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a b s t r a c t 

This paper presents a novel method for matching line segments between stereo images. Given the funda- 

mental matrix, the local homography can be over determined with pairwise line segment candidates. We 

exploit this constraint to initialize the candidate and construct the novel homography graph. Because the 

constraint between the node is based on the epipolar geometry, the homography graph is invariant to the 

local projective transformation. We employ the reweighted random walk on the graph to rank the candi- 

date, then, we propose the constrained-greedy algorithm to obtain the reliable match. To the best of our 

knowledge, this is the first study to embed the epipolar geometry into the graph matching theory for the 

line segment matching. When evaluated on the 32 image patches, our method outperformed the state of 

the art methods, especially in the scenes of the wide baseline, steep viewpoint changes and dense line 

segments. The proposed algorithm is available at https://github.com/weidong- whu/line- match- RRW . 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Matching line segments that have the same pre-image in 3D 

pace is useful for 3D reconstruction, because line segments incor- 

orate more semantic and geometric meanings than points. Gen- 

rally, there are many line segments in man-made scenes, which 

nable reconstructing the abstractive 3D structure efficiently via 

atching the line segment [1] . In addition, matching the line seg- 

ent is helpful to obtain more accurate and complete 3D recon- 

tructions [ 2 , 3 ]. Ideally, one would like to have a line segment

atching algorithm that is able to obtain more matches with a 

igher accuracy. However, compared with the point matching, the 

ine segment matching remains to be a challenging work due to 

ts inherent difficulties. First, there is no strong epipolar-geometry 

onstraint for line segments in stereo images. Second, the texture 

long the line segment is poor in general, thus it is difficult to ob- 

ain the reliable texture-descriptor. Third, the endpoints of the line 

egment are indefinite, thus it is difficult to employ the texture 

nd geometry constraint. Many algorithms have been published for 

he line segment matching and they are of three types: those that 

atch in individual; those that match in group; and those that 

atch with the point correspondence. 
∗ Corresponding author. 

E-mail addresses: weidong@whu.edu.cn (D. Wei), zhangyj@whu.edu.cn (Y. 

hang), lichang@mail.ccnu.edu.cn (C. Li). 
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Those that match in individual are generally based on the con- 

istency of the geometry or texture. Schmid and Zisserman [4] pro- 

osed the classical algorithm to match the individual line seg- 

ent. In their method, the mapping between the line segment 

s first calculated via the epipolar geometry through trial, then, 

he cross-correlation score is calculated to find the correct match. 

ay et al. [5] constructed the color histogram along the line seg- 

ent to obtain initial candidates, then they used the topological 

lter to remove the wrong candidate. Wang et al. [6] proposed the 

exture descriptor that is invariant to the rotation and illumina- 

ion. To make the texture descriptor to be scale invariant, Zhang 

t al. [7] constructed the descriptor in different scales. Some stud- 

es [ 1 , 8 ] used the image sequences to match the line segment, but

hey required image sequences that are overlapped, e.g., Line 3D 

+ [1] requires at least 4 overlapping images. 

Those that match in group exploit the geometry and texture in- 

ormation between line segments in the same view. The early stud- 

es [ 9 , 10 ] constructed the graph to match line segments, but they

re only appropriate for the planar scene. Matching with the pair 

f line segments can exploit the intersection, cross angle, epipo- 

ar line, and local region similarity, etc., which has been a com- 

on strategy. OK et al. [11] exploited the Daisy descriptor [12] to 

nitialize the candidate and used six pair-wise constraints to find 

he correct match. This method is appropriate for the aerial im- 

ge when the viewpoint change and distortion are small. Al-Shahri 

t al. [13] used the local homography to obtain the match, but it 

https://doi.org/10.1016/j.patcog.2020.107693
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2020.107693&domain=pdf
https://github.com/weidong-whu/line-match-RRW
mailto:weidong@whu.edu.cn
mailto:zhangyj@whu.edu.cn
mailto:lichang@mail.ccnu.edu.cn
https://doi.org/10.1016/j.patcog.2020.107693


D. Wei, Y. Zhang and C. Li Pattern Recognition 111 (2021) 107693 

r

m

a

e

s

L  

j

c

r

m

m

i

p

q

i

p

[

i

l

p

c

w

b

t

p

t

r

t

(

r

t

b

i

t

r

s

s

h

s

p

(

(

S

d

S

o

i

c

2

s

r

s

a

d

t

r

w

m

(

(

3

 

v

p  

r  

s

x

H

equires enough point correspondences to calculate the local ho- 

ography. López et al. [14] used the context and appearance of 

djacent line segments for matching in low-textured Images. Kim 

t al. [15] exploited the texture in the intersection region of line 

egments and used the cross-correlation to measure the similarity. 

i et al. [ 16 , 17 ] used a SIFT-like method to match the line-to-line

unction. 

