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A B S T R A C T   

Although deep learning has revolutionized remote sensing (RS) image scene classification, current deep learning- 
based approaches highly depend on the massive supervision of predetermined scene categories and have 
disappointingly poor performance on new categories that go beyond predetermined scene categories. In reality, 
the classification task often has to be extended along with the emergence of new applications that inevitably 
involve new categories of RS image scenes, so how to make the deep learning model own the inference ability to 
recognize the RS image scenes from unseen categories, which do not overlap the predetermined scene categories 
in the training stage, becomes incredibly important. By fully exploiting the RS domain characteristics, this paper 
constructs a new remote sensing knowledge graph (RSKG) from scratch to support the inference recognition of 
unseen RS image scenes. To improve the semantic representation ability of RS-oriented scene categories, this 
paper proposes to generate a Semantic Representation of scene categories by representation learning of RSKG 
(SR-RSKG). To pursue robust cross-modal matching between visual features and semantic representations, this 
paper proposes a novel deep alignment network (DAN) with a series of well-designed optimization constraints, 
which can simultaneously address zero-shot and generalized zero-shot RS image scene classification. Extensive 
experiments on one merged RS image scene dataset, which is the integration of multiple publicly open datasets, 
show that the recommended SR-RSKG obviously outperforms the traditional knowledge types (e.g., natural 
language processing models and manually annotated attribute vectors), and our proposed DAN shows better 
performance compared with the state-of-the-art methods under both the zero-shot and generalized zero-shot RS 
image scene classification settings. The constructed RSKG will be made publicly available along with this paper 
(https://github.com/kdy2021/SR-RSKG).   

1. Introduction 

Benefiting from the rapid advances in aerospace, sensor and 
communication technologies, human beings have entered an era of 
remote sensing (RS) big data (Chi et al., 2016; Li et al., 2021a; Lobry 
et al., 2020). Automatically accurate classification of these oversized RS 
images is one basic but important task for mining the value of RS big 
data (Cheng et al., 2016; Gu et al., 2019; Li et al., 2020; Marcos et al., 
2018). Along with the spatial resolution improvement of RS imagery, 

pixel-level or object-level classification methods show great limitations 
(Blaschke 2010; Li et al., 2016; Cheng et al., 2017). As a consequence, 
more attention has been given to scene-level RS image classification due 
to its stable classification performance and its wide applications in 
natural disaster monitoring (Cheng et al., 2013), multimodal data fusion 
(Gerke et al., 2014), functional zone classification (Zhang et al., 2018), 
object detection (Tao et al., 2019a; Tao et al., 2019b), and image 
retrieval (Demir and Bruzzone, 2015; Li et al., 2018). 

Until now, deep learning (LeCun et al., 2015) has greatly improved 
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RS image scene classification (Li et al., 2021c; Zhang et al., 2015). 
However, the current deep learning models have good classification 
performance only when each scene category has sufficient samples. In 
the era of RS big data, the number of RS scene categories presents an 
explosive growth trend. It is unrealistic to collect sufficient RS image 
samples and construct their labels for all categories at once. Hence, 
identifying RS image scenes that never appear in the training stage has 
important practical value (Li et al., 2017a) in the era of RS big data. 
Inspired by humans’ inference ability, embedding prior knowledge into 
the learning process is an ideal method for addressing this issue (Li et al., 
2021b). 

In the literature, the development of zero-shot learning (ZSL) (Lar-
ochelle et al., 2008; Palatucci et al., 2009; Ji et al., 2020) in recent years 
has provided promising solutions to recognize samples from unseen 
categories. By leveraging the prior knowledge of categories, including 
seen and unseen categories, as auxiliary information, ZSL can learn 
samples from seen categories to identify samples from the unseen cat-
egories. Generally, the semantic information of seen and unseen classes 
is the common sense of human beings, which is universal and can be 
used in both of the training and testing stages, but the image samples of 
unseen classes do not exist in the training stage. Hence, how to express 
semantics is the key to pursue the superior performance of ZSL. For 
example, we can recognize the zebra image through the images of tiger, 
panda and horse, combined with the semantic information such as tiger 
stripes, panda colors and horse shapes. From this intuitive finding, we 
can also see the indispensable importance of semantic information in the 
ZSL task. As an extension of ZSL, generalized zero-shot learning (GZSL) 
attempts to learn samples from seen categories to simultaneously 
recognize seen and unseen samples in the testing stage, which is a more 
challenging but practical task. In the field of computer vision, large 
numbers of ZSL and GZSL methods have been proposed. In contrast, ZSL 
and GZSL are rarely discussed in the field of RS (Sumbul et al., 2017). 
Compared with the computer vision field, the following characteristics 
in the RS field limit the development of ZSL and GZSL. On the one hand, 
the names of RS scene categories often have domain specificity. If the 
semantic representations of RS scene categories are generated by 
directly leveraging the general natural language processing model (e.g., 
Word2Vec) to map the names of RS scene categories, the semantic 
representations cannot reflect the intrinsically semantic information of 
the RS category. On the other hand, RS image scenes, presenting large 
intraclass differences and large interclass similarities, generally have 
more complex appearances than natural images in the computer vision 
field. Generally, the ZSL and GZSL methods that have achieved excellent 
results in the field of computer vision cannot be directly extended to 
address the task in the RS domain. Overall, it deserves much more 
exploration to promote zero-shot and generalized zero-shot RS image 
scene classification. 

With the aforementioned considerations, this paper mainly focuses 
on exploiting zero-shot and generalized zero-shot RS image scene clas-
sification. The quality of semantic representation of categories plays an 
important role in ZSL and GZSL (Li et al., 2017a,b,c). To generate the 
high-quality semantic representations of RS scene categories, this paper 
constructs a new remote sensing knowledge graph (RSKG) based on the 
domain prior knowledge from human experts, where RSKG fully con-
siders the rich connections between RS scene elements. To the best of 
our knowledge, this paper, for the first time, proposes to calculate the 
Semantic Representations of RS scene categories by representation 
learning of RSKG (SR-RSKG). Based on SR-RSKG, this paper proposes a 
new deep alignment network with a series of well-designed constraints 
(DAN), which can robustly match the visual features and semantic 
representations in the latent space, to address zero-shot and generalized 
zero-shot RS image scene classification. Experimental results on one 
integrated RS image scene dataset show that our proposed SR-RSKG is 
superior to traditional knowledge types (e.g., Word2Vec (Mikolov et al., 
2013), BERT (Devlin et al., 2018), and manually annotated attribute 
vectors). In addition, the proposed DAN performs better than the state- 

of-the-art methods under both the ZSL and GZSL settings. The major 
contributions of this paper are summarized as follows.  

