discriminators. ILR is the input LR image, ISR is the super-resolved HR image from ILR, I′LR
is of LR generated from ISR. THR is the HR image provided as reference from other high-quality dataset. TLR is down-sampled version of THR. TSR is
the super-resolved HR image from TLR. Colored arrows represent different parts in the whole framework.

advantages of generative adversarial network (GAN) which
can bypass such data preparation and accomplish network
training in an unsupervised manner, a few GAN-based SR
methods have been reported with promising results and also
improved applicability. However, such GAN-based network
has not been investigated (or integrated into another network)
for detection purpose.

Based on the above discussions which inspire our work from
the beginning, we propose a framework for small object de-
tection leveraging on simultaneous super-resolution, in which
the CycleGAN-like strategy is investigated to super-resolve
the original image to facilitate small object detection and
the detection loss is back-propagated into the super-resolution
network during training. Our method requires no low-/high-
resolution image pairs, achieving increased generality and
applicability, while remaining an elegant end-to-end structure.
Extensive experiments on datasets from both computer vi-
sion (PASCAL VOC 2007, 2012) and remote sensing (DLR
Munich) communities demonstrate that our method works
effectively on a wide range of complex scenarios.

II. RELATED WORKS

The existing related works can be summarized from the
following aspects.

Object detection. Encouraged by the success of image
classification research [13], the well-known R-CNN work [1]
followed the straightforward pipeline of cropping externally
obtained regions that potentially include target(s) from the
input image and running a deep neural network on such
region proposals for final inferring. However, this method is
fairly computationally expensive. To alleviate this problem,
Fast R-CNN [14] was then proposed, which fed the whole
image through a feature extraction network only once so
that the (overlapping) crops shared the computational cost
for feature extraction. [1] and [14] relied on an independent
external operation for proposal generation. Then a Faster R-
CNN method [7] which performs detection in two stages has
verified that it is possible to apply neural networks to generate
region proposals as well. Faster R-CNN is fairly influential and
has inspired many successful follow-up works [2–6]. Actually,

TABLE I
ARCHITECTURE OF UPSAMPLING GENERATOR Gup .

layer conv 1©×16 conv 2© conv 3© conv 3© conv
kernel size 3 3 3 - 3 - 3 - 3
kernel num 64 64 64 - 256 - 256 - 64

stride 1 1 1 - 1 1
2 1 1

2 1

1©, 2© and 3© represent residual block, element-wise sum, pixelshuffle, respectively.

the region proposal network (RPN) and classifier network can
be connected and merged into one, YOLO [9] and SSD [8]
are representative works of such one-stage trend.

Image SR. A large number of image SR techniques have
been proposed, and readers can refer to survey papers [15, 16]
for more information. While the self-similarity based tech-
nique is attractive [17, 18] (due to the self-contained nature),
most recent techniques utilize external training image pairs
for higher performance [19–21]. SR has benefited from re-
cent advances in DCNN. Typically, SRCNN [22] enhanced
the spatial resolution of an input low-resolution image by
hand-crafted upsampling filters, followed by refinement us-
ing DCCN. Based on SRCNN, further improvements were
achieved with more advanced network architectures, including
residual connections [23] and recursive layers [24]. To further
reduce the blurring artifacts, SRGAN [25] has been proposed
via combining both perceptual similarity measurement and
adversarial losses. To overcome the challenges of preparing
low-/high-resolution pairs, a Cycle-in-Cycle GAN structure
[26] was proposed to super-resolve the input image in an
unsupervised manner.