Those that match based on point correspondences use the lo- 

al affine or projective mapping that is calculated from point cor- 

espondences. Fan et al. [18] encoded the local geometric infor- 

ation between the line and its surrounding SIFT points. This 

ethod performs well when enough point correspondences ex- 

st. Sun et al. [19] calculated the planar homography via the 3D 

oints generated from the 2D point correspondences, which re- 

uires both enough point correspondences and calibrated stereo 

mages. Jia et al. [20] exploited the topological adjacency of a 

oint-line to find and filter the line candidate. Recently, Wang et al. 

21] matched the line segment in aerial oblique images via explor- 

ng the ratio of point-line distance in the affine projection space. 

Compared with the point matching, the epipolar geometry is 

ess investigated in the line segment matching. For most of the 

revious algorithms, the epipolar constraint is used to reduce the 

andidate before the texture correlation. Thus, they have to deal 

ith the challenges in the correlation: (1) The texture is distorted 

ecause of the steep viewpoint change and wide baseline. (2) The 

exture in dense line segments is quite similar. Matching with 

oint correspondences [ 18 , 19 ] is independent of the texture, but 

heir performances require sufficient point correspondences. More 

ecently, the deep learning technique has been employed to learn 

he angles between planes using convolutional neural networks 

CNNs), and the angle regularization is then used to correct un- 

eliable line matches [22] . But this method requires knowledge of 

he intrinsic of images. 

This paper presents our algorithm that matches line segments 

ased on the epipolar geometry. In our algorithm, candidates are 

nitialized via the homography constraint which is induced from 

he epipolar geometry. Because the homography constraint is not 

obust, we build the homography graph, where the node repre- 

ents the candidate and the edge represents the homography con- 

traint. Then, we employ the reweighted random walk [23] on the 

omography graph to rank the candidates, and propose the con- 

trained greedy algorithm to obtain the reliable matches. This pa- 

er makes two main contributions for the line segment matching. 

1) We propose the homography graph, which is invariant to the 

local projective transformation and is independent of the tex- 

ture. The experiments showed that it is able to obtain more cor- 

rect matches with a higher accuracy when compared with the 

state of the art methods, especially in the scenes of the wide 

baseline, steep viewpoint change and dense line segments. 
Fig. 1. The workflow of the

2 
2) To the best of our knowledge, this is the first study to embed 

the epipolar geometry to the graph matching method for fea- 

ture matching, which is able to be a general frame. 

The remainder of the paper is organized as follows: 

ection 2 explains the overview of our algorithm. Section 3 ad- 

resses the homography constraint for candidate pairs. Section 4 to 

ection 6 introduce the details of our algorithm. Section 7 presents 

ur performance evaluation of the proposed algorithm by compar- 

ng it with the state of the art matching methods. Section 8 con- 

ludes the paper. 

. Overview 

Fig. 1 shows the workflow of the proposed method. First, line 

egments in the two views are extracted and their orientations are 

ecovered [5] . Second, the homography constraint, which is a con- 

traint for candidate pair, is exploited to initialize the candidate 

nd construct the homography graph. Third, the reweighted ran- 

om walk is employed on the homography graph, which attaches 

he confidence to the candidate. Finally, because the greedy algo- 

ithm [24] cannot be directly used in the matching assignment, 

e propose the constrained greedy algorithm to find the reliable 

atch. 

There are two underlying principles in our algorithm. 

1) Given the fundamental matrix, the homography can be over 

determined with one constraint via two line segment corre- 

spondences. This homography constraint enables initializing the 

candidate. 

2) If one candidate satisfies the homography constraint with many 

other candidates, it has a high confidence to be the correct 

match. This principle is quite similar to the PageRank [25] , 

a website ranking algorithm: the website should be attached 

more importance if it is linked by many other websites or the 

important website. Consider each candidate as the node and 

the homography constraint as the edge between the node, the 

initial candidates can be ranked via the random walk on the 

association graph. 