1) To the best of our knowledge, this paper, for the first time, proposes 
to generate the semantic representations of RS scene categories by 
representation learning of RSKG. Extensive experiments verify its 
superiority compared with traditional prior knowledge types. The 
constructed RSKG will be made publicly available along with this 
paper.  

2) By pursuing the stable cross-modal alignment of the same category 
and scattered distribution of different categories, this paper proposes 
a novel DAN to robustly match visual features and semantic features 
in the latent space. Extensive experiments show that the proposed 
DAN outperforms the existing methods under both the ZSL and GZSL 
settings. 

The remainder of this paper is organized as follows. Section 2 dis-
cusses the related works. Section 3 introduces the construction process 
of RSKG and depicts representation learning of RSKG. Section 4 in-
troduces the DAN model in detail. Section 5 summarizes the experi-
mental results. Finally, the conclusion is detailed in Section 6. 

2. Related work 

In this section, we briefly review the most relevant works in the 
literature that include semantic representations of RS scene categories 
and zero-shot RS image scene classification. 

2.1. Semantic representations of remote sensing scene categories 

To obtain prior knowledge for ZSL, there are two main methods: class 
name embedding by a natural language processing model and manual 
annotation attribute vectors. However, for the RS domain, both of them 
have insurmountable defects. Natural language processing models based 
on generalized corpora have a weak pertinence and often fail to finely 
describe RS scene categories. Although manual annotation attribute 
vectors are often generated by considering the specific scene categories, 
they also fail to consider the rich connections between different scene 
categories. Therefore, it is urgent to explore a priori knowledge acqui-
sition method that has a strong pertinence for the RS domain. 

Along with the rapid development of artificial intelligence (AI), the 
tremendous success of knowledge graph (KG) has attracted much 
attention. The concept of a KG originates from Tim Berners-Lee’s vision 
of the semantic web (Shadbolt et al., 2006), where a KG mainly aims to 
use graphs to build relations between objects in the real world. More 
specifically, a KG uses nodes to represent objects in the real world and 
edges to represent relations between objects. To promote the application 
of KG, representation learning (Bordes et al., 2013) is proposed to learn 
the low-dimensional vectors of the entities and relations in the KG. 
Unlike the representation learning in self-supervised learning ap-
proaches such as SimCLR (Chen et al., 2020), MoCO (He et al., 2020), 
PIRL (Misra et al., 2020), which mainly aims to learn the visual feature 
representations of images, the representation learning based on KG aims 
to learn the semantic representation of entities and relations in the KG. 
The learned representation vector contains semantic information, so the 
information in the KG can be extracted and used more conveniently in 
wide downstream tasks. Intuitively, the semantic representations 
generated through KG representation learning are very suitable as prior 
knowledge for ZSL. Unfortunately, there is no mature KG in the RS field. 
Therefore, how to construct RSKG and explore appropriate representa-
tion learning methods to generate semantic representations of RS scene 
categories has become very urgent. 

2.2. Zero-shot learning in remote sensing scene classification 

In the computer vision field, early ZSL methods mainly focus on 
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learning mapping from visual space to semantic space or from semantic 
space to visual space. For example, direct attribute prediction (DAP) and 
indirect attribute prediction (IAP), proposed in (Lampert et al., 2009), 
learn the mapping from the visual space to the semantic space. To solve 
the hubness problem caused by the mapping of visual space to semantic 
space, Shigeto et al. 2015) proposed mapping semantic representations 
to visual feature space. With the rapid development of generative 
models, some ZSL methods based on visual sample generation have 
emerged. Long et al. 2017 proposed a method for generating unseen 
class samples by adding diffusion regularization to ensure that the 
generated invisible samples retain as much of the semantic structure 
information as possible. Inspired by the conditional generative adver-
sarial network (GAN), Xian et al. (2018b) used category attributes as 
input to generate visual features corresponding to the category and 
added the classification loss of the category to the discriminator. Elho-
seiny and Elfeki (2019) introduced hallucinated text in the process of 
training the generator to encourage the generated visual features to 
deviate from the seen category and pursue the diversity of the generated 
samples. Schonfeld et al. 2019 recommended reconstructing semantic 
and visual features through a variational autoencoder (VAE) so that the 
constructed features contain basic multimodal information related to 
unseen classes. Unfortunately, RS image scenes have the characteristics 
of complex content, unique viewing angle, high similarity of images 
between classes, and diversity of images within the same class. The 
methods in the field of computer vision cannot be directly extended to 
address RS classification. 

In the RS field, Li et al. 2017b proposed the first study on zero-shot 
RS image scene classification by leveraging the visual similarity 
among images from the same scene class and the label refinement 
approach based on sparse learning. Quan et al. 2018 employed a semi-
supervised Sammon embedding algorithm to modify semantic space 
prototypes to have a more consistent class structure with visual space 
prototypes. Sumbul et al., 2017 proposed addressing fine-grained object 
recognition with ZSL in remotely sensed imagery and showed how the 
compatibility function can be estimated from the seen classes by using 
the maximum likelihood principle during the learning phase. Li et al. 
(2021b) proposed a zero-shot RS image scene classification method 
based on locality-preservation deep cross-modal embedding networks. 
Overall, the existing works ignore the diversity of RS images and learn 
the fixed mapping between visual space and semantic space. In addition, 
the existing works still use natural language models based on general-
ized corpora to obtain semantic representations of RS scene categories, 
which makes the performance of the existing approaches unsatisfactory. 
Furthermore, there are very few studies involving GZSL in the RS field. If 
the ZSL method is directly extended to GZSL, the classification accuracy 
of unseen classes will generally be much lower than that of seen classes. 

3. Representation learning of remote sensing knowledge graph 

In this section, we first introduce the construction process of RSKG 
and then discuss representation learning of RSKG. 

3.1. Construction of remote sensing knowledge graph 

In the literature, there exist many general KG, including Freebase 
(Bollacker et al., 2008), WikiData (Erxleben et al., 2014), DBpedia (Auer 
et al., 2007) and Yago (Hoffart et al., 2013). Generally, KG contain 
abundant explicit relational information, which is very beneficial for 
describing complex RS scenes. However, the current general KG are not 
applicable in the RS field. To support zero-shot RS image scene classi-
fication, we build a new KG (i.e., RSKG) based on RS scene elements. It is 
worth noting that the RS scene is not just a collection of objects but also 
contains rich relations between interconnected objects. An accurate 
description of the relation between objects can effectively promote the 
ability of deep learning methods to understand the semantics of RS 
scenes (Liang et al., 2019). By combining the characteristics of RS image 

content and the related research on geographic spatial relations 
(Clementini, 2009; Shen et al., 2017), we define the relations in RSKG 
into the following categories. We first divide relations into two cate-
gories: attribute relations and spatial relations. Attribute relations are 
used to describe the characteristics of the object or the child-parent 
relation with other objects. Attribute relations can be subdivided into 
data relations and object relations, among which data relations include 
shape, color, width, distribution, and height, and object relations 
include has, component of, part of, and member of. Spatial relations 
mainly describe the different location relations between different ob-
jects in space. Spatial relations can be subdivided into position relations, 
topological relations and vague relations, among which position re-
lations include marked on, dock at, stop at, over, and on; topological 
relations include surrounded by, intersect at, pass through, meet, con-
nect to, cover, contain, and in, and vague relations include near, next to, 
around and along. More specifically, the frequency of relation types is 
visually shown in Fig. 2. 