Simultaneous SR and object detection. Inspired by [10],
methods that realize simultaneous SR and object detection
have been proposed [12, 27]. In [12], the SSD detection
network [8] was fixed, and the detection loss was back-
propagated to deep SR network for training. [27] proposed
an end-to-end multi-task GAN, in which the generator is an
SR network and the discriminator is a multi-task network
for real/fake authentication, classification, and localization.
However, in both [12] and [27], low-/high-resolution image
pairs are required.
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TABLE II
ARCHITECTURE OF DOWNSAMPLING GENERATOR Gdw .

layer conv conv×2 residual block ×6 conv×2 conv
kernel size 7 4 3 3 7
kernel num 64 64 64 64 3

stride 1 2 1 1 1

TABLE III
ARCHITECTURE OF DISCRIMINATOR D.

layer conv conv BN conv BN conv BN conv
kernel size 4 4 - 4 - 4 - 4
kernel num 64 128 - 256 - 512 - 1

stride 2 2 - 2 - 1 - 1

III. OUR NETWORK

The pipeline of our proposed method is shown in Fig. 2.
The processing starts by forwarding the original LR image
ILR (of size wLR × hLR) and the details of each component
are described in the following.

A. Our CycleGAN-based SR network

In [28], GAN is introduced to generate realistic-looking
images from random noise inputs. GAN learns a generator
network G and a discriminator D via an adversarial process.
The generator G is trained to produce samples to fool the
discriminator D, and D is trained to distinguish real from fake
images produced by G. Consequently, the objective function
of GAN to be optimized is defined as below:

argmin
θ

max
ω
LGAN (Gθ, Dω) (1)

here, θ and ω denote the parameters of G and D respectively.
Benefiting from the competition strategy, GANs have achieved
impressive results in the image generative tasks, such as
editing [29], super-resolution [12, 25–27] and style transfer
[30, 31]. Specific to the SR problem, the SRGAN loss can be
defined as below:

LSRGAN = EIHR∼Pdata(IHR)[log(D(IHR))]

+ EILR∼Pdata(ILR)[log(1−D(GUP (ILR)))]

+ EILR∼Pdata(ILR)[||GUP (ILR)− IHR||2]
(2)

where the third term is the pixel-wise mean-squared-error
(MSE).
ILR, G(ILR) and IHR denote LR image, generated super-

resolved image, and real HR image, respectively. However,
this constraint requires the availability of sufficient paired
low-/high-resolution images for training. We bypass such data
preparation via replacing the pixel-wise MSE term with our
new term.

Inspired by the CycleGAN[26, 31] strategy, which is shown
as up left of Fig. 2, the generator of our GAN is shown in
bottom left of Fig. 2, which consists of two sub-generators Gup

and Gdw. We here define the cycle-consistency MSE loss as
below:

Lcyc = EILR∼Pdata(ILR)[||Gdw(GUP (ILR))− ILR||2] (3)

where Gdw(GUP (ILR)) represents the down-sampled image
I ′LR which has the same resolution as ILR. Based on the
cycle-consistency MSE loss term, we try to ensure the similar-
ity between input image and super-resolved image. However,
as GUP and Gdw are coupled, it is quite difficult to guarantee
the convergence of GUP to a network that we want. Thus,
leveraging on the additional high-resolution images (which are
from some high quality image datasets), we define an identity
loss term to ensure the convergence of Gup, as below:

LIdt = ETLR∼Pdata(TLR)[||Gup(TLR)− THR||2] (4)

Here, TLR is obtained via performing bicubic downsampling
on the high quality reference image THR. Here, only GUP

is included. Leveraging on both cycle-consistency MSE loss
term and identity loss term, our method ensures the similarity
between the input image and the super-resolved image without
using any prepared low-/high-resolution pairs. The network
architectures of our two sub-generators are shown in Table I
and II respectively.

Discriminator network D. There are two components in
this work. Firstly, we employ the similar network as [26]
(described in Table III) to distinguish the real HR images from
the generated super-resolved images. For this specific task,
MSE loss function is applied in the last convolutional layer.
Now, we can formulate our CycleGAN loss, which consists
of GAN loss, cycle-consistency MSE loss and identity loss,
as below:

LcycGAN = LGAN + λ1Lcyc + λ2LIdt (5)

Secondly, we employ detector as another discriminator to
realize object localization and classification. We study the
naive Faster R-CNN using VGG16 as backbone and predicts
objects in the last convolutional layer. To demonstrate the
effectiveness of our framework, we also make use of advanced
techniques for better performance, and train the objective
function of multi-task loss as below Eq (6) (here, λ is 1):
LDet = Lcls + λLreg
Lcls = EILR∼Pdata(ILR)[−log(Detcls(GUP (ILR)))]
Lreg = EILR∼Pdata(ILR)[smoothL1(Detloc(GUP (ILR)), t∗)],

smoothL1(x) =

{
0.5x2 if |x| < 1,
|x| − 0.5 otherwise. ,

(6)
Here, t∗ is a vector representing the 4 parameterized coordi-
nates of the predicted bounding box.