. Homography constraint 

Define the scene plane by πT X = 0 with π = ( v T , 1 ) T ; v is a 3D

ector that parameterizes the 3D plane. The point X on the scene 

lane can be projected to the first and second view as x and x ′ ,
espectively; the 2D point is denoted as ( x, y , 1) T . Based on the

cene plane theory [4] , the homography induced by the plane is 

 

′ = Hx with 

 = A − e ′ v T (1) 
 proposed algorithm. 



D. Wei, Y. Zhang and C. Li Pattern Recognition 111 (2021) 107693 

Fig. 2. The illustration of the mapping error and the overlapping rate under the 

homography. 
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Fig. 4. (a) The intersection of the two line segments must be within T int pixels 

to its nearest endpoint. Thus, l k cannot form a pair with others. (b) the individual 

candidate ( l k , ̃ l k ′ ) is added based on the homography induced by P mn . 
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here [ e ′ ] ×A is the decomposition of the fundamental matrix F . 

or the line ax + by + c = 0 , it is denoted as ( a, b, c ) T . Suppose x ′ is
n the line l ′ , then from l ′ T x ′ = 0 

 

′ T (A − e ′ v T 
)
x = 0 (2) 

After a short calculation, Eq. (2) can be written as, 

 

T v = x 

T 
[
e ′ 

]
×Fl 

′ 
/ 
(
e ′ T l ′ 

)
(3) 

Given two candidates denoted as C m 

= ( l i , ̃  l i ′ ) and C n = ( l j , ̃  l j ′ ) ,
e can list four equations. Thus v can be estimated by least 

quares with one constraint, and H can be calculated with Eq. (1) . 

We use H , which is estimated by the candidate pair ( C m 

and

 n ), to validate the candidate pair. Take Fig. 2 for example, l i can

e mapped with H to the second view as ˆ l i . Denote the shorter of
ˆ 
 i and 

˜ l i ′ as l CD and the longer as l AB . If C m 

is aligned with H , it

hould satisfy the homography constraint 

 

 

 

∣∣CC 

′ ∣∣ < T map ∣∣DD 

′ ∣∣ < T map ∣∣AD 

′ ∣∣/ | CD | > T ov e 

(4) 

here T map is the threshold of the mapping error and it is set as 2

ixels, and T ove is the threshold of the overlapping rate that is set 

s 0.5. All the thresholds in our algorithm will be analyzed in the 

xperiments. If both C m 

and C n satisfy the constraint, we say that 

he candidate pair satisfy the homography constraint. 

The homography constraint is effective to confirm the correct 

atch. If C m 

and C n are correct and coplanar, the reconstructed 3D 

ine segments are also coplanar, then C m 

and C n will satisfy the ho- 

ography constraint ( Fig. 3 . (a)). Either C m 

or C n is incorrect may

ail to induce a scene plane, thus they will not satisfy the con- 

traint ( Fig. 3 (b)). However, the constraint may bring about false 

ositives. A typical example is shown in Fig. 3 (c). Since there are 

any planes in man-made scenes, we construct the homography 

raph in the next section to obtain the reliable match. 
ig. 3. (a) The candidate pair is correct and coplanar, which induces a world plane and 

ail to induce a plane. (c) ˜ l i 1 ′ and ˜ l j 1 ′ are parallel to ˜ l i 2 ′ and ˜ l j 2 ′ , respectively, moreover, th

 l i , ̃ l i 2 ′ ) and ( l j , ̃ l j 2 ′ ) will also satisfy the homography constraint. 

3 
. Homography graph 

.1. Initial candidates 

Given a candidate pair P mn = ( C m 

, C n ), if P mn satisfy the homog- 

aphy constraint, both C m 

and C n are selected as the initial candi- 

ate. A violent method for initialization is to validate all the candi- 

ate pairs. However, it is not appropriate in our algorithm for two 

easons. First, it is time-consuming because the brute force algo- 

ithm has a complexity of O ( n 4 ), where n is the maximum number

f the line segments in the two views. Second, the homography 

onstraint is only effective in the plane, thus validating all candi- 

ate pairs may bring about many false positives. 