In our implementation, 10 domain experts, who are familiar with RS 
image interpretation tasks, participate in constructing the RSKG. More 
specifically, we first determine the relation between the objects in the RS 
images from one specific RS category and store it as an entity-relation- 
entity or entity-attribute-attribute value to construct the category- 
specific KG. Then, we analyze the relation between different RS image 
scenes and aggregate the category-specific KG to form a unified RSKG, as 
shown in Fig. 1. More specifically, blue represents the entity, and yellow 
represents the attribute value. The current version of RSKG has 117 
entities, 26 relations and 191 triples. As a first attempt towards the RSKG 
construction, the volume of the current RSKG is relatively small, but 
extensive visual and quantitative experiments show its superior 
knowledge representation ability because it has contained the intrinsic 
RS elements and geographic relations. Similar to other KGs, our con-
structed RSKG can also be easily extended after its public release. 

3.2. Learning semantic representations of entities and relations 

Inspired by the phenomenon that word vectors have translation 
invariance in the semantic space (Mikolov et al., 2013), Bordes et al. 
proposed the classic representation learning model TransE (Bordes et al., 
2013). For each triple (h, r, t) in the KG, the TransE model assumes 
ch +cr ≈ ct where ch, cr and ct stand for the semantic representations in 
the unified feature space of h, r and t. The assumption ch +cr ≈ ct means 
that the head entity vector plus the relation vector is approximately 
equal to the tail entity vector. The TransE model has significant effects 
on datasets such as WordNet and Freebase and has become a classic 
model in the field of representation learning. However, TransE cannot 
deal with the complex relations such as 1-N or N-1 appearing in the KG. 
Unfortunately, this situation is unavoidable in the RSKG. For example, 
<commercial_area, have, tree>, <commercial_area, have, buildings>; if 
the TransE model is used for representation learning, the corresponding 
embedding vectors of trees and buildings cannot be effectively distin-
guished. Considering the limitations of the TransE model in the face of 
complex relations such as 1-N and N-1, we recommend using the 
improved representation learning model TransH (Wang et al., 2014), 
which flexibly models a relation as a hyperplane together with a 
translation operation on it and improves the performance by handling 
complex relations to a certain extent. As shown in Fig. 3, ch ∈ Rd, 
cr ∈ Rd, ct ∈ Rd is given, where d denotes the dimension of the embed-
ding semantic representation vector, TransH maps ch and ct to the hy-
perplane, let ch⊥ = ch − w⊺

r chwr and ct⊥ = ct − w⊺
r ctwr, where wr is the 

norm vector of the hyperplane, and then the translation operation let 
ch⊥ + cr ≈ ct⊥ . Thus, TransH can learn complex relations well. More 
specifically, the objective function of TransH is formulated by Eq. (1). 

fr(h, t) = ‖ch⊥ + cr − ct⊥‖
2
2 (1) 

By pushing the correct triple to get a lower score in Eq. (1), the 
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Fig. 1. Visual illustration of the constructed RSKG.  

Fig. 2. Frequency of relation types in the RSKG.  
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Fig. 3. Visual illustration of representation learning of RSKG.  

Fig. 4. The merged RS image scene dataset.  
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objective function in Eq. (1) can be specifically optimized by minimizing 
the loss function in Eq. (2). 

LTransH =
∑

(h,r,t)∈Δ

∑

(h’ ,r’ ,t’)∈Δ’

max(fr(h, t) + τ − fr’ (h’, t’), 0) (2) 

where Δ is the set of correct triples and Δ’ denotes the set of wrong 
triples. τ indicates the minimum interval between the scores of correct 
triples and wrong triples, and is usually set to 1. 

More optimization details can refer to (Wang et al., 2014). By opti-
mizing the objective function in Eq. (1), we can obtain the SR-RSKG. 

3.3. Creating semantic representations of remote sensing scene categories 

To fully evaluate the performance of zero-shot and generalized zero- 
shot RS image scene classification, we adopt a combined dataset by 
integrating five public datasets: UCM (Yang and Newsam, 2011), AID 
(Xia et al., 2017), NWPU-RESISC45 (Cheng et al., 2017), RSI-CB256 (Li 
et al., 2017b), and PatternNet (Zhou et al., 2018). The merged RS image 
scene dataset is composed of 70 scene categories, and each category 
contains 800 image scenes with a size of 256 × 256. The image scene 
dataset is visually shown in Fig. 4. 

As aforementioned, the construction of RSKG considers as more de-
tails about RS objects and scene categories as possible, so the entities in 
the RSKG often cover the scene categories in the specific dataset. In 
short, the scene categories in the specific task can find their corre-
sponding entities in RSKG. Therefore, the learned semantic representa-
tions of entities in Section 3.2 can be used to generate the semantic 
representations of scene categories. To facilitate understanding, we 
explain it from the formulation perspective in the following. Let Y = {y1,

y2,⋯, yM} denote the label set of RS scene categories, where M denotes 
the number of scene categories of the dataset. For each label yi ∈ Y, 
there is a one correspondence between the entity in RSKG and yi (i.e., the 
scene category), we take the corresponding semantic representation of 
entity as its semantic representation ci ∈ C. 

It is noted that the entities in the constructed RSKG include but are 
not limited to the scene categories of the adopted RS scene classification 
dataset in this paper. Hence, other RS scene classification tasks can also 
be flexibly implemented by the RSKG as long as the scene categories can 
find the entity or synonym from the RSKG. We will continue to improve 
and expand the RSKG in the future. For example, the follow-up work 
may automatically extend the RSKG by the newly proposed knowledge 
graph construction method (Tempelmeier et al., 2021), so that it will 
gradually have the coverage ability of the RS field. It can be applied to 
more RS tasks. This work mainly aims to verify the rationality and 
effectiveness of the new kind of knowledge. Generally, the performance 
of ZSL and GZSL can get further improved along with the continuous 
expansion of RSKG. Objectively, the number of entities in RSKG is 
empirically set without the sufficient experimental verification. In the 
follow-up works, the sensitivity analysis of the number of entities in the 
RSKG to the final performance is also very necessary. 