We now combine the super-resolution and the detection
networks to formulate the overall loss function, ad Eq (7):

Loverall = LGAN + λ1Lcyc + λ2LIdt + λ3LDet (7)

B. Implementation details

The upsampling generator is initialized by the pretrained
model released from [32]. The downsampling generator and
discriminator are trained from scratch. All the generators and
discriminator are trained with Adam optimizer [33]. Their
initial learning rates are set to 0.0001 and reduced by a factor
of 10 after every 40k iterations. The batch size is 2 and
the networks are totally trained for 100k iterations. When
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training generators, the parameters of discriminator is fixed
and objective function is shown as Eq (8), just without the
classification loss (3rd term) and localization loss (4th term).
In [31], λ is imposed into objectives to control the relative
importance of GAN loss and cycle-consistency loss. In this
work, we also take λ1 and λ2 to control the contribution of
GAN loss, cycle-consistency loss and identity loss.

We follow the setting in work [31] to set λ1 and λ2 to 10 and
5 respectively. For training discriminator, we fix the generators
and the objective function is shown as Eq (9), but without
detector loss (2nd and 3rd terms). The detectors are initialized
with ResNet-50 and VGG16 trained on ImageNet and trained
with SGD optimizer. Initialized learning rate of ResNet50 is
0.0025 and reduced to 0.00025 after 80k iterations, while
VGG16 is trained from 0.002 and reduced to 0.0002. They
are totally trained for 100k iterations. Here batch size is 2.

argmin
G∗

1

N

∑
i

||D(GUP (I
i
LR))− 1||2+

1

N

∑
i

λ1||Gdw(GUP (IiLR))− IiLR||2+

1

N

∑
i

λ2||GUP (T iLR)− T iHR||2+

1

N

∑
i

−λ3log(Detcls(GUP (I
i
LR)))+

1

N

∑
i

λ3[u
i ≥ 1](Detloc(GUP (I

i
LR), t

i
∗)

(8)

argmin
D∗

1

N

∑
i

(||D(GUP (I
i
LR))||2 + ||D(T iHR)− 1||2)+

1

N

∑
i

−ωlog(Det(GUP (IiLR)))+

1

N

∑
i

ω[ui ≥ 1](Detloc(GUP (I
i
LR), t

i
∗)

(9)

After training CycGANSR (called Cyc-SR) network and de-
tecton network, we train them jointly. Its training procedure is
as the same as CycGANSR and its objective functions are as
Eq (8) and Eq (9) respectively. Here λ3 and ω are applied to
control the importance of detection loss in the whole training
process. λ3, ω are set to 1.

IV. EXPERIMENTS

We conduct object detection on two representative datasets
in computer vision and one additional dataset from the remote
sensing community. Moreover, we conduct the comparison
against the state-of-the-art detectors, and such detectors syner-
gized with different SR module. Our work and those included
for comparison are implemented using Torch and run on an
NVIDIA GeForce GTX1080Ti with 12 GB on-board memory.
We first perform experiments on PASCAL VOC [34] that has

20 object categories. We train all the models on VOC 2012
trainval and VOC 2007 trainval respectively, and perform
inference on their corresponding test datasets, VOC 2012
test (about 11k) and VOC 2007 test (about 5k) respectively.
To demonstrate the effect of our work, we down-sample the

PASCAL VOC datasets using bicubic kernel to generate LR
images. Moreover, we randomly add noise and blur to the
images to simulate the practical case. Note that here the low-
/high-resolution image pairs have never been used for super-
vised training, and the original high-resolution images are only
used as the ground truth to estimate the upper-limit of different
detectors. We evaluate the detection performance using mean
Average Precision (mAP), and PSNR is computed to evaluate
the SR performance. We focus on the resulting detection
accuracy in terms of mAP, and consider the efficiency issue in
future. Therefore, we apply the Faster R-CNN networks, both
its basic version and its improved version which are termed
as Naive Faster R-CNN and Faster R-CNN++ respectively, as
our detectors.