The initialization is optimized via setting the geometric con- 

traint on the line segment pair. There are two assumptions for 

oplanar line segments in man-made scenes. First, their distance 

hould be close. Second, their angle should be large. Thus, only if 

he intersection of the line segment pair is within T int pixels to the 

earest endpoint ( Fig. 4 (a)), the pair is valid. This kind of line seg-

ent pair can be viewed as a subset of the V-junction in [16] , and

e set T int as 15 (it is 20 in [16] ). 

Two geometric constraints are employed in the validation to re- 

uce the computation. First, the epipolar constraint is employed 

s line 3D ++ algorithm [1] . Second, the line segment pair in each 

iew forms an angle ( Fig. 4 . (b)); the angle difference should be 

maller than T ang ( T ang is set as π /4). Since some line segments 

annot form a pair with others, the individual candidate that is 

onsistent with any induced homography is selected as the initial 

andidate ( Fig. 4 ). The consistency is validated based on Eq. (4) . 

.2. Graph construction 

In the homography graph, the node represents the candidate 

nd the edge represents the homography constraint. Denote n 1 as 

he number of nodes, we use a matrix W ∈ { 0 , 1 } n 1 ×n 1 to encode 
satisfies the homography constraint. (b) the candidate pair is incorrect; thus they 

ey are all within the epipolar line interval. Thus, if ( l i , ̃ l i 1 ′ ) and ( l j , ̃ l j 1 ′ ) are correct, 
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Fig. 5. The workflow of constructing W, the initial candidates are (1,a), (2,b), (2,c), (3,d), (4,c), (4,d), (5,c), and (5,d). (a) Edges are connected between line segments in each 

view. (b) Only the candidate pair in gray cells are validated. 
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he homography graph, whose element is computed as follows: 

 i,i ′ ; j, j ′ = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

0 , i f i = j and i ′ = j ′ , or C m 

and C n cannot 

satis f y the homography constraint 

1 , else 
(5) 

There are two steps to construct W . First, in each view, edges 

re generated for each line segment by connecting to its T nei near- 

st neighbors ( Fig. 5 (a)). The edge between l i and l j is denoted as

 i, j . Second, validate ( l i , ̃  l i ′ ) and ( l j , ̃  l j ′ ) if both e i, j and e i ′ , j ′ are ex-

st ( Fig. 5 (b)). 

In graph matching [26] , if the matching is with deformations, 

 nei is set as a small value to capture the local property, otherwise, 

 nei is set as a big value to capture the global property. Since the 

omography constraint is only effective in the plane, our algorithm 

s a type of the former. We follow [26] and [27] to set T nei as 20,

hich we think is enough to construct a robust graph. 

. Ranking the candidate 

We rank the node via the reweighted random walk (RRW) 

23] on the homography graph. RRW is a kind of the random walk 

RW) but different from the general RW in two aspects: 

(1) To reduce the adverse effect of the incorrect nodes, instead 

of normalizing W via P = D 

−1 W , where D is a diagonal 

matrix with entries D ii = d i = 

∑ 

j W i, j , it normalizes W by 

adding the absorbing node x (n ) 
abs 

, and formulates the transi- 

tion matrix P and the Markov chain as 

P = 

(
W / d max 1 − d/ d max 

0 

T 1 

)
, 
(
x 

( n +1 ) T x ( 
n +1 ) T 

abs 

)
= α

(
( n ) T ( n ) T 

)
P (6) 
x x 

abs 

Fig. 6. Natural stereo images with various transformations. (1) Rotation

4 
(2) To strengthen the effect of the correct nodes , the person- 

alized jump is employed via the inflation and bistochastic 

normalization [28] . Finally, the reweighted random walk is 

formulated by, (
x 

( n +1 ) T x ( 
n +1 ) T 

abs 

)
= α

(
x 

( n ) T x ( 
n ) T 

abs 

)
P 

+ ( 1 − α) 

(
f C 
(
x 

( n ) T W 

)T 
)

(7) 

here α is the parameter that adjusts the effect of the last walk, 

nd f C is the reweighting function. 

When the random walk reaches the stationary state, i.e., 

 

( n +1 ) = x n , the probability of the candidate is calculated by the 

onditional distribution, 

¯ ( 
n ) 

i 
= P 

(
X 

( n ) = v i | X 

( n ) � = v abs 

)
= x 

( n ) 
i 

/ 
(
1 − x ( 

n ) 
abs 

)
(8) 

In fact, x̄ is the optimal solution of the mapping constraints, 

¯ = argmax 
(
x 

T Wx 

)
, s . t . 