To visually show the superiority of SR-RSKG, we visualize various 
semantic representations including Word2Vec, BERT, Attribute and SR- 
RSKG, through t-SNE (Maaten and Hinton, 2008) in Fig. 5. As Word2vec 
and BERT are two widely used models in the natural language pro-
cessing domain and adopted in the ZSL task in computer vision, they are 
selected as baselines in this paper. Considering that there does not exist 
any natural language corpus, specially set up for RS at present, we have 
to adopt the pre-trained Word2vec and BERT models with the general 

Fig. 5. Visualization of different knowledge types.  
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natural language corpus to generate semantic representations of scene 
categories. In the follow-up work, we may try to collect the natural 
language corpus in the RS domain to train the Word2vec and BERT 
models from scratch, which will be the objectively competitive base-
lines. Attribute is created by manual annotation, and its potential 
attribute elements are refined as much as possible to pursue the best 
performance. Hence, Attribute should be a competitive baseline of this 
kind of manual method. 

Generally, Word2Vec, BERT and Attribute focus on depicting ab-
stract semantics but ignore visual details. Taking the airport runway 
marking category as an example, in the semantic space, it is much closer 
to airports and airplanes in terms of Word2Vec, BERT and Attribute. In 
addition to semantic considerations, the SR-RSKG further considers the 
degree of visual relevance. As far as the illustration of SR-RSKG, the 
position of the airport runway marking in the semantic space is closer to 
the tennis court that has a certain visual similarity to it (both of them 
have marking elements). Benefiting from this merit, SR-RSKG is more 
suitable for zero-shot and generalized zero-shot RS image scene classi-
fication than Word2Vec, BERT and Attribute. 

4. Robust deep alignment network for zero-shot and generalized 
zero-shot remote sensing image scene classification 

Section 4.1 introduces the definition of ZSL and GZSL. In Section 4.2, 
we clarify the robust deep alignment network for zero-shot and gener-
alized zero-shot RS image scene classification. In addition, we introduce 
the process of classifying RS image scenes from unseen categories. 

4.1. Formulated definition of ZSL and GZSL 

The task of ZSL is defined as follows. Let Ds =
{(

xs
i , ys

i , c
(
ys

i
) )⃒

⃒i = 1, 2,
⋯,N

}
denote the set of training examples (i.e., the seen samples). More 

specifically, xs
i ∈ Xs denotes the visual image feature of the i-th RS image 

scene from the seen categories where the image feature is extracted by 
the CNN model. ys

i ∈ Ys denotes the label of the i-th RS image scene from 
the seen categories, and c

(
ys

i
)
∈ Cs denotes the semantic representation 

(e.g., SR-RSKG) of the corresponding category. N represents the number 
of training samples. In the same way, we define Xu,Yu,Cu as the unseen 

visual image features, the corresponding labels and the semantic rep-
resentations of unseen categories. As well known, for ZSL and GZSL, the 
seen classes and unseen classes are disjoint, i.e. Ys ∩ Yu=∅. Given the 
training datasets Ds and {Yu, Cu}, in the conventional ZSL, the task is to 
learn a classifier FZSL:Xu → Yu. In GZSL, the task is to learn a classifier 
FGZSL:Xs ∪ Xu → Ys ∪ Yu. 

4.2. Robust deep alignment network in the latent space 

Instead of learning the mapping from visual space to semantic space 
or from semantic space to visual space, we learn the mapping of visual 
features and semantic representations in latent space so that we can 
alleviate the hubness problem (Lazaridou et al., 2015) in ZSL and 
enhance visual-semantic coupling. In Fig. 6, we show an overview of our 
model. First, we minimize the visual and semantic representation 
reconstruction loss. Then, we align the distribution of vision and se-
mantics in the hidden space, which further separates the distribution of 
features between different categories on the basis of aligning visual 
features and semantic representations, which improves the performance 
in ZSL tasks. In addition, the method is based on latent space mapping 
and the method of generating training samples to train the classifier, 
which balances the classification performance of seen and unseen cat-
egories, so it also has excellent performance in GZSL tasks. It is noted 
that the mentioned deep alignment network intrinsically tries to address 
the existing coordinated representation problem (Guo et al., 2019) in 
literature. Considering the visual feature and semantic representation 
alignment in latent space and multicategory distribution dispersion, the 
overall loss of the proposed model is defined as Eq. (3). In the rest of this 
section, we will introduce the details of each module. 

L = L VAE +αL CMFR + βL VSDM + γL MCDD (3) 

where α, β and γ are the weighting factors of the cross-modal feature 
reconstruction loss, visual and semantic distribution matching loss, and 
multicategory distribution dispersion loss, respectively. 

4.2.1. Visual feature and semantic representation reconstruction 
As our proposed method learns the mapping of visual features and 

semantic representations in the latent space, we first need to ensure the 

Fig. 6. Flowchart of the proposed DAN. In the training phase of ZSL and GZSL, we only use seen data to train the DAN. In the testing phase of ZSL, the testing data 
only comes from unseen data. In the testing phase of GZSL, the testing data comes from seen data and unseen data. 
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representation ability of each modality in the latent space. In addition, 
to minimize the loss of information, the original data should be recon-
structed as much as possible using the latent vector. Therefore, we 
follow the architecture of the VAE net (Kingma and Welling, 2013) to 
learn the reconstruction model for visual features and semantic repre-
sentations, which projects visual features and semantic representations 
into the latent space. The loss function can be defined by Eq. (4).   

Where × represents the visual feature of the original image, qϕ
(v) 

corresponds to the encoder of visual features, pθ(v) corresponds to the 
decoder of visual features, c represents the semantic representation, qϕ(a)

corresponds to the encoder of semantic representations, and pθ(a) cor-
responds to the decoder of semantic representations. 

4.2.2. Cross-modal feature reconstruction (CMFR) 
Through the reconstruction of visual features and semantic repre-

sentations, we learned the representations of visual features and se-
mantic representations in the latent space. Next, we need to align their 
representations in the latent space. We achieve this from two aspects. 
The first is cross-modal feature reconstruction (CMFR). Here, visual 
features and semantic representations are cross-input to the encoder 
corresponding to another modality, and the loss function of cross-modal 
feature reconstruction can be defined by Eq. (5). 

L CMFR =
∑N

i=1

⃒
⃒xi − pθ(v) (qϕ(a) (ci)

) ⃒
⃒+

⃒
⃒ci − pθ(a) (qϕ(v) (xi)

) ⃒
⃒ (5) 

where N represents the number of training samples, xi and ci repre-
sent the visual features and semantic representations of the same 
category. 