A. Results on PASCAL VOC 2007, 2012 datasets

In Table IV, we report the experimental results on the
PASCAL VOC 2007 dataset, where the detection results (AP)
of each category and the average over all categories (mAP) are
reported. In row 2 and 7, Original/FASR++ and Original/FASR
demonstrate the result of applying Faster R-CNN++ and Naive
Faster R-CNN on the original (ground truth) high-resolution
images respectively, which can be applied as the upper-limit
to evaluate the performance of different methods. Row 3
to 5 report the results of applying Faster R-CNN++ on the
super-resolved images obtained using bicubic, EDSR [32], and
CycleGAN respectively. Row 8 to 10 report the results of
applying Naive Faster R-CNN on the super-resolved images
obtained using different methods. Row 6 and 11 report the
results of our method, the same framework but with Faster
R-CNN++ and Naive Faster R-CNN respectively. Clearly, the
results on the super-resolved images obtained using bicubic
interpolation are the poorest. The results using EDSR (the
model was released in [32]) are about 5% better than its
bicubic counterpart. When the super-resolution is achieved
using Cyc-SR, we observe slight improvement over the results
using EDSR. Our method outperforms all these methods
significantly in each category, and the overall improvement
of mAP is more than 3% than the second best method.

In Table V, we report the experimental results on the
PASCAL VOC 2012 dataset which is much larger than the
previous one, and the data is more challenging. Therefore, the
performance of all methods decreases obviously, but the trend
of all these methods is nearly as the same as Table IV. In
Table V, our method is still the winner on all categories and
the improvement of mAP is also about 3% over the second
best method. Based on Table IV and V, it is not surprising to
find that the results of Faster R-CNN++ are always better than
their counterparts using Naive Faster R-CNN, as the detection
network has been improved with state-of-the-art techniques.

In Fig. 3, we show the curves of the detection results on
VOC 2007 dataset with respect to all, large, medium, and
small size objects, respectively. Here we follow the work [35]
to define different scales and obtain the curves. For large
objects, the mAP of these methods is at the similar level.
mAP of our proposed framework even has a slight drop by
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TABLE IV
VOC2007 TEST DETECTION RESULTS OF DIFFERENT METHODS (IOU=0.5).

method mAP aero bike bird boat bottle bus car cat chair cow table dog house mbike person plant sheep sofa train tv

Original/FASR++ 0.795 0.808 0.810 0.787 0.699 0.664 0.863 0.881 0.887 0.639 0.853 0.748 0.872 0.875 0.800 0.801 0.504 0.792 0.795 0.838 0.771

Bicubic/FASR++ 0.595 0.673 0.691 0.522 0.428 0.320 0.692 0.718 0.680 0.410 0.549 0.602 0.646 0.715 0.694 0.692 0.331 0.565 0.615 0.673 0.653
EDSR/FASR++ 0.646 0.689 0.738 0.590 0.489 0.401 0.747 0.735 0.742 0.479 0.646 0.653 0.693 0.759 0.702 0.743 0.391 0.659 0.681 0.701 0.657
Cyc-SR/FASR++ 0.665 0.727 0.735 0.595 0.492 0.408 0.771 0.756 0.748 0.494 0.693 0.666 0.682 0.769 0.741 0.744 0.385 0.677 0.698 0.724 0.684
Ours/FASR++ 0.699 0.755 0.762 0.644 0.543 0.474 0.784 0.775 0.800 0.506 0.740 0.689 0.769 0.819 0.806 0.767 0.434 0.708 0.723 0.774 0.700