∑ n 

i =1 
x i = 1 (9) 

We choose RRW to rank the candidates in the homography 

raph because it is robust when there exist many wrong nodes. 

. Constrained-greedy assignment 

Various algorithms have been proposed to assign matches with 

¯ that is optimized via Eq. (9) , e.g. the greedy algorithm [24] and 

ungarian algorithm [29] . However, these methods cannot be used 

irectly in our algorithm. First, these methods are under the one- 

o-one matching constraint, while a line segment in the first view 

ay have more than one match in the second view and vice versa. 

econd, the incorrect candidate that is not contradictory with the 

orrect match cannot be rejected via these methods, whereas the 

omography graph has many wrong nodes. 
, (2) Occlusion, (3) Scale, (4) Light, (5) Viewpoint, (6) Viewpoint. 
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Fig. 7. The aerial image dataset provided in [11] . 
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We use the greedy algorithm with the homography constraint 

o confirm the correct match. For convenience, x̄ is transformed 

nto the form of X ∈ [ 0 , 1 ] m 

1 ×m 

2 
where m 

1 and m 

2 are the number 

f line segments in the two views. The details are as follows: 

(1) Finding the maximum X i, i ′ in X , if no cell c ∈ { X i , ∗∪ X ∗ , i ′ }
except for X i, i ′ that satisfies c > 0.5 ∗X i, i ′ , C m 

= ( l i , ̃  l i ′ ) is se-

lected as the correct match and X i , ∗ and X ∗,i ′ are then set as 

0. C m 

is robust because its contradictory match has a much 

smaller confidence. 

(2) Step (1) is repeated until X = 0 m 

1 ×m 

2 
. The first T fir matches of 

C = { C 1 , C 2 , . . . , C n } are selected as the reliable matches ( T fir 

is set as 0.7). 

(3) Greedy mapping with the homography constraint. The 

greedy algorithm [24] is employed for the remaining candi- 

dates, during which the candidate with the maximum con- 

fidence should satisfy at least one homography, which is in- 
Fig. 8. Experimental results of the 

5 
duced by its T nei nearest reliable matches. T nei has been in- 

troduced in Section 4.2 . 

(4) Finding more individual matches. The individual line seg- 

ment that has not been matched is validated by its T nei near- 

est homographies. Only those that are aligned with at least 

T hom 

homographies (it is set as 3 in our algorithm) are se- 

lected as the correct match. 

. Experiments and analysis 

Thirty-two image patches have been used to evaluate the pro- 

osed algorithm. Table 1 shows the details of the image dataset in 

ach section. The fundamental matrix is estimated via SIFT match- 

ng [30] and RANSAC [31] . Our algorithm is mainly compared with 

he two state of the art methods, LPI [17] and LJL [18] . The clas-

ical method proposed by Schmid et al. [4] is also compared in 

ection 7.3 . 
aerial stereo images in Fig. 7 . 
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Table 1 

The details of the image dataset in each section. 

Section Image type Stereo number Image source Line segment Fundamental matrix 

7.1 Natural 6 [ 4 , 18 ] EDPF [33] SIFT + RANSAC RANSAC parameters: 

7.2, 7.5 Aerial 15 [11] Provided in [11] SIFT + RANSAC number of random trials, 9999; 

7.3 Natural 18 [4] EDPF Provided in [4] distance threshold, 0.01; 

7.4 Aerial 3 Ourselves EDPF SIFT + RANSAC desired confidence, 99%. 

Table 2 

The matching result (correct matches, accuracy) of the stereo images in Fig. 6 . The number in bold represents the best. 

(1) (2) (3) (4) (5) (6) Summary 

Ours 226,99.6% 82,98.8% 420 ,98.1% 344 ,98.3% 560 ,98.4% 363, 89.6% 1995,96.8% 

LPI 224,97.5% 79,97.5% 411, 98.3% 312,98.1% 556, 99.5% 369 ,85.8% 1954,96.1% 

LJL 226,99.1% 79,97.5% 328,85.7% 367 ,95.2% 549,94.3% 414,86.9% 1963,91.7% 
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results. 