4.2.3. Visual and semantic distribution matching (VSDM) 
The second is visual and semantic distribution matching (VSDM). 

The distribution of visual features and semantic representations in the 
latent space is determined by μ(v)

i , E(v)
i and μ(a)

i , E(a)
i . We further match 

the distribution of visual features and semantic representations in latent 
space by reducing the distance between them, and the loss function of 
visual and semantic distribution matching can be defined by Eq. (6). 

L VSDM =
∑N

i=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

‖μ(v)
i − μ(a)

i ‖
2
2 + ‖

̅̅̅̅̅̅̅̅

E(v)
i

√

−

̅̅̅̅̅̅̅̅

E(a)
i

√

‖

2

F

√

(6) 

where N represents the number of training samples, μ(v)
i and 

̅̅̅̅̅̅̅̅

E(v)
i

√

represent the mean and standard deviation of the visual feature distri-

bution in latent space, respectively, and μ(a)
i and 

̅̅̅̅̅̅̅̅

E(a)
i

√

represent the 
mean and standard deviation of the semantic representation distribution 
in latent space, respectively. 

4.2.4. Multi-category distribution dispersion (MCDD) 
As we mentioned before, RS image scenes have significant charac-

teristics of high interclass similarity, which is very unfavorable for 
classification tasks. For this, we add constraints to make the distribution 
of different categories in the latent space more dispersed, and the loss 
function of multi-category distribution dispersion can be defined by Eq. 
(7). 

L MCDD = ‖VHVT − I‖2
F (7) 

where V = [μ(a)
1 , μ(a)

2 , ⋯, μ(a)
N ] ∈ Rd×N, H = (N∙P − W)/N, P ∈ RN×N 

stands for an identity matrix and W ∈ RN×N stands for a matrix with all 
elements equal to 1. I ∈ Rd×d is an identity matrix. 

4.3. Classification of remote sensing image scenes under the ZSL and 
GZSL settings 

It is worth noting that the ZSL and GZSL tasks share the same process 
to train the encoder of visual features and the encoder of semantic 
representations. However, they slightly differ from each other when 
training the final classifier, which is specifically explained in the 
following. 

As mentioned before, ZSL aims to classify image scenes from unseen 
categories. Let c ∈ Cu denote the semantic representation of the unseen 
category and x ∈ Xu represent the visual feature of the testing image 
from the unseen category. We use the trained semantic representations 
encoder qϕ(a) to map the semantic representation c to the latent space 
using Eq. (8) and use the trained visual feature encoder qϕ(v) to map the 
visual feature x to the latent space using Eq. (9). 

z(a) = qϕ(a) (c) (8)  

z(v) = qϕ(v) (x) (9)  

4.3.1. ZSL for classifying the unseen remote sensing image scenes 
To train the ZSL classifier, which aims to recognize the image scenes 

from the unseen categories, the loss function can be written as 
min
FZSL

−
∑

tilogri, where ti ∈ Yu, and ri ∈ R. The classification probability is 

calculated by r = σ(z(a)*FZSL), where FZSL denotes the classification 
mapping matrix, σ(⋅) stands for the softmax activation function and z(a)
are generated from c ∈ Cu. 

In the testing phase, given one test image from the unseen category 
and x denotes its visual feature by Eq. (8). The label of the image from 
the unseen category can be inferred by the classifier mapping matrix FZSL 

and z(v) = qϕ(v) (x). 

4.3.2. GZSL for classifying both of the seen and unseen remote sensing 
image scenes 

Different from ZSL, GZSL needs to classify image scenes from the 
seen or unseen category. Hence, let c ∈ Cu ∪ Cs denote the semantic 
representation of the seen or unseen category, and x ∈ Xu ∪ Xs represent 
the visual feature of the image scene from the seen or unseen category. 
We use the encoder of semantic representations to map the semantic 
representation c to the latent space using Eq. (8) and use the encoder of 
visual features to map the visual feature x to the latent space using Eq. 
(9).To train the GZSL classifier, which tries to simultaneously recognize 
the image scenes from both the seen and unseen categories, we first 
generate z(a) from c ∈ Cu ∪ Cs, and the loss function is defined as 
minFGZSL −

∑
gilogsi, where gi ∈ Ys ∪ Yu and si ∈ S. More specifically, s =

σ(z(a)*FGZSL), where FGZSL stands for the classification mapping matrix. 
Given the visual feature X of one image scene from the seen or unseen 

category, its label can be referred to by the classifier mapping matrix 
FGZSL and z(v) = qϕ(v) (x). 

LVAE = Eqϕ(v)

(
z(v)|x

)[
logpθ(v)

(
x|z(v)

) ]
− DKL

(
qϕ(v)

(
z(v)|x

)⃦
⃦pθ(v)

(
z(v)

) )
+Eqϕ(a)

(
z(a)|c

)[
logpθ(a)

(
c
⃒
⃒z(a)

) ]
− DKL

(
qϕ(a) (z(a)|c)‖pθ(a) (z

(a))
)

(4)   
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5. Experimental analysis and discussion 

In this section, we design extensive experiments to evaluate our 
proposed approach. In Section 5.1, we introduce the experimental set-
tings. Then, we analyze the sensitivity of critical parameters in our 
proposed approach in Section 5.2. Finally, we compare our method with 
the state-of-the-art methods in Section 5.3. 

5.1. Experiment settings 

Section 5.1.1 introduces our RS dataset. In Section 5.1.2, we intro-
duce the evaluation metric of ZSL and GZSL, and we give implementa-
tion details of our proposed method in Section 5.1.3. 

5.1.1. Evaluation dataset 
To fully evaluate the performance of zero-shot and generalized zero- 

shot RS image scene classification, we adopt a combined dataset by 
integrating five public datasets including UCM, AID, NWPU-RESISC45, 
RSI-CB256, and PatternNet. The merged image scene dataset is 
composed of 70 scene categories, and each category contains 800 image 
scenes. The RS image scene dataset is visually shown in Fig. 4. 

5.1.2. Evaluation metric 
The overall accuracy (OA) is taken as the quantitative metric to 

evaluate the classification performance under the ZSL setting. Under the 
GZSL setting, the testing dataset is composed of seen and unseen images, 
so the accuracy is evaluated on seen classes, denoted as SA, and unseen 
classes, denoted as UA. As suggested by (Xian et al., 2018), the harmonic 
mean accuracy (HMA), defined as HMA = (2 × SA × UA)/(SA + UA), is 
used to evaluate the classification performance under the GZSL setting. 

5.1.3. Implementation details 
In the module for latent space mapping, the encoder qϕ(v) and decoder 

pθ(a) had 512 hidden units, the encoder qϕ(a) and decoder pθ(a) had 256 
hidden units, and the latent embedding dimensions were 32. Regarding 
the dimension of representation learning d and the hyperparameters of 
the objective function α, β, γ, we specifically analyze their sensitivity and 
give the recommendation settings in Section 5.2. In the module for 
classifying latent features, we train a linear classifier to classify latent 
features. 