Original/FASR 0.759 0.776 0.835 0.747 0.673 0.582 0.844 0.857 0.854 0.597 0.810 0.683 0.824 0.855 0.822 0.788 0.452 0.752 0.734 0.809 0.721

Bicubic/FASR 0.535 0.602 0.647 0.413 0.380 0.251 0.648 0.678 0.617 0.339 0.492 0.598 0.557 0.716 0.669 0.656 0.260 0.491 0.566 0.628 0.569
EDSR/FASR 0.605 0.656 0.710 0.534 0.425 0.325 0.748 0.741 0.668 0.411 0.578 0.637 0.613 0.761 0.714 0.721 0.328 0.553 0.615 0.680 0.610
Cyc-SR/FASR 0.624 0.673 0.717 0.531 0.453 0.362 0.743 0.744 0.709 0.461 0.591 0.628 0.651 0.746 0.737 0.726 0.359 0.605 0.640 0.700 0.648
Ours/FASR 0.658 0.703 0.745 0.558 0.514 0.367 0.760 0.765 0.773 0.478 0.641 0.682 0.710 0.812 0.757 0.738 0.401 0.614 0.675 0.724 0.658

*FASR indicates naive Faster R-CNN detector. *FASR++ indicates Faster R-CNN detector that employs ResNet50 as backbone and investigates FPN architecture for
better performance.

TABLE V
VOC2012 TEST DETECTION RESULTS OF DIFFERENT METHODS (IOU=0.5).

method mAP aero bike bird boat bottle bus car cat chair cow table dog house mbike person plant sheep sofa train tv

original/FASR++ 0.738 0.844 0.803 0.736 0.621 0.601 0.784 0.787 0.912 0.512 0.777 0.602 0.883 0.843 0.830 0.838 0.520 0.758 0.640 0.817 0.649

Bicubic/FASR++ 0.544 0.736 0.629 0.478 0.327 0.304 0.657 0.605 0.710 0.333 0.430 0.470 0.673 0.655 0.710 0.698 0.273 0.515 0.466 0.659 0.546
EDSR/FASR++ 0.592 0.744 0.659 0.552 0.398 0.400 0.709 0.642 0.761 0.395 0.469 0.506 0.729 0.697 0.708 0.754 0.350 0.576 0.506 0.719 0.563
Cyc-SR/FASR++ 0.607 0.773 0.652 0.566 0.409 0.396 0.707 0.662 0.788 0.424 0.509 0.493 0.748 0.707 0.707 0.765 0.379 0.605 0.537 0.726 0.594
Ours/FASR++ 0.637 0.792 0.711 0.589 0.436 0.432 0.735 0.683 0.815 0.437 0.576 0.539 0.773 0.731 0.778 0.786 0.392 0.640 0.552 0.756 0.597

original/FASR 0.695 0.818 0.790 0.665 0.552 0.484 0.762 0.738 0.886 0.486 0.730 0.542 0.849 0.808 0.809 0.812 0.451 0.717 0.599 0.780 0.630

Bicubic/FASR 0.485 0.681 0.589 0.400 0.257 0.221 0.637 0.535 0.662 0.270 0.380 0.412 0.596 0.608 0.686 0.643 0.203 0.410 0.416 0.613 0.489
EDSR/FASR 0.550 0.724 0.653 0.480 0.323 0.286 0.682 0.611 0.713 0.334 0.460 0.449 0.693 0.680 0.741 0.720 0.281 0.511 0.454 0.677 0.530
Cyc-SR/FASR 0.566 0.740 0.663 0.504 0.342 0.316 0.689 0.617 0.741 0.360 0.509 0.475 0.691 0.690 0.733 0.719 0.300 0.525 0.471 0.693 0.551
Ours/FASR 0.594 0.759 0.684 0.534 0.398 0.320 0.708 0.628 0.768 0.383 0.549 0.518 0.729 0.711 0.770 0.737 0.342 0.557 0.530 0.701 0.553

Fig. 3. Overall detection performance on all/large/medium/small objects. The recall and precision are computed with IoU threshold 0.5. We follow work [35]
to define the different sizes of objects. From left to right, the figures show mAP over all categories, large, medium and small objects, respectively.