F

s

For the dataset in Section 7.2 , the ground truth is provided by 

K et al. [11] and the algorithms are evaluated by precision, recall, 

nd F-score. The correct matches of other datasets are confirmed 

hrough one-by-one visual inspection. Since the line segments ex- 

racted by line detectors are often broken and with position errors, 

or the match denoted as ( l c , ̃  l c ′ ) , we first find the complete line

egments ( l t , ̃  l t ′ ) in stereos that have the same pre-image in 3D 

pace, note that l t and 

˜ l t ′ are identified by our judgement but not 

he line detector. If l c and l t satisfy Eq. (4) , and so do ˜ l c ′ and 

˜ l t ′ ,
 l c , ̃  l c ′ ) is considered as the correct match. In our inspection, the 

istance error ( T map in Eq. (4) ) is less than 3 pixels and the over-

apping rate ( T ove in Eq. (4) ) is more than 40%. Having confirmed

he correct matches, the algorithms are evaluated by the number 

f total matches (TM), the number of correct matches(CM), and the 

ccuracy are calculated as CM/TM. The details including the wrong 

abel can be found on the website [32] . 

.1. Matching for natural images under specific transformations 

In this section, experiments were employed on six image 

airs with five specific transformations. The transformations in- 
ig. 9. The two image sequences that are provided in [4] . The baseline becomes wider

equence, (b) Valbonne image sequence. 

6 
lude rotation, scale illumination, occlusion, and viewpoint change. 

ig. 6 shows the image pairs and Table 2 shows the results. 

In the first five image pairs, all the three algorithms obtained 

 high accuracy, which exceeded 98%. Although the sixth image 

air has the same transformation as the fifth, its scene structure is 

ore complex, therefore, all the accuracies were below 90%. Com- 

ared with LPL and LJL, our algorithm ranked first in either the 

orrect match or the accuracy for each image pair. In the sum- 

ary our algorithm ranked first in both the correct match and the 

ccuracy. 

.2. Matching for aerial images with man-made scenes 

The aerial stereo dataset [11] was used to evaluate the algo- 

ithms. the dataset comprises fifteen image pairs ( Fig. 7 ) and the 

uthor has provided the line segment and the ground truth. The 

lgorithms were evaluated by the ratio of the number of correct 

atches and the number of ground truth matches (Recall), the 

atio of the number of correct matches and total matches (Accu- 

acy) and the F-score = 

2 ×Recal l ×Accuracy 
Recal l + Accuracy 

. Fig. 8 shows the evaluation 
 and the viewpoint change becomes steeper for the first view. (a) Dunster image 



D. Wei, Y. Zhang and C. Li Pattern Recognition 111 (2021) 107693 

Fig. 10. Experimental results of the two image sequences in Fig. 9 . (a) Experimental results of Dunster image sequence (CM, correct matches; TM, total matches), (b) 

Experimental results of Valbonne image sequence. 
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For the accuracy, our algorithm ranked first in thirteen image 

airs, and the average accuracy was higher than LPI and LJL by 10%. 

or the accuracy of the last two image pairs, our method ranked 

econd and was lower than the first for 6%. LPI ranked first in the 

ast two pairs. LJL achieved the last place in most of the image 

airs. 

For the recall, our method ranked first in half of the image 

airs. LJL performed better than LPI in most of the image pairs. 

his result was expected. LPI relied on the point match, and in 

ost cases, fewer point matches will lead to fewer line segment 

atches. LJL used the junction of the line segment pair to con- 

truct the descriptor, and fewer junctions would lead to fewer 

atches. Our algorithm relied on the line segment and the epipo- 

ar geometry, thus obtained more correct matches than LPI and LJL 

n most pairs. 

The F-score is a combination of the recall and accuracy. Because 

ur method obtained a good performance in both the recall and 

ccuracy, it ranked first in eleven image pairs, and ranked second 

n other image pairs. 

.3. Matching with baseline and viewpoint changes 

We used two image sequences that have been calibrated in 

chmid’s work [4] to evaluate the algorithms. Also, the Schmid’s 

lgorithm was evaluated. As shown in Fig. 9 , these images are vari- 
7 
nt in depth, viewpoint, scale, and occlusion. To evaluate the four 

lgorithms in different baseline and viewpoint, every image in the 

equence was matched with the first image. 