Regarding the knowledge types, we consider four kinds of semantic 
representations. 1) Word2Vec: we use a Word2Vec model (Bojanowski 
et al., 2017) that is trained on the Wikipedia corpus to obtain the 300-D 
vector for each class name. 2) BERT: we depict each RS scene category 
by one summarized sentence after checking over 10 random RS image 

scenes from one given category. Then, the BERT model (Devlin et al., 
2018) maps the sentence description of each RS scene category to one 
different semantic representation with 1,024 dimensions. 3) Attribute: 
Considering the color, shape and objects contained in each RS scene 
category, we manually design each dimension of the vector. If the RS 
scene category has a certain attribute, the corresponding dimension is 1; 
otherwise, it is marked as 0. We create the 59-dimensional vector in this 
way. 4) SR-RSKG: We generate the semantic representations of RS scene 
categories by representation learning of RSKG, as depicted in Section 3. 

Regarding the visual features, we consider the 512-dimensional CNN 
feature vector of the RS image scene using ResNet-18 (He et al., 2016) 
and 2048-dimensional CNN feature vector of the RS image scene using 
EfficientNet (Tan et al., 2019). For both the ZSL and GZSL tasks, we 
leverage only the samples from the seen categories to fine-tune model. In 
the ZSL task, we use all 800 images for each seen class. In the GZSL task, 
considering that some samples from the seen categories are involved in 
the testing phase, we select 600 images of each seen class to train the 
ResNet-18 model, and the remaining 200 images attend the testing 
phase in GZSL. 

5.2. Sensitivity analysis of critical parameters 

To evaluate the effect of the hyperparameters, we summarize the 
classification performance of our proposed method under the ZSL 
setting. More specifically, we first analyze the sensitivity of the dimen-
sion of semantic representation d in the representation learning module 
and the sensitivity of the batch size b , where d specifically denotes the 
dimension of the semantic vector h, r and t in Eq. (1). 

Considering the time consumption, the seen/unseen ratio is set to 
60/10. Given this seen/unseen ratio, we calculate the average and 
standard deviation of the classification results over 5 random seen/un-
seen splits to determine the optimal value of the parameter. As shown in 
Fig. 7(a), when α, β and γ are set to 1, our proposed method can achieve 
the best performance when d equals 50. As shown in Fig. 7(b), when d is 
fixed to 50, our proposed method is not significantly sensitive to the 
batch size between the interval from 40 to 60, so b is recommended to be 
set to 50. 

Furthermore, we analyze the sensitivity of the hyperparameters α, β, 
and γ in our proposed DAN. In the evaluation experiments, we vary one 
parameter at each time while fixing the others to their optimal value. It 
is worth noting that in the ZSL task and the GZSL task, the training 
processes of the latent space mapping model are equal. The difference 
lies in the number of samples used and the test samples in the test phase. 
Therefore, considering the time consumption, we only conduct experi-
ments under the ZSL task when analyzing the sensitivity of critical 

(a) The performance variation under different d. (b) The performance variation under different b.

Fig. 7. The performance variation along with different representation learning vector dimensions and batch sizes. (a) The performance variation under different d. 
(b) The performance variation under different b. 
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parameters. 
Fig. 8 reports the classification performance of our proposed method 

under different α, β and γ. To determine the optimal value of each 
parameter more accurately, we conduct experiments under three ratios 
of seen/unseen: 60/10, 50/20, and 40/30. As shown in Fig. 8(a), we set 
β and γ to 1, and our proposed method can achieve the best performance 
when α equals 0.1. As shown in Fig. 8(b), we set α as 0.1 and γ as 1. Our 
proposed method can achieve the best performance when β equals 0.01. 
As shown in Fig. 8(c), we set α as 0.1 and β as 0.01. Our proposed method 
can achieve the best performance when γ equals 0.01. 

To pursue generalization, the hyperparameter setting of our method 
is fixed under both the ZSL and GZSL settings. 

5.3. Comparison with the state-of-the-art methods 

To fully analyze the ZSL and GZSL methods, we report the classifi-
cation results under different seen/unseen ratios (e.g., 60/10, 50/20, 
and 40/30). More specifically, in each given seen/unseen ratio, we 
evaluate each method over 5 random seen/unseen splits. As mentioned 
above, four kinds of semantic representations, including Word2Vec, 
BERT, Attribute and SR-RSKG, are evaluated. 

5.3.1. Comparison with the existing ZSL methods 
To show the superiority of our proposed method, we consider the 

following baselines in ZSL: SAE (Kodirov et al., 2017), dual visual- 
semantic mapping (DMaP) (Li et al., 2017c), semantics-preserving lo-
cality embedding (SPLE) (Tao et al., 2017), creativity inspired zero-shot 

(a) The performance variation under different . (b) The performance variation under different .

(c) The performance variation under different .

Fig. 8. The classification performance variation under different α, β and γ. (a) The performance variation under different α. (b) The performance variation under 
different β. (c) The performance variation under different γ. 

Table 1 
Comparison of different methods with ResNet-18 under the ZSL setting using OA.  

Knowledge type Seen/Unseen ratio SAE DMaP SPLE CIZSL CADA-VAE ZSC-SA Our DAN 

Word2Vec 60/10 23.5 ± 4.2 26.0 ± 3.6 20.1 ± 3.7 20.6 ± 0.4 41.4 ± 2.3 26.7 ± 5.3 44.3 ± 2.6 
50/20 13.7 ± 1.7 16.7 ± 2.2 13.2 ± 1.9 10.6 ± 3.7 30.3 ± 2.7 15.2 ± 1.0 34.7 ± 1.7 
40/30 9.6 ± 1.4 10.4 ± 0.9 9.8 ± 1.4 6.0 ± 1.2 21.2 ± 2.9 12.1 ± 0.8 24.3 ± 3.7 

BERT 60/10 22.0 ± 1.7 16.4 ± 1.9 19.0 ± 3.8 20.4 ± 4.1 48.1 ± 2.9 29.3 ± 3.8 50.2 ± 2.5 
50/20 12.4 ± 1.9 15.6 ± 1.9 13.2 ± 2.6 10.3 ± 1.9 37.1 ± 3.5 18.3 ± 1.3 43.4 ± 2.7 
40/30 8.8 ± 1.3 10.0 ± 0.8 8.3 ± 2.0 6.2 ± 2.1 26.3 ± 2.2 13.1 ± 3.0 31.5 ± 2.0 