TABLE VI
RESULTS ON LR IMAGES.

Method mAP APS APM APL

FPN 0.470 0.192 0.626 0.756
SSD 0.412 0.162 0.551 0.613
Ours 0.699 0.487 0.810 0.800

APS , APM and APL represents mAP on small, medium, and large objects
respectively. Here, the IoU threshold is 0.5.

TABLE VII
AVERAGE PSNR VALUES OF DIFFERENT METHODS.

Method* Bicubic EDSR Cyc-SR Ours

PSNR 18.49 18.55 25.38 22.42

TABLE VIII
MAP RESULTS ON CHALLENGING IMAGES (IOU=0.5).

Dataset* original Bicubic EDSR Cyc-SR Ours

VOC2007/L 0.755 0.520 0.576 0.544 0.590
VOC2012/L 0.711 0.466 0.523 0.488 0.533
VOC2007/E 0.616 0.359 0.298 0.257 0.615
VOC2012/E 0.569 0.304 0.247 0.200 0.564

*L means low-light condition and E represents overexposed condition.

0.02 than that of Cyc-SR when using naive Faster R-CNN
network. As to medium objects, gap between the proposed
framework and bicubic method climbs by about 10 points.
Our framework exceeds Cyc-SR method by approximately 3
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Fig. 4. Overall error analysis of the detection performance on small objects. The meaning of each evaluation setting are the same as Fig. 1. From top left
to bottom right, the figure shows results of Bicubic/FASR++, EDSR/FASR++, Cyc-SR/FASR++, ours/FASR++, Bicubic/FASR, EDSR/FASR, Cyc-SR/FASR,
ours/FASR, respectively.

Fig. 5. Examples of detection results. Column 1 and column 2 are results that trained and inferred on LR images. Others are trained and inferred on SR
images. Green box represents the groundtruth bounding box. Red box represents the detection result.

points. Finally, largest margins are obtained in the small object
detection. The proposed framework exceeds bicubic method
by dramatically gap 14 points. 7 and 4 points improvements
are also obtained compared to EDSR and Cyc-SR methods
respectively. In Fig. 4, we show the overall error analysis
on small objects detection of different methods. Inaccurate
localization, confusion with background and false negative
are main causes of detection error. We also compare our
framework and the methods that claim to be effective for small
object detection, and the results are shown in Table VI. Here
we perform the comparison against FPN and SSD. Both the
methods take advantage of multi-scale feature extraction and
object prediction. For fair comparison, both of them are trained

and tested on low-resolution images. It is clear that our method
outperforms such methods.

In Table VII, we report the average PSNR values in our
previous experiments. Clearly, Cyc-SR outperforms our SR
results in terms of PSNR. This result demonstrates that the SR
network of our method is detection-driven, which contributes
more than other SR components.

In Fig. 5, we display some detection examples in our
experiments. Compared to SR methods, SSD and Faster R-
CNN++ that are directly trained on LR images, our method is
more sensitive to small objects. Imperfect localization occurs
in the bicubic and EDSR images due to the noise. We observe
that our framework can not only find almost all the objects

808

Authorized licensed use limited to: Wuhan University. Downloaded on March 08,2024 at 07:58:21 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 6. Examples of the detection results on challenging images. Row 1 and row 2 are overexposed condition. Row 3 and row 4 are low-light condition.
Green box represents the groundtruth bounding box. Red box represents the detection result.

TABLE IX
DETECTION RESULTS ON MUNICH DATASET WITH DIFFERENT IOU.

Method* AP AP@0.5 AP@0.75

R-FCN 0.321 0.613 0.303
SSD 0.249 0.521 0.212
YOLOv3 0.262 0.574 0.186
FASR++ 0.342 0.691 0.292
Bicubic/FASR++ 0.487 0.795 0.571
EDSR/FASR++ 0.450 0.784 0.530
Cyc-SR/FASR++ 0.541 0.801 0.658
Ours/FASR++ 0.599 0.889 0.684

but also accurately localize them.