Fig. 10 shows the evaluation results. For all the four algorithms, 

oth the accuracy and the correct match were declined with the 

ncrease of the baseline, but our method was superior to others. 

or the accuracy, our method ranked first in seventeen pairs, and 

he average accuracy was higher than Schmid’s method, LJL, and 

PI by 27%,27% and 21%, respectively. For the correct matches, our 

ethod ranked the first place in 18 pairs, and the average score 

as higher than Schmid’s method, LJL and LPI by 9, 32 and 28, 

espectively. 

The proposed algorithm was robust in matching with the 

hange of the baseline and viewpoint. Because it relied on the F 

atrix, which is invariant to the projective transformation and is 

ndependent of the texture. Fig. 11 shows the local matching re- 

ults for Dunster (8,10), where there is steep viewpoint change and 

arious local homographies. Our method obtained most of the cor- 

ect matches in the different scene planes. Schmid’s method used 

he texture-correlation score to confirm the correct match, which 

ailed when the texture changed steeply. The performance of LPI 

as unsatisfactory because the point correspondence was not suf- 

cient. LJL used the texture to initialize the candidate, which may 

ail when the texture distortion is large. Therefore, LJL found only 

 few matches. 
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Fig. 11. Local matching results of Dunster (8,10). The wrong match is plotted in red. 
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.4. Matching with dense line segments 

Dense line segments in high-resolution images can make trou- 

les to match line segments. First, the distance between line seg- 

ents is quite close, thus the geometry constraint may be invalid. 

econd, textures in dense line segments are similar to each other, 
8 
hus the texture correlation may fail. Three image pairs ( Fig. 12 ) 

ere used to evaluate our method in matching with dense line 

egments. To identify the correct match, we first calculated the 

omography of the local plane, then, we mapped the line seg- 

ent in the first view to the second view for overlap analysis 

 Fig. 13 ). 
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Fig. 12. The aerial image pairs and the dense line segments. 

Fig. 13. To check the correct match, the line segment in the first view was mapped 

to the second view by the local homography. 

r

o

t

Table 3 

Evaluation results (correct matches, accuracy) of the image pairs in Fig. 12 . The 

number in bold represents the best. 

(1) (2) (3) 

Ours 484,98.2% 560,94.9% 171,54.8% 

LPI 393,85.4.5% 335,78.1% 55,36.7% 

LJL 474,95.4% 488,79.0% 21,12.1% 

t

c

w

h

c

t

c

t

Table 3 shows the quantitative evaluation and Fig. 14 plots the 

esult. The first image pair has a slight viewpoint change. Thus, 

ur algorithm achieved the accuracy of 98.2% and LJL achieved 

he accuracy of 95.4%. LPI ranked third in both the accuracy and 
Fig. 14. The result of matching with dense line segments. The incorr

9 
he correct match. The second image pair has a larger viewpoint 

hange and its scene structure is more complicated. All algorithms 

ere declined in accuracy. However, our method still obtained a 

igh accuracy of around 95%. The third image pair has obvious 

hanges in viewpoint and scale. Thus, all the three methods ob- 

ained an unsatisfied result. Our method obtained the highest ac- 

uracy, moreover, the correct matches of LPI and LJL were lower 

han our method. 
ect match is plotted in red and the correct is plotted in green. 
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Fig. 15. Evaluation results of the image dataset [11] with threshold changes. (1) Mapping error, (2) Overlapping rate, (3) Intersection distance, (4) Angle difference, (5) 

Nearest neighbors, (6) Ranking proportion, (7) Individual constraint. 

10 
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Fig. 16. Evaluation of the image dataset [11] with errors in F matrix. 

Table 4 

All the thresholds in our algorithm. 

Threshold Symbol Section Unit Value 

Evaluation 

range 

Mapping error T map 3 Pixel 2 0.5–5.0 

Overlapping rate T ove 3 None 0.5 0.1–0.9 

Intersection distance T int 4.1 Pixel 15 5–25 

Angle difference T ang 4.1 Radian π /4 π /18- π /2 

Nearest neighbors T nei 4.2 Line segment 20 10–30 

Ranking proportion T fir 6 None 0.7 0.5–1 

Individual constraint T hom 6 Homography 3 1–10 
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The proposed algorithm is appropriate for dense line segments 

atching. First, our algorithm relies on the epipolar geometry, 

hich will not be influenced by the ambiguous texture. Second, 

ense line segments generally occur in scene planes, which enable 

onstructing the robust homography graph to rank the candidate. 