Attribute 60/10 23.6. ± 2.8 31.2 ± 4.1 26.8 ± 2.1 16.4 ± 3.1 47.1 ± 2.9 28.5 ± 3.2 50.1 ± 3.3 
50/20 12.1 ± 1.7 18.7 ± 2.4 16.6 ± 2.1 7.5 ± 3.2 35.2 ± 2.1 19.4 ± 2.8 43.1 ± 1.5 
40/30 8.6 ± 1.0 12.6 ± 1.1 10.7 ± 1.2 6.2 ± 2.9 26.1 ± 2.6 12.7 ± 2.1 30.1 ± 1.9 

Our SR-RSKG 60/10 22.1. ± 2.3 33.1 ± 2.9 28.5 ± 2.6 18.2 ± 2.6 50.5 ± 2.6 31.3 ± 2.5 53.3 ± 3.8 
50/20 12.8 ± 2.3 20.3 ± 1.8 17.2 ± 2.1 8.9 ± 2.5 39.6 ± 3.1 19.1 ± 1.7 45.2 ± 1.3 
40/30 9.2 ± 1.5 12.9 ± 2.4 10.2 ± 1.6 7.1 ± 1.5 28.2 ± 2.6 13.6 ± 2.5 33.4 ± 3.0  
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learning (CIZSL) (Elhoseiny and Elfeki, 2019), cross and distribution 
aligned VAE (CADA-VAE) (Schonfeld et al., 2019), and zero-shot scene 
classification algorithm based on structural alignment (ZSC-SA) (Quan 
et al., 2018). ZSC-SA is a ZSL method that is specifically proposed to 
address zero-shot RS image scene classification, and the other methods 
are recently representative ZSL methods in the computer vision field. To 
pursue the fair comparison, the parameters of the above baseline 
methods are set based on the recommended parameters in their papers. 

As shown in Table 1, our proposed DAN can obviously outperform 
the state-of-the-art methods in terms of different seen/unseen ratios and 
with different knowledge types. In addition, it is worth noting that 
comparing the different knowledge types used in the same method, the 
SR-RSKG achieves the best performance in most cases. This proves that 
vectors obtained based on representation learning of RSKG are superior 
to the embedding vectors extracted by natural language processing 
models and manual annotation attribute vectors in describing RS scenes. 
As shown in Table 2, we also conduct experiments by leveraging the 
image features extracted by EfficientNet. To pursue the generalization, 

we re-use the critical parameters based on Resnet-18. As shown in 
Table 2, our DAN also achieves the optimal performance in most cases. 

5.3.2. Comparison with the existing GZSL methods 
To pursue generalization, we directly reuse the hyperparameter 

setting of ZSL to evaluate GZSL. We consider the following baselines: 
SAE, DMaP, CIZSL, and CADA-VAE in GZSL. It is worth noting that the 
SAE and DMaP are not proposed for the GZSL task, as they are specif-
ically designed for ZSL. 

In GZSL, we evaluate the performance of different methods under the 
GZSL setting using HMA. As shown in Table 3, our method aligns the 
visual latent features and semantic latent representations while sepa-
rating different class distributions in the latent space, which enhances 
the visual-semantic coupling so that our method improves the classifi-
cation accuracy and maintains a good balance between seen class ac-
curacy and unseen class accuracy. Furthermore, we evaluate the 
performance of different GZSL method with the image features based on 
EfficientNet and summarize the evaluation results in Table 4. As shown 

Table 2 
Comparison of different methods with EfficientNet under the ZSL setting using OA.  

Knowledge type Seen/Unseen ratio SAE DMaP SPLE CIZSL CADA-VAE ZSC-SA Our DAN 

Word2Vec 60/10 24.1 ± 2.4 27.1 ± 2.3 20.8 ± 2.3 20.4 ± 2.1 40.1 ± 2.2 29.3 ± 3.6 43.2 ± 2.2 
50/20 15.1 ± 2.5 17.9 ± 3.2 14.7 ± 1.6 11.1 ± 1.8 33.8 ± 2.1 20.2 ± 1.8 32.7 ± 1.9 
40/30 9.8 ± 1.1 11.1 ± 1.7 9.9 ± 1.2 7.8 ± 1.1 22.8 ± 2.1 11.9 ± 0.9 23.5 ± 1.7 

BERT 60/10 22.9 ± 2.1 27.7 ± 1.3 22.3 ± 3.1 19.1 ± 2.1 49.2 ± 2.2 32.1 ± 2.6 49.0 ± 1.9 
50/20 16.2 ± 1.2 15.9 ± 1.9 14.3 ± 2.8 10.4 ± 1.5 39.2 ± 3.1 21.3 ± 1.6 40.2 ± 2.1 
40/30 11.5 ± 1.3 10.2 ± 0.5 9.7 ± 2.4 6.6 ± 2.2 25.2 ± 1.7 13.3 ± 2.1 29.3 ± 1.4 

Attribute 60/10 24.1. ± 1.3 30.4 ± 2.1 27.1 ± 2.4 21.3 ± 4.1 51.9 ± 2.9 33.2 ± 2.6 53.1 ± 2.3 
50/20 16.1 ± 1.8 16.6 ± 2.0 18.0 ± 2.7 12.3 ± 2.2 40.9 ± 2.0 21.6 ± 2.1 43.6 ± 1.9 
40/30 10.3 ± 1.2 12.3 ± 1.1 12.1 ± 1.7 8.2 ± 2.4 29.2 ± 2.6 13.0 ± 2.3 31.6 ± 1.3 

Our SR-RSKG 60/10 23.9. ± 1.2 30.3 ± 2.2 28.8 ± 2.4 20.2 ± 2.3 52.5 ± 2.6 35.4 ± 2.2 55.2 ± 2.8 
50/20 16.6 ± 1.9 19.1 ± 1.3 18.3 ± 1.8 10.9 ± 2.3 41.9 ± 2.3 23.2 ± 2.4 43.1 ± 2.3 
40/30 11.2 ± 1.6 11.7 ± 2.5 10.9 ± 1.4 7.7 ± 1.4 30.1 ± 1.8 17.3 ± 2.1 31.5 ± 1.8  

Table 3 
Comparison of different methods with ResNet-18 under the GZSL setting using HMA.  