B. Results on challenging images

In order to demonstrate the generalization of our framework,
we conduct inference on more challenging scenarios. Here we
investigate low-light images and overexposed images (such
effects are simulated using software), as shown in Fig. 6. Note
that all the models never see those kinds of images during
training, and our method achieves the best results.

In Table VIII, we report detection results under challenging
conditions. We observe that detector trained on HR images
obtained best performance under different settings. Besides,
our framework is quite robust for challenging conditions.
Especially in overexposed case, our proposed framework out-
performs Cyc-SR method by about 35 points.

C. Results on remote sensing images

We further conduct experiments on the remote sensing im-
ages where the target (here, vehicle is our target) is small, most
less than 30×30 pixels. Here, the DLR Munich dataset [36] is
taken at about 1km above the ground over the area of Munich,
Germany, using DLR 3K camera system. It contains 20 images
(of resolution 5616×3744 pixels), with approximate 13cm
ground sampling distance (GSD). The dataset is randomly
divided into 410 training and 100 testing images. In Table
IX, we report the vehicle detection results of AP at different
IoU levels. Obviously, our method achieves the best results
for all metrics, obtaining about 5% better AP than the second
best result. When the level of IoU is lower, the superiority of

Fig. 7. Examples of detection results of our method on Munich dataset. Green
boxes indicate the correctly detected vehicles, blue and red boxes indicate the
missing and false alarms respectively.

our method is more obvious. Some examples of the detection
results are shown in Fig. 7.

V. CONCLUSION

In this work, we propose a framework to facilitate small
object detection leveraging on simultaneous super-resolution
in an end-to-end manner. Our SR network and detection net-
work are trained jointly. Particularly, the detection loss is back-
propagated into the super-resolution network during training to
facilitate detection. Compared with the available simultaneous
super-resolution and detection methods which heavily rely on
low-/high-resolution image pairs, our work breaks through
such restriction via applying the CycleGAN strategy, achieving
increased generality and applicability. We are going to extend
our work to realize instance segmentation of small object,
which could provide more valuable information to facilitate
precise scene analysis.
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[29] J.-Y. Zhu, P. Krähenbühl, E. Shechtman, and A. A. Efros,
“Generative visual manipulation on the natural image manifold,”
in European Conference on Computer Vision. Springer, 2016,
pp. 597–613.

[30] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-
image translation with conditional adversarial networks,” in
Proceedings of the IEEE conference on computer vision and
pattern recognition, 2017, pp. 1125–1134.

[31] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired
image-to-image translation using cycle-consistent adversarial
networks,” in Proceedings of the IEEE international conference
on computer vision, 2017, pp. 2223–2232.

[32] B. Lim, S. Son, H. Kim, S. Nah, and K. Mu Lee, “Enhanced
deep residual networks for single image super-resolution,” in
Proceedings of the IEEE conference on computer vision and
pattern recognition workshops, 2017, pp. 136–144.

[33] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” CoRR, vol. abs/1412.6980, 2014. [Online].
Available: http://arxiv.org/abs/1412.6980

[34] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and
A. Zisserman, “The pascal visual object classes (voc) chal-
lenge,” International journal of computer vision, vol. 88, no. 2,
pp. 303–338, 2010.

[35] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-
manan, P. Dollár, and C. L. Zitnick, “Microsoft coco: Common
objects in context,” in European conference on computer vision.
Springer, 2014, pp. 740–755.

[36] K. Liu and G. Mattyus, “Fast multiclass vehicle detection on
aerial images.” IEEE Geosci. Remote Sensing Lett., vol. 12,
no. 9, pp. 1938–1942, 2015.

810

Authorized licensed use limited to: Wuhan University. Downloaded on March 08,2024 at 07:58:21 UTC from IEEE Xplore.  Restrictions apply. 


		2022-08-24T22:36:41-0400
	Preflight Ticket Signature