.5. Matching with the threshold changes 

This section analyzes the influences of all the internal thresh- 

lds. Table 4 shows the details of the thresholds in our algorithm. 

e evaluated their influences via changing these internal thresh- 

lds and tested them on the aerial image dataset introduced in 

ection 7.2 . The evaluation results are shown in Fig. 15 . The per-

ormance of LPI is plotted in dotted line for compare. 

The evaluation results showed that our algorithm is robust to 

he change of the threshold. First, the result changed in a slow 

rend with the variation of the threshold. On the other hand, al- 

hough the threshold had changed, our method remained to be 

etter than both LPI and LJL in most cases. The detailed analyses 

re as follows. 

1) With the increase of T map , our algorithm produced more initial 

candidates, while brought about more incorrect nodes. Thus, 

the recall and F-score raised at the first time and then kept 

steady. 

2) With the increase of T ove , some matches were rejected because 

of the fraction of the line segment. Thus, both the recall and 

F-score went down. 

3) Changing T int was similar to change T map , because a larger in- 

tersection threshold reduced the false negative while increased 

the false positive. 

4) T ang has a slight influence to the result, but the number of the 

validations of the homography constraint raised with the in- 

crease of T ang . 

5) With the increase of T nei , more neighbors that were not copla- 

nar were added in, thus the accuracy went down slowly. 
11 
6) With the increase of T fir , more candidates were obtained with- 

out the homography constraint, thus the accuracy went down 

and the recall raised. 

7) Finally, with the increase of T hom 

, the constraint for matching 

the individual line segment became stricter, thus the accuracy 

raised slightly and the recall went down. 

.6. Influence of the error in fundamental matrix 

Since the proposed algorithm relies on F matrix to establish 

he homography constraint, the error in the matrix will inevitably 

nfluence the matching result. The fifteen stereos introduced in 

ection 7.2 were employed to analyze the limitation of the depen- 

ence of our algorithm on the known F matrix. Three steps were 

mployed to add error to F matrix: (1) eight point correspondences 

ere generated based on the original F matrix; (2) the position 

rrors were added to the eight point correspondences; (3) the F 

atrix with intentional errors was estimated via normalized eight- 

oint algorithm. The error in F matrix was evaluated by the aver- 

ge distance of 100 points and their epipolar lines, and the point 

orrespondences were generated randomly by the original F ma- 

rix. 

Fig. 16 presents the evaluation of the dependence of our algo- 

ithm on F matrix. Obviously, it had degenerated with the increase 

f the error in F matrix. When the average distance of the point 

o the epipolar line was within 3 pixels, our algorithm obtained a 

atisfactory result. But the performance degenerated quickly when 

he distance was over 3 pixels, and some stereos could not be 

atched. It has manifested that our algorithm requires a reliable 

 matrix to obtain the robust match. 

. Conclusions 

This paper presents a novel line segment matching algorithm 

ased on the epipolar geometry. The method initializes the candi- 

ate based on the homography constraint. The homography graph 

s then constructed, and the reweighted random walk method is 

mployed on this graph to rank the candidates. Finally, the correct 

atches are obtained with the constrained greedy algorithm. The 

roposed approach relies purely on the epipolar geometry which 

s invariant to the local projective transformation. The experiments 

emonstrate the robustness of our algorithm when compared with 

he state of the art methods and the classical method. The pro- 

osed algorithm is easy to use because it requires only the fun- 

amental matrix of image pair, which can be obtained via the 

dvanced point matching algorithm, or the pre-calibrated binoc- 

lar camera. Also, we must admit the weaknesses of our algo- 

ithm. First, since the homography constraint is applied to the 
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cene plane, it will fail when the scene has few coplanar 3D line 

egments. Second, when the fundamental matrix is not available or 

ot reliable, the proposed algorithm cannot work. 

Finally, there are two aspects which we are currently investi- 

ating. The first is to embed multiple-view geometries of different 

eatures such as line and point across multiple views into the ho- 

ography graph. Thus, both the line and point candidate can be 

anked by considering the candidate in not only the same stereo 

nd also other stereos. The second is to speed up the algorithm 

ith GPU because the construction and ranking of the graph re- 

uire large computations, and running in real time will make it 

ore practical. 
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