Knowledge type Seen/Unseen ratio SAE DMaP CIZSL CADA-VAE Our DAN 

Word2Vec 60/10 27.97 ± 1.13 28.88 ± 1.26 25.18 ± 0.86 32.88 ± 2.54 34.09 ± 1.34 
50/20 20.99 ± 1.90 20.33 ± 1.13 15.70 ± 0.86 30.25 ± 3.07 31.44 ± 1.66 
40/30 17.15 ± 0.55 16.78 ± 1.10 9.10 ± 1.32 26.06 ± 0.79 25.63 ± 0.26 

BERT 60/10 28.57 ± 0.94 26.57 ± 0.65 25.00 ± 1.25 36.34 ± 2.03 37.96 ± 1.65 
50/20 21.52 ± 1.38 19.52 ± 1.42 14.95 ± 1.51 31.51 ± 2.27 31.45 ± 1.85 
40/30 16.65 ± 0.40 16.31 ± 1.24 8.57 ± 0.57 27.05 ± 0.79 28.15 ± 1.16 

Attribute 60/10 28.58 ± 0.93 30.71 ± 0.78 23.88 ± 0.87 36.00 ± 2.19 37.60 ± 1.24 
50/20 20.52 ± 1.75 23.55 ± 0.87 14.27 ± 1.05 32.17 ± 2.41 32.66 ± 0.80 
40/30 16.73 ± 1.06 16.12 ± 0.82 8.11 ± 0.98 26.13 ± 0.79 28.79 ± 0.92 

Our SR-RSKG 60/10 28.86 ± 0.60 30.11 ± 1.39 23.65 ± 0.61 38.10 ± 1.89 40.25 ± 0.84 
50/20 23.66 ± 1.06 23.41 ± 1.21 13.93 ± 1.01 32.94 ± 1.42 34.11 ± 0.45 
40/30 16.94 ± 1.03 16.20 ± 1.62 8.14 ± 0.87 28.11 ± 0.79 29.61 ± 0.82  

Table 4 
Comparison of different methods with EfficientNet under the GZSL setting using HMA.  

Knowledge type Seen/Unseen ratio SAE DMaP CIZSL CADA-VAE Our DAN 

Word2Vec 60/10 29.11 ± 1.22 30.13 ± 1.65 24.72 ± 1.41 32.13 ± 1.81 33.56 ± 1.15 
50/20 22.05 ± 1.95 21.6 ± 1.41 17.05 ± 1.43 29.34 ± 2.25 30.23 ± 1.66 
40/30 17.88 ± 1.21 16.87 ± 1.06 8.99 ± 1.01 23.15 ± 1.95 23.63 ± 0.71 

BERT 60/10 30.47 ± 1.45 32.17 ± 2.15 24.08 ± 1.24 35.07 ± 2.05 37.39 ± 1.47 
50/20 23.34 ± 1.16 22.92 ± 1.15 15.65 ± 1.12 30.15 ± 2.18 32.85 ± 1.56 
40/30 17.92 ± 1.40 17.13 ± 1.06 8.01 ± 0.76 24.32 ± 1.68 26.60 ± 1.34 

Attribute 60/10 30.18 ± 0.91 31.08 ± 1.51 23.12 ± 0.56 36.24 ± 2.28 36.15 ± 1.33 
50/20 24.11 ± 1.34 22.55 ± 1.17 14.11 ± 1.27 30.22 ± 2.41 31.86 ± 0.92 
40/30 16.98 ± 1.64 16.24 ± 1.10 8.56 ± 0.58 25.41 ± 0.59 26.07 ± 1.24 

Our SR-RSKG 60/10 32.11 ± 0.61 34.15 ± 1.21 24.56 ± 0.65 37.15 ± 1.54 39.61 ± 1.66 
50/20 25.06 ± 1.36 23.01 ± 1.30 15.93 ± 1.35 31.04 ± 1.26 32.94 ± 0.81 
40/30 18.91 ± 1.14 19.13 ± 1.44 9.12 ± 0.76 25.95 ± 1.19 27.43 ± 1.19  
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in Table 4, our DAN can also outperform the most majority of methods 
under different kinds of semantic representations. 

In order to intuitively show the effectiveness of our DAN, we visu-
alize the original features without DAN and aligned features with DAN 
under the GZSL setting with the 60/10 partition in Fig. 9. Here, we also 
take the popular t-SNE dimension reduction tool to display features. To 
pursue the clear illustration, we only randomly display 20 image fea-
tures from one category. Because the semantic features of the scene 
category is unique, the unique semantic features of the same category is 
displayed. The image and semantic features of the same category are 
represented by the same color, but the image and semantic features are 
represented by different shapes. Specifically, the circle represents the 
image features of seen class, the triangle represents the semantic fea-
tures of seen class, the square represents the image features of the un-
seen class, and the five pointed star represents the semantic 
representation of unseen class. Through Fig. 9, in terms of seen and 
unseen classes, we can intuitively see that the distribution of visual and 
semantic features in the latent space has been obviously aligned after 
DAN. In addition, our DAN can generate the better alignment perfor-
mance on the seen classes compared with the unseen classes. This result 
can be understood as DAN is trained on the seen classes and DAN does 
not see any unseen data in the training stage. It is very gratifying to see 
the promising alignment on unseen classes as shown in Fig. 9(b). 

With the seen/unseen ratio set to 60/10, we report the visual clas-
sification results of different GZSL methods in Fig. 10. As shown, our 

DAN can outperform the existing competitors in terms of the seen classes 
and unseen classes. 

6. Conclusion 

Driven by the increasing practical demands of ZSL and GZSL in the 
RS field, this paper mainly focuses on zero-shot and generalized zero- 
shot RS image scene classification. Considering that natural language 
processing models based on generalized corpora have poor performance 
in describing RS-oriented scene categories appropriately, this paper, for 
the first time, proposes to generate semantic representations of RS scene 
categories through representation learning of RSKG and applies them to 
zero-shot and generalized zero-shot RS image scene classification. By 
comparison with other traditional knowledge types, we verify the su-
periority of SR-RSKG from intuitive illustration and quantitative anal-
ysis perspectives. In addition, we propose a robust DAN to complete 
zero-shot and generalized zero-shot scene classification. To evaluate 
our method, we conduct extensive comparative experiments under three 
seen/unseen ratios using a large RS image scene dataset. Our proposed 
DAN outperforms the state-of-the-art methods under both the ZSL and 
GZSL settings. 

In our future work, we will attempt to enlarge the RSKG. Intuitively, 
it can be expected that a larger RSKG can contain richer prior knowledge 
and benefit generating better semantic representations of RS scene 
categories. In addition, we will exploit some of the advanced 

(a) Original features without DAN. (b) Aligned features with DAN. 

Fig. 9. The t-SNE visualization of original features without DAN and aligned latent features with DAN. (a) Original features without DAN. (b) Aligned features 
with DAN. 

Fig. 10. Visual prediction results of different GZSL methods with the presented SR-RSKG. Red indicates wrong prediction, and green stands for correct prediction. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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representation learning methods, such as convolutional 2D knowledge 
graph embeddings (ConvE) (Dettmers et al., 2018) and the graph 
attention network (GAT) (Velickovic et al., 2017), to further improve the 
performance of representation learning of RSKG. In addition, how to 
address zero-shot multi-label scene classification (Hua et al., 2020) 
using RSKG is also a very worthy research direction. Finally, how to 
design and optimize the end-to-end network between RS image scenes 
and RSKG is also a very meaningful research direction. 
